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Summary. We present and study a conservative particle method of approxi- 
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Introduction 

Most of the partial differential equations arising in Sciences and Engineering 
are conveniently solved numerically by using classical discretization methods 
such as finite-difference, finite element or spectral methods. However, due to 
the growing complexity of problems which need numerical solutions, an increas- 
ing number of them are not efficiently solved by these conventional methods 
and require specially fitted numerical techniques. This is the case in particular 
of convection dominated complex problems for which the particle method is 
able to provide effective numerical solutions. In fact, the particle method is 
commonly used in some specific domains in Physics and in Fluid Mechanics. 
In Physics, kinetic equations of Boltzmann and Fokker-Planck types are current- 
ly solved by the particle method which is frequently associated with Monte-Carlo 
techniques. In that direction, see for instance Duderstadt and Martin [11, 
Chap. 9]. In plasma Physics and more specifically in the study of inertial confine- 
ment fusion problems, the particle method is used in the numerical solution 
of the coupled Vlasov-Poisson or Vlasov-Maxwell equations: see the recent 
books of Hockney and Eastwood [15] and Birdsall and Langdon [5]. For  
applications to the computer simulation of semi-conductor devices, see again 
[15]. 

* Dedicated to Professor Joachim Nitsche on the occasion of his 60th birthday 
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The particle method is also used in Fluid Mechanics for both compressible 
and incompressible fluid flow simulations. On the one hand, vortex methods 
of solutions of the two- and three-dimensional incompressible Euler and Navier- 
Stokes equations are of growing practical importance: see for instance the survey 
papers of Leonard [16, 17] and the references theirein. On the other hand, 
for compressible multifluid flows, a particle-in-cell (P.I.C.) method has been intro- 
duced by Harlow [14] using a particle treatment of the convective terms coupled 
with a finite-difference treatment of the pressure terms. Recently, Gingold and 
Monaghan [12] have modified the P.I.C. method by deriving a pure particle 
treatment of the pressure terms. 

The numerical analysis of the particle method has received a great deal 
of attention in the last few years. Since the pioneering work of Hald [13] on 
the convergence of the two-dimensional vortex method, many results have been 
obtained in that direction, see the papers of Anderson and Greengard [1], Beale 
[2], Beale and Majda [3, 4], Cottet [6, 7, 8], Raviart [19]. By using related 
mathematical techniques, Cottet and Raviart [9, 10] have studied the particle 
approximation of the one-dimensional Vlasov-Poisson equations. 

Now, the purpose of this paper is to provide a mathematical analysis of 
a particle method of approximation of linear first-order systems closely related 
to the method of Gingold and Monaghan [12]. The analysis presented here 
extends previous works concerning the particle approximation of linear hyper- 
bolic equations [19, 20]. An outline of the paper is as follows. Section 1 is 
devoted to the derivation of the particle method. We state in Sect. 2 the main 
result of convergence. The consistency analysis of the method is based on a 
theory of approximation of smooth functions by linear combinations of Dirac 
measures. This theory is given in Sect. 3. We derive in Sect. 4 a L 2 stability 
analysis of the method and we prove the main theorem. Finally, in Sect. 5, 
we extend the method and the analysis to the numerical approximation of para- 
bolic systems. 

In a subsequent paper [18], we shall present a somewhat different but related 
particle method of approximation of linear convection-diffusion problems. 

1. Description of the Particle Method 

Let x=(x 1 ..... x")elt" be the space variables and t the time variable. Given 
T > 0, we set: 

QT =IR" x ]0, T[ 

We denote by 5 ~  p) the space of p x p matrices with real coefficients. 
We introduce (n+ I) mappings Ai: (x, t)eQT~AI(x, t)~5~(P,.P), O<i<n, with 

the following properties: 

(i) Ai~L~ ~cf(~,~p)), O~i~n;  

O Ai  ~o 
(ii) ~ x j ~ E  (Qr ;~(~P) ) ,  l<i , j<n;  (1.1) 

(iii) Ai(x, t)=Ai(x, t) r, l<_i<n, (x, t)6QT. 
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Then, given two functions Uo: x ~ JR" ~ Uo (x) e ~P and f :  (x, t) ~ Qr ~ f  (x, t) e R p, 
we want to find a function u: (x, t)~Qr--,u(x, t )eR p solution of the first-order 
symmetric system written in conservation form 

~ +  (A~u)+A~ in Qr (1.2) 
i = l  

with the initial condition 

u(x, 0) =Uo(X), x e ~ " .  (1.3) 

Now, setting 
L 2 (JR n) = L 2 (~xn) p, 

it is well known that Problem (1.2), (1.3) is well posed in L2(IR"): if uo~LZ(~x  n) 
and feLl(O, T;L2(~")).  Problem (1.2), (1.3) has a unique weak solution 
ueC~ T; IL2 (R")), i.e. u is continuous from [0, T] into L2 (IR"). We shall assume 
in all the sequel that the data A ~, 0 < i < n ,  Uo and f are smooth enough so 
that the solution u satisfies the regularity properties that we shall require later 
on. 

In order to approximate the solution u of (1.2), (1.3) by a particle method, 
we begin by introducing a system of moving coordinates. We write 

Ai=aiI+B i, l<i<n,  (1.4) 

where I is the identity matrix of LP(R") and the functions a ~ are realvalued 
functions defined on QT which satisfy 

8 a  i LO~ 
aieL~ ~x j~ (Qr), l <i, j<n. (1.5) 

Then, we define the characteristic curves associated with the first order differen- 

n tial operator __0 + ~ al 

8t j=l 8x~" 

Consider the differential system 

d x  
d~=a(x, t), a=(a' ..... a"). (1.6) 

We denote by t ~x (~ ,  t) the unique solution of (1.6) which satisfies the unitial 
condition 

x(0) = ~, ~ P , "  (1.7) 
and we set 

l~x i 
J(~, t )=de t  ~ (~, t)). (1.8) 

Then, it is a simple and classical matter to check that 

OJ ~ Oa i 
0t (4, t )=J(~,  t)(diva)(x(~, t), t), d iva=i= 1 0 x  i (1.9) 
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Moreover, since J(~, 0)= 1, we have 

J(r vr vt~[0, T]. 

Note that (~, t) may be viewed as a system of Lagrangean coordinates associated 
with the "velocity" vector field a=(a  ~ . . . . .  a"). Hence, t ~ x(~, t) is the trajectory 
in the velocity field a of a material particle whose initial position is ~. 

The next step consists in deriving a general approximation of a continuous 
function by a linear combination of Dirac measures. Let g ~ C ~  ") and let 
(p~C~ i.e., (p is a continuous function with compact support. By using 
the change of variables x = x(~, t), we have 

f g~pdx = ~ g(x(r t))q~(x(~, t))J(~, t)d~. 
R n  R .  

Now, if we approximate the integral 

S O(r by ~OkO(~k) 
R n k ~ K  

for some set (~k, COk)k,K of points Ck~R" and weights COk~R, we obtain 

g rpdx ~- ~. wk(t ) g(xk(t)) (P(xk(t)) 
R n  k ~ K  

where 

xk(t)=X(~k, t), Wk(t)=tOkJ(( k, t), k~K.  (1.10) 

This amounts to approximate the function g ~ C O (~,~") by the following measure 

11 h (t) g = ~ w k (t) g (Xk (t)) (~ (X-- Xk (t)) (1.1 1) 
k ~ K  

where 6(X-Xo) means the Dirac measure located at the point Xo~lR" and the 
subscript h refers to a discretization parameter to be specified. 

Later on, it will be useful to associate with the measure Flh(t)g a continuous 
functions //h(t)g which approximates the function g in a more classical sense. 
In order to construct //h(t)g, we first introduce a cut-off function 
~ C ~ ( R " ) n L ~ ( ~  ") such that 

~ d x = l .  
R .  

For the sake of simplicity, we shall assume in all the sequel that the function 
has a compact support. Next, we set for all e > 0 

and 

or equivalently 

( e ( x ) = l  ( ( x )  (1.12) 

FlU(t) g = Hh(t) g* (, 

(II)(t)g)(x) = ~ wk(t) g(xk(t)) (~(X-- Xk(t)). 
k ~ K  

(1.13) 
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We are now looking for a particle approximation u h of the solution of Problem 
(1.2), (1.3) of the form 

uh(x, t)= ~ Wk(t ) Uk(t ) 6(X-- Xk(t)) (1.14) 
keK 

where Uk(t) stands for an approximation of U(Xk(t), t). We consider also the 
regularized form u) of u h given by 

i.e., 
uh(., t)=uh(., t) *~  

uh(x, t)= ~ Wk(t ) Uk(t ) ~(X--  Xk(t)). 
kEK 

(1.15) 

In other words (1.15) consists in approximating the solution u by point particles 
which move along the characteristic curves passing through the points ~k, keK .  
Similarly, (1.15) amounts to approximate u by finite size particles, the motion 
of each particle being identical to that of its centroid x~(t) and its size being 
characterized by the function (~. 

It remains to derive a discretized form of Problem (1.2), (1.3) in order to 
define the unknown functions t ~ Uk(t), ke K, and therefore the approximate solu- 
tions u h and u). Using, (1.4), Equation (1.2) becomes 

Ou ~ O (alu)+ ~ 3 ~ o 
~ t  + Ox ~ O-~(B u)+A u = f  in Q.T. 

i = l  i=1  

We first notice the simple but crucial following result 

Lemma 1. I f  u h is given by (1.14), we have in the sense of  distributions on QT 

~uh ~=1 ~ d 
d-.= ~ ( a i u h )  =kEKE --~(Wk(t) uk(t))(~(X-- Xk(t))" (1.16) 

Proof Denote by ( . , . )  the duality pairing between the space C~(QT ) of all 
C ~ functions with compact support in Qr and the space ~'(QT) of all distribu- 
tions on QT- If we set 

n 
Luh=f_Uh + ~ C3 

6 t i = 1 ~Xi (ai uh)' 

we have for all ~o~C~(QT) 

n 

?V,/ 

= - I  Y wk(t)u~(t) + ~ a  STX..il(xk(t),t) dt. 
0 kkeK i = i  OX] 

But it follows from (1.6) that 

+ ~ a i arP (x({, t), t ) = ~  q~(x({, t), t). 
i = l  
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Hence,  we obta in  

r d 
( L u  h, q~)= -- ~ ~ Wk(t) Uk(t) -dt ~O(Xk(t), t )dt  

k~ K 0 

=(~K~(Wk( t )uk ( t ) )6 (X - -Xk ( t ) ) , q  9) 

and the conclusion follows�9 [ ]  

Let  us next  derive a particle app rox ima t ion  of ~ (B ~ Uh). We write 

�9 t~Bi h i 0 h ~ B i u h + B i  ~ tt 

and we use the following app rox ima t ions  for B i and  - -  
0B i 

c3 xi 

where 

We find 

B '~- ~ Wk (t) B~,(t) 6 ( x -  Xk (t)), 
k6K 

O B; 0r I (x- --Ox i "" ~, Wk(t)B~,(t) ~ Xk(t)) 
keK 

B~(t) = Bi(Xk(t), t). (1.17) 

i.e., 

Finally, we have  

where 

�9 ( 2 Wk(t) Uk(t) 6(X--Xk(t)))+( ~" wk(t) B~,(t) a(X--Xk(t))) 
keK keK 

�9 ~-~W,(t) ut(t ) OX ~ 
\leK 

0 
c~ x i (Bi uh) ~ ~ w, (t) w, (t)(B~ (t) u;(t) + B i(t) Uk (t)) 

k,l~K 

0 x i (Xk (t) -- Xt (t)) 6 (X -- XR (t)). 

A ~ u h= Y', wk(t) A~ Uk(t) 6(X--Xk(t)) 
k~K 

(1.18) 

(1.19) 

A~ = A~ t) (1.20) 
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and we consider the following approximation o f f  

f =  ~ Wk(t)fk(t) 6(X-- Xk(t)) (1.21) 
k 6 K  

where 

fk(t) = f  (Xk(t), t). (1.22) 

Combining (1.16), (i.18), (1.19) and (1.21), we find that a (semi-)discretized 
form of Problem (1.2), (1.3) consists in finding functions t~[0, T]--*Uk(t)~, p, 
k~K,  solutions of the differential system 

d n 

(wk(t) uk(t)) + w,(t) y w,(t) Z (B~(0 ~,(t) 
L I 6 K  i = 1 

+ Bl(t) uk(t)) ~ 7  (x, (t)-- x,(t))~. + Wk (t) A ~ (t) Uk (t) = Wk (t)fk (t), (1.23) 

Uk (0) = U o (~,), k ~ K. (1.24) 

On the other hand, using (1.6), (1.7), (1.9) and (1.I0), we note that the functions 
t~Xk(t )  and t ~Wk(t) can be characterized as the solutions of the differential 
equations 

dXk 
(t) = a(Xk(t), t), Xk(O) = ~k, (1.25) 

and 
d w  k 
dt (t)=wk(t)(diva)(xk(t), t), Wk(O)=w k. (1.26) 

The numerical method is thus defined by the Eqs. (1.23)-1.26). It remains how- 
ever to perform a suitable time discretization in order to obtain a practically 
implementable numerical scheme. 

Remark that any solution u~C~ T; L ~ (R")) of (1.2) satisfies the following 
conservation property. 

u ( x , t ) d x +  i ~ A~ x,s) u ( x , s )dxds  

u(x,O) dx+  i ~ f ( x , s )  dxds.  
R ~  0 ~R~ 

It is often required in practice that a similar property holds for any approximate 
solution (1.2). In fact, we shall say that the numerical scheme (1.23) satisfies 
the conservation property if 

Wk(t) Uk(t) + i Z Wk(S) A~ Uk(S) ds 
k~K 0 k~K (1.27) 

t 

= ~ w,(O) Uk(O)+ ~ ~ Wk(s)f(s) ds 
k ~ K  0 k e K  

holds for any solution t ~ (Ug (t))k ~ K e C O (0, T; 11 (K) p) of (1.23). 
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Lemma 2. Assume that the function ~ is even, i.e. 

( ( - - x ) = ( ( x )  g x e R "  (1.28) 

Then, the numerical scheme (1.23) satisfies the conservation property. 

Proof. It follows from (1.28) that 

~ ~ (x) Ox i ( - - x ) =  -~x~x / . (1.29) 

Hence, by interchanging the roles of k and l, we obtain 

wk (t) w,(t)(Big (t) u,(t) + B1 (t) Uk (t)) ~ (Xk (t)-- x,(t)) = O. 
k, lEK 

The conclusion follows at once by summing the Eq. (1.23) with respect to k ~ K  
and integrating from 0 to t. [ ]  

Remark 1. It would seem more natural at first glance to use in (1.23) the following 

discretization of ~x/(Biu)(xk(t), t)" 

(?(~ x t x t Y'.w,(t) Bi(t)u,(t)~i~i( k( )-- ,()). 
leK 

However the corresponding scheme does not satisfy the conservation property. 

On the other hand, there exist other discretizations of ~x ~ (Biu)(xk(t), t) which 

lead to a conservative scheme when the condition (1.28) holds, for instance 

wt(t)(B~(t ) uz(t ) + B~(t) Uk(t)) t~(~ (x k (t) -- x l (t)). 
leK 

All these conservative or non conservative schemes can be studied in exactly 
the same way than the scheme (1.23). []  

2. The Main Result 

In order to present a simple analysis of the convergence of the particle method, 
we shall restrict ourselves in all the sequel to the following model situation. 
Given a discretization parameter h > 0, we set" 

K = Z " ;  ~k=(kih)l<=i~,, Ogk=hnVk=(kl . . . .  kn)eZ". 

Hence, the initial positions ~k of the particles are uniformly distributed in the 
space ~".  Note that, in many applications, it may appear more adequate to 
choose the set (~k, (Dk)keK in a more sophisticated way depending on the initial 
condition Uo but this leads to non essential technicalities in the proofs. 
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It will be also convenient to assume that the cut-off function ( is sufficiently 
smooth. The case of a non-smooth cut-off will be discussed in the appendix. 

In order to prove that Problem (1.23), (1.24) has a unique solution, we first 
introduce the space ge2 (~n) of sequences v = (Vk)k~Z. with values in lR p such that 

]l v 11 = ( ~ ]vk 12) 1/2 < + oo, (2.2) 
keZ- 

where 1.1 denotes the Euclidean norm of ~,P. We provide also #2(Z") with the 
following time-dependent norm 

/I v lib.,=( ~ wk(t)lvkla) '/z =(h" ~ J(~k, t)lvkl2) a/2" (2.3) 
k~Z" keT~ 

Next, we state some simple preliminary results. In all the sequel of the paper, 
we shall denote by C, c~ . . . . .  c~ . . . .  various positive constants independent of 
the parameters h and ~. 

Let us begin with a standard result. 

Lemma 3. Assume that the hypothesis (1.5) holds. Then, there exists a constant 
C=C(T)>O such that 

exp ( -  C t) < J (~, t) < exp (C t), (2.4) 

C - 1 l ~ - r / l < l x ( ~ ,  t ) - x ( q ,  t)l _-<Clr (2.5) 

for all ~, q~lR" and all t e l0 ,  T]. 
As a consequence of (2.4), we obtain that v ~ [I v lib,, is indeed a norm on 

f2(;~,) which is equivalent (but not uniformly equivalent with respect to h) to 
the usual #2 norm (2.2). 

Lemma 4. Under the condition (1.5), there exists a constant C=C(T)>O such 
that for all k~7ZY 

wl(t) ~  (Xk(t)-- xl(t)) <-_--.C (2.6) 
iEZn O X- 

Proof Since the cut-off function ( has a compact support, we observe that 

meas (supp (~)) < cl e". 

Now, let x ~ R "  be fixed; using (2.5), we find that the number of indices lEZ" 

such thatx-x~( t )belongs to supp(~,)is bounded by c2 (h)". 
g ~ 

a(~ (x) < C3 
~X/  ~ ~n+l 

that 

Setting 

~, wl(t) clJ~i (Xk(t)-- xz(t)) 
IEZn 

=h" y', J(~z, t) (Xk(t)--xl(t)) <C4 h" e.+l 
l ~  

we can now prove. 
ao = ( U o ( ~ ) ) k ~ z . , f  (t) = ( L ( t ) ) ~ z .  

C4 
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Theorem 1. Assume that (1.5) holds and the cut-off function ~ belongs to the 
space C~(R"). Then, under the conditions 

tl rio IIh, o < + oo, (2.7) 
T 

S IIf(t)llh,,dt< + oe (2.8) 
o 

Problem (1.23), (1.24) has a unique solution t--* ~(t)= (Uk(t))k~Z, which is continuous 
from [0, T] into ~~ 

Proof Using (1.26), Eq. (1.23) can be equivalently written in the form 

where 

Uk(t)+ ~ wt(t) ~ (B~(t) ut(t)+Bi(t) Uk(t)) (Xk(t)--xt(t)) 
l~K i= 1 

+ ~o (t) U k (t) =fk (t) 

.~o(t)=AO(t)_t 1 dWk(t) o 
Wk(t) dt =Ak(t)+(diva)(xk(t), t). 

For all te[O, T], we introduce the linear operator ~(t): re(Z(7/") ~ ~(t)v~{2(TZ ") 
defined by 

(r (t) V)k = 2 Wt (t) Z (Bik (t) vt + Bi(t) Vk) ~ (Xk (t)-- X, (t)) + 3 ~ (t) Vk. 
leK i = 1 

Let us check that ~b(t) is indeed a linear continuous mapping. Using (1.1) (i), 
(1.5) and Lemma 4, we have 

I(dp(t)v)kl<c~ ~ ~ w~(t)lvtl ff~xi(Xk(t)--xt(t)) + T ~ c 3  [Uk[ 
i = 1 leZ n 

and therefore 

II c~(t)v lib.t< ca 
i = 1  

" ~ 2 W k ( t ) ( 2  Wl(t) 'Ul O f f : ( X k ( t ) - - X l ( t ) ) l ) 2 } l / 2 - t ' - ( ~ " l - C 3 ) l [ V ' l h ,  t. 
kkEZ n \ I ~ Z  n ~ X  / 

Next, applying Cauchy-Schwarz' inequality gives 

( t~zwt(t)[vl l~(Xk(t)--xt( t)))  2 

<( t~  w'(t) ,ff~xi (Xk(t)-- xt(t)) ) 

\ l e Z  n ~ X i 
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so that by Lemma 4 again 

~C4 E Wk(t) wt(t) lv/12 ~8C~ xz(t)) ~ , ~ .  ~ ( x ~ ( t ) -  

r <~4 c] 
= ~.2 E Wl( t )]vl( t )]2 "-~'~2 II U 112t . 

l~Zn 

Hence, we obtain (') l l r  ~-+-1 14Vllh,, 

Now, Problem (1.23), (1.24) can be equivalently written in the form 

d~ 
dt ( t )+r  O<_tET r~(O) =ao  (2.9) 

Using (2.7), (2.8) and standard results in differential equations theory, we obtain 
that the linear differential problem (2.9) in dz(z  ") has a unique solution t 
~ ~(t)eC~ T; d2(Tl")). 

After having obtained a particle approximation of the original problem (1.2), 
(1.3), we then construct the function u h defined by (1.15). Let us check that 
the function t ~uh( . ,  t) belongs to C~ T; ]L2(R')). This will be an immediate 
consequence of 

Lemma 5. The mapping 

,=(v~)k~,,--, v~(x, t)= y, w~(t) ~ r 
keZ" 

is continuous from d2(Z ") into IL2(]R n) and there exists a constant C = C ( T ) > O  
such that 

II vh(., t ) l lL2(~ . . )~Ct lV[Ih ,  t, O ~ t ~ T .  (2.10) 

Proof. Applying Cauchy-Schwarz' inequality gives 

I ~ wk(t) Vk ~e(X--Xk(t))l 2 
keZ" 

<( Y, Wk(t) lCe(X--Xk(t))12)( ~ Wk(t) lVkl 2) 
keZn keZn 

so that 

II v~(., t)liL(~~ .( E wk(t)l;~(X--Xk(t))l 2 dx)'I v IlL" 
R -  keZ-  

Now, in the sum 

Y, w~(t) l ~ ( x -  x,,(t))lL 
keZn 
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we have  to take into account  only the indices keTZ" such that  X--Xk(t ) belongs 
to supp((~). Argueing as in the p roo f  of  L e m m a  4, we find tha t  the n u m b e r  

(h) ~ of such indices is b o u n d e d  by c l Hence,  we obta in  

vh supwk(t)( S Ir ~ dx)II v Iig,, 
keZ" ~.n 

and the result follows f rom the bounds  

Wk(t) = h" J(~k, t) <= C2 h", 

]~(x)12 dx=__l ~ [~(y)12 d y < ~ , .  
R .  ,~n R"  

~(.,  Now,  we wan t  to c o m p a r e  t) and  u(. ,  t) in I~2(1t"). This is done  in 
the next  theorem which is the ma in  result of  this paper.  Before s tat ing the 
theorem,  we need to in t roduce the s tandard  Sobolev spaces 

(?l,I q~ 

where ~ is an open subset  of  IR". We provide  W~'v(O) with the n o r m  

l[';~ p,~=( Z I[O~q'lfL(~')) '/'' 
I~,i_-<k 

and the semi -norm 

L~olk.p,~--( ~2 II 0~q)Itf~,(~) 1/p 
I~l =k 

for 1 < p < oO and their usual modif ica t ion for p = oe. 

Theorem 2. Assume that the cut-off function ( satisfies the following hypotheses 
(i) (E Co 1 (It") belongs to the space W "  + 1, 1 (It") for some integer m > n; 

(ii) there exists an integer r > 1 such that 

I ~ d x = l ,  
R"  (2.11) 

x ~ ( d x = O  V o ~ N "  with 1 ~ [ ~ [ ~ r - 1 1 ;  

(iii) the condition (1.28) holds. 
Assume in addition that the parameters h and ~ satisfy. 

h ~ 
~m+ 1 ~_~C. (2.12) 

x~=(x~)~,...(x")'.ffx=(x ~ ..... x")eR ", .=(a~ ..... a.)eN ~. 
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Suppose finally that the exact solution u belongs to the space C~ T; W"" o~ (~,)p) 
n 

where # = max(r + 1, m) and satisfies for some ~ >~  and for all fl e N" with I fl[< # 

[Oau(x, t ) l < c ( l + l x l ) - r x ~  ", t~[0, T]. (2.13) 

Then, there exists a constant C = C(u, T)> 0 such that 

( h~ ) 
llu(., t ) -u) ( . ,  t)ll~<~,)<C e ' + ~  , O<_t<_T. (2.14) 

Let us sketch the main steps in the proof. We write 

u(., t)--u)(., t )=u( . ,  t)--H)(t)u(.,  t) + Hh~(t)u(., t)--u)(., t). 

Setting 

we have 

e(t)=(ek(t))k~Z,, ek(t)=U(Xk(t), t)--uk(t), (2.15) 

(n~(t) u(., t)-u~(., t))(x)= ~ w~(t) e~(t) r x~(t)) 
k~Z.  

and by Lemma 5 

II u(., t)-- uh(., t)ltL2~R,)< rl U(., t)-- Hh(t) U(., t)llt2(R-)+Cl II e(t)llh.t. (2.16) 

The key point is to estimate Ile(t)llh.t. We note that the function t 
--'(U(Xk(t), t))k~Z, satisfies approximatively the Eq. (1.23). First, using (1.6) and 
(1.9), we observe that 

d 
d-t (u(x(~, t), t)J(~, t)) 

/Ou & ~ Ou~ 
= / - - +  L a / (x(~, t), t)J(~, t)+u(x(~, t), t) 0-0~(~, t) 

J 

/ c~u & 
= t ~ - + i = ~  cO~xi (aiu))(x(~, t), t) J(~, t). 

Hence the solution u of Problem (1.2), (1.3) satisfies 

dt (u(xk(t), t)J(~k, t))+ J(~k, t) (B~u) + A~ (xk(t), t) 
i 

--J(~k, t)fk(t), keTr" 

or equivalently 
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d { n 
(wk(t) U(Xk(t), t))+Wk(t ) ~ wl(t ) ~ (B~(t) u(x,(t), t) 

I~Z n i = 1 

+ Bi(t)U(Xk(t), t ) ) ~  (xk(t)- xt(t))} 

+ wk(t) A~ U(Xk(t), t) = Wk(t)(fk(t) + ~Ok(t)) 

where ~p(t)= (~Pk (t))k~Z. is defined by 

~Pk(t)= -- ~ (B'u)(xk(t), t) 
i = 1  

- -  ~, w,(t)(B~(t)U(xl(t ), t)+ Bi(t) U(Xk(t ), t)) ~(Xk(t)--xz(t))  } 
le~ n 

Remark that 

~Ok(t)---- -- B~(t) ~x i (Xk(t), t)-- ~ w,(t)U(Xl(t), t) 
i = 1 ~- I~Z n 

O~ ) \lOB ~ 
C3 x i (Xk (t) -- X; (t)) ~' W I (t) +|~xi (Xk(t), t)-- Bi(t) 

~ ( e  (X k ( t ) _ X l ( t ) )  ) U(Xk( t ) ,  t) 1 Ox ~ 
i.e., 

q)k(t) = -- ~ B~(t) ~x ~ (u(., t)-- II)(t) u(., t))(xk(t)) 
i = 1  

+ L (BI(" t)-- FI~ (t) Bi(., t))(x k (t)) u (x k (t), t)}. 

Now, substracting (1.23) from (2.16) gives 

d(wk(t)  ek(t)) + Wk(t) 2 Wl(t) 2 (B~(t) ez(t) + Bi(t) ek(t)) 
leZ n i = I 

(x~(t)- x,(t))} wk(t) A~ ek(t)= w~(t) ~(t). 4 

Moreover, we have by (1.24) 
ek (0) = O. 

Using (2.16), a proof of Theorem 2 will follow from 
(i) estimates of the approximation errors 

II u(., t)-- Hh(t) u(., t)llL~t~-), I[ ,p(t) l lh, ,  ; 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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(ii) a stability inequality of the form 

tl e(t)llh, t < C i II q~(s)Ilh, s ds 
0 

for the solution t ~ e(t) of the equations (2.19), (2.20). We shall derive in Sect. 3 
the consistency estimates (i). In Sect. 4, we shall establish the stability property 
(ii) and give the proof of Theorem 2. 

Remark 2. Consider the case where 

Bi=0, 

i.e., Eq. (1.2) reduces to 

~u 

0t 

Then, (2.19) becomes 

l <_i<n, 

_ _ +  ~ ~ i 
i = l ~ x i ( a u ) + A ~  in QT. 

d 
dt  (Wk (t) e k (t)) + Wk (t) A ~ (t) e k (t) = O. 

Since e k (0)= 0, we obtain ek(t ) = 0 and therefore 

uh(., t )= Hh(t) u(. ,  t), uh(., t) = IIh(t) U(., t). 

Hence, in that case, finding a bound for the error 

u(., t)-~,~(., t) 

exactly reduces in estimating the approximation error 

u(.,  t ) - -H~( t )u( . ,  t). [] 

3. Some Results in Approximation Theory 

Given a function v~C~ we want to derive bounds for the error v--Fl~(t)v 
between v and its generalized interpolate Flh(t)v defined by (1.11). We begin 
by recalling two simple but essential results of [19]. 

Lemma 6. Assume that the cut-off function ~ satisfies the conditions (2.11) for 
some integer r > 1. Then, there exists a constant C > 0 such that for all function 
g~Wr'P(P."), 1 < p <  + 

H g - - g *  (~ II~p(~-)-- -< Cerlglr, p,~. (3.1) 

Next,  we set for  all k : ( k  1 . . . . .  k . ) eZ"  

Dk= {xe]R"; (ki -  �89 h <:xi<=(k, + �89 1 < i <n}  
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Ek(g) = j g (~ )d~-h"g(~k) ,  geC~ (3.2) 
Du 

n p 
L e m m a  7. Let m >= 1 be an integer and p > m '  q -  p -  1" 77ere exists a constant 

C > O  such that, for  all function g~ Wm'P(~  n) n L 1 (F,~") if m < 2  or for all function 
g ~ Wm' P (F,. ~) n W m- t. t (]R.) if m > 3, we have 

t ~ Ek(g)l<=C hm+~ ~ IgLm, p.o~ (3.3) 
k e Z "  k e Z  n 

Now,  in order  to es t imate  V--//h(t)v,  we begin by deriving a bound  for 
V--IIh(t)v in the negat ive Sobolev space W-"P( IR") .  

L e m m a  8. Let m > n be an integer. Assume that 

ai~L~176 T; W"+ 1' ~176 l < i < n .  (3.4) 

Then, there exists a constant C = C ( T ) > O  such that we have for all function 
v~W"'P(IR"), 1 <=p< + oo 

IIv--IP(t)vll_m,p.R. <Ch'~llvll,~,.,R., O<t<_ T. (3.5) 

Proof. Since m > n, we have by the Sobolev 's  imbedding  theorem 

W m ' P ( ~ " ) c C ~  ~) fora l l  l__<p__< + o o  

Hence,  we can associate with any  function v e Wm' P(I1 ") the measure  

Hh(t)v = ~ Wk(t) V(xk(t)) 6(X-- xk(t)). 
k e Z "  

Consider  first the case 1 < p ~  + ~ .  Let ~ a ~ ( F [ " ) ;  we have 

( v - ~ ( t )  v, ~) = S ~ d x -  F~ w~(t) ~(x~(t)) ~(x~(t)) 
R n  k~Zn  

Using the change of var iable  x = x(~, t), we can write 

(v- -HA(t )  V, q~)= j J(~, t )v(x(~,  t))~o(x(~, t))d~ 
R "  

- h "  ~ J(~k, t)) V(X(~k, t)) (p(X(~k, t)) 
k ~ Z "  

(V--IIh( t )  V, (p) = ~ Ek(g(., t)) 

where keZ,, 

g(~, t ) = J ( ~ ,  t) v(x(~, t)) q)(x(~, t)). 

NOW, it is a s imple ma t t e r  to check that  the hypothes is  (3.5) implies that  

t ~ O ~ x ( . , t ) e C ~  T; L~176 (~,")), l < l c ~ l < m +  1 

so tha t  
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and 
t -*J( . ,  t)eC~ T; Wm'~(lR")). 

Hence, the function t ~ g ( t )  belongs to the space C~ T; W"' 1 (IR")). Moreover, 
applying Lemma 7 (with p = 1) to the function g(., t) gives 

I(V--IIh(t) t), (,0)1 ~ C  1 h"lg(. ,  t)l,,, 1,R- 

_-<c2 h" II v Ilm, p,R-I] ~0 Ii,.,q,R- 

1 1 
where - + -  = 1. Since ~ (•") is dense in W "  q (N"), 1 __< q < oe, the above inequali- 

P q 
ty holds for all function ~oe wm'q(~, n) and we have 

I ( v -  Hh(t) v, qo)l h m 
II v - / / h ( t )v  I1 _,,,p,R, = sup ~-~c2 II v ]I,,,p,R- 

In the case p = l ,  we take ~oeW"'~ ") and the only additional difficulty is 
to show that (v--Flh(t) v, q)) makes sense. This is left to the reader. []  

As a corollary of the above result, we obtain 

Lemma 9. Assume the hypotheses of Lemma 8. Assume in addition that the cut-off 
function ~ belongs to the space W ~+~'1(~") for some integer s>O. Then, there 
exists a constant C=C(T)>O such that we have for all function veW~'P(N."), 
l <p<= oo h" 

Iv* ~ - / / ) ( t )v l~ ,p ,R .  < C ~ II v II,.,p,R., O<-t<_r (3.6) 

Proof. First, we note that 

v �9 ~ - r t~  (t) v = (v - n ~ (t) v ) ,  ~ .  

Next, we observe that, if f e  w-m'p(IR ") and ge W"'I (]R"), we have f ,geLP(~l  ") 
with 

Ilf*g IILp(~,)< cl I l f l l - , . ,  p ,~ .  Ilg lira, ,,~~ (3.7) 

In fact, assuming l < p <  +o0 (for specificity), any distribution f e w - m ' P ( ~  ") 
may be put (in a nonunique way) in the form 

f =  ~ c~f~, f~LP(IR"), Ic~l<m. (3.8) 
I~l=<m 

Moreover, we have 

inf(  ~ IILIIf~.r  I l f l l - m , . , ~ -  
]M<m 

where the infimum is taken over all the decompositions (3.8) of f. Hence, using 
(3.8), we can write 

f ' g =  Z c~L * g =  Z L *0~g 
lal__<m I~l=<m 

so that 
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}al=<m lal_-<m 

I~tl__<m 

and (3.7) follows at once. 
Now, if ( e W  "+~' a(F,2) with m>n and s>0,  we obtain from (3.7) and Lem- 

ma 8 that the function 

~'(v �9 ~ -  rl~(t) v) = ( v -  tJ ~(t) v) �9 ~" ~ 

belongs to LP(R ") for 1~1 <s  and 

II C3"(V*~--FIh~(t)v)IIL~tR,)<C4 I1 v--Flh(t) v[I-m,p,R-l[ C~(~ lira, 1,R n 

<c5 hmllvllm, p,R. II O~ ~lt,.,1,~. 

Together with 
1 c 6 

I ~ I,, x ,R -  = ~ l ~ l , ,  1 ,R-  ------- ~q - , 

this implies the desired inequality (3.6). 
We are now able to state the following general approximation result. 

Theorem 3. Let m>n be an integer. We assume that the hypothesis (3.4) holds. 
We assume in addition that the cut-off function ~ C~(~,") satisfies the conditions 
(2.11) for some integer r> 1 and belongs to the space W "+~' l (p , )  for some other 
integer s>O. Then, there exists a constant C=C(T)> O such that we have for 
all function veWU'P(R"), # = m a x ( r + s ,  m), 1 < p <  + 

Iv--H~(t)vl~,p,R,~C e r l v l r + ~ , p , R , + ~  Itvtl~,p,~- ,O<~t<~ T. (3.9) 

Proof For all ~ ] N "  with I~[=s, we write 

~ ( v -  II~(t)v)=~%-~v , ~  + ~ ( v , ~ -  rl~(t)v). 

Applying Lemma 6 to the function O~v gives 

II O=v-O~v*C~ IILpr cl ~'lvlr+s,v,R~ 

On the other hand, we have by Lemma 9 
h m 

II 0~( v *~--Hh(t) v IILpCR-)<C2 ~ II V IIm, p,~" 

and (3.10) follows. 

Corollary. Assume the hypotheses of Theorem 3. Let v be a function of W ~' ~ (N"), 
/~ = max(r + s, m), which satisfies for some ? > 0 and for all f l zN"  with I/~1< 

IO~ v(x)l<=e(l +lxl) -~, xe~."  (3.10) 
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Then, there exists a constant C = C (v, T)> 0 such that for all ct~N" with l c t I=  s. 

I8~(v-II~(t)v)(x)l<C E'+~WZs (l+lxl)-L xe~.", tE[0,  T].  (3.11) 

Proof Setting O~(x) = x + supp((~), we note  that  ( v -  H h (t) v)(x) depends only on 
the restriction of the function v to O~.(x). Hence, under  the hypotheses of Theo-  
rem 3, we have if v belongs to W ~" ~ 

( h~ IO~(w_H~(t)v)(x)l ~ C  1 ~r_~  II V I1~, ~,O~(~>" 

Now, if we assume that  the function v~ W u" ~ satisfies the condit ions (3.10) 
we have 

II v Ilu,~,o~(x) <=c2(1 + ]x]) -~ 
and (3.1) follows. 

Remark 3. Since we have always 

IL g*  ~ - g  ILL.~R-)~ c I[ g LI Lp~R-) 

we may apply Theorem 3 with r = 0. 

4. Stability Analysis and Convergence Theorems 

Before proving Theorem 2, we need to derive a stability inequality for the solu- 
tion e(t)=(ek(t))k~Z, of (2.19), (2.20). We begin by recalling a classical simple 
result. Given real numbers  akt, k, IETZ', we want to give sufficient condit ions 
for the formula 

(Ay)k= ~, aktYt, k~Z" (4.1) 
leZn 

to define a linear cont inuous  opera tor  A ~ ~o (12 (TZn)). 

Lemma 11. Assume that the coefficients akt satisfy 

(i) sup ~ takzl<C. 
kEZ" IEZn 

(ii) sup ~ lakl l~C 
leZ n keZn 

(4.2) 

for some constant C > O. Then (4.1) defines a linear operator A ~ ~ (l 2 (Zn)) with 

I1A IF < C. (4.3) 

In (4.3), II A II denotes the usual norm subordinate  to the no rm (2.2) of 12(Z"). 

Proof We give the p roo f  for reader 's convenience. Let  y~12(TZ"); we set for 
all k~2~" 

Zk ~ 2 ak t  Yt 
/EZ" 
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Using Cauchy-Schwarz' inequality and (4.2) (i), we have, 

Izkl-  -< Z lakll~/2lak,l~/2lyl[<( ~, [akz[)l/2( ~ lak~llytl2) ~/2 
/eZ- leZn leZ n 

__<C1/2(y' [akltiYzl2) m 
l e l  n 

so that Zk makes sense. Moreover 

Iz~12<C ~ lak~lly,12<C ~ ( ~ lak,l)lYil 2. 
k ~ Z  n 

Hence, by (4.2) (ii) 

and the conclusion follows. 

k, IEZ n IeZ n kEZ n 

Iz~12~C 2 ~ [ytl 2 
kE~En IEZ" 

Next, denote by (.,.) the Euclidean inner product in N p. We have 

Lemma 12. Assume that the cut-off function (eC~(~")  satisfies the condition 
(1.28). Then, there exists a constant C =  C(T)> 0 such that for all vEf2(2g ") 

~ (x~(t)- xl(t)) k ~z. wk(t) wt(t)(B~(t) v,, Vk) ~Cllvll~,. O~t~T. (4.4) 

Proof It follows from (1.29) and the symmetry of the matrix B~,(t) that (by 
interchanging the roles of k and l) 

Wk W, ((Big + BI) vi, Vk) ~ (Xk -- xi) = 0 
k, IEZn 

where, for the sake of conciseness, we have dropped the explicit dependence 
in the variable t. Hence, we obtain 

~, Wk w,(B~ vt, VkJ ff-~ (Xk--Xt) 
k, leZn 

1 0~ 
= ~  ~ WR wt((B~--B~) v,, Vk) ~ (Xk--X,) 

k, leZ n 

Thus, we can write 

where 

Y, wk ~(~'x x3 w I ( B ~ v l ,  V k ) ~ t  k - -  ~ E a k l Y l Y k  
k, leZ n k, l~Z n 

a k l = ~ i B ~ - - B i [  ~-Xl (Xk-- X,), Yk=l/~lvkL 

and [Bik--Bi[ is the spectral norm of the matrix i i Bk--B I. The desired estimate 
(4.4) will follow from (4.3) if we check that the coefficients akt satisfy the hypothe- 
ses of Lemma i1 with a constant C independent of h and e. Since ak~=a~k, 
it suffices to check the condition (4.2) (i). 
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First, given keZ",  we know that the number of indices I~Z" such that Xk--X~ 
belongs to supp(~,) and therefore the number of non zero elements ak~ are 

bounded by cl (h f"  Moreover, since 

0 B  ~ 
Ox i ~L~ (Qr; ~a (R0), 

it follows from (2.5) that we have if Xk--Xtesupp(( 0 

I B~-- Nil = I Bi(xk, t)-- Bi(x,, t)l _--< c2 ]x~-  xt I < c3 e,. 

Next, we obtain 

so that 

Thus, we find 

W k ~ C 4 h n '  OX i = g n + l  

(h)" 
lak,[~c6 7 " 

Z la~,l<q c6 =cl  c6. 

Using, Lemma 11, we obtain 

I ~', aktYkYtl<= c, C6 ~ y~=c,  C 6 [IV[l~,t 
k, leZ- k~Z- 

which proves (4.4). 
We are now able to prove the stability result. 

Theorem& Assume that the cut-off function ~eC~(~") belongs to the space 
W"+1'1(1t ") for some integer m > n  and the conditions (1.28) and (2.12) hold. 
Assume in addition that the functions a i, B i are smooth enough, i.e., 

aieL~176 T; wm+l'~176 B~eL~176 T; W"+I'~176 l <_i<_n. 

Then, the solution t --+ e(t) of (2.19), (2.20) satisfies 

t 

I} e(t) Ith, t <= C ~ ]l q)(s) ]]h,s ds, 
o 

for some constant C = C ( T) > O. 

Proof. We start from (2.19). First we observe that 

~ (d(wk( t )  ek(t)), ek(t)) 
k E Z  n 

O<t<_T 

l d  2 1 
= 2 d r  I] ~-( t ) lek( t ) l  2 e(t)llh,, + ~  k~ .  dwk 
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Hence,  using (1.26), we obtain 

l d  
2 dt Ile(t)ll2"+ ~ Wk(t) wt(t) 

k, l ~ Z  n 

�9 i~=l (B~ (t) et (t) + B i(t) e k (t), e k (t)) ~ x  i (x k (t)-- xt (t)) 

+ ~, Wk(t)(fi-O(t) ek(t), ek(t))= ~, Wk(t)(q)k(t), ek(t)), 
k e Z "  k ~ Z  n 

where 

.~o _- A o + �89 a)I, 

On the one hand, using Lemma  12 gives 

A~ = A~ t). 

Wk(t) w,(t) ~ (Bik(t) e,(t), ek(t)) ~X ~ (Xk(t)-- xt(t)) <Cl II e(t)ll2,, 

On the other  hand, we have 

[ ~ Wk(t)(a~ ek(t))l ~_~c2 II e(t)ll2,t 
k E Z n  

and 
[ ~, Wk(t)(rPk(t), ek(t))]----< II ~o(t)llh,t II e(t)llh,~. 
k e Z n  

It remains to estimate 

2 wk(t) wl(t) ~l(Bl(t) ek(t), ek(t)) ~ (Xk(t)--xl(t)) 
k,  l ~ Z .  i 

Using the smoothness  of the functions ai(., t) and Bi(., t) and Theorem 3 with 
r = 0, s = 1, p = oe (see Remark  3), we obtain 

~---~ Hh(t) Bi(., t)L~(R.)<Cs(I+em~I) 

and therefore 

~ Wk(t) wl(t) ~ (Bi(t) ek(t), ek(t)) ~ (Xk(t)--xt(t)) 
k , l ~  n i = 1  

By combining the above estimates, we lind that,  under  the condi t ion (2.12), 
we have the bound  
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d 
dt II e(t)ll~,t<=c4 II e(t)ll~,t + 2 I1 ,p(t)llh,, II e(t)llh,, 

which implies 

c t -- s)) ds ]te(t)llh,t<lle(O)llh, oexP(2t)+ ! 11r sexP(24(t 

Theorem 4 follows since e(0)=0. []  

Proof of Theorem 2. Let us derive a bound for II r p We start from (2.18). 
Using the hypothesis (2.13) and the corollary of Theorem 3, we obtain 

~(u(.,t)--H'(t)u(.,t))(xk(t)) <Cl(er+~4y+l)(l+lxk(t)[) -'. 

Similarly, we have by the smoothness of the functions B~: 

~--~(Bi(., t)--IIh(t)Bi(., t))(Xk(t))U(Xk(t), t)<Ca(e,r+~+~)(1-t-lxk(t)[) - '  

Hence, we find h" 
/3 r '~k(t)[~=C3( +e~TT)(l+'Xk(t)[)-' 

so that 

II r t <=C3 er + E ~ T  ( ~_, Wk(t)(1 + IXk(t)l)- 2') ~/2. 
keZn 

Now, since t 

xk(t)= ~k + ~ a(x~(s), s)as, 
0 

we have by (1.5) 

I Xk(t)l > I~k l-- C4 t. 

Therefore, we get for I Ckl > R large enough 

(l+lxk(t)l)-2r<cs(R)(l+lr -2~, O<_t<_T. 

n 
Since ~ > ~, we obtain 

~ wk(t)(l+lxk(t)[)-2r<c6+cTh n ~ (1+1~k1)-2~<C8 
keZ. I Ck[ > R 

and 

Ilcp(t)llh,,<cs g +  , O < t < T .  (4.6) 

Next, it follows from (2.13) that u~C~ T; W ~' 2(~,)p). Thus, Theorem 3 gives 

( + ~-) ,0  < Ib U( . ,  t)-II)(t) u(., t)IIL~(R,)<c9 \ g  t <  T (4.7) 
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Combining the stability inequality (4.5) and the estimates (4.6) and (4.7) gives 
the desired error bound (2.14) of Theorem 2. []  

Remark 4. One can easily generalize Theorem 2 to first order symmetrizable 
systems. Instead of the hypothesis (1.1) (iii), we require that there exists a continu- 
ous function P: (x, t)~Qr--* P(x, t)Eo~'(v) with the following properties: 

dP 
(i) P, ~eL~  5r 

(ii) the matrix P(x, t) is symmetric and positive definite uniformly in QT, 
i.e., there exists a constant a > 0 such that 

(P(x,t)tl, tl)>altll z Vrl~P, v, (x,t)~QT; 

(iii) the matrices (pAi)(x, t) are symmetric, 1 _<iN n. 

Then, it is a simple matter to check that Theorem 4 and therefore Theorem 2 
still hold in that case. 

5. Particle Approximation of Parabolic Systems 

Let us generalize the particle method to the numerical approximation of parabol- 
ic systems. In particular, we want to deal with convection-diffusion problems. 

In addition to the p x p matrix-valued functions A i, 0 <i< n, we are given 
n 2 continuous mappings AIJ: (x, t )~Qr~AiS(x,  t )E~(~v),  i <i, j<n,  with the 
following properties: 

(i) AIJ6L~(QT; 5~'(]RP)), 1 <=i,j<=n, 
(ii) there exists a constant ct > 0 such that 

~, (AiJ(x, t)rl J, rli)>a ~ i~lil z Vtl i6~,/ , l<i<n, (x, t)eQr. (5.1) 
i , j = l  i = l  

Then, we consider the parabolic system 

~=l ~__~ . c~ IAi J a u \  OUst t-.= (A'u)+A~ ~ ~xJ) =f in QT (5.2) 

with the initial condition 

u(x, 0)= Uo(X), xeF."  (5.3) 

Then, if uo~n,2(lR ") and fEL2(O, T; lI.2(R")), it is a standard result that Problem 
(5.2), (5.3) has a unique solution u ~ C O (0, T; 1I, 2 (R")) n L 2 (0, T; W 1'2 (R,)p). 

Let us put the system (5.2) into the form of a first-order system. Setting 

~u 
pi= _ A 0 t?x ~ 

j = !  

and using (1.4), Eq. (5.2) becomes 
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Ot + ~x  ~ ( a i u + B i u + p i ) + A ~  
i=1 

if-I- ~ .. O U A 'J c~xJ = 0, l<_i<_n. 
j = l  

(5.4) 

Now, we look for a particle approximation Uh of Problem (5.2), (5.3) based 
on the formulation (5.4). Using the ideas and the notations of Sect. 1, we first 
set: 

uh(x, t)= ~" Wk(t) Uk(t) 6(X-- Xk(t)), 
k e K  

ph'i(x, t )= ~Wk(t) p~(t)b(X--Xk(t)), l<_iNn. (5.5) 
k e K  

Next, assuming that the data Uo and f are continuous functions, a (semi-) discre- 
tized form of Problem (5.2), (5.3) consists in finding functions t--*uk(t) and t 
~p'k(t), 1 <i<n,  k~K,  from [0, T] into N~ p solutions of the equations 

d ( w k ( t )  Uk(t))+ Wk(t) wl(t) ~. (B~,(t)U,(t)+ B~(t) u k (t) + Pli (t) + pki (t)) 
L I c K  i = 1 

~ } xi (x~(t)- x~(t)) 

+ wk(t) A~ uk(t) = Wk(t)fk(t), (5.6) 

p~ (t) + ~ A~ j (t) ~ wz (t)(u,(t)-- Uk (t)) ~ (X, (t)-- X~ (t)) = O, 
j = 1 l ~ K  

and 
Uk(O)=Uo((k), keK ,  

where 

AikJ(t) = AiJ(Xk (t), t). 

l < i < n  (5.7) 

(5.8) 

(5.9) 

Remark 5. Note that the analogue of Lemma 2 still holds: Under the condition 
(1.28), the conservation property (1.27) is satisfied. Moreover, this property does 
not depend on the discretization of the 2nd equations (5.4). In fact, one could 
as well take instead of (5.7) 

A lt) w, it)u (tl (xk(t)- x,(,l)=0, 
j = l  l e K  

but the Eq. (5.7) lead to a simpler stability analysis (see the proof of Lemm 13). 
In all the sequel, we shall assume that the sets K and (~k, WR)k~K are chosen 

as in (2.1). Then, one can easily show that the exact analogue of Theorem 1 
is valid. 

Let us next study the convergence of the regularized particle approximation 
(u h, p~. i) defined by 
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uh(. , t )=uh(. , t )*~,  p~"( . , t )=ph"( . , t )*~,  l<_i<n (5.10) 

as the two parameters h and e tend to zero. Again we assume that the data 
and therefore the solution u of Problem (5.2), (5.3) are smooth enough and 
we set: 

ek(t) = U(Xk(t), t)-- Uk(t), 
tl~(t)=pi(xk(t), t)--p~(t), 1 <--i<n. (5.11) 

Argueing as in Sect. 2, we find that e(t)= (ek(t))k~Z, and tli(t)= (rlik(t))k~Z., I < i<  n, 
satisfy the equation 

d ~ . ~ 
~[(Wkek)+Wk ~Wl  ,.., (B~el+Biek+tl~+tll)ff~xi(Xk--Xt)=WkCPk, (5.12) 

l ~ n  i = 1 

where 

% (t) = -- i~1"= ~ (Biu + if) (Xk (t), t) --  t~z. ~ wl (Bik (t) u (x t (t), t) 

0 ~ (Xk (t) -- x, (t))} + B~(t) U(Xk(t), t) + f(xl(t), t) + pi(xk(t), t)) ~-~ 

or equivalently 

r -- ~ B ~ ( t ) ~ ( u ( . ,  t)--Uht(t) u(., t))(Xk(t)) 
/ = i x -  

+ ~X ~ ( f ( . ,  t)-- n~(t) p i(., t))(x k (t)) 

+ ~ (Bi(., t)-- lIh~(t) Bi(., t))(Xk(t)) U(Xk(t), t) 

?X, (II~(t) l)(Xk(t)) ff(Xk(t), t)}. (5.13) 

Similarly, (5.7) yields 

�9 " a~"~x x ~ - a  i, l<_i<_ (5.14) rfk+ ~ A~ j ~ wt(et-ek) dx j ,  k-- ,,-- k n 
j =  1 l ~ Z "  

where 

a~(t)= ~ "" ~u -- A'fl(t){~xj(Xk(t ), t)-- y" (u(xl(t), t)-U(Xk(t), t)) ~(Xk( t ) - -x t ( t ) )  } 
j=  1 /~Z" 

i.e., 

a~(t)= -- ~ A~J(t) ~x  j (u(., t)--Hh(t)U(., t))(Xk(t), t) 
j = l  

+ ff-fi# (Fl~(t) 1)(xk(t)) u(x~(t), t) . (5.15) 
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We now prove a stability result. 

Lemma 13. Assume the hypotheses of  Theorem 4. Then, the functions t ~ e(t) and 
t ~ qi(t), 1 < i < n, satisfy the energy inequality 

[]e(t)][2,,+ [ ~ t I~] i ( s )  H2, s d S  

0 i = l  

0 i = 1  

O < t < T  (5.16) 

for some constant C= C(T)>0.  

Proof. We start from (5.12). By using the same arguments as in the proof of 
Theorem 4, we obtain under the conditions (1.28) and (2.12) 

l d  
2 dt Ile(t)II2"+ ~ wk(t)w,(t) ~(qi ( t )  

k, la2g n i = 1 

+ ~(t) ,  e~(tl). ~ (x~( t ) -  x~(tl) 

< cl II e(t)]l~,t + (~o (t), e(t))h,. (5.17) 

Consider next (5.14). It follows from the hypothesis (5.1) that the np x np matrix 
(A~J( x, 0)1 <~,~. is invertible and its inverse matrix (X~J(x, t))~ ~=~,j~=. satisfies the 
inequalities 

n n n 

c 2 ~ [ ~ i l 2 ~  ~ (XiJ(x,t)~J,~i)~c3 E[~i[2 v~ie~, n, l<_i<_n. (5.18) 
i = 1  i , j = l  i = 1  

Since 
• x i J  A J h  = (~ih I 

j = l  

where 6 ih is the Kronecker symbol and 1 is the p x p identity matrix, we infer 
from (5.14) that 

.. . 8 ~  , x  x 

j =  1 l e Z  n j =  1 

where X~ j = X~j(t)= XiJ(Xk(t), t). Therefore, we have 

�9 ~ ( ~  (x~ - xz) ~, Wk ~ (X~/rl],,rlik)+ ~, Wk w, ~ (ez--ek, rlik)c~x i 
k ~ Z  n i , j =  1 k,  l e  7In i = 1 

= E w~ Z (x~ ~, ~i,). 
k e Z  n i , j  = 1 

(5.19) 

Now, it follows from (1.28) that 
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Z Wk Wl{(rli+q~, ek)+(et--ek, q~)} ~(Xk- -X , )  
k,  l e Z "  

= Z Wk W, {(r/~, ek) + (el, r/~,)} ~ = O. 
k,  l ~ Z "  

Hence, combining (5.18) and (5.20) gives 

l d  
2 di Ite(t)ll2"+ ~ Wk(t) ~ (X~J(t) q~(t), tlik(t)) 

k ~  n i , j  = 1 

<c, II e(t)ll2,, +(cp(t), e(t))h,, ~ Wk(t) ~ (X~J(t) a~(t), rl~(t)) 
k ~ Z n  i, j -  1 

and the inequality (5.17) follows easily. 
Let us then state the convergence result. 

Theorem 5. Assume the hypotheses (i), (ii), (iii) of Theorem 2 together with the 
condition (2.12). Assume in addition that the solution u of Problem (5.2), (5.3) 
belongs to the space C~ T; W u+l' ~ (~")P) where # = max(r + 1, m) and satisfies 

n 
for some 7 >~  and for all fl~N" with Ifll</~+ 1 

IOPu(x, t)l<c(l +lxl) -~, xe~,", te l0 ,  T]. 

Then, there exists a constant C = C(u, T)> 0 such that 

max I lu ( . , t ) -  h 
O<_t<_T 

(0~ =~1 )1/2 ( h ) D _h,i + HPi( ., ,-P~ t., t)H22(~,) dt <C er+ 
i 

(5.20) 

(5.21) 

Proof The proof mimics that of Theorem 2. Using (5.13), (5.20) for If l l<p and 
Theorem 3 together with its corollary, we obtain 

Next, using again (5.20) and the smoothness of the functions x ~ AiJ(x, t), we 
have 

]63~pi(x, t)l<=c3(l+[xl) -~, Ifll=<#. 

Hence, (5.15) gives as above 

§ r l<_i<_n. I I d ( t ) l l n , , < c 4 -  - -  , 

By applying Lemma 13, we obtain 

/ r  h" \2 
[le(t)ll2,, + i ~, I[r e + e ~ f ) "  (5.22) 0 i=1 
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The desired error estimate (5.21) then follows from (5.22), Theorem 3 and Lem- 
ma 5. 

6. Appendix 

In Theorem 2, one can slightly relax the smoothness properties of the cut-off 
function ~ in order to consider the case m < n. We begin by stating an extension 
of Theorem 3. 

Theorem 3 Bis. Let m > 1 be an integer. We assume that the hypothesis (3.4) holds. 
We assume in addition that the cut-off function ~ has a compact support, satisfies 
the conditions (2.11)for some integer r>= 1 and belongs to the space 14 ~+s' o~ (~. ,)  
for some other integer s>O. Then, there exists a constant C =  C ( T ) > 0  such that 

n 
we have for all function v~WU'P(~") , /~=max(r+s ,  m), < p <  + 

m 

/ h~ h m 

Iv-- Hh~(t) Vls.p,R. <= C(e'lv] 

1 1 
where - + -  = 1. 

P q 
In fact, using the techniques of the proof  of [19, Theorem 5.1], it is an 

n 
easy matter  to check that, if vE Win'v(@. ") with p > - - ,  we have 

m 

I ( v -Hh( t ) v ) .~ l~ ,p ,~ .~Cl  (1 h~./q h m + ~ )  ~ IlVllm. t,,R. (6.2) 

so that (6.1) holds. 
If moreover  v belongs to Wu'~(IR ") and satisfies the conditions (3.10) for 

I s [<# ,  we obtain for all ~ e N "  with lel = s  

iO,(v_Hh(t)v)(x)l<=c2( 1 h\" h m +~-) ~ (1 +lxl) -~ (6.3) 

Now, argueing as in the proof  of Theorem 2, we can show that the error 
bound (2.14) still holds for m >  1 provided that in the hypotheses of Theorem 2 
we replace the assumption (i) by the following one: 

(i)" the cut-off function ~ belongs to W m § 1, ~ (R,) and has a compact  support.  
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