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Summary. Implicit Runge-Kutta methods for ordinary differential equations
which arise from interpolatory quadrature formulae are generalized to Volterra integral
equations of the second kind. Two classes of methods are considered and shown to be
convergent and numerically stable. In addition, for various choices of quadrature
formulae the methods are A-stable and stiffly 4-stable.

1. Introduction

The extension of explicit Runge-Kutta methods for ordinary differential
equations to Volterra integral equations of the second kind

Y=g +0fK(t, s (9)ds (1)

has been considered by Laudet and Oules [9], Pouzet [10] and Beltjukov [2].
Implicit Runge-Kutta methods for the solution of ordinary differential equations
have been studied by Butcher [3] and Axelsson {1] and have been shown to
possess desirable stability properties combined with high order convergence.
Butcher shows that each Runge-Kutta process can be generated by a numerical
quadrature formula.

In this paper we extend the idea of constructing implicit Runge-Kutta
methods based on quadrature formulae to (1.1). The basis of the quadrature
formulae under consideration for the interval [0, 1] is Lagrangian interpolation
with respect to a set of points {u,, #,, ..., #,} With 0=y <w, < --- <m,=1. We
show that for each choice of {u;, #,, ..., #,} the method is convergent of at least
order #» and that higher order convergence up to order 2» -1 is possible for
suitably chosen points. In addition the methods are shown to be numerically
stable in the sense of Noble [11] and for special choices of {#,, #,, ..., #,} have the
stronger property of being A-stable in the sense of Dahlquist [4].

From the theory of Volterra integral equations of the second kind it is well
known (see for example [5; Ch. 13, p. 415]) that, if

i) g(t)is continuous on 0t T,

{(ii) K(¢, s, y)is uniformly continuousin ¢ and s forall finite y on 0 Ss S¢S T,
and

(iii) K (¢, s, y) satisfies the Lipschitz condition
]K(t' S.yx) —K(t’ S, y2)[§L|y1_y2|: O§S§T (1'2)
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where L is a constant independent of s and £, then equation (1.1) has a unique
continuous solution on 0 <¢ < T. However, additional smoothness conditions will
be imposed in the subsequent analysis.

It should be noted that although the analysis is presented only for the scalar
equation (1.1), the generalization to a system of Volterra integral equations of the
second kind follows immediately.

2. Preliminaries
In this section we introduce some notation and present three lemmas and
two corollaries which will be required in subsequent analysis.
Let 0w, <wuy<< --- <u,=1. For convenience we shall consider only the
case #; >0. However, with slight notational modifications, the analysis is valid
for u; =0. Put

W) =0—u)(t—uy) ... ( —u,) = .Zooc,‘t”_".
iz
Let
w(?)
- uk) w’ (Mk) ’

L,(@t)= R=1,...,n, (2.1)

)
ajp=[ Ly(s)ds, [=1,...,n; k=1,...,mn,
H

(2.2)
@ =0,
We denote the relation
1
fw(s)ds=0
o
by w () € 4y, and the relations
1 1
[sw(s)ds=0, 7=0,...,y—1,v>0; [sw(s)ds=+0 (2.3)
0 0
by w(f) €p,. Let
%i ”
R, =6ff(s)ds—k§1aikf(uk), i=1,..., % (2.4)

The following lemmas and corollaries are simple generalizations of results due to
Axelsson [1]. Proofs are given in Weiss [15, Ch. IT].

Lemma 2.1. If w(t)€p,, then

% q
R, (") = [ s"w(s)ds — X, a, R, (u*""), g¢g=0,...,n,
[ r=1

and
R, ("t =0, ¢g=<»—1. (2.5)

Lemma 2.2. If f, (f) is a polynomial of degree less than or equal to g, and
r+gsn+v—2, then
< r - ds = 11—S'+1 i
e of h)ds =[5 fds.

0
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Corollary 2.1.

a, R, (w"*?) =0, 7r+p=0,...,v—2.
1

z,
I M=

Corollary 2.2.
"
D@y Ry (0 — )" ") =0, r+p=0,...,v—2.
k=1

The following lemma, which provides an estimation of the growth of solutions
of nonhomogeneous systems of difference equations is given by Henrici [7, Ch. 6,

p- 313].
i-1
Lemma 2.3. If |g]|=A4 Y le|+B, i=1,2,...,4,B>0 and leo] <7, then
P

le;| S (B HAn) (1 +4)7"  i=1,2,....

3. Numerical Schemes

In this section we define two classes of implicit Runge-Kutta methods corre-
sponding to a fixed set {uy, u,, ..., u,}.

We are interested in an approximation to the solution y(f) on the grid

b;=1h, 1=0,...,I;, h=+F.

1

Let
tii=ti+uih, j=1,...,n;, 1=0,...,I—1.

Discretizing (1.1) we obtain

4 1]
y(tii) =€(ti7) +0fK(ti7‘: s y(s))ds +tij (tu» S, y(s))ds,

_ (3.1)
j=1,...,0; 1=0,...,01—1.
To approximate the integrals in (3.1), we use the quadrature formulae
f141 ki
f f(s)dSNhZakf(tlk): l==0,...,71—1
f k=1
and
tig tt‘
[ H(s)ds = 2 hajf(t)-
14 k=1
Hence we obtain the numerical scheme
i—1 n ”
Y=gt + 2 X hay K (s tip Yy + h’aikK(tii’ tiws Yin),
I=0k=1 k=1 (3.2)

j=1,...,n; 1=0,...,1—1,

where Y}, denotes the approximation to y(¢;;).
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Thus, for each 7, (3.2) represents a system of # simultaneous equations in
Y;;, 7=1, ..., n. Also it may be seen from (3.2) that values of K (3, s, y(s)) are
required outside the region 0<s<¢t<7 and this could cause difficulties in
practice if the kernel is badly behaved outside the region (see for instance [6]).

This problem can be overcome by using a different approximation for
iy
J K (i}, s, y(s))ds. First approximate
“
tij tij

fK(tﬁ, s, y(s))ds by fK(l”, s,kZ”lLk(S;t,-)Yik)ds
t b4 a

and then apply the quadrature formula

1771

J 1 (s)ds~ i hujayf(t; +ujuh).
i =1

This yields the numerical scheme

-1 n

Y, =g +1—Zo kglhakK(tiir trw Yi)

n n
+ 3 hu,-akK(t,-,-, b uugh, 3 L,(u,-uk)Y,-,), (3.3)
k=1 r=1
=4 ...,n;, 1=0,...,1—1.

Clearly K (¢, s, ¥(s)) is not required outside the region 0 <s<¢<T. For the
special case K (Z,s, y(s)) =Ay(s), A=constant, the schemes (3.2) and (3.3) are
the same.

It follows from a simple contraction mapping argument that (3.2) and (3.3)
are uniquely solvable if 4 is sufficiently small.

4, Convergence of the Numerical Schemes

In this and the following section we shall only present the analysis for the
schemes (3.2). Analogous results for the schemes (3.3} can be obtained and the
reader is referred to Weiss [15, Ch. IT] for details.

Let w(f)€p, In addition to (1.2) let y(¢)eC****'[0, T] and K (¢ s, v) be
#+v-+41 times continuously differentiable for 0 <s<¢t-6, 0=<t<T, where §
is a fixed positive number, and for all v contained in an open neighborhood of
y(¢). Define

YVii=yty), &=y~ Yy J=1,...,m; =0,..., -1
Let & < 8. Subtracting (3.2) from (3.1) we obtain

i—1 n
&ij =l§k§hak{K Gii bins Yin) — K (15 bins Yiu)}
”
+kZlha,~k{K @ijr bins Vir) —K (ijo bin Yir)} + Ry (4.1)

j=1,...,n;, £=0,...,1—1,



Implicit Runge-Kutta Methods for Second Kind Volterra Integral Equations 203

where
_Pii+Q£;‘r
41 n
By= 2 {1 K (tss.y s = £ hanK st v
and

tij n
Qii ='I K (tw S,y (5))d3 —kzlha,-kK(t;,-. Lk Vin):
We shall now obtain an asymptotic expansion for R;;.

Lemma 4.1, Let

%) |gmse

Kt s)=K(t,s,5()), K™(s) --WK

Then
=i>§oh”+pq)?f(tij) +0(h”+y+1), 1'=1, P 1=0, ..., 1 —1, (4‘2)
where
Btp— R; ({u —u;)n+o—1 .
<ppf(t):K( +£ 1)(,”) 7(((n+;711)! ), =0, v—1; =1, .. m,
¢
R, K(n+v 1) _
(pvf(t) o (+1,) ') fK(n+v)(t’ syds+ ot ()_)_Ri((u__ui)n+r 1)'

j=1,..., 7
Proof. The lemma follows from Taylor series expansion of K (¢,;,s). #

Corollary 4.1. If v>1, then
2 aulpyit) =0, 7r=0,...,v—p—1; p=0,...,v—1.
=1

Proof. The result follows from Corollary 2.1.
Lemma 4.2. There exist positive constants K and hy such that for h < hy,

e—Max [8 |<Kh", i=0,...,1—1, if »=0,

or
e, < Kt 1=0,...,I—1, if y>o0.

Proof. Taking absolute values in (4.1) and applying the Lipschitz condition
(1.2), we obtain

-1 = n
le;] = 2 2 hLlay| e + 2 L] as| [e] +| Rl

I=0k=1 k=1
f=41,...,n;, £=0,...,]—1.

From Lemmas 2.1 and 4.1, there exists a constant C such that |R,;|=CA" if
»=0 or |R,;|<CA™** if »>0. Hence the result follows from Lemma 2.3. 3
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The above lemma gives a convergence result for the scheme (3.2). Generally
however, this result is not the best possible and in particular we can obtain a
more accurate estimate for ¢,,, ¢ =0, ..., I —1. For this analysis, four additional
lemmas are required.

Lemma 4.3. Let the functions 0;(), § =1, ..., n, satisfy

Zla]-u,fei(t):o, r=0,...,q, where 0<g<<v—1.
Then
Zau Za,kukﬁk) =0, p+I=0,...,9—1.
j=1

Proof. Using Lemma 2.2,

id

Zafufz @,k 0, (8) = D uh0,(2) AZajuff L,(s)ds
j=1 i=1 7

k=1 1= 0
1 (1 sp+1 (4.3)
al — &
= 10,0 [ Leas,
= 0
p=0,...,v—1
Using
& = ((s — 1) +uk) — ZO (7> (s —u)?uy 9,
g==

we obtain

Thus, from (2.3),

1

[s'L,(s)ds=u}a,, 7=0,...,7. (4.4)
0

On substitution of (4.4) into (4.3) it follows that

”
Z aj14,0

”

(1 —ud ™) 6, (6) =0,

nM:

l+p=Qn”q—L +#

Lemma 4.4. Let f{t, s) be M -1 times continuously differentiable in the region
0s<t<T and denote

f(r) (tr S) = f(t’ "7) ln:s'
Then
i—1 117] M~1 il M1
hlZ Ftitn) = [ ftij5)ds+ Zoh yam(t) FOETY),  Mzo,
=0 0 m=
where
mj‘—l , - m+1 .
ijm(t) = f(M) (t, 0) Zocmruk +f( )(tlt) ZoDmr(uk - uj - 1)
r= r=

and C,,, D,, r=0,...,m+1; m=0,...,M —1 are constanis.
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Proof. By the Euler-MacLaurin sum formula (see for example Ralston [13,
P- 133]),
. ti urh

h;}f(tu‘rhk):f flti s )ds+ (f(,,,ukh)

urh
121 par g 4.5
+/@ij tioy k) + Z 27'2’ “

PV by ) — [FTO L w k) O (B,

where B,,, ¥ =1, ..., [M/2], are the Bernoullinumbers. By Taylor series expansion,
uxh f( )(
" m K ) m
] ftij, ds—mzoh 1 m+7) nH Lo (MY, (4.6)
4 m) (¢
™ (85, 8
| s == T LRt oy, o
‘t-x*‘“kh
M-27 (- )
f(r) ”, uk Z hmf 1]; ) m ‘}*O(hM 2r+1) (48)
and
) M frtm) (tij, tif) m M—2r+1
PO fia k) = 20 WM B (g — 1) 4O (b ). (49)

The result follows by substitution of (4.6), (4.7), (4.8) and (4.9) into (4.5). =
Lemma 4.5. The scheme (3.2) ¢s O-stable in the sense of Stetter [14].

Proof. The result follows in the same way as Lemma 4.2. 3
Since from Lemma 4.1, R,; has an asymptotic expansion in integral powers
of 4, it follows from the O-stability of the scheme (3 2) and Stetter [14, Theorem 1,
p. 21] that ¢;; also possesses such an expansion, viz. there exists a unique set
of functions
{e,;()eC’™?[0, T],j=1,...,m;p=0, ..., %}
such that

v

=2 W e, (6, ) FORTTY,  j=1,...,m; i=0,...,[—1. (4.10)

In the following lemma, a recurrence relation for the functions ¢,;(f) is derived.
Using this relation, it will be possible to obtain estimates for ¢, ;, which are sharper
than the bound given in Lemma 4.2.

Lemma 4.6. If v>>1, then the functions e, ;(t) satisfy

&) =0, j=1,...,m,

ep(8) = @p;(8)
p—1p—m—1 g ”
p—m—1\ hp—m—a=D(¢ 1) o (411)
T2 ;( g ) Fom—1)T 2 rom (8 =)™,
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and
i auie,;(t) =0, r=0,...,v—p—1; p=0,...,v—1, (4.12)
where "
RS =5 K50y RS Rt 1) e
and

df
40 = g7 e 0.

Proof. From Taylor’s theorem (4.1) becomes
i—-1 n "
£;; :zzo kZlhakk (i tin) E1n +k§1haikk(t£7‘» tin) &ix + Ry + 0 (B7).
Substitution of (4.2) and (4.10) and division by 4* yields

Z h eﬁj( 17) - Z hp Z {akh Z k 17: tlk)epk(tlk)

p=0 k=1
Fapbl ta)ep ] + 2 pil) +OUH), (4.3
j==1,...,n;, 1=0,...,1—1.

From Lemma 4.4, with f(, s) =k(t, 5)e,,(s), there exists a set of functions
{¢ikpm(t): m=0, ..., v—p} such that

i—1 by y—p—1
Y Rt eps () = [ k(0 8)epn(s)ds + Z D ()
=0 ° (4.14)

FOE?Y, j=4,...,n; k=1,...,n;, p=0,...,7
Also, from Taylor series expansion,

"
—uj)m @

—p—
k( i 1k)epk(ttk Z T mt angm (k(tijx n)epk(n))ln=tij "I’O(hv“p):
=, 7

k=1,...,n;, p=0,...,%

(4.15)

Substituting (4.14) and (4.15) into (4.13) and applying Leibnitz’s rule gives

Z W epilliy) = th{zakf {tijp s epk(s)ds‘l“Pm(tu)}

v p—1 n
+1§th;} & {“k Pikrp—r—1(tis) (4.16)
Py —1 g (12, — 14 Y
+aj 5 ? g ) pio=r=a=h (tiittij)e%z(n k 7 +O B,

7'=1,...,n; =0, .
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Clearly, from Lemma 4.2,
eoi(t)=0, j=1,....,n
We now consider the case p =1. From Lemma 4.4,
Diroot) =0, j=1,...,n; k=1,..,n

Hence, equating coefficients of % in (4.16), we obtain

¢ ”n
&yt :Jk(t s Zakelk(s ds+g;(0), j=1,....m, (4.17)

"
and since 2 a; =1, it follows that
i=1

n 13 ” n
'21 aje, ;(¥) :ofk {t, s) Zlaieli(s) ds+ Zla,- @14(0)- (4.18)
i= i= i=
By Corollary 4.4, (4.18) is a homogeneous Volterra integral equation of the second

kind and so

Hence, from (4.17)
;@O =e¢;0), 7=1,...,n

and so Corollary 4.1 yields (4.12) for p =1.
We now proceed by induction. Assume the lemma is true for p=1,...,7—1
<»—1. Then from {(4.12), (4.14) and Lemma 4.4,
2P, 1 at)=0, j=1,...,m, 7=0,...,0—1.
k=1

Hence, equating coefficients of %' in (4.16), we obtain

e;;(f) = fk(t» s) Z a1 (s)ds + @ (¢)

TS l (- 1) (4.19)
< G (l—r—1)\ pl-r—e- tt _
+'%_‘,) q;) < q ) l—7—1 Zaike(ll) u)l r—1
7=1: ’nJ
and so,
” ¢ ”
Z a,e“(t) - fk(t S) Z 517(S)ds+ Za7¢”
- i—1 lo 1 l ] ¢ 1) ” (4.20)
—1 l—r— —y—1\ RU—r—2-1{(z t ”n .
+1;0 q;) ( q )—T-——;T_l; Z ]kefk 'M’-)’ r 1,

=
From Corollary 4.1, (4.12) and Lemma 4.3, (4.20) is homogeneous and therefore

”
2 aielj(t) =
j=1
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Thus, (4.19) yields (4.11) for p =I. From (4.12) with $ </ —1 and Lemma 4.3 we
obtain (4.12) with p =/. Hence the lemma follows by induction.
We are now in a position to prove the main convergence result.
Theorem 4.1. If w(f) €p,, then
en=H"e,,(t; ) +OETTY), i=0,...,1—1, (4.21)

where ¢, (t) satisfies an equation of the form
13
Con () =Con ) + [ k(. 5) €4 (5) ds. (4.22)
0
Proof. For v =0 and » =1, (4.21) follows trivially from (4.10) and Lemma 4.2.
If y > 1, then from Lemmas 4.1 and 4.6,
epn(t) =0, p=0,...,v—1,

and (4.21) again follows from (4.10).
Equating powers of %" in (4.16), we obtain equations of the form

2 n
@il =60+ [hE5) Zaren)ds,  j=1, .. (4.23)
and hence
Z aje,;(t) = Z a&,; () + [kt s) X aze,;(s)ds
j=1 j=1 0 f=1

Il
M

ufév 7 (t) - Evn (t) + Cn (t) .

j=1

It follows that
€un(t) =&, (0) +of R(t, s) 2 a; (§,(5) —&,n(s))ds + Of k(@ s)e,,(s)ds

=QWﬁﬁ@@mwh-#

From this theorem it is clear that the choice of the points {uy, ..., u,} is
important. A natural choice would appear to be the equally spaces points
w;=(@—1)/(n—1), =1, ..., n, n=2. For these points, w () g, for n =27 and
w(f) €p for n =27 +1 and so the methods with #==27+1 and # =27 42 have
order 27 +1 convergence.

More suitable sets of points however are those considered by Axelsson [1],
namely the Radau points for #, >0 and the Lobatto points for #; =0. The corre-
sponding orders of convergence are 2% — 1 and 2% — 2 respectively. This is optimal.

5. Numerical Stability
According to Noble [11] a finite difference method for (1.1) is numerically
stable if the leading term in the asymptotic expansion of the error satisfies an
equation whose kernel is the same as that of the linearised form of (1.1). For
additional discussions of this concept see also Kobayasi [8] and Linz [10].
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From Theorem 4.1 it is clear that the pure discretization error of (3.2) grows
in a stable way. However, to investigate the numerical stability fully, it is
necessary to consider the propagation of rounding errors which can be charac-
terized by the propagation of perturbations in Y; j=1,..., .

Suppose that in the first step approximations Y,;, 1 =1, ..., n, which satisfy
Y07=Yv()7'—67', j=1,.'.,”,

have been calculated instead of Y, i i=1, ..., n. Denote

o= max, 1ol

Using the values Y, j =1, ..., n, (3.2) will generate a new sequence of approxi-
mations Y;;, =1, ..., n, =1, ..., I —1, given by

i—-1 = n
?iiz 2. 2 ha Kt by Yi) + 2 ha K (g, ta Vi)
1=0 k=1 B=1 (5.1)
f=1,...,m;, 1=1,...,1—1
Let
&i=yii—Yi 1=1,..,n;, i=0,...,I—1
Then,
Ej=8&;+0, J=1,...,1, (5-2)
where g ;, j =1, ..., n, are given by (4.1). By an argument similar to lemma 4.2
it follows that
g; =0 +0hd), j=1,....,n; i=1,...,I—1 (5.3)

Subtraction of (5.1) from (3.1) and the use of Taylor’s theorem, (5.2) and (5.3) yield
i—1 n ”n
B =2 2 hayk(t, t)En +k§1h‘ajkk(tii’ L) Ein

=1 k=1

+ X hayk(t,, bor) (8or +-04) + Ry ; +O0 () +0 (B29),
E=1

Hence, by superposition,

where
é:07 :671 ] =1, ) 11',
i—1 n n
= z 2 hakk(tii» FAETE ) h‘ajkk(tif: Lin)Ein
=1 R=1 k=1
+ 2 hagk(t;, tor) 0, +O (A7) +0 (29), (54)
r=1

15 Numer. Math., Bd. 23
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and ¢;;, =1,...,%; 1=0,...,I —1, is the pure discretization error given by
{(4.1). By Lemma 2.3,

817=0(h6)+0(h2”)1 j=1"--:n; i=1,...,I*—'1.

Let ¢;;=%;;/h, 1=1,...,%;¢=1, ..., I —1. Then, from (5.4), ¢,; satisfy an equa-

tion which can be interpreted as a finite difference method applied to the system
of integral equations

b= f 16,9 3y (s +20,0) 3, 0,
0 k=1 k=1 (55)

i=1,...,m

Using Lemma 2.3, this method can easily be shown to be convergent of order one,
and hence
e;j=¢e;(t;;) FOR" ) +0MRS), f=1,...,n; di=1,...,I—1
From (5.5),
e;()=e(t), 1=1,...,m,
where
3 ”
elt)= [kt s)e(s)ds+k({, 0) D a,6,
0 k=1
and it follows that
g;;=he(t;) +O(R*") +0(h20), j=1,...,n; i=1,...,1—1,
which implies that the scheme (3.2) is numerically stable.

6. A-Stability and Stiff A-Stability
The definitions of A-stability and stiff 4-stability for methods for ordinary
differential equations given by Dahlquist {4} and Axelsson [1], respectively, can
be extended to methods for second kind Volterra integral equations in the
following way.
A numerical method is called 4-stable if, when applied to the problem

t
y@® =1+24f y(s)ds, Re(d)<o, (6.1)
0
with an arbitrary step size 4, then
lim Y;=0,
+—>00
b fized

where Y denotes the numerical approximation to y(¢;). If, in addition,
lim Y;=0 forall ¢
h—>00
i fixed

then the method is called stiffly A-stable.

To examine A-stability and stiff A-stability for our schemes, we use the
observation that the schemes applied to (6.1) yield the same numerical approxi-
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mations as the corresponding implicit Runge-Kutta methods for ordinary dif-
ferential equations (see Axelsson [1] and Wright [16]) applied to

¥y =2y, y(0)=1

Hence we know from Wright [16] that the schemes based on equally spaced points
are 4-stable if » =<9, and from Axelsson [1] that the schemes using Lobatto and
Radau quadrature are A-stable and stiffly A-stable, respectively, for all =.

7. Numerical Results

In this section we report some calculations with the schemes (3.2) and (3.3)
based on Radau points with degree of precision four (v =2), i.e.

wu=(1—%014Y6)2, uy=(14+26—1))2, uz=1 (7.1)
The fifth order convergence is illustrated by the application of the methods to

¢
y(&) =1+¢t—cos(t) — [ cos(t—s)y(s)ds, O0=i=2,
0

which has the solution y(f) =¢. The errors for (3.2) and (3.3) are tabulated in
Tables 7.1 and 7.2, respectively. It should be noted that the errors for (3.3) are
appreciably smaller than those for (3.2). Numerical computations show that this
is frequently the case.

The advantage of stiff A-stability is illustrated by the application of the
methods to

y(®) = ((1 +£) exp(—108) +1)¥ + (1 -+ (1 —exp(—10)) +10 log (1 +2)

— 2 <t<

10f 1 +s ds, 0st=19, (7.2)
Table 7.1

t h=0.4 h=0.2 h=0.1

0.4 —2.396 E—6 —7.446 E -8 —2.316 E—9

0.8 —4.608 E—6 —1.446 E—7 —4.519 E—9

1.2 —6.391 E—6 —2.022 E—7 —6.349 E—9

1.6 —~7.638 E—6 —2.437 E—7 —7.682 E—9

2.0 —8.347 E—6 —2.685 E—7 —8.498 E—9
Table 7.2

t h=0.4 k=0.2 h=0.1

0.4 2.647 E—7 7.704 E—9 2.323 E—10

0.8 4.165 E—7 1.212 E—8 3.655 E—10

1.2 4.803 E—~7 1.398 E—38 4,220 E—10

1.6 4843 E—7 1.413 E—8 42711 E—10

2.0 4.550 E—7 1.334 E—8 4.043 E—10

15%
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which has the solution
y{t) =((1 +1) exp(— 108) + 1)}

The schemes were applied with %2 =0.1 on the interval [0, 1] and then the step
size was increased on (1, 19). The errors for (3.2) and (3.3) are given in Tables (7.2)
and (7.4) respectively.

Table 7.3
¢ h=1.5 h=3.0
4.0 —1.780 E—3 —2.843 E—2
7.0 —3.058 E—4 ~5.376 E—3
10.0 —1.015 E—4 —1.392 E—3
13.0 —4.577 E—5 —5.430 E—4
16.0 —2.446 E—5§ —2.716 E —4
19.0 —1.458 E—5 —1.558 E —4
Table 7.4
13 h=1.5 h=3.0
4.0 —3.271 E~—35 —2.302 £ —~3
7-0 —1.717 E—6 —1.834 E—4
10.0 —2.699 £ —7 —1.952 E—5
13.0 —7.191 E—8 —3.757 E—6
16.0 —2.452 E—38 —1.150 E—6
19.0 —~1.077 E—8 —4.554 E—7

Since the Lipschitz constant in (7.2) is effectively 20, a conventional multistep
method will not work well for a large stepsize. To illustrate this, (7.2) was solved
by the two-step scheme Simpson #1, which is convergent of order four and
numerically stable, (see Linz [10] or Noble [11]). On [0, 1], 2 =1/301in Simpson 1
yields comparable accuracy to 2 =0.1 for (3.3). On (1, 19) the largest gridspacing
for which the error in Simpson #1 does not exhibit unstable growth is approxi-
mately #=0.09. The accuracy with this 4 is about the same as for (3.3) with
h=1.5.

To compare the efficiency of (3.2) (or (3.3)) with Simpson 1, note that
when solving Volterra integral equations the bulk of the computations comes

2}
from approximating integrals of the form [ K(t; s, y(s))ds by sums. Thus the
)

number of necessary evaluations of K(t, s, ¥), N(k, T), can serve as measure for
the amount of work required. For (3.2) (and (3.3)) with points (7.1), N (%, T)
(9 (T'[k)?[2), while for Simpson 31, N (h, T) ~ (T/h)?/2. Computing these figures
for our situation (T =18, A=1.5 for (3.2) and 4 =0.9 for Simpson 3#1) we see
that the number of evaluations in Simpson $1 is about 30 times that for (3.2).
This illustrates well the superiority of stiffly A-stable schemes over linear multi-
step methods when solving “stiff’’ equations.
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To solve the nonlinear systems arising from (3.2) and (3.3), Newton iteration
was used. Although convergence of the iteration can only be established if AL <1,
when solving stiff equations, convergence is usually observed even if 2L > 1. This
is the same situation as in differential equations.

The nonlinear equations arising in Simpson #:1 were also solved by Newton
iteration.
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