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Summary. The treatment of a multigrid method in the framework of
numerical analysis elucidates that regularity of the solution is not necessary
for the convergence of the multigrid algorithm but only for fast con-
vergence. For the linear equations which arise from the discretization of the
Poisson equation, a convergence factor 0.5 is established independent of the
shape of the domain and of the regularity of the solution.
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1. Introduction

In recent years multigrid methods have been successfully applied to the
numerical solution of the linear equations that arise from the discretization of
elliptic problems. The convergence proofs in [5,7,10] and in the literature
cited there make use of the approximation properties of finite element approxi-
mations. Therefore convergence is strongly related to the regularity of the
solution of the differential equation.

In this paper we will treat multigrid methods for the discretization of the
boundary value problem

—du=f inQcR?

u=0 ondQ. (1.

Our study of the standard 5-point-formula and piecewise quadratic elements
will be done completely in the framework of numerical linear algebra, without
using approximation properties.

The resulting system of linear equations will be approximately reduced to
one of the same structure, but with fewer variables. This reduced system
corresponds to the discretization of a Dirichlet problem in a coarser grid. The
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multigrid iteration combines an approximative solution of the reduced system
with one half step of the GauB-Seidel algorithm or another appropriate smooth-
ing procedure. The latter can partially compensate for the error caused by
such a reduction.

The central idea for the study of the two-level procedure is the following:
The linear equations characterize the solution of a variational problem 1n a
finite element space S,. We decompose S, as the direct sum of two subspaces,
S,=VeW, where V=S, is the finite element space for a coarser grid. If the
variational problem is solved alternately in ¥ and W, an iteration is obtained,
for which the convergence rate may be estimated via a strengthened Cauchy
inequality. The results for the two-level process are extended to the multigrid
method by recursion.

After the first draft of this paper had been written the author was directed
by H. Jarausch to similar investigations by Bank and Dupont [2]. In [2] the
two-level iteration was analyzed via the decomposition of the finite element
spaces for even a wider class of elliptic problems. But the multi-level case was
again studied in a framework in which regularity assumptions are necessary.
We will do this rigorously without such assumptions (though we are certain
that some phenomena cannot be understood in the framework of numerical
linear algebra). Of course, for contrast we will put more stress on these items
for which our point of view is different from that of Bank and Dupont.

Our investigations aim at the following results and properties:

1. We establish an explicit bound

N[

for the contraction number of the two-level iteration for the treatment of (1.1)
independent of the regularity of the solution.

2. This bound is independent of the domain Q. We assume only that the
domain € is polygonal and that its corners belong to the finest grid.

3. The bound 1 is established without the assumption that in each iteration
sufficiently many relaxation steps are performed (cf. [7, 101).

4. The recursion shows that the multi-level procedures for smooth solutions
should be slightly different from those for less regular solutions, for which the
rate of convergence is bounded from above by the number 0.62.

In Sect.2 to 4 we study the standard 5-point-discretization in sequences of

grids where the ratio of the mesh sizes is ]/5 Then the constant which enters
into the strengthened Cauchy inequality is easily understood. In Sect. 5 the
results are extended to multiple grids with mesh ratio 2. Since here the con-
stants are computed numerically, this case is not as illustrative as the previous
one. In Sect. 7, where piecewise quadratic elements are treated, the matrices of
the linear systems are denser. Here it turns out that, on the highest level, the
system may be reduced to the piecewise linear functions considered above with
almost the same rate of convergence.

2. The Two-Level Process

Let QcR? be a bounded domain. Assume that there is a triangulation of Q
which is generated by horizontal and vertical lines of distance h and by
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Fig. 1. Triangulation of a polygonal domain

diagonal lines of distance th]/i (see Fig.1). The set of grid points {p,}7_,
which are contained in (the interior of) @ is denoted as Q,, while Q,, refers to
the subset of points which also belong to the coarser grid formed by the
diagonal lines.

Since there is no danger of confusion, we will also use the symbols Q, and
Qy for the associated triangulations. The discretization of (1.1) with the stan-
dard 5-point-formula 3, p. 2827 leads to a linear system of the form

Al x=b" (2.1)
where
J 1 ifi=j,
Af’i:l ~1/4 ifi%j and p,. p, are adjacent in Q, (2.2)
0 otherwise.

We may rewrite (2.1) as

xi:%Z}, .xj+b§', (2.3)
j

where 2}, refers to the summation over all neighbours in the gnd Q,.
For convenience the GauB-Seidel relaxation is split into two half-steps.

X, i p,eQy,
O P
zzhxj-’rb,-, ifpdQ2y.

g

Toax b il peQy,
Glly). = s )
(@) {x,-, if pgS2y.
Obviously G} x depends only on the components of x on @, and G}'x only on
the other ones. .

As usual, the variables in multi-level algorithms carry three superscripts;
they refer to (1) the level (or equivalently to the grid), (2) an iteration count
and (3) a count of the steps within one iteration loop.
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Algorithm 2.1. (k-th loop of the two-level iteration for Q,).
1. Given x"*° compute

xh,k‘ 1 :(G;} ° G;x)‘ xh.k. 0

5

where v=0,1 or 2.
2. Put

Xh'k' 2 ___Gilxh,k. 1 R (24)

3. Determine the residual d=>»"— A"x"*2 and solve in the coarser grid the
linear equations

y,':%Z/HY,“HIis Pi€Qy,
j

. 25

=arbitrary, p,eQ,\Qy. (2:3)

{The iteration is independent of the choice of the y/’s, p,e@2,\Qy,. For the
theoretical analysis the values should be chosen such that y may be in-
terpolated by a function which is piecewise linear on Q)

4. Put
Xk 3 k2
5. Compute
Xl d = Gl ke 3
and proceed with x™#+ 0= xh*4

Note that each iteration loop begins and ends with the execution of G,
Therefore Step 5 need only be performed in the last iteration.

Furthermore we note that the residual vetor d has only non-zero coef-
ficients d, for p;eQy. This is caused by the execution of G} in Step 2.

To understand the algorithm we interprete (2.1) as an Eulerian equation for
the variational problem

J(w): =a(u, u)— 2(f, u), — min, (2.6)
where

a(u, v)= | (u v +u,v,)dédn,
0

(u, v)g=[uvd&dn. .7
0

Specifically, the minimum of (2.6) is to be determined in S,, the space of those
continuous functions in H)(£2) which are linear on the triangles associated to
Q,.
Each ueS§, may be written in the form
U= Z xi(b?* x;=u(p,). (2.8)

i=1

Here {¢%; p;€Q,} is a basis of S, such that

¢i(1’j):5ijs p;. ijQh'
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Fig. 2. Section from triangulation in Fig. 1. Triangulation of a polygonal domain

We will associate to the vectors x"** from Algorithm 2.1 the functions u"**
via (2.8).

Note that the support of ¢; contains 8 triangles if p,eQy,, and 4 triangles
otherwise. The triangulation which is shown in more detail in Fig. 2 differs
from Courant’s choice [6, p. 218]. Nevertheless,

a(¢h, d);'):4A§‘j. (2.9)
Let {f. ¢")=4b,, then the given linear equation (2.1) is equivalent to

a(u, ¢t') = (f» (p?)Os P,-GQ;,» (210)
or

a(u, p)=(f. ¢,  PES,, (2.11)

and u is the (weak) solution of the variational problem.
Next we decompose S, as a direct sum

S,=8,®T,, (2.12)
where S, Is the analogous finite element space for the coarser grid and
T,=span{¢!; p,eQ,\Qy} ={weS,;w(p)=0 for p,eQy}.
The crucial point is the following observation:

Assertion 2.2. The functional J attains its minimum

in W'+ T, at u"*? (2.13a)

in uh24S,  at uth3 (2.13b)
and

in W™*3+T, at uh** (2.13¢)

To verify this assertion, let dieS,. and consider the minimization of J in 4+ V, V
being a linear subspace of S,. Then

Ji+v)y=a(v, v)—2[(f, v)y—ali, v)]+const, (2.14)
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where const=J(#). Since the expression #(v):=(f,v), —al(d, v) is linear in v, the
minimum v* is given by

a(u*, d)y=(f. p)o—alit, $), forall ¢eV. (2.15)

Now the restriction of the minimization of J to the subspace T, is equiva-
lent to keeping all values on the coarser grid Qp fixed. If we put V=T,, then
(2.15) reads

a(u, ¢7)=(f. $7),
or

(Ax),=b, }pfegh\ﬂu- (2.16)

Obviously (2.16) holds after each application of the GauB-Seidel half-step G},
and in particular for x"* 2 and x"* * This proves (2.13a) and (2.13¢).

Before we analyse the restriction to S, we consider the transition from Q,
and S, to Q4 and S, in more detail. Each diagonal line of the fine grid, but
only every second horizontal or vertical line of the fine grid are found in the
coarser grid. The basis functions for the coarser grid are computed with two
distinct formulas. Referring to Fig.2 we have e.g.

¢ =41
and

P =+ 3+ L+ P+ ). (2.17)
The basis functions for points on the 279, 4% 6% ... horizontal line are

computed like ¢%, while the others are obtained like ¢%. In any case
of —¢leT,. (2.18)
The minimum of J in v*?+ S}, is characterized by
a(v, My=r(¢", for p,eQy. (2.19)

where r(v)=(f,v),~a(@"*? v). From (2.16) we know that r(¢")=0 if p,¢Q,.
This and (2.18) imply

(@) =r(g})
—4[b)—(Ax"k2) ] =4d,.

Moreover, the matrix with entries a(¢;’, ¢¥) has a structure which is analogous
to (2.2). Hence, the solution of (2.19) is computed by Step 3 of the two-level
iteration. [

3. Convergence Rate of the Two-Level Iteration

In determing a numerical bound for the convergence rate we use the following
abstract lemma (cf. [2b, Theorem 1] and [4]). If V is any closed linear sub-
space of a Hilbert space, P, will denote the orthogonal projector onto V. Note
that x — B, x is the element in x+ V with least norm.
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Fig. 3. lllustration of Lemma 3.1

Lemma 3.1. Let the Hilbert-space U be a direct sum of its subspaces V and W.
Assume that there is a y<1 such that a strengthened Cauchy inequality holds:

wowl<yloll-wll,  veV, weW (3.1
If uisoptimal inu+W, ie., if Byu=0, then
lu—Rul <y |ul. (3.2)

A simple proof of this lemma is given here with regard to its extension in
Sect. 4. First we consider the special case dim V=dim W=1, as illustrated in
Fig, 3. Then |ju— B uj ={u|-cosa=<yl|lull, where o is an angle between vectors
from ¥ and W. In the general case we decompose u=v,+w,, v,eV, w,eW. By
assumption we have (1, w,)=0. Since we know that the lemma is true for V;
=span v,, W, =span w,, and ueV,®W,, we have

min [|u—vf| Smin ju—v| =yluj.

veV veV,y
This proves Lemma 3.1. []

Recall that S, H{€) is a Hilbert space when endowed with the inner-
product

(u, v)=a{u, v). (3.3)

From (2.8) and (2.9) we obtain the induced inner-product on the set of coef-
ficient vectors in n-space:

(x,y)=4x"Ay.

The associated norm is the energy norm ||u|| =}/ a(u, u).
Lemma 3.2. If veS; and weT,, then

la(, W)l =—=lvli - [Iw]- (34

1
—I/—E
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Proof. For the evaluation of a(v,w) we consider first the integral on an
arbitrary triangle of Q, e.g., the triangle in Fig. 2 which consists of triangles 1
and II from the fine triangulation. Since the derivatives are piecewise constant
and w(p,)=w(ps) =w(p, ;) =0, onc has

(D=0 1),  wD)=—wlD),
o,(D=v,(11),  w,(D)=w,(1), (3.5)

|W.§I = [W,,l

Consequently, the first term vanishes when we integrate over the triangles I
and I,

| §wews +o,wl=1fo,w, =V [lo,1>- JIw,?
=/ Tio )7 [Xw 1w, %)

=

Bolyn IWion

S-%-3

<—= G IlF a+ 2 IWIE, - (3.6)
By summing over all triangles we get
la(v, w)l §7{2” 1 +3 hwi?}
Therefore (3.4) holds whenever |jv|=|w|/=1. A simple homogenity argument

shows that (3.4) 1s correct for all veS,, weT,. [
Let «" denote the solution of (2.6) in S,. Then

J(uwy=||lu—u"|?+const. for any ue§,. (3.7

By applying Lemma 3.1 to the optimization of flu—u"|| instead of [jul| we
obtain the first main result.

Theorem 3.3. For the two-level iteration, independent of the number v of smooth-
ings, one has

ks 10— Sk 0 ) (3.9)

Proof. Since for any ueS,

G u—u"|| < fu—u"|,
IGRu—u"| < flu—u"],

it follows that ||x"*2—x"|| < |lx"*°—x"|. By applying Lemma 3.1 with V=5,

W=T, we get

Hxh,k,S_th <_1_

V2

Hx“" 2 _xh ” .
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Fig. 4. Values of an approximately worst error {unction on a period of the domain

Another application with V=T,, W=S5,, yields

nxh,k.4_xhn éi ”xh.k.B —Xh”.
2

Combining all estimates we obtain (3.8). [

The constant % in (3.8) is the best possible constant for v=0. Indeed, let 2,
be a domain with a very large number of interior points. Assume that on the
points of some square the error attains the values given in Fig. 4 and that the
error is extended periodically to all interior points of Q,. If the influence of the
boundary is neglected, one iteration would cause the error to be multiplied by
a factor of exactly 0.5.

We will proceed for a moment with the discussion of the optimality of the
constants. Assume that the constant in (3.1) is sharp; ie, we have (v* w*)
=v[o*|-w*|| 0 for some v*eV, w*eW. Moreover let uo=v+w*, velV. Then
the vector in uy,+V with minimal norm has the form Av* +w*, ZelR. This is a
consequence of |Av*+w*| =y||lw*|| (see Fig.3). Hence, the constant in (3.2)
cannot be improved.

Thus the smoothing step, Step 1 in Algorithm 2.1, is reasonable. The half-
step GJ' just annihilates the asymptotically worst error function sketched in
Fig. 4.

4. The Multi-Level Iteration

Generally, the reduced linear system (2.5) still has a large number of un-
knowns. Therefore it makes sense to solve it approximately by applying Algo-
rithm 2.1 to the coarser grid. When this process is repeated, a recursive multi-
grid procedure is established.

Let h,, q=0,1,....q,,, be a finite sequence of mesh sizes with h, _, =12 h,.
g=1. The corresponding grids will be denoted by @7 instead of Q. We will
also replace each suffix (or superscript) h, by g, when we adopt the notation
from the previous sections.

Algorithm 4.1. (k-th loop of the iteration on the level q in the recursive algo-
rithm).
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1. and 2. Same as in the two-level iteration with h:hq (and H:hqf )
3. Determine the residual d=57— A49x%%2 Let 7~ ! be a solution of

A= tyim =g, 4.1)
Compute an approximation y satisfying

(A - o (4.2)

Specifically, if g=1 then (4.1) is solved exactly. If g>1 then u iterations (u
=1,2, or 3) of the level g—1 are performed for Eq. (4.1) with the starting
vector x4~ 19 0=,

4. and 5. Same as in the two-level iteration with h=h, (and H=h, ).

Since the auxiliary equations in the coarser grids are now solved only
approximately we have to modify the estimate given in Lemma 3.1.

Lemma 4.2. Let the Hilbert space U be a direct sum of its subspaces V and W
such that (3.1) holds. Let u be optimal in u+W and let v, €V satisfy
oy —FRul| =0[Bul. (4.3)

Then
min fu—v, —w| <[y*+ (1 —3*)]- ul. (4.4)

weW
Proof. Put vy=PBu and w,=PFy(u—vy). From Lemma 3.1 we know that |u
—0oll =yljull and

lu—vo—woll Syliu—voll <32 lull. (4.5)

We may rewrite (4.3) as v, —v,=0v where veV and |v||£|v,]. Recalling the
well-known characterization of closest points in a subspace of a Hilbert space
we have
lu—vo—0vll?=u—0vo|)* + |jv)|?
Slu—voll® + oo > = fu))>. (4.6)
Combining this with (4.5) we obtain

flu—v;—(1=3) woll = lu—vy—0v—(1-6) wyl
Sollu—vo—o| +(1 =) u—vy—wyl
S[O+(1-0) %] [jull.
From this (4.4) is immediate. []
Figure 5 illustrates that (4.4) cannot be improved unless additional infor-
mation is available.

By modifying the proof of Theorem 3.3 in an obvious manner we obtain
our main result:

Theorem 4.3. The multi-level iteration converges independently of v, and

[xrkr 1O ) <5 ook O — e,



Contraction Number of a Multigrid Method 397

u u-v, U-Vy

u-v,-{1-8)w,

U-vg-Wg

Fig. 5. lllustration of Lemma 4.2

Table 1. Contraction numbers &, from Theorem 4.3

qg 0 1 2 3 4 5 6 7 8
M
1 0 0.5 0.750 0.875 0938 0.969 0.985
2 0 0.5 0.625 0.696 0.742 0.776 0.801 0.821 0.837

3 0 0.5 0.563 0.589 0.602 0.610 0.614 0.616 0.617

where 0, is defined by the recursion
0,=0,
S,=h1 481 ), (4.7)

(The number u of lower level iterations enters into (4.7) as a power o
=0 )

iIl"he contraction numbers §, are listed for ©=1,2, and 3 in Table 1. Numeri-
cal results with u=1 reported in [5] show that our estimates are generally far
too pessimistic. On the other hand, Hackbusch [5] reported that the observed
convergence factor tends indeed to 1 for g —'oc if the domain is very irregular.
It is obvious from Table! that in this case the choice p=2 gives a better
performance, though the effort for each iteration loop is larger. We will return

to this point in Sect. 6.

g~ 1

5. Non-Uniform Meshes

When variational problems on domains with corners are treated, often the
meshes are refined close to the corners [1]. Theorem 4.2 applies to those cases
as well. Before we discuss this situation, we turn our attention to a com-
putational matter.

We have assumed that there is a triangulation of the domain Q consistent
with the finest grid. Then the coefficients of the linear system A"x=b have,



398 D. Braess

A
A2
s

(a) (b)

Fig. 6. Grid from Fig. 1 after 2 and 3 reductions

Fig. 7. Irregular grid for L-shaped region

uniformly, the structure given in (2.2). Though the boundary of Q does not
necessarily lie on the lines of the coarser meshes the reduced linear equations
still have the standard form (2.2).

To illustrate this, we consider the reduced meshes of the example from
Fig. 1. The hatched triangle in Fig. 6a may be eliminated because all its corners
lie on the boundary. On the other hand one may complete the square on the
upper right hand side, without changing the equations for the inner points.
After these modifications the domain is adapted to the new grid. Analogously
three triangles may be eliminated with the next coarsening as shown in Fig. 6b.

Consequently, there may be triangles in some €, which belong to the
support of a we T, but to no veS,_,. Since this does not contradict Lemma 3.2,
it is no drawback in the analysis of the method.

Now we turn to the point mentioned at the beginning of this section.
Figure 7 shows an L-shaped domain, where the mesh is refined in the neigh-
borhood of the corner in the center. Then the coefficients of the associated
linear system differ from (2.2). But when the system is solved with a multigrid
algorithm, it is not necessary to know (and to compute) the coefficients. The
only difference from the standard case is the fact that the computation for the
finer grids is restricted to a subdomain Q. If we apply Lemma 3.2 to ves, o,
weT, we get

(o, w) é% Volla- Wl 5.1)
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Since in general |ovlls<|lv]l,, the effective contraction constant will be sub-
stantially smaller than 2° /2,

A refinement of the grid near the boundary of @ in order to compensate for
the loss of regularity seems reasonable too in this framework.

6. Multigrid Algorithms with h,_, =2h,

Usually, multigrid algorithms are used with sequences of meshes with h, /h

q
=2 instead of ﬁ Then the decomposition in question is

Sh:SZh®T;1, (6-1)

where T, =span{¢"; Pi€Q,,\2,} =T,®T, 7. We will see that this decompo-
sition Is more advantageous then (2.12). There are only two complications, one
is theoretical and the other is practical.

First we derive the constant for the strengthened Cauchy inequality for the
decomposition (6.1). From Sect. 3 we know that there are elements veS,, and
weT, z< Ty, for which the ratio a(v, w)/|jv|f - |lw] is close to 2~ '/*. Hence we do
not expect a smaller constant. But, surprisingly, the result is the same as for
the previous decomposition. Unfortunately we can prove this only by numeri-
cal computations which give no insight into this phenomenon.

Lemma 6.1. If veS,, and weT,, then

1
la(v, w)| éﬁ el - wll- (6.2)

Samana
favses
HEEs

[ l l l

Fig. 8. Points of coarse grid for h, /h,=2

&

mans

oo

Proof. 1t is sufficient to consider the functions on a triangle T of Q,,. A basis
of S,|; (mod constants) is specified in Table2 in connection with Fig.9. The
basis functions are enumerated such that the first three ones are symmetrical to
the line through p, and p,. while ¥, and ¥ are antisymmetrical. Moreover
S,mr=span{y,, ¥, const.}. A simple computation yields
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Table 2. Values of basis function on the triangle in

Fig.9
Py P2 P Py Ps Pe
¥, 2 i 0 1 2 2
v, 0 0 0 0 0 1
/8 0 1 0 1 0 1
v -2 —1 0 1 2 0
bs 0 -1 0 1 0 0
5
5 4
1 2 3
Fig. 9. Enumeration of points for the specification of a basis
4 2
2 0
a(% l/’j)'r: 2 . (6.3)
0 4 2
2 4

From (6.3) the estimate (6.2) is easily obtained. []

The solution of the variational problem in T, in Sect.2 was not problem-
atic. Here the situation is different. The auxiliary problem is equivalent to
the solution of a linear system of type (2.3), where all points of Q,, are
extracted from @, and are considered as boundary points. The solution by
Gaussian Elimination is still very expensive. Fortunately, there are fast iter-
ative procedures available. Point relaxation has a convergence rate [9;
Sect. 3.2] of —logi while the convergence rate for a loop consisting of a
horizontal line relaxation and a vertical one is —logs. The extension of
Lemma 4.2 to the case where both of the auxiliary problems are only solved
approximately is left to the reader.

Algorithm 6.2 (k-th loop of the iteration on the level g in the recursive algovithm
for h,_ /h,=2).

1. Given x™*° determine x™*! satisfying [x™* ! —x"| < ||x"*°—x"||, e.g. by
the same smoothing procedure as in Algorithm 2.1 or line relaxation along the
lines omitted in Step 2.

2. Perform line relaxations to x™*! first for all horizontal lines not meeting

Q,, and then for all vertical lines with the same property. Denote the results as
hk, 2
b

3
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3. Determine the residuals

di :(fa (f)iZh)o _a(uh'k. 2’ d)iZh)» piegzh'

Let 7! be a solution of 49 'y~ '=d. Compute an approximation y as in
Algorithm 4.1.
4. Put xhoked = ik 2 4y

? as in Step 2 above. Denote the results

5. Perform line relaxations to x™*
as x"** and proceed with x™**+1-0= k3
The advantage of the multigrid algorithms with a mesh ratio h, _,/h,=2 is
the strict reduction of the number of unknowns dimS,,~%dimS,. Con-
sequently, the expense for the numerical calculations may be bounded in-
dependently of the number of levels, even if we choose u=3. Then the con-
traction numbers (see Table 1) are bounded by the solution of the equation ¢
=31+ <1,
sup 6,<0.62. (6.4)
7220
This is the most pessimistic estimate if the auxiliary problem in T, is solved
exactly. The rigorous value for Algorithm 6.2 will be slightly larger.

7. Quadratic Elements

When the Galerkin method is performed with piecewise quadratic functions in
C%Q), a straightforward application of the multigrid method would result in
(approximate) reductions to functions which are polynomials on larger tri-
angles. But here another multi-level procedure seems to be more advantageous.
It is possible to decompose the finite element space such that the nontrivial
subspace consists only of piecewise linear functions (cf. [2b, Sect.3]). Then the
resulting matrix has not only a reduced dimension but is also sparser. The
algorithms and the numerical analysis derived for the simple case may be used
for the steps on the lower levels.

Let Q, denote the set of C°-functions that are quadratic polynomials in
each triangle T of the triangulation associated to €,, (cf. Fig. 10). Consider the
decomposition

0,=S,,0U, (7.1)
where

U, ={weQ,; w(p,)=0 for all corners p; of the triangles}.

Lemma 7.1. If veS,, and weU,, then
lae, WIS /2 0] ). (72)

Proof. 1t is sufficient to consiser v and w on the triangle T given in Fig. 10
when h=1. We choose the basis functions
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—2h—

Fig. 10. Triangle whose corners and midpoints lie on a square grid with mesh size h

l//0:1 ‘/’325(2_5),
V=% Yu=n2—y),
_ Ya=n, Ys=£n.
Noting that
Somr=spaniyo. ¥y, Y5}, Upp=span{y;, ¥, ¥},

we compute the matrix
2 0 43 0 473
0 2 0 4/3 4/3
AWl = 43 0 83 0 473
0 4/3 0 8/3 4/3
4/3 4/3 4/3 4/3 §/3

If we replace ys by ¥s=1/2(ys—4¥,—1y,) and leave the other functions
unchanged, we obtain
3 2 V2

3 2 /2
JaWi )= 2 4 31 B
A'(BT 41)'

2
V2 V2 4

Now the constant y for (7.2) is estimated by evaluating the spectral radius p of
BTB.
y*<% & p(B'B)=3.

This proves (7.2). []

The decomposition (7.1) has some properties and consequences which are
very similar to those of (6.1). The solution of the variational problem in Uj is
not trivial but may be treated by line relaxation. Moreover, we may also
interpret the decomposition (7.1) as the result of two steps. The intermediate
space here contains those functions, which are piecewise linear on the horizon-
tal and vertical lines but which are quadratic polynomials along the diagonals.
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Finally we note that rectangular triangles are less interesting for practical
computations than general triangles. For the extension of Lemma 7.1 to
general regular triangulation refer to the proof of Lemmal in [2], from which

the interpretation of the quotient (1 +y)/{1—7) as a condition number becomes
also clear.

8. The Paradox of Smoothing. Further Remarks

In his paper [5] Hackbusch interprets the two-level iteration as a combination
of a “smoothing procedure” and a “correction by approximation”. From that
point of view the Steps 2 and 5 in Algorithm 2.1 contain the smoothing
procedures. We will show, however, that to the contrary (2.4) may produce a
rough approximation from a smooth one. This paradox is not only of theoreti-
cal interest, but has some consequences for practical computations.

Generally, one chooses the minimal mesh size h=h,__ so conservatively,
that the finite element solutions of the elliptic equation for S, and S,, do not
differ by much. If we decompose the solution u*=0v"+w" v"eS,,, w'eT,, we
will therefore expect |[w"| <|v"||l. Assume that the algorithm is used with the
parameter v=0. When we start it with x»®%=x"%1=0, it will produce a
vector x"* 2 whose portion in T, is substantially greater.

Indeed, let there be a w,e T, ||w, [ +0 with [(v", w,)|>% "]} - |lw, [ Recalling
that Lemma 6.1 is stated with a close to optimal constant, this assumption
seems reasonable. Then ||x* 2| <}/ |Ix"%°|| and the part of x*2 in T, is at
least 4 "% 2> |w!].

In this case it is more appropriate to begin with the computation in the
coarser grid instead of the smoothing. This argument agrees with the advice of
some authors to start the multigrid iteration at the lowest level and not at the
highest one.

At this point we might try to explain why the observed convergence rate is
better than the theoretical one given in Sect.3. The interference between the
two auxiliary optimizations in ¥ and W is worst, when the error is decomposed
into two parts with the same order of magnitude. We do not meet that
situation when looking for smooth solutions. On the other hand this expla-
nation is a speculation because it is not known how to check it seriously.

However, we can explain another well-known phenomenon. Consider the
Dirichlet problem

cuég—ku,m:f in Q,

u=0 on o€, (8.1)

where ¢ is a very small positive constant [8, p. 948]. Recalling (3.5) we have

1
“W,,|2:mj(8lwg 2+]W,,l2)-
The energy norm is now so anisotropic that instead of (3.4) we get only y<
(1+&)~ Y2, Therefore, a multigrid procedure with point relaxation is not very
effective (c.f. [8]).
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