
Numer. Math. 23, 199--2t3 (t975) 
�9 by Springer-Verlag 1975 

Implicit Runge-Kutta Methods 
for Second Kind Volterra Integral Equations 

F. de Hoog and R. Weiss 

Received September 27, t97t 

Summary. Implicit Runge-Kutta methods for ordinary differential equations 
which arise from interpola• quadrature formulae are generalized to Volterra integral 
equations of the second kind. Two classes of methods are considered and shown to be 
convergent and numerically stable. In addition, for various choices of quadrature 
formulae the methods are A-stable and stiffly A-stable. 

1. Introduction 

The extension of explicit Runge-Kutta methods for ordinary differential 
equations to Volterra integral equations of the second kind 

t 

y (t) =g (t) + f K  (t, s, y (s))ds (t.t) 
0 

has been considered by Laudet and Oules [9], Pouzet [t0] and Beltjukov [2]. 
Implicit  Runge-Kutta methods for the solution of ordinary differential equations 
have been studied by Butcher [3] and Axelsson [i] and have been shown to 
possess desirable stability properties combined with high order convergence. 
Butcher shows that  each Runge-Kutta process can be generated by  a numerical 
quadrature formula. 

In this paper we extend the idea of constructing implicit Runge-Kutta 
methods based on quadrature formulae to (tA). The basis of the quadrature 
formulae under consideration for the interval [0, t] is Lagrangian interpolation 
with respect to a set of points {u 1, u 2 . . . . .  u~} with 0 _--< ul < u s < -.. < u, = t. We 
show that  for each choice of {u~, us . . . . .  u~} the method is convergent of at least 
order n and that  higher order convergence up to order 2 n -  t is possible for 
suitably chosen points. In  addition the methods are shown to be numerically 
stable in the sense of Noble [11] and for special choices of {u 1, u s . . . . .  u~} have the 
stronger property of being A-stable in the sense of Dahlquist [4J. 

From the theory of Volterra integral equations of the second kind it is well 
known (see for example [5; Ch. 13, p. 4t5]) that ,  if 

(i) g (t) is continuous on 0 ~ t ~ T, 

(ii) K (t, s, y) is uniformly continuous in t and s for all finite y on 0 ~ s ~ t ~ T, 
and 

(iii) K (t, s, y) satisfies the Lipschitz condition 

lK(t,s,y~)--K(t,s,Y~)l~_Lly~--y~[, O ~ s ~ T  (!.2) 



200 F .  de H o o g  and  R.  W e i s s  

where L is a cons tant  independent  of s and t, then  equat ion ( t . t )  has a unique 
cont inuous solut ion on 0 <~ t --< T. However,  addi t iona l  smoothness condit ions will  
be imposed in the  subsequent  analysis .  

I t  should be no ted  t ha t  a l though the analysis  is presented only for the  scalar  
equat ion  (1A), the  general izat ion to a system of Vol ter ra  in tegral  equat ions  of t he  
second kind follows immedia te ly .  

2. Prel iminaries 

In  this sect ion we int roduce some no ta t ion  and  present  three  lemmas and  
two corollaries which will be required in subsequent  analysis.  

Le t  0 --< u 1 < us < "'" < u,  = 1. F o r  convenience we shall  consider only t he  
case u 1 > 0. However ,  wi th  sl ight  no ta t iona l  modif icat ions,  the  analysis  is va l id  
for u 1 = 0. Pu t  

(t) = (t - , 1 )  (t - u2) . . .  (t - ~ )  = s ~ , ; e - ; .  
i=o 

Let  

w(t) k = l  . . . . .  n, (2.t) L k (t) - -  (t --  ul~ ) w' (uk) ' 

uj 

a ik=fL~(s )ds ,  / ' = t  . . . . .  n ;  h = t  . . . . .  n, 
o (2.2) 

ak =a~k.  

We denote the  relat ion 

by  w (t) E/ao, and  the  relat ions 

1 

f s 'w (s) ds = O, 
0 

b y  w (t) e#,.  Let  
V4 

f w(s)ds:4=O 
o 

r = 0 ,  . . . .  v - - t ,  v > 0 ;  
1 

f s 'w ( s )ds~O (2.3) 
o 

R,(/) = f / ( s )ds - -  ~. aiJ(uk), i = t  . . . . .  n. (2.4) 
0 k = l  

The following lemmas and corollaries are s imple general izat ions of results  due to 
Axelsson [t] .  Proofs  are given in Weiss  [t5, Ch. IIl. 

Lemma 2.1. I/w(t)~/a,,  then 

Ui q 

R,  (u"+q) = f sqw (s) ds  - -  Z ~',R, (u"+~- ' ) ,  
0 r = l  

and 

Lernma 2.2. I1 /q  (t) is 
r + q ~ n  + v - - 2 ,  then 

a,u'@,(s)ds=f 
1~=1 0 0 

q = 0 ,  . . . , n ,  

R.(u "+q)=o,  q_<--v--l. (2.5) 

a polynomial o/ degree less than or equal to q, and 

u~ 1 

- -  l~ (s) d s. 
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Corollary 2.1. 
n 

a,u'kRk(u "+p) = 0 ,  r+p ----0 . . . . .  v - -2 .  
k = l  

Corollary 2.2. 

~, , ,~R~ ( ( . - .~)"+ ' )=o,  r + p  = 0  . . . . .  ~ - - 2 .  
k = l  

The following lemma, which provides an estimation of the growth of solutions 
of nonhomogeneous systems of difference equations is given by  Henrici [7, Ch. 6, 

p. 313]. 
i - - 1  

Lemma 2.3. I1 leil<=A s l ~ l + B ,  r  2 . . . . .  A, B>o  ~d  1,01_<_n, th~,~ 
k=O 

l,,l=<(e +Awl 0 + A )  '-1,  r 1, 2 . . . . .  

3. Numerical Schemes 

In  this section we define two classes of implicit Runge-Kut ta  methods corre- 
sponding to a fixed set {u 1, u2 . . . . .  u,}. 

We are interested in an approximation to the solution y (t) on the grid 

T t~=ih, i = 0  . . . . .  I ;  h = ~ - .  

Let  
t~i=ti+uih, ] = t  . . . . .  n; i----0 . . . . .  1 - - I .  

Discretizing (t A) we obtain 

ttj 
y(t,j) ----g(t,j) + f K (t,i, s, y(s) )ds + f K (tq, s, y(s) )ds, 

~ " (3.t) 
i = t  . . . . .  n;  i = 0  . . . . .  1 - 1 .  

To approximate the integrals in (3.t), we use tile quadrature formulae 

and 

t~+l ~7 

f / (s)ds~h ~ aJ(tlk), l = O  . . . . .  i - - t  
tz k=l 

t~j 

f / ( ~ ) d ~  -~ ~ h,~,/(t,~). 
tt k~l 

Hence we obtain the numerical scheme 

i--i *t 

Y~i-~g(tii) + ~' ~' hakK (t~i' tlk' Ylk) + ~ hajaK (tii, ti~, Y~), 
/ = 0  k = l  k = l  

i = 1  . . . . .  n;  i = o  . . . . .  1 - - 1 ,  
(3.2) 

where Yl~ denotes the approximation to y (t,k). 
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Thus,  for each i, (3.2) represents a system of n simultaneous equations in 
Yii, j = t  . . . . .  n. Also it m a y  be seen from (3.2) t ha t  values of K (t, s,y(s)) are 
required outside the region 0--<s ~t- -< T and this could cause difficulties in 
practice if the kernel is badly  behaved outside the region (see for  instance [6]). 

This problem can be overcome by  using a different approximat ion  for 
to 

f K (tii, s, y (s))ds. First  approx imate  
U 

t~ t~ k=l 

and then apply  the quadra ture  formula 

t~j 

f / (~) ,~  ~ Y, h~;,,~/(t~ +~;u~h). 
t~ k = l  

This yields the numerical  scheme 

i - - 1  n 

Yij :g(tii) + ~ ~, ha~K(tii, tzk, Yzk) 
~=0 k=l 

-}-~=xhuiakK( tii, ti-3t-q2iukh, ~.=lLr(u]uk) Yi,) , (3.3) 

/'----t . . . . .  n; i = o  . . . . .  1 - - t .  

Clearly K(t, s, y(s)) is not required outside the region 0_<s_<t  ~ T. For the 
special case K(t, s,y(s))=2y(s), 2 = c o n s t a n t ,  the  schemes (3.2) and (3.3) are 
the same. 

I t  follows from a simple contract ion mapping  a rgument  tha t  (3.2) and (3.3) 
are uniquely solvable if h is sufficiently small. 

4. Convergence of the Numerical Schemes 

In  this and the following section we shall only  present  the analysis for the 
schemes (3.2). Analogous results for the schemes (3.3) can be obtained and the 
reader is referred to Weiss [15, Ch. I I ]  for details. 

Let  w(t)Epv. In  addition to (1.2) let y(t)EC~+~+IEO, T~ and K(t, s, v) be 
n + v  + 1 t imes continuously differentiable for 0 ~< s --< t + 6, 0 --< t <_ T, where 
is a fixed positive number ,  and for all v contained in an open neighborhood of 
y(t). Define 

y~i=y(tJ ,  eii=y~j--Y~], j = t  . . . . .  n; i = 0  . . . . .  1 - - t .  

Let  h <  ~. Subtract ing (3.2) f rom (3.1) we obtain 

i--I n 

e,i = Z E ha~(K(t,j, t~, Y~k) --K(t,i, tik, Y,~)} 
/ = O k = l  

+ ~. hai~{K (t,i , t,k, y,~) -- K (ti], t,k, Yik)} + R~i, (4.1) 
- k = l  

i----t . . . . .  n; i = 0  . . . . .  l - - t ,  
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where 

and 

Rii = Psi +Qii,  
P. i-if t~+, s, 

ttj 

Q'i = f  K(t,],  s, y(s))ds -- ~ hai ,K(t , i ,  t,k, Y,k). 
ti k=l 

We shall now obtain an asymptotic expansion for Rr 

Lemma 4.1. Let 

K(t, s) = K ( t ,  s, y(s)), 

Then 
v 

R~j= ~ h'+P~pi(t~j ) +O(h"+ '+~) ,  
p = 0  

where 

K(") (t, s) = ~" 

1"=1 . . . . .  n ;  i----O . . . . .  I - - 1 ,  (4.2) 

9p j(t) = K ("+~-~) (t, t) Ri  ((u - uj ) -+p-1)  ( n + p - l ) !  ' p = 0  . . . . .  ~ - - t ;  j = l  . . . . .  n, 

t 
K ( n T v - 1 )  (t, t,) 

R.(,.+.) f K(.+v)(t. s) ds + R i ((u --ui)"+'-x), ~o.i(t) = (n +~,) ! ( . + v - , ) !  
o 

1"=t . . . .  ,n.  

Proo/. The lemma follows from Taylor series expansion of K(tii, s). 

Corollary 4.1. I[ v >  I, then 

~, aiu~?pi(t) = 0 ,  r = 0  . . . . .  v - - p  - - t '  p = 0  . . . . .  v - -  t. 
i = 1  

Proo[. The result  follows from Corollary 2.t. 

Lemma 4.2. There exist positive constants K and h o such that/or h ~ h  o, 

e i =  Max e~ l<Kh" ,  i = 0  . . . .  1 - - t ,  if v=O, 
1 ' <  j < : n  " '  ~ 

o r  

ei<=Kh "+1, i = 0  . . . . .  I - - 1 ,  if v > 0 .  

Proo/. Taking absolute values in (4.1) and applying the Lipschitz condition 

(t.2), we obtain 
i - -1  n 

< Y, E hLla l + hLlas l 
l=O k=l k=l 

i - - t  . . . . .  n;  i = 0  . . . . .  1 - - 1 .  

From Lemmas 2.1 and 4A, there exists a constant  C such that  [Ri i I~Ch" if 
v = 0  or IR~i[<=Ch "+1 if v > 0 .  Hence the result follows from Lemma 2.3. 
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The above  l e m m a  gives a convergence  resul t  for the  scheme (3.2). Genera l ly  
however ,  th i s  resul t  is n o t  the  bes t  possible a n d  in  pa r t i cu l a r  we can o b t a i n  a 
m o r e  accura te  e s t ima te  for ei~, i = 0 ,  . . . ,  I -  t .  Fo r  this  analysis ,  four add i t i ona l  
l e m m a s  are required.  

L e m m a  4.3. Let  the /unc t ions  0 i (t), j = t . . . . .  n, sat is /y  

~ a j u ~ O i ( t ) = O ,  r = 0  . . . . .  q, where 0 < q < v - - t .  
i=1 

Then  

~, a;uf ~ a;j~O*`(t)=0, /,+Z=O . . . . .  q - - ~ .  
/ = 1  k = l  

Proo/. Using  L e m m a  2.2, 
u/ 

n ~ ~ n 

Za,r Z a,,/*`O* (̀tl = Z 4o*`(t) Za,uf f L* (̀s)ds 
i=1 *`=1 k=l /=1 0 

1 

= 2 4o* (̀t) f l , -  sp+l) k=l 0 p + l  L*`(s)ds, 

p = 0  . . . . .  v - - l .  
U s i ng  

we o b t a i n  

+ o . / . =  q. 

(4.3) 

where 

and  C,n,, D, , , ,  r ---- 0 . . . .  , m + t ; m = O, . . . ,  M - -  t are constants. 

i - - 1  t U M - - 1  

h Y l ( t . ,  tz*`) = f l ( t . ,  s)ds + Z h"+%*`,.(t.) +O(hM+l), 
l = 0  0 m = 0  

M>=O, 

m + l  ~ n + l  

v-'i,,,. (t) = f"~ (t. o) 2 c , . ,  u~ + I {'~ (t, t) Y~ D,,,. (u k - -  u i - -  1 )' 
r = O  r = O  

s" Lk (s) = u'k L*  ̀(s) +q 

Thus ,  f rom (2.3), 
1 

f s 'L*`(s)ds =u'ka*`, r = 0  . . . . .  v. (4.4) 
0 

O n  s u b s t i t u t i o n  of (4.4) in to  (4.3) i t  follows t h a t  

n n 1 n 

~,  a iu  ~ ~,, a iku  ~ 0 (t) - -  p + 1  k~=l aku~ (1 - -  u~ +1) 0*  ̀(t) = O, 
j = l  *`=1 

l + p = 0  . . . . .  q - - t .  

L e m m a  4.4. L e t / ( t ,  s) be M + t t imes cont inuously  di//erentiable in the region 
0 G s <-- t <_ T and denote 

f') (t, s) = ~" ~ /(t,  7)1,7=," 

Then  
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Proo]. B y  the Euler-MacLaurin sum formula (see for example Ralston [13, 
p. ~333),  

i--1 ti-I +u~h 
h h~_j/(t,# t,k) = f ](t,i, s)ds + ~ (](tii, ukh ) 

1=0 ukh 
[M/2] (4.S) 
,=1 (2r!) 

�9 { 1 ( 2 r - - 1 ) ( t i p  ti_l + u k h  ) __1(~,-1)(t~i ' ukh)} + 0  (hM+t), 

where B 2,, r = t . . . . .  [M/2J, are the Bernoulli numbers.  B y  Taylor  series expansion, 

ukh M--1 j ] (t,,, s) as  = y h m+i l(m) (li]' o) u~n+ 1 _~_0 (aM+l), (4.6) 
,n=0 (m + 1)! 

0 

tij M--1  " ( m )  " " 

. \ d ~  __ ' ~  g m + l  i (ti i, tii) f ](tii' ~ . . . .  / ,  "~ ~m-~]yt. ( u ~ - - u i - - t ) " + l + O ( h M + l )  , (4.7) 
ti-1 ~ukh 

M--2r 
1(') (t~# ukh) = ~ h" I('+")(t~j, o) (hU_~,+~), m ~ u~" + o (4.8) 

m=O 

and 
3I--2r 

/ I'l (t~ # t~ 1 + uk h) = ~ ,  h m 1('+ m) (t~j, t~j) (uk - -  uj - -  1)~  + 0 (h u -  ~'+ ~) 
m !  

(4.9) 
m ~ 0  

The result follows by  subst i tut ion of (4.6), (4.7), (4.8) and (4.9) into (4.5). 

Lemma 4.5. The scheme (3.2) is O-stable in the sense o/Stetter Et4]. 

Proo]. The result follows in the same way as L e m m a  4.2. 

Since from L e m m a  4.t, Rii  has an asympto t ic  expansion in integral powers 
of h, it follows from the 0-stabili ty of the scheme (3 2) and Stet ter  Et4, Theorem 1, 
p. 21J tha t  eii also possesses such an expansion, viz. there exists a unique set 
of functions 

{ep j (t) E C ~-p [0, T], 1" = 1 . . . . .  n; p ---- 0 . . . . .  v} 
such tha t  

e ~ j :  L h'+Pepi(t~i) +O(h '+~+l) ,  i = l  . . . . .  n; i = 0  . . . . .  1 - - t .  (4.t0) 
p = 0  

In  the following lemma,  a recurrence relation for the functions epi(t) is derived. 
Using this relation, it will be possible to obtain est imates for eij, which are sharper 
than  the bound given in L e m m a  4.2. 

Lemma 4.6�9 I] v >  t, then the ]unctions epi(t ) satis]y 

eoj(t) = 0 ,  i = t  . . . . .  ~, 

ep;(t) = ~pj( t )  

+ p-zp-z -1  p - -  - - t  k(P-m-q-1)(t,t)~mZl) ! aike~)( t ) (u~_ui)#_, ,_ t ,  (4.11) 

m = 0  q=0 \ 

i = t  . . . . .  n ;  p = t  . . . . .  v - t ,  
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and 

where 

and 

~.aiu~et, i(t)=O, r = 0  . . . . .  v - - p - - l ;  p = 0  . . . . .  v - - l ,  
/ = 1  

d ~ ~ ( t )  = ~ -  e.,,(O. 

Proo[. From Taylor ' s  theorem (4A) becomes 

' / - - 1  n 

. .  = Z Y h,,~k (t., t~) <~ + ~ h,,;~k (t., t~k).,~ + R .  + 0  (h~"). 
I = 0  k ~ l  k=l 

(4A2) 

Subst i tut ion of (4.2) and (4.t0) and division b y  h n yields 

,t, n f i - -1  

p = 0  

v 

+ t,,) jl + o  

/ = 1  . . . . .  n ;  i = 0  . . . . .  I - - t .  

(4.t3) 

F rom L e m m a  4.4, with [(t,s)=k(t,s)%k(s), there exists a set of functions 
{qSi,p~(t ), m = 0  . . . . .  v - - p }  such t ha t  

i - -1  ~1 v--p--I 

h 22 k(t~,., t~)%k(t~k) = f k(tq, s)%k(s)ds+ F, h~+~@jkp~(t.) 
I = 0  0 m=O 

+O(h'-P+l), i = t  . . . . .  n; k = t  . . . . .  n; p = 0  . . . . .  ~. 
(4.14) 

Also, from Taylor  series expansion, 

t - - p - - I  

k(t,i,t,~)%,(t,~)= ~, h" (u~--.;)" m! m=O 

~m 

o~- i f (h ; ,  n)%,(n))[~=,, +o(h'-~). 

k = t  . . . . .  n; p = 0  . . . . .  v. 
(4.t5) 

Subst i tut ing (4.t4) and (4.t5) into (4.t3) and applying Leibnitz 's  rule gives 

p=o p=o 

v p- -1  ft f 

+ Z hPZ Z lak~Ojkr, p--f--l(~iJ ) (4.16) 
p = l  r = o  k=X ( 

p~--l [p - -r  - -  tX (,,~ -- uj)P-.-1.1 +aik q~=O [ ~ ) k(P-r-q-1) (`i,'t 'e(q) + O ( h ' + l ) '  iiJ rk(tii) ( p - - r - - l ) I  ] 

j = l  . . . . .  n; i = 0  . . . . .  I - - t .  
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Clearly, from Lemma 4.2, 

eoi(t ) = 0 ,  i = t  . . . . . .  n. 

We now consider the case p = 1. From Lemma 4.4, 

~ k o o ( t ) = o ,  i = 1  . . . . .  n;  k = l  . . . . .  n.  

Hence, equating coefficients of h in (4.t6), we obtain 

.,;tO =/,~(*. ~) ~,,~k.,~(~)d~+,p, At). i = i  . . . . .  ~, 
0 k=l 

and since ~ a t : t ,  it follows that  
i=l  

~,, "js s)~,.,gl,(s)ds-~ ~, a,(plj(/). 
i=i o i=I i=i 

(4.t7) 

(4.t8) 

el j (t) = (~1 j" (~), i = 1 . . . . .  n, 

and so Corollary 4.t yields (4.t2) for p = 1. 

We now proceed by  induction. Assume the lemma is t rue for p = t . . . . .  l - -  t 
< v - - t .  Then from (4.t2), (4.t4) and Lemma 4.4, 

~ak~ikr,:_r_x(t)=O, / ' : t  . . . . .  n, r = 0  . . . . .  l - - t .  
k=l 

Hence, equating coefficients of h I in (4.t6), we obtain 
f 

. ,;(0 = j-  k (t. ~) F, .~.,k (~)d. + 9,. (0 
o k=* ( 4 . t 9 )  

/ - - l ' - - r - - l (  ~ ) n + F ~ z -  -1  k(~-,-~-~)(t, t) _~ j - , -~  
r=O q=O ( l - -Y--  1)!" k=l~a]ke~q)k(t)(Uh 

and so, 
t 

2 a;<(t)= f k(,. a,..(s)ds + V, 

+ ~ 1 -  - t k(~-,-e-~)(r t) ( _%)~-,-x. 
ta;ik~rk ~ I ,Uk r=0 q=0 \ (l--r--l)! i=xZaik=l~ a(q) lt~ 

From Corollary 4.t ,  (4.12) and Lemma 4.3, (4.20) is homogeneous and therefore 

Y, ajelj(t) = 0 .  
i=1 

j = t , . . . , ~ ,  

Hence, from (4. t 7) 

By  Corollary 4. t,  (4. t8) is a homogeneous Volterra integral equation of the second 
kind and so 

~, a].ell.(t ) = 0 .  
i=1 
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Thus,  (4A9) yields (4.11) for p = I. F r o m  (4A 2) wi th  p =< l -  t and  Lemma 4.3 we 
obta in  (4.t2) with p ----1. Hence the l emma follows by  induct ion.  

We are now in a posi t ion to prove the main  convergence result .  

Theorem 4.1. I / w  (t) Elan, then 

ei~=h~+~e~,(ti+l) + O  (h~+~+~), i = 0  . . . . .  I - - i ,  (4 .20 

where e,, (t) satisfies an equation o/the [orm 
t 

e.. (t) =~. .  (t) + f k (t. s) e.. (s) ds. (4.22) 
0 

Pro@ For  v ----0 and v = J ,  (4.20 follows t r iv ia l ly  from (4A0) and L e m m a  4.2. 
I f  v >  t ,  then  from Lemmas  4A and 4.6, 

ep,(t) = 0 ,  p : 0  . . . . .  v - - l ,  

and  (4.20 again follows from (4A0). 

Equa t ing  powers of h" in (4A6), we obta in  equat ions of the  form 

t 

e,j(t) = ~ , j ( t )  + f k(t, s) ~, ake, k(s)ds, 4= t  . . . . .  n, (4.23) 
0 k ~ l  

and  hence 

7=1 i=1 0 i=1 

= ~. ai~i(t ) - - ~ ( t )  +e~,(t). 
i = l  

I t  follows t ha t  
t t 

e..(t) =, .o(t)  + f k(t. s) Y aj (~.j(s)-~..(s))ds + f k(t, s)e..(s)~s 
o i = l  o 

t 

= C , ,  (t) + f k(t, s)e,,(s)ds. 
0 

From this  theorem it  is clear t ha t  the  choice of the points  {ul . . . . .  u,} is 
impor tan t .  A na tu ra l  choice would appear  to be the  equal ly  spaces points  
u i = (i - -  t ) / (n  - -  t) ,  i = l . . . . .  n, n _> 2. F o r  these points,  w (t) E/a 0 for n ---- 2r and 
w(t)Epl  for n = 2 r + i  and  so the methods  with  n = 2 r + t  and  n = 2 r + 2  have 
order  2r  + t convergence. 

More sui table  sets of points  however are those considered b y  Axelsson I l l ,  
namely  the  R a d a u  points  for u x > 0 and  the Loba t t o  points  for u 1 = 0. The corre- 
sponding orders  of convergence are 2n - -  l and  2n - -  2 respect ively.  This is opt imal .  

5. Numerical Stability 

According to Noble  [1t] a finite difference me thod  for (IA) is numerically 
stable if the  leading te rm in the  a sympto t i c  expansion of the  error satisfies an 
equat ion  whose kernel  is the  same as t ha t  of the  l inearised form of 0.1) .  Fo r  
addi t iona l  discussions of this  concept  see also Kobayas i  [8] and  Linz [10]. 
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From Theorem 4A it is clear tha t  the pure discretization error of (3.2) grows 
in a stable way. However, to investigate the numerical stability fully, it is 
necessary to consider the propagation of rounding errors which can be charac- 
terized by  the propagation of perturbations in Y0# 7. = 1 . . . . .  n. 

Suppose that  in the first step approximations Y0], 7. = t . . . . .  n, which satisfy 

Yo~=Yoj -~j ,  7.=~ . . . . .  n, 

have been calculated instead of Y0i, 7. = t . . . . .  n. Denote 

~ =  m a x  I~j]. 
j = l ,  . . . ,  n 

Using the values Yoi, 7' = t . . . . .  n, (3.2) will generate a new sequence of approxi- 
mations Yii, 7. ---- t . . . . .  n, i = 1 . . . . .  I - -  1, given by  

~=o k=l ~=1 (5.t) 
7 . = t  . . . . .  n;  i = t  . . . . .  I - - t .  

Let  

Then, 
~ i J = Y ~ - - ? o ,  ~ '=1  . . . . .  n;  i = 0  . . . . .  1 - 1 .  

~o~. = ,0j + ~,., i = 1  . . . . .  n, (5.2) 

where eoi, 7. = 1 . . . . .  n, are given by (4.t). By  an argument  similar to lemma 4.2 
it follows tha t  

~ , . = o ( h  n)+o(h~) ,  i = 1  . . . . .  n; i = 1  . . . . .  1 - 1 .  (5.3) 

Subtraction of (5.1) from (3.1) and the use of Taylor 's  theorem, (5.2) and (5.3) yield 

i--i n 

~r ~' ~' hakk(tii, t'k)ez~+ ~' haikk(tii '  t'k)~'~ 
/=I k = l  k=l 

+ ~ hakk (t~# tok) (eok + ~,) + Rii + 0  (h a") + 0  (h2~), 
k = l  

7.=1 . . . . .  n;  i = t  . . . . .  I - - t .  

Hence, by  superposition, 

where 
~i~. = e i i  +~ i i ,  f = t ,  . . . , n ;  i = 0  . . . . .  1 - - 1 ,  

~oj : ~ j ,  j = t  . . . . .  n, 
i - - 1  

/ = 1  k = l  k = l  

+ ~, hakk (tii, tok) ~k + 0  (h ~n) + 0  (h~), 

i = l  . . . . .  n ;  i - - - t  . . . . .  I - - 1 ,  

(5.4) 

15 N u m e r .  Ma th . ,  Bd .  23 
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and ei i, ]----t . . . . .  n; i = 0 . . . . .  I -  t ,  is the pure discretization error given by 
(4A). By Lemma 2.3, 

~i j=O(h~)+O(h2~) ,  i = t  . . . . .  n; i = 1  . . . . .  1 - - 4 .  

Let ei i=~i i /h ,  1"=t . . . . .  n; i = 4  . . . . .  1 - -4 .  Then, from (5.4), eii satisfy an equa- 
tion which can be interpreted as a finite difference method applied to the system 
of integral equations 

o k = l  k = l  (5 .5 )  

]"=4 . . . . .  n. 

Using Lemma 2.3, this method can easily be shown to be convergent of order one, 
and hence 

e i i = e i ( t , i  ) + O ( h  ~ - 1 )  +O(h8) ,  j = t  . . . . .  n; i = t  . . . . .  1 - - 4 .  

From (5.5), 
ei(t) = e ( t ) ,  ]. = 1  . . . . .  n, 

where 
t 

e(t) = f k(t, s)~(s)as + k(t, o) ~, a~o~ 
0 k = l  

and it follows that  

~ i = h e ( t ~ j ) + O ( M  ~ ) + O ( h ~ ) ,  / = t  . . . . .  n; i = t  . . . . .  1 - - t ,  

which implies that  the scheme (3.2) is numerically stable. 

6. A-Stabil ity and Stiff A-Stabil ity 

The definitions of A-stability and stiff A-stability for methods for ordinary 
differential equations given by Dahlquist [4] and Axelsson [11, respectively, can 
be extended to methods for second kind Volterra integral equations in the 
following way. 

A numerical method is called A-stable if, when applied to the problem 

t 

y(t)  = t  + ~  f y ( s )ds ,  Re(~) < 0 ,  (6.t) 
o 

with an arbitrary step size h, then 

lim Y~=0, 
h f ixed 

where Yi denotes the numerical approximation to y (ti). If, in addition, 

lira Y~=0 for all i, 
h-omo 
i f ixed  

then the method is called stiffly A-stable. 

To examine A-stability and stiff A-stability for our schemes, we use the 
observation that  the schemes applied to (6.t) yield the same numerical approxi- 
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mations as the corresponding implicit Runge-Kutta methods for ordinary dif- 
ferential equations (see Axelsson [Q and Wright [t61) applied to 

y '  = ;ty, y (0) = t. 

Hence we know from Wright [t 61 that the schemes based on equally spaced points 
are A-stable if n N 9, and from Axelsson [t I that the schemes using Lobatto and 
Radan quadrature are A-stable and stiffly A-stable, respectively, for all n. 

7. N u m e r i c a l  R e s u l t s  

In this section we report some calculations with the schemes (3.2) and (3.3) 
based on Radau points with degree of precision four (v = 2), i.e. 

u3=t  (7.t) 

The fifth order convergence is illustrated by the application of the methods to 

t 
y ( 0 = t  +t--cos(t)--fcos(t--s)y(s)ds, 0 < t < 2 ,  

o 

which has the solution y(t)=t. The errors for (3.2) and (3-3) are tabulated in 
Tables 7.t and 7.2, respectively. I t  should be noted that  the errors for (3.3) a r e  

appreciably smaller than those for (3.2). Numerical computations show that  this 
is frequently the case. 

The advantage of stiff A-stability is illustrated by the application of the 
methods to 

y(t) =((1 +t)  exp(-- t0t)  + t ) t  + (t +t)((1 - -exp(-- t0))  + t0 log(t +t )  
f 

-t0fl+t T ~ - y ( s  ) as, 0=<t=<19, (7.2) 
d 

o 

Table  7.1 

t h = 0 . 4  h = 0 . 2  h = 0 . 1  

0.4 --2.396 E - - 6  --7.446 E - - 8  --2.316 E - - 9  
0.8 --4.608 E - - 6  --1.446 E- -7  --4.519 E - - 9  
1.2 - -6 .39t  E - - 6  - -2 .022 E - - 7  --6.349 E - - 9  
1.6 --7.638 E - - 6  --2.437 E - - 7  --7.682 E - - 9  
2.0 --8.347 E - - 6  --2.685 E- -7  --8.498 E - - 9  

Table  7.2 

t h = 0 . 4  h = 0 . 2  h = 0 . t  

0.4 2.647 E - - 7  7.704 E - - 9  2.323 E - - t 0  
0.8 4. t65 E - -  7 1.212 E - -  8 3.655 E - -  10 
t .2  4.803 E --  7 t .398 E --  8 4.220 E --  10 
1.6 4.843 E--7  1.413 E - - 8  4.271 E - - t 0  
2.0 4.550 E--7  1.334 E - - 8  4.043 E - - t 0  

15" 
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which has the solution 

y(t)----((t +t)  exp(- -  I0t) + t )~ .  

The schemes were applied with h =0 . t  on the interval [0, t I and then the step 
size was increased on (1, 19). The errors for (3.2) and (3-3) are given in Tables (7.2) 
and (7.4) respectively. 

Table  7.3 

t h = t .5 h = 3.O 

4.0 - -1 .780  E - - 3  - -2 .843  E - - 2  
7.0 - -3 .058  E - - 4  - -5 .376  E - - 3  

to .o  - - t . o 1 5  E - - 4  - -1 .392  E - - 3  

13.0 - -4 .577  E - - 5  - -5 .430  E - - 4  
16.0 - -2 .446  E - - 5  - -2 .716  E - - 4  
t9 .o  - -1 .458  E - - 5  - - t . 5 5 8  E - - 4  

Tab le  7.4 

t h = t .5 h = 3.0 

4 .0  - - 3 . 2 7 t  E - -  5 - - 2 . 3 0 2  E - -  3 
7-0 - -1 .717  E - - 6  - -1 .834  E - - 4  

10.0 - - 2 .6 9 9  E - -  7 - - 1 . 952  E - -  5 
13.0 - - 7 . 1 9 t  E - - 8  - -3 .757  E - - 6  
t6 .0  - - 2 . 4 5 2  E - - 8  - - I . 1 5 0  E - - 6  

19.0 - - t . 0 7 7  E - - 8  - -4 .554  E - - 7  

Since the Lipschitz constant in (7.2) is effectively 20, a conventional multistep 
method will not work well for a large stepsize. To illustrate this, (7.2) was solved 
by the two-step scheme Simpson :~1, which is convergent of order four and 
numerically stable, (see Linz Et01 or Noble Et11). On E0, tl ,  h ---- 1/30 in Simpson ~ t  
yields comparable accuracy to h----0.t for (3.3). On (t, t9) the largest gridspacing 
for which the error in Simpson :~1 does not exhibit unstable growth is approxi- 
mately h=0.09 .  The accuracy with this h is about the same as for (3.3) with 
h =1.5.  

To compare the efficiency of (3.2) (or (3.3)) with Simpson J#l, note that  
when solving Volterra integral equations the bulk of the computations comes 

0 
from approximating integrals of the form f K (t# s, y (s))ds by sums. Thus the 

o 
number of necessary evaluations of K (t, s, y), N (h, T), can serve as measure for 
the amount of work required. For (3.2) (and (3.3)) with points (7A), N(h, T) 

(9 (T/h)~/2), while for Simpson ~1, N (h, T) ~ (T/h)2/2. Computing these figures 
for our situation ( T = t 8 ,  h----t.5 for (3.2) and h = 0 . 9  for Simpson ~ 1 )  we see 
that  the number of evaluations in Simpson ~ t  is about 30 times that for (3.2). 
This illustrates well the superiority of stiffly A-stable schemes over linear multi- 
step methods when solving "stiff" equations. 
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To solve the nonlinear  systems arising from (3.2) and (3.3), Newton iteration 
was used. Although convergence of the i terat ion can only be established if hL < t, 
when solving stiff equations, convergence is usually observed even if hL >~ t. This 
is the same si tuat ion as in differential equations. 

The nonl inear  equations arising in Simpson :~1 were also solved by  Newton 
iteration. 
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