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Summary. The treatment of a multigrid method in the framework of 
numerical analysis elucidates that regularity of the solution is not necessary 
for the convergence of the multigrid algorithm but only for fast con- 
vergence. For the linear equations which arise from the discretization of the 
Poisson equation, a convergence factor 0,5 is established independent of the 
shape of the domain and of the regularity of the solution. 
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1. Introduction 

In recent years multigrid methods have been successfully applied to the 
numerical solution of the linear equations that arise from the discretization of 
elliptic problems. The convergence proofs in [5, 7, 10] and in the literature 
cited there make use of the approximation properties of finite element approxi- 
mations. Therefore convergence is strongly related to the regularity of the 
solution of the differential equation. 

In this paper we will treat multigrid methods for the discretization of the 
boundary value problem 

- d u = f  in f2c lR  2, 

u = 0  on Of 2. (1.1) 

Our study of the standard 5-pointoformula and piecewise quadratic elements 
will be done completely in the framework of numerical linear algebra, without 
using approximation properties. 

The resulting system of linear equations will be approximately reduced to 
one of the same structure, but with fewer variables. This reduced system 
corresponds to the discretization of a Dirichlet problem in a coarser grid. The 
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multigrid iteration combines an approximative solution of the reduced system 
with one half step of the Gaul3-Seidel algorithm or another appropriate smooth- 
ing procedure. The latter can partially compensate for the error caused by 
such a reduction. 

The central idea for the study of the two-level procedure is the following: 
The linear equations characterize the solution of a variational problem in a 
finite element space S h. We decompose S h as the direct sum of two subspaces, 
Sh= VOW, where V=-Su is the finite element space for a coarser grid. If the 
variational problem is solved alternately in V and W, an iteration is obtained, 
for which the convergence rate may be estimated via a strengthened Cauchy 
inequality. The results for the two-level process are extended to the multigrid 
method by recursion. 

After the first draft of this paper had been written the author was directed 
by H. Jarausch to similar investigations by Bank and Dupont  [2]. In [2] the 
two-level iteration was analyzed via the decomposition of the finite element 
spaces for even a wider class of elliptic problems. But the multi-level case was 
again studied in a framework in which regularity assumptions are necessary. 
We will do this rigorously without such assumptions (though we are certain 
that some phenomena cannot be understood in the framework of numerical 
linear algebra). Of course, for contrast we will put more stress on these items 
for which our point of view is different from that of Bank and Dupont.  

Our investigations aim at the following results and properties: 
1. We establish an explicit bound 

l 
2 

for the contraction number of the two-level iteration for the treatment of (1.1) 
independent of the regularity of the solution. 

2. This bound is independent of the domain ~2. We assume only that the 
domain Q is polygonal and that its corners belong to the finest grid. 

3. The bound �89 is established without the assumption that in each iteration 
sufficiently many relaxation steps are performed (cf. E7, 10]). 

4. The recursion shows that the multi-level procedures for smooth solutions 
should be slightly different from those for less regular solutions, for which the 
rate of convergence is bounded from above by the number 0.62. 

In Sect. 2 to 4 we study the standard 5-point-discretization in sequences of 

grids where the ratio of the mesh sizes is l ~ .  Then the constant which enters 
into the strengthened Cauchy inequality is easily understood. In Sect. 5 the 
results are extended to multiple grids with mesh ratio 2. Since here the con- 
stants are computed numerically, this case is not as illustrative as the previous 
one. In Sect. 7, where piecewise quadratic elements are treated, the matrices of 
the linear systems are denser. Here it turns out that, on the highest level, the 
system may be reduced to the piecewise linear functions considered above with 
almost the same rate of convergence. 

2. The Two-Level Process 

Let f~clR 2 be a bounded domain. Assume that there is a triangulation of f2 
which is generated by horizontal and vertical lines of distance h and by 
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Fig. 1. Triangulation of a polygonal domain 

diagonal lines of distance H=hl /2  (see Fig. 1). The set of grid points {Pi}~= 1 
which are contained in (the interior of) f2 is denoted as f2 h, while ;2 n refers to 
the subset of points which also belong to the coarser grid formed by the 
diagonal lines. 

Since there is no danger of confusion, we wilt also use the symbols f2 h and 
f2 H for the associated triangulations. The discretization of (1.1) with the stan- 
dard 5-point-formula [3, p. 282J leads to a linear system of the form 

where 

A','i= l o -  l /4 

We may rewrite (2.1) as 

Ahx =b h (2.1) 

ifi=j, 
if i+j and Pi,Pj are adjacent in ~ ,  

otherwise. 

(2.2) 

x, = �88 ~ ,  x i + b~, (2.3) 
J 

where Z~, refers to the summation over all neighbours in the grid O h- 
For convenience the Gaug-Seidel relaxation is split into two half-steps. 

( G / x ) i  { xi '  if PiCY2H' 
= 1 , h i fPi~Qit"  Z~hxj+b;, 

J 

r188 ifp,~O,,. 
(G"x~ .J J 

h Ji=~xi ' i fPd~ , .  

Obviously G~x depends only on the components of x on Y2 H and G~x only on 
the other ones. 

As usual, the variables in multi-level algorithms carry three superscripts; 
they refer to (1) the level (or equivalently to the grid), (2) an iteration count 
and (3) a count of the steps within one iteration loop. 
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Algorithm 2.1. (k-th loop of the two-level iteration Jbr Y2h). 
t. Given x h'k'~ compute 

where v =0, 1 or 2. 
2. Put 

xh, k, I , ' I ' l l  , r  h.k. 0 
- -  [(3" h o kith} X 

xh.k. 2 =G~ xh, k. 1 (2.4) 

3. Determine the residual d = b h - A h x  h'k'2 and solve in the coarser grid the 
linear equations 

Yi=�88  PieOn, 
J 

=arbitrary,  pieOh\Y2u. (2.5) 

(The iteration is independent of the choice of the y[s, p ~O h \O  . .  For the 
theoretical analysis the values should be chosen such that y may be in- 
terpolated by a function which is piecewise linear on Y2 H.) 

4. Put 
xh, k, 3 ~_xh, k, 2 + y .  

5. Compute 
xh, k , 4 = a ~ x  h,k,3 

and proceed with x h'k+ t'O=xh'~'4. 
Note that each iteration loop begins and ends with the execution of G~. 

Therefore Step 5 need only be performed in the last iteration. 
Furthermore we note that the residual vetor d has only non-zero coef- 

ficients d i for p~ef2,. This is caused by the execution of G~ in Step 2. 
To understand the algorithm we interprete (2.1) as an Eulerian equation for 

the variational problem 

d(u): =a(u, u ) -  2(f, U)o -~ min, (2.6) 
where 

a(u, v)= j (u<v~ + u v,) d~drl, 
f~ 

(u, V)o= j uvd~dt  1. (2.7) 

Specifically, the minimum of (2.6) is to be determined in Sh, the space of those 
continuous functions in H~(f2) which are linear on the triangles associated to 

Qh- 
Each ueS h may be written in the form 

u = ~ x~4~, x,-- u(p,). (2.8) 
i = 1  

Here {q~; piE~2h} is a basis of S h such that 
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We will associate to the vectors x h'k'" from Algor i thm 2.1 the functions u h'k'~' 
via (2.8). 

Note  that the suppor t  of  4)i contains 8 triangles if picf2n, and 4 triangles 
otherwise. The  tr iangulat ion which is shown in more  detail in Fig. 2 differs 
from Courant ' s  choice [6, p. 218~. Nevertheless,  

a(~h. h qbj)=4Ai~. (2.9) 

Let (Jl 4)~)=4b~, then the given linear equat ion (2.1) is equivalent  to 

a(u, ~b~)= (,I: qS~') o, p~ef2 h, (2.10) 
o r  

a(u. 4)=(L  4)0, ~ s , .  (2.] l) 

and u is the (weak) solution of the variat ional  problem. 
Next  we decompose  S h as a direct sum 

S~ = SH| T a, (2.12) 

where S n is the analogous  finite element space for the coarser grid and 

T h = span {~b~; piffaQh\f2H} = {wffSh; w(pi)=0 for pi~QH}. 

The crucial point  is the following observat ion:  

Assertion 2.2. The functional J at tains its min imum 

and 

in Uh'k'1+Th at u h'~'2, (2.13a) 

in UJ"kz+SH at u a'~'3` (2.13b) 

in uh'k'3+Th at u h'~'~. (2.13c) 

To  verify this assertion, let l icS h, and consider the minimizat ion of J in fi + V, V 
being a linear subspace of S h. Then 

J(fi + v) = a(v, v) - 2 [(f, v) o - a(fi, v)] + const ,  (2.14) 
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where cons t=J( f i ) .  Since the expression r ( v ) : = ( f  v)o-a(i~, v) is linear in v, the 
m i n imum v* is given by 

a(u*,O)=(f ,c/))o-a(f i ,  4) ), for all q~V. (2.15) 

N o w  the restriction of the minimizat ion of J to the subspace T h is equiva- 
lent to keeping all values on the coarser  grid O n fixed. If we put  V= T h, then 
(2.15) reads 

a(u, 4,,~)=(L 4~),~ c O '  or (Ax)i=bi" ;Pi , \  u. (2.16) 

Obviously  (2.16) holds after each appl icat ion of the Gaui3-Seidel half-step G~, 
and in part icular  for x h'k' 2 and x h'k' 4. This proves  (2.13a) and (2.13c). 

Before we analyse the restriction to S n, we consider the transit ion from O h 
and S h to O n and S n in more  detail. Each diagonal  line of  the fine grid, but 
only every second horizontal  or  vertical line of  the fine grid are found in the 
coarser  grid. The  basis functions for the coarser  grid are computed  with two 
distinct formulas.  Referring to Fig. 2 we have e.g. 

q~tt .fib 
1 = ' F 1  

and 
~ H7 h l h h h h 4) 7 + ~(q~2 + (2.17) 

The basis functions for points  on the 2 ha, 4 tu, 6 tu . . . .  horizontal  line are 
computed  like qSf, while the others  are obta ined  like q57 H. In any case 

~ - ~ , ~ L .  (2.18) 

The min imum of J in u h'k'2 + S  n is character ized by 

a(v, ~b~')=r(~b)), for p~eQ n, (2.19) 

where r(v)=(fV)o--a(uh'k '2 ,  v). F r o m  (2.16) we know that  r(qS~)=0 if piCf2n. 
This and (2.18) imply 

= 4[b~ - (Ax  h' k, 2)~] = 4di. 

Moreover ,  the matr ix  with entries a(~b~, 4f) has a s tructure which is analogous  
to (2.2). Hence, the solution of  (2.19) is computed  by Step 3 of the two-level 
iteration. [ ]  

3. Convergence Rate of the Two-Level Iteration 

In determing a numerical  bound  for the convergence rate we use the following 
abst ract  l emma (cf. [2b,  T h e o r e m  1] and [4]). If  V is any closed linear sub- 
space of a Hi lber t  space, P~. will denote  the o r thogona l  projector  on to  V. Note  
that  x -  Pv x is the element  in x + V with least norm. 
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Fig. 3. Illustration of Lemma 3.1 

Lemma 3.1. Let the Hilbert-space U be a direct sum o[ its subspaces V and W. 
Assume that there is a "/ < 1 such that a strengthened Cauchy inequality holds." 

l(v,w)l~>,llvll.llwll, veg, 

I:~ u is optimal in u + IV, i.e., if Pw u = O, then 

I l u -  Pvull < ;' llull . 

weW (3.1) 

(3.2) 

A simple proof  of this lemma is given here with regard to its extension in 
Sect. 4. First we consider the special case dim V = d i m  W= l, as illustrated in 
Fig. 3. Then ilu-Pvull=llull .cos~_-<yitull, where c~ is an angle between vectors 
from V and W. In the general case we decompose u = v l + w  1, v l c K  w~eW. By 
assumption we have (u, w l )=0 .  Since we know that the lemma is true for 1/1 
= s p a n  v l, W l = s p a n  w l, and u e V l |  l, we have 

min Ilu-vll < ra in  Nu-vl] <~'llull. 

This proves Lemma 3.1. [ ]  
Recall that  Sh~HIo(Y2) is a Hilbert space when endowed with the inner- 

product  

(u, v)=a(u, v). (3.3) 

From (2.8) and (2.9) we obtain the induced inner-product  on the set of coef- 
ficient vectors in n-space: 

(x, y ) =  4 x r A y .  

The associated norm is the energy norm NuN = a ] / ~ , u ) .  

Lemma 3.2. I f  y eS  H and w~ T h, then 

1 
[a(v, w)l < ~  [IvN �9 []wl[. (3.4) 

1/2 
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Proof  For  the evaluat ion of  a(v,w) we consider first the integral on an 
arbi t rary  triangle of f2 n, e.g., the triangle in Fig. 2 which consists of triangles 1 
and II  from the fine tr iangulation.  Since the derivatives are piecewise constant  
and w(pv) = w ( p g )  = w(p 13) =0,  one has 

Q(I) = v~(II), w~(I) = - wr 

v,(I) = v,([I), w,(1) = w,(II), (3.5) 

Iw~I = [w,[ 

when we integrate over  the triangles I Consequently,  the first term vanishes 
and II, 

t ~iv~w~ + v~ w,,)l = ISv. w.i ~ r 2- flw~l 2 

t 
< ~ IIvllr+,[" IIwll,+, 

1 < ~  {~ 2 1 - " Ilvll~+n+~llwll~+,~}- (3.6) 

By summing  over  all triangles we get 

1 la(v,w)lg~ {~ IlvlI2+�89 IIwlt q.  

Therefore  (3.4) holds whenever  ]lvll = Hw]r =1 .  A simple homogeni ty  a rgument  
shows that  (3.4) is correct  for all veS~,  w e T  h. [] 

Let u h denote  the solution of (2.6) in S h. Then  

J ( u ) = N u - u h l l Z + c o n s t .  for any ueSh. (3.7) 

By applying L e m m a 3 . 1  to the opt imiza t ion  of ]Iu--uhl] instead of ]lull we 
obta in  the first main  result. 

Theorem 3.3. For the two-level iteration, independent o f  the number v o f  smooth- 
ings, one has 

I lxh,k+ l ,O xhjl  1 h,k,O h - < ~ l l x  - x  II. (3.8) 

Proof. Since for any  u e S  a 

IIG~,u-u~ll _<_ Nu-u~ l l ,  

tI GIhl u --  uh II ~ II u - -  uh II , 

it follows that  Ilxh'k'2--Xhll < [Ixh'k'O--xhll. By applying L e m m a  3.1 with V = S  n, 

W= T h we get 

1 
IIx ~'~' ~ - x " f l  < - ~  tlx ~'~" 2 - x"II. 

1 / 2  
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Fig. 4. Values of an approximately worst error function on a period of the domain 

Another  appl icat ion with V= T h, W=S~+ yields 

1 ibx~,k, +_ xhll < ~  ilxh,~. 3 _ x~ll. 

Combin ing  all est imates we obtain (3.8). [ ]  
The constant  �89 in (3.8) is the best possible constant  for v=0 .  Indeed, let f2 h 

be a domain  with a very large number  of interior points. Assume that  on the 
points of  some square the error  at tains the values given in Fig. 4 and that  the 
error  is extended periodically to all interior points of  g2 h. If the influence of the 
boundary  is negIected, one i teration would cause the error  to be multiplied by 
a factor of  exactly 0.5. 

We will proceed for a m o m e n t  with the discussion of the opt imal i ty  of the 
constants.  Assume that  the constant  in (3.1) is sharp;  i.e., we have (v*,w*) 
=~,l lv*l l -w*ll~0 for some v*eV, w*cW. Moreover  let Uo=V+W*, veV. Then 
the vector  in uo+V with minimal  no rm has the form 2 v * + w * ,  2eIR. This is a 
consequence of hl2v*+w*Ll=),llw*ll (see Fig. 3). Hence, the constant  in (3.2) 
cannot  be improved.  

Thus  the smooth ing  step, Step 1 in Algor i thm 2.1, is reasonable.  The  half- 
step G~ t just annihilates the asymptot ical ly  worst  error function sketched in 
Fig. 4. 

4. The Multi-Level Iteration 

General ly,  the reduced linear system (2.5) still has a large number  of un- 
knowns.  Therefore it makes  sense to solve it approximate ly  by applying Algo- 
r i thm 2.1 to the coarser  grid. When this process is repeated, a recursive multi-  
grid procedure  is established. 

Let  hq, q = 0 ,  1, ""'qmax be a finite sequence of  mesh sizes with hq 1=1~. hq, 
q >  1. The  corresponding grids will be denoted by ~2 + instead of (2 hq. We will 
also replace each suffix (or superscript)  hq by q, when we adop t  the nota t ion  
from the previous sections. 

Algorithm 4.t. (k-th loop of the iteration on ~he level q in the recursive algo- 
rithm). 
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A q lyq l=d" 

C o m p u t e  an approx ima t ion  y satisfying 

I l y - y  q IH<$ q l l lyq-lll .  

D. Braess 

1. and 2. Same as in the two-level i teration with h=hq (and H=hq 1). 
3. Determine  the residual d=bq-Aqx q'k'2. Let yq I be a solution of 

(4.1) 

(4.2) 

Specifically, if q = l  then (4.1) is solved exactly. If q > l  then IL iterations (/~ 
=1 ,2 ,  or 3) of  the level q - 1  are per formed for Eq. (4.1) with the start ing 
vector  x q- 1.0, o = 0. 

4. and 5. Same as in the two-level i teration with h = hq (and H = h q  1). 
Since the auxiliary equat ions in the coarser  grids are now solved only 

approx imate ly  we have to modify  the est imate given in L e m m a  3.1. 

L e m m a  4.2. Let  the Hilbert space U be a direct sum of  its subspaces V and W 
such that (3.1) holds. Let  u be optimal in u + W and let v t ~ V satisfy 

Ilv l - Pvull <= tSll Pvul[ . (4.3) 
Then 

min l l u - v  I - w l l  ~ [3'2 + 6(1 _ ) ,2) ] .  ilul[. (4.4) 
w E W  

Proof  Put vo=PvU and wo=Pw(u-Vo) .  F r o m  L e m m a  3.1 we know that Ilu 
- ro l l  <'/[lulh and 

[ l U - V o -  Wol I < ylLU- Vol I _<_ 72 [lull. (4.5) 

We may  rewrite (4.3) as v l - V o = 6 V  where v e V  and Ilvll <llvoll. Recalling the 
wel l -known character izat ion of closest points in a subspace of  a Hi lber t  space 
we have 

I lu-Vo-vlI2  = I/U-VolJ2 + I)vll 2 

< ]lU--Vo]12+ I]Von2 =Hu]] 2. (4.6) 

Combin ing  this with (4.5) we obtain  

f l u -v1  - (1  -,~) %11 = H U - V o - ~ V - ( 1  - ,~)  Woll 

< ~ l lU- Vo - Vll +(1 - ~ ) l l U -  Vo - Woll 

=< [ 6  + ( 1  - r y 2 ]  �9 Ilull. 

F rom this (4.4) is immediate .  [ ]  
Figure 5 illustrates that  (4.4) cannot  be improved  unless addi t ional  infor- 

mat ion  is available. 
By modifying the p roof  of  T h e o r e m  3.3 in an obvious  manner  we obta in  

our main  result: 

Theorem 4.3. The multi-level iteration converges independently of" v, and 

llxq.k+ 1, O-x~ll < 6~llxq, k.~ 
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Fig. 5. Illustration of Lemma 4.2 

Table I. Contraction numbers 6q from Theorem 4.3 
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\ 
~.~q 0 1 2 3 4 5 6 7 8 

, \  

1 0 0.5 0.750 0.875 0.938 0.969 0.985 
2 0 0.5 0.625 0.696 0.742 0.776 0.801 0.821 0.837 
3 0 0.5 0.563 0.589 0.602 0.610 0.614 0.616 0.617 

where 6q is defined by the recursion 

(~o = 0 ,  

(}q =�89 +,'iq._ 1). (4.7) 

(The number  l~ of lower level i tera t ions  enters into (4.7) as a power  C~q._ i 

=G 1-) 
The cont rac t ion  numbers  ,Sq are  listed for l~ = 1, 2, and  3 in Table  1. Numer i -  

cal results with p = 1 repor ted  in [5]  show that  our  es t imates  are general ly  far 
too pessimistic.  On the o ther  hand,  Hackbusch  [5] repor ted  that  the observed 
convergence factor tends indeed to 1 for q - , o o  if the doma in  is very irregular .  
It is obvious  from Table  1 that  in this case the choice / t = 2  gives a bet ter  
performance,  though the effort for each i tera t ion loop is larger. We will re turn 
to this point  in Sect. 6. 

5. Non-Uni fo rm Meshes 

When  var ia t iona l  p rob lems  on doma ins  with corners  are t reated,  often the 
meshes are refined close to the corners  [1]. Theorem 4.2 applies  to those cases 
as well. Before we discuss this s i tuat ion,  we turn our  a t ten t ion  to a com- 
pu ta t iona l  matter .  

W e  have assumed that  there  is a t r i angula t ion  of  the d o m a i n  f2 consis tent  
with the finest grid. Then the coefficients of  the l inear  system Ahx=b have, 
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(a) (bl 

Fig. 6. Grid from Fig. 1 after 2 and 3 reductions 

Fig. 7. Irregular grid for L-shaped region 

Y 

uniformly, the structure given in (2.2). Though the boundary of /2 does not 
necessarily lie on the lines of the coarser meshes the reduced linear equations 
still have the standard form (2.2). 

To illustrate this, we consider the reduced meshes of the example from 
Fig. 1. The hatched triangle in Fig. 6a may be eliminated because all its corners 
lie on the boundary. On the other hand one may complete the square on the 
upper right hand side, without changing the equations for the inner points. 
After these modifications the domain is adapted to the new grid. Analogously 
three triangles may be eliminated with the next coarsening as shown in Fig. 6b. 

Consequently, there may be triangles in some (~q which belong to the 
support  of a wcT~ but to no v e S q _  ~. Since this does not contradict Lemma 3.2, 
it is no drawback in the analysis of the method. 

Now we turn to the point mentioned at the beginning of this section. 
Figure 7 shows an L-shaped domain, where the mesh is refined in the neigh- 
borhood of the corner in the center. Then the coefficients of the associated 
linear system differ from (2.2). But when the system is solved with a multigrid 
algorithm, it is not necessary to know (and to compute) the coefficients. The 
only difference from the standard case is the fact that the computat ion for the 
finer grids is restricted to a subdomain 8. If we apply Lemma 3.2 to v ~ S q  _ 1, 

w~Tq we get 

la(v, w)I <=1 Ilvll~" Ilwll~. (5.t) 
1/2 
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Since in general Hvjlr~[jvlbr the effective contraction constant will be sub- 
stantially smaller than 2 i/2 

A refinement of the grid near the boundary of ~2 in order to compensate for 
the loss of regularity seems reasonable too in this framework. 

6. Multigrid Algorithms with hq_ I =2hq 

Usually, multigrid algorithms are used with sequences of meshes with hq 1/hq 
= 2 instead of ] ~ .  Then the decomposition in question is 

Sh=S2h@ Th' (6.1) 

where Th'=span{qS~; pief2Zh\f2h}=Th| We will see that this decompo- 
sition is more advantageous then (2.12). There are only two complications, one 
is theoretical and the other is practical. 

First we derive the constant for the strengthened Cauchy inequality for the 
decomposition (6.1). From Sect. 3 we know that there are elements VCSzh and 
WeThv7~ Th', for which the ratio a(v, w)/llvl[. Hwl] is close to 2 -I/2. Hence we do 
not expect a smaller constant. But, surprisingly, the result is the same as for 
the previous decomposition. Unfortunately we can prove this only by numeri- 
cal computations which give no insight into this phenomenon. 

Lemma 6.1. U" veS2h and we Th', then 

1 
]a(v, w)J < ~  I[vll" IIw]l- (6.2) 

1/2 

l t 
Fig. 8. Points of coarse grid for hq ffhq=2 

)- 

t I  )- 

> 

Proof It is sufficient to consider the functions on a triangle T of f22a. A basis 
of Shl T (rood constants) is specified in Table 2 in connection with Fig. 9. The 
basis functions are enumerated such that the first three ones are symmetrical to 
the line through P3 and Pc,, while 04 and 05 are antisymmetrical. Moreover 
S2htr=span {~91, q/4, const.}. A simple computation yields 
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Table 2. Values of basis function on the triangle in 
Fig. 9 

P~ P2 P3 P4 P5 P6 

tk~ 2 1 0 I 2 2 
02 0 0 0 0 0 l 
tp3 0 1 0 1 0 1 
04 - 2  - 1  0 1 2 0 
~5 0 - 1  0 1 0 0 

1 2 

Fig. 9. Enumerat ion of points for the specification of a basis 

(2 1 2 0 

a ( 4 , , ,  ~ ) 7 ,  = 2 . 

0 4 

2 

From (6.3) the estimate (6.2) is easily obtained. [] 

(6.3) 

The solution of the variational problem in T h in Sect. 2 was not problem- 
atic. Here the situation is different. The auxiliary problem is equivalent to 
the solution of a linear system of type (2.3), where all points of Qah are 
extracted from f2 h and are considered as boundary points. The solution by 
Gaussian Elimination is still very expensive. Fortunately, there are fast iter- 
ative procedures available. Point relaxation has a convergence rate [9; 
Sect. 3.2] of - l o g � 8 9  while the convergence rate for a loop consisting of a 
horizontal line relaxation and a vertical one is - l o g ~ .  The extension of 
Lemma 4.2 to the case where both of the auxiliary problems are only solved 
approximately is left to the reader. 

Algorithm 6.2 (k-th loop of  the iteration on the level q in the recursive algorithm 

for  h o 1/hq=2). 
1. Given x h'k'~ determine x h'k'l satisfying IIx h'k' x-xhtl < Ilxh'k'0--Xhll, e.g. by 

the same smoothing procedure as in Algorithm 2.1 or line relaxation along the 
lines omitted in Step 2. 

2. Perform line relaxations to x h'k'l first for all horizontal lines not meeting 
f22h and then for all vertical lines with the same property. Denote the results as 
X h, k, 2 
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3. Determine the residuals 

dE =(J~ 4)2, ")o--a(u h'k" 2 4>?'), p, er~2,,. 

Let yo-~ be a solution of A q l y q - I = d .  Compute an approximation y as in 
Algorithm 4.t, 

4. Put Xh, k. 3=xh, k, 2 + y" 

5. Perform line relaxations to x ~'k'3 as in Step2 above. Denote the results 
as X h ' k ' 4  and proceed with x h'k+ 1"~ 

The advantage of the multigrid algorithms with a mesh r a t i o  hq _ I /hq=2  is 
the strict reduction of the number of unknowns dimS2h~�88 h. Con- 
sequently, the expense for the numerical calculations may be bounded in- 
dependently of the number of levels, even if we choose ~=3.  Then the con- 
traction numbers (see Table I) are bounded by the solution of the equation 6 
=�89 +(~3)<1; 

sup (~q < 0.62. (6.4) 
q>0 

This is the most pessimistic estimate if the auxiliary problem in T n' is solved 
exactly. The rigorous value for Algorithm 6.2 will be slightly larger. 

7. Quadratic Elements 

When the Galerkin method is performed with piecewise quadratic functions in 
C~ a straightforward application of the multigrid method would result in 
(approximate) reductions to functions which are polynomials on larger tri- 
angles. But here another multi-level procedure seems to be more advantageous. 
It is possible to decompose the finite element space such that the nontrivial 
subspace consists only of piecewise linear functions (cf. [2b, Sect. 3]). Then the 
resulting matrix has not only a reduced dimension but is also sparser. The 
algorithms and the numerical analysis derived for the simple case may be used 
for the steps on the lower levels. 

Let Qh denote the set of C~ that are quadratic polynomials in 
each triangle T of the triangulation associated to ~2h (cf. Fig. 10). Consider the 
decomposition 

Qh=S2hOUs  (7.1) 

where 

Us {weQ~,; w(p~)=0 for all corners p~ of the triangles}. 

Lemma 7.1. I f  l)ES2h and we Ut~, then 

}a(v, w)l~ ~ Ilvll Ilwll. (7.2) 

Proof It is sufficient to consiser v and w on the triangle T given in Fig. 10 
when h = 1. We choose the basis functions 
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o -2h . . . . . .  

Fig. 10. Triangle whose corners and midpoints lie on a square grid with mesh size h 

Noting that 

~ b o = l  ~'3 = { ( 2 -  {), 

I//2 ~-//, I//5 = ~ t / . 

S2hfr =sP an {0o, 0t,  ~'2}, Us = span {~k3, ~4, ~bs}, 

we compute the matrix 

( 4 ~  0 4/3 0 4 / 3 \  
2 0 4/3 4 / 3 ~  

a(ff] i, @j)5j_. 1 = 3 0 8/3 0 4 / 3 / .  
4/3 0 8/3 4 / 3 ]  

\ 4 / 3  4/3 4/3 4/3 8 / 3 /  

If we replace 05 by 0 '5=/2(05- �89189 and leave the other functions 

/ 3 

unchanged, we obtain 

3 ! r 5 ~a(tki, = 

2 

2 ]/2\ 
2 / 2  

4 

4 

4 

31 B )  
B r 41 

Now the constant ? for (7.2) is estimated by evaluating the spectral radius p of 
BrB.  

p(B B)=~. 

This proves (7.2). [] 

The decomposition (?.1) has some properties and consequences which are 
very similar to those of (6.1). The solution of the variational problem in Us is 
not trivial but may be treated by line relaxation. Moreover, we may also 
interpret the decomposition (?.1) as the result of two steps. The intermediate 
space here contains those functions, which are piecewise linear on the horizon- 
tal and vertical lines but which are quadratic polynomials along the diagonals. 
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Finally we note that rectangular triangles are less interesting for practical 
computations than general triangles. For the extension of Lemma 7.1 to 
general regular triangulation refer to the proof of Lemma 1 in [2], from which 
the interpretation of the quotient (I + 7)/(1-  7) as a condition number becomes 
also clear. 

8. The Paradox of Smoothing. Further Remarks 

In his paper [5] Hackbusch interprets the two-level iteration as a combination 
of a "smoothing procedure" and a "'correction by approximation". From that 
point of view the Steps 2 and 5 in Algorithm 2.1 contain the smoothing 
procedures. We will show, however, that to the contrary (2.4) may produce a 
rough approximation from a smooth one. This paradox is not only of theoreti- 
cal interest, but has some consequences for practical computations. 

Generally, one chooses the minimal mesh size h=hqm,x so conservatively, 
that the finite element solutions of the elliptic equation for S h and Szh do not 
differ by much. If we decompose the solution uh=vh+w h, vheszh, wh~Th ', we 
will therefore expect ilwh]l ~ livhH. Assume that the algorithm is used with the 
parameter  v=0 .  When we start it with xh'~176 T M  =0,  it will produce a 
vector x h'k" 2 whose portion in T~' is substantially greater. 

Indeed, let there be a wl~T ~, I1% [[ 4 0  with [(v h, wi)[> • 3 Ilvhlt " Ilwl [I- Recalling 
that Lemma 6.1 is stated with a close to optimal constant, this assumption 

seems reasonable. Then Ilxh'~ < l ~ l l x h ' ~ 1 7 6  H and the part of x h'~ in T h' is at 
least 1 h o 2 ~ l lx '  ' II>>tlwhll- 

In this case it is more appropriate to begin with the computation in the 
coarser grid instead of the smoothing. This argument agrees with the advice of 
some authors to start the multigrid iteration at the lowest level and not at the 
highest one. 

At this point we might try to explain why the observed convergence rate is 
better than the theoretical one given in Sect. 3. The interference between the 
two auxiliary optimizations in V and W is worst, when the error is decomposed 
into two parts with the same order of magnitude. We do not meet that 
situation when looking for smooth solutions. On the other hand this expla- 
nation is a speculation because it is not known how to check it seriously. 

However, we can explain another well-known phenomenon. Consider the 
Dirichlet problem 

~ u ~ + u , , = f  in (2, 

u = 0  on 0~,  (8.1) 

where e, is a very small positive constant [8, p. 948]. Recalling (3.5) we have 

1 
S Iw.I 2 = 1 - ~ :  S (~ Iw~l 2 + Iw~12) - 

The energy norm is now so anisotropic that instead of (3.4) we get only y <  
(1 +e)  -t/2. Therefore, a multigrid procedure with point relaxation is not very 
effective (c.f. [8]). 
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