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Summary. Error bounds for interpolation remainders on triangles are derived by 
means of extensions of the Sard Kernel Theorems. These bounds are applied to the 
Galerkin method for elliptic boundary value problems. Certain kernels are shown to 
be identically zero under hypotheses which are, for example, fulfilled by tensor product 
interpolants on rectangles. This removes certain restrictions on how the sides of the 
triangles and/or rectangles tend to zero. Explicit error bounds are computed for piece- 
wise linear interpolation over a triangulation and applied to a model problem. 

1. I n t r o d u c t i o n  

In this paper, a Kernel Theorem of Sard [8] is extended to construct error 
bounds for interpolation remainders defined on triangles. The Kernel Theorem 
provides an exact representation of linear functionals which are admissible on 
spaces of functions with a prescribed smoothness. The theory has application to 
the finite element analysis of elliptic boundary value problems, since the inter- 
polation remainder is an upper bound on the finite element remainder in the 
energy norm (see Section 2). 

The theory of Sard is well suited to the calculation of interpolation remainders 
defined on rectangles. Birkhoff, Schultz, and Varga [6] use the theory to derive 
bounds for tensor product Hermite interpolation. We show that the theory c a n  

be extended to treat triangular and other domains (see Section 3). This theory 
provides a constructive method of computing the constants in the error bounds, 
which the Bramble-Hilbert Lemma approach does not yield. 

In Section 4, we prove a Zero Kernel Theorem which states sufficient conditions 
for certain of the Sard kernels to be identically zero. This theorem implies that  
finite element remainder functionals do not involve all possible derivatives of a 
certain order, and this permits avoidance of mesh restrictions. In particular, 
tensor product interpolants satisfy the hypotheses of the Zero Kernel Theorem 
(see Section 5) and thus the mesh restrictions in Birkhoff, Schultz, and Varga are 
not necessary. Lagrange interpolants for triangles also are covered by the Zero 
Kernel Theorem, in Section 6. 
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N.A.T.O. Senior Fellowship in Science, and The University of Utah Research Com- 
mittee. 
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We conclude with a computed example of the constants in the error bounds 
for piecewise linear interpolation in Section 6 and their application to a model 
elliptic problem in Section 7. 

2. Interpolation Remainders and the Galerkin Method 

In Sections 5 and 6 we consider bounds for interpolation remainders of a 
bivariate function F (x, y) defined on the Sobolev space W, n (f2), where D is a 
rectangle or a triangle. More generally, let s be a simply connected bounded 
region that satisfies a restricted cone condition in the xy-plane. The Sobolev 
space W, n (~2), I ~ r ~ ~ ,  integer n ~ 0, is the space of functions such that  all 
generalized derivatives of order ~ n are in L, (f2). A norm for W, n (f2) is 

01~1 
where 0c=(~i, ~) ,  I~l ---~1 q-~2, and D ~ -  0x~,aya, . 

Let  P be an interpolation projector defined on FE W,'(~2). The remainders of 
interest in the Sobolev space are 

cqh+k 
Rh, k[F(x'y)] -- OshOtk R[F(x,y)] O < h + k < n ,  (2.2) 

where 
R iF(x, y)] ~F(s ,  t) --P [F(s, t)]. (2.3) 

For fixed (s, t) (2.2) and (2.3) define linear functionals on F (x, y)E W,* (12). 

If the interpolation function is piecewise defined over a subdivision of a poly- 
gonal region ~2 into a union of disjoint triangular elements f2e, then each element 
can be considered separately since 

" 

IIFII , .,j , 1 <_,<_ (2.4) 

Interpolation remainder theory has application to finite element remainder 
theory. Following Varga [9], we consider linear elliptic operators in divergence 
form: 

Lu(x ,y)  = Z (--t)I~IDe[p~(x,Y) D~u(x,Y)] (2.5) 
I~l<~ 

where the p~ are in Loo(12). The nonhomogeneous boundary value problem 
corresponding to L is to find uE W2n (12) such that:  

Lu(x, y) =g(x, y), (2.6) 

Dgu(x,y) =l~(x,y), (x,y)eO0 for O=<[fll ~ n - - l .  (2.7) 

The homogeneous problem is that  all the /g are identically zero, the relevant 
O O 

Sobolev space then being called W2 * (s A norm in W," (~) is 

Let  
a(u, v) = ~. f f  p,(x,y)  D"u(x ,y )D'v(x ,y )  dxdy .  (2.8) 
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Then  the weak problem corresponding to (2.6) and  (2.7) is to f ind u sat isfying (2.7) 
and such t ha t  

o 

a (u, v) = (g, v) for all v in W2 * (Y2). (2.9) 

We consider in terpolants  ~ to u, where the in terpolat ion conditions are the 
following : 

L~(~) =L~(u) ,  i = t  . . . . .  I ,  

Mj  (~/) = Mj (u), i = t . . . . .  J ,  

and  the L i and  M i are interpolat ion functionals  such tha t  the L i (u) are unknown 
and the Mi(u ) are known a priori  f rom (2.7). 

Let  V h be an (I + J ) - d i m e n s i o n a l  subspace of VV2* (f2) such t ha t  the L i and  M i 
are l inearly independent  over  V h. Then  V h has a basis of functions {B~ (x, Y)}~=I 
and  {Ci(x, Y)}~=1 tha t  are b io r thonormal  wi th  respect  to the L~ and M i E2]. Le t  
S h be the subset  of W~ n (f2) which consists of functions U of the form 

/ y 
U (x, y) -~ Y~ a,B~(x, y) + Y, Uj(u) Ci(x, y) 

i=i i=i 

where the a i are numbers .  Le t  sho be the m-dimensional  subspace genera ted b y  
the B~. The Galerkin method is to f ind U in S * such t ha t  

a (U, v) = (g, v) for all v in So h. (2.t0) 

Under  the assumpt ion  tha t  
o 

S h ~ W2/o~ 
0"-  2 ~ l ,  

the following l emma  applies:  

L e m m a  2.1. The  Galerkin approx ima t ion  U is the best approximation f rom S h 
to u in the energy n o r m  induced b y  the inner product  a (u, v). T h a t  is, 

a ( u - - U , u - - U ) ~ a ( u - - a , u - - a )  f o r a l l a i n S  h. (2.11) 
In  fact ,  

a(u-- U, u-- U) +a(~--  U, ~-- U) =a(u--~,  u--~). (2.12) 

3. Sard Kernel Theorems and Interpolation Remainder Theory 

The Kernel  Theorems of Sard [8] involve Taylor  series expansions of a function 
F(x, y) about  a poin t  (a, b). These expansions have a rec tangular  domain  of 
influence and  Sard restr icts  the theory  to funct ion spaces defined on rectangles.  
However ,  the theory  can be extended to bounded  regions /2 which sat isfy the 
following p roper ty :  

Property 3.1. There  is a rec tangular  coordinate  sys tem and a poin t  (a, b )E~ 
such tha t  for all (x, y ) E ~  the rectangle with opposi te  corners a t  (a, b) and  (x, y) is 
contained in ~,  where the sides of the rectangle are parallel  to the  axes x = 0 and  
y = 0 of the rec tangular  coordinate  system. 

I f / 2  is a rectangle,  then (a, b) can be an a rb i t r a ry  point  in the rectangle. If  
is a tr iangle,  then (a, b) can be the point  on the  longest side which is a t  the foot 
of the perpendicular  to this side f rom the opposi te  ver tex.  Alternat ively,  for a 
r ight-angled tr iangle the ve r t ex  at  the right angle can be t aken  as (a, b). 

17" 
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Sard Taylor expansion. Sard defines a function space "boldface Bp,q (g2)" of 
functions for which a certain type of Taylor expansion exists, where p and q are 
positive integers and p + q ---- n. The Taylor series expansion involves the triangular 
scheme of all derivatives of order less than or equal to n executed in a certain 
manner, see Fig. 3.t. The Taylor expansion is presented in the following theorem 
for FE C n ((2) and the space boldface Bp,q is then developed in Corollary 3.t. 

(0, n) 

N N N ~  i ) ( i ,  n - i) 

(O,q) I ~ ~ ( p , q )  

\ 

~ ) 

(o,o) ! ~ ~ : _  (n, 0) 

Fig. 3.1. Index triangle of partial derivatives 

(x, y) 

(x, ~) 

(x, b) 

(~, ~) 

(~, b) 

(a, ~) 

(a, y') 

(a, b) 

Fig. 3.2. Function arguments in Taylor expansion 

Theorem 3.1. Let T'EC"(g2) where g2 is a region which satisfies Property 3.t. 
Then F has the following Taylor expansion at (x, y) about (a, b): 

F(x, y) = ~, (x--a)CO(y--b)r b) 
i+j<n 

x 

+ Z (Y--b) r f (x--s162163 b) ds 
~<q a (3.t) 

y x 

+ f ( y_  y)(q-l~ f (x_  ~)r ~,q(~, y) d~ dy 
b a 

Y 
+ Z (x--a)  r f ( y _  y)t.-i-x)F~,._i(a, :9)dy, 

i<p b 
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where p and q are positive integers such that p + q  = n  and (x--a) Ii)= - (x--a)i/il 
etc. 

Proo/. For FEC~(~2) the following single variable expansions can be obtained 
by integration by parts (cf. Figs. 3A and 3.2) 

q--I y 

F(x, y) = X (Y--b)I'~ Fo,i( x, b) + f (y--y)(q-~) Fo,q(x, y) d5, (3.2) 

p--1 

Fo,~(~, ~) = Z (~-a)"~ F,,da, Y) + f (x-  ~)~P-~Fp,~(~, Y) d~, 
i ~ O  a 

(3.3) 

n-- j -1  

~,j(~,  b) = E 
i=o 

n-- i - -1  

~ ,d  ~, Y)= E 
j = q  

(x--a) {i) Fi, i(a, b) + f (x-- s F~_i.i(s b) ds 

(33-- b) {i-q} Fi,i(a, b) + [ (y_y,)r ~,,,_~(a, y') dy'. 
b 

(3.4) 

(3.S) 

The Taylor expansion (3.t) is derived by combining Eqs. (3.2)-(3.5), where, by 
integration by parts, 

f ( y _  y)(q-1) / (y_y , ){p- , - s )  F~,,,_, (a, y') dy'd y 
b b 

Y 
= f  (y--y)(~-~-tlFi,,_i(a, y) dy. Q.E.D. 

b 

Corollary 3.1. Let F satisfy the following properties on ~2: 

(i) F(x, y) is q - - I  times continuously differentiable with respect to y and 
Fo, q-1 (x, y) is absolutely continuous with respect to y. 

(ii) Fo, q (x, #) is p--1  times continuously differentiable with respect to x and 
F~_x,q(x, ~) is absolutely continuous with respect to x, almost everywhere 3Z 

(iii) Yo, i(x, b) is n - - j - - i  times continuously differentiable witk respect to 
x and F,,_~_l,i(x, b) is absolutely continuous with respect to x, 0----<7" ~ q - - t  

(iv) F~, q (a, y) is n - - i - - t  times continuously differentiable with respect to y 
and Fi,,_i_l(a, y) is absolutely continuous with respect to Y. 
Then the Taylor expansion (3.t) exists. 

Proo[. The properties (i)-(iv) are required for the existence of expansions 
(3.2)-(3.5). The property (ii) need exist only a.e. y since it is required under the 
Lebesgue integral in (3.2). Q.E.D. 

Remark. In Corollary 3.1 the differentiations are performed according to a 
particular ordering rule consistent with the expansion (3.2)-(3.5), namely 

F i  i __ /-)1-1a /-p D ~ o F  

where D~-~ 8/8 x, Dy ~ ~]ay and io ~ rain (i, q). 
Properties (i)-(iv) are an equivalent definition of the function space boldface 

Bp, q (Y2) to that  in Sard E8, p. 172], when ~ is a rectangle. 
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Corollary 3.2. Let FEW, n(I2), I ~ r ~  oo. Then the Taylor expansion (3A) 
exists a.e. (a, b) where the derivatives are now generalized derivatives. 

The Taylor expansion (3.t) can he amended to an expansion involving definite 
integrals by the following device: Let 

max_ (x) ----- ~, r a i n  (x) =_~ 
(x, b)r (x, b)E.O 

m a x  (y) =/~, m i n  (y) ----- 
(a, y)e~ (a, y)e~ 

(3.6) 

and let the function ~o be defined by 

(a, ~7, x ) =  - 
if a ~ s  
if x<=s 
otherwise. 

(3.7) 

Then the Taylor expansion (3.1) can be written as 

F(x, y)= E (x--a)(O(Y--b)(i) ~,i(a,b) 
i+i<n 

+ ~, f (x--~)("-i-~)~(a, ~2, x)(y--b)~F,,_j,i(~, b) ds 
i<q ~_ 

+ yf (x-- s s x)(y--y)Cq-s)~o(b, y, y)F~,q(s y) ds dy 

+ ~. f (x--a){O(y--y)C"-i-1)~o(b, y,y)Fc,n_i(a, 37) dy. 
i<p 

(3.8) 

Sard Kernel Theorem. The Sard Kernel Theorem applies to a class of ad- 
missible functionals defined on the space boldface Bp, r as follows: 

Definition 3.1. The admissible functionals R on boldface Bp,q(f2), where f2 
is a region satisfying Property 3.t, are of the following form: 

R[F(x, y)]= E f f  Fi,i(x, Y) d#~'i(x, Y) 
i<p t2 
i<q 

+ ~. fFi,i(x, b) dtd'i(x) (3.9) 
i+i<n ~_ 
i>p 

+ ~. /Fi,j(a, y) dt *~'i(y), 
i+i<n fl 

i>q 

where the/,~' i are functions of bounded variation and _~, ~, ~, and • are defined by 

(3.61. 

Example. Let R IF] = ~ ,  i (c, d), (c, d) E 12. 
Then R IF] = f f  ~ ,  i (x, y) d/~ (x, y) 

o 
where 

/ , ( x , y ) = { t  0 c<x, d<y  
otherwise. 
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Theorem 3.2 (Kernel Theorem). Let fl satisfy Property 3A and let R be an 
admissible functional on boldface Bp, q (/2). If F (x, y) ~ boldface Bp, q (~2), then 

R [F] : E c~' i F~, i (a, b) 
i + j < n  

+ F, f Kn-i'i(2) F~_/,i(s b) ds  
i< q  ~_ 

+ f f  KP'q(2, y) Fp,q (2, y) d2 dy  
D 

+ E ]g"n-'(Y) F~,~_~(a, y) dy, 
i<p _~ 

where 
ci'i=R(x,y)[(x--a)(i)(y--b)(i)], i + i  <n, 

K,,-i, i (2) = R(.,y) [(x-- 2) ('-i-x) ~p (a, 2, x) (y-- b)~i)], 

Ki' " - i  (9) = R(.,y) [(x-- a) (0 (y--  y)(.-i-x) y2 (b, y, y)], 

(3.1o) 

(3.11) 
J < q, 2r x, (3.12) 

i<p ,  yCJy, (3.t3) 

KP'q(s y)=R(,,,y)[(x--i)(P-1)~p(a, 2, x)(y--y)(q-1)~p(b, Y, Y)], 2r  yCjy.  
(3.t4) 

The notation R(,,y) means that  R is applied to functions in the variables x and y. 
J x  is the jump set consisting of the points of discontinuity of the functions of 
total variation [#~-i-1, i] (x), j < q, and J y  is dual. f x is the jump set consisting 
of the points of discontinuity of [#~-Li' I (x, y)evaluated at y ( x) ---- max {y}, 
i '  < q, and J y  is dual. (~, y)~a 

Remark. The jump sets are the points at which the kernels (3.t2)-(3A4) are 
undefined, but these sets are of measure zero with respect to the Lebesgue- 
Stieltjes integrals in (3 A 0). 

Proo/ o/ Theorem 3.2. The application of the functional R defined by (3.9) to 
the Taylor expansions (3.8), and the use of Fubini's Theorem to change the order 
of integration, give the desired result. Q.E.D. 

Remark. If the functional is not admissible, then it can be applied to the 
Taylor expansion (3A) directly. 

Corollary 3.3. Let FE W,n(/2), t --<r ~ oo. Then the Kernel Theorem 3.2 is true 
a.e. (a, b) where the derivatives are now generalised derivatives. 

Remark. For the interpolation remainder functionals (2.2) the corresponding 
kernels (3A2)-(3A4) depend on s and t and will be written: 

Kn-i'i(s, t; 2), Ki'n-i(s, t; y), KP'q(s, t; 2, y). (3A5) 

Also, if ~ = p  + q  is chosen such that ~P~-I -~{xiYi/0 <=i +j  <=n--t} is contained 
in the precision set of the interpolation operator P, then the ci, i in (3.t t) are zero 
for the remainder functionals Rh, k. 

4. Zero Kernels 

Theorem 4.1 (Zero Kernel Theorem). Let R be a linear operator which maps 
F (x, y)Eboldface Bp, q (/2) to functions of (s, t) such that  R is an admissible linear 
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functional for fixed s and t. Also let 
~+ h 

Rh,k[F(x, Y)] -- ~sh~tk R[F(x, y)], h, k > 0 ,  (4.1) 

be an admissible functional for fixed s and t. Let Pi (x) be a polynomial in x of 
degree _< i and qi (Y) be a polynomial in y of degree =< i. Then the Sard kernels for 
Rh,~ have the property that  

K~'n-~(s,t; 3~) = 0, O<=i<min{h,p}, (4.2) 
if 

R [Pi(x)g(y)] =r(s, t) (4.3) 

is such that  r (s, t) considered as a function of s alone is a polynomial of degree 
< h. Dually 

K"-i'i(s, t; ~) =0 ,  0 _--<i< rain{k, q}, (4.4) 
if 

R El(x) qi(Y)] =-r(s, t) (4.5) 

is such that  r (s, t) considered as a function of t alone is a polynomial of degree < k. 

Proo I. It is sufficient to prove (4.2) as (4.4) is a dual result. Let i be an integer 
such that  0 ~ i  < ra in  (h, p). Then the kernel K~"-i(s, t; ~) corresponding to R is 

K~ '*-~ (s, t; y) = R(~,y) [(z--a) (~ (y--y)('-i-*)y~ (b, y, y)], yr ]y. 

which, considered as a function of s, is a polynomial of degree < h, by the hypo- 
thesis (4.3). Thus the kernel Ki"~-i(s, t; y) corresponding to Rh, ~ is 

~h+k . 
K~'S-~(s't;Y) - ~sh~tk K~"-~(s,t;Y) =0, O<=i<min{h,p}. Q.E.D. 

Schematically, the possibilities for the domain of influence of a functional 
Rh, , ,  which satisfies the hypotheses of the Zero Kernel Theorem in the Sard 
space boldface Bp,q, are shown in Fig. 4A. 

(h, k) (h, k) x ~  ~ ( p  q) 

Fig. 4.1. Non-zero kernels in the Zero Kernel Theorem 

Remark. Although not stated in the Theorem, the c ~'j, (3.1t), are zero for 
0 ~ i  < min (h, p), 0 ~/" < min (k, q). 

5. Error Bounds for Tensor Product Interpolation 

We next show that  the kernels (4.2) and (4.4) are always zero for tensor 
product schemes with sufficient polynomial precision. 
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Theorem 5.1. Tensor product interpolants of polynomial precision of at least 
h - - t  in the variable x and at least k - - t  in the variable y satisfy the hypotheses 
(4.3) and (4.5) of the Zero Kernel Theorem. 

Proo/. P a tensor product interpolation operator implies that P is of the form 

e = P, P~ =P~P, (5.1) 

where P, is an operator in the variable x and Py is dual in y. Therefore, if F (x, y) = 
pi(x) g(y) where Pi(x) is a polynomial in x of degree i < h, then 

P [p~(x) g(y)] =PyPx [p~ (x) g(y)] =Py [pi(x) g(y)] 

= p (x)P Eg(y)3 y). 

r(x, y) satisfies (4.3), so that (4.2) follows. The argument for (4.5) is dual. Q.E.D. 

Birkhoff, Schultz, and Varga derive error bounds for tensor product Hermite 
interpolation using the Sard Kernel Theorem. Here, P, is defined by  

N N 

P, EI(x)J = Y + Y. (5.2) 
i=O 4=0 

where the ~bi(x ) and ~ i ( x ) = ( - - l ) i ~ i ( l - - x )  are the cardinal basis functions for 
Hermite two point Taylor interpolation on [0, 1]. Pv is dual and the resulting 
tensor product interpolant is on S = [0, t ] • [0, t ]. An important observation is 
that  the point (a, b) of the Taylor expansion can be chosen as the point (s, t) of the 
remainder functionals Rh, k (cf. Property 3.1) where Rh, ~ is defined by (2.2). The 
remainder functional Rh,k is then admissible in boldface B~, m (S) where m = N + 1 
and 0 < h  + k  < 2 N  + t. (Rh, k is precise for the set ~N+I . )  An analysis similar 
to that  in Birkhoff, Schultz, and Varga using the Sard Kernel Theorem, but with 
the application also of the Zero Kernel Theorem then gives that 

2m--rain(h, m) 

IIR,, fjll ,r y, Cr O<=h+k<2m, p ~ r  (5.3) 
/'=rain(k, m) 

where the C i are constants (see Gregory [7] for further details). The choice of 
(a, b) = (s, t) enables the derivation of the above bound in W, s'~ (S) which is not 
possible in application of the Sard Kernel Theorem on a triangle (cf. (6.2)). 

The summation over the range min(k, m)<~i~2m--mirt(h, m) in ($.3) is a 
consequence of the Zero Kernel Theorem. A change of variable leads to the bound 

2 m--min(h, m) 
C H s~-i-h+Up-Ur K i-k+llp-xlr F, ~ 

i=mm(k, ~) (5.4) 
O<=h+k<2m, p ~ r .  

for the Hermite interpolation remainder Rh,k for the function F defined on S = 
[0, HI • [0, K]. Now, when h, k <=m(h +k  # 2 m )  the summation in (5.4) is over 
k <~ ~ 2 m - - h  and the exponents of H and K are then greater than or equal to 
zero and not simultaneously zero. Thus negative exponents of H and K are not 
possible in this case, which removes the need of a "regular" mesh restriction. 
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6. Error Bounds for Interpolation on Triangles 

Let P be an interpolation operator on the standard triangle T with vertices at 
(t, 0), (0, t), and (0, 0), which is precise for the set ~ - 1  but  not all of ~ .  Consider 
the remainder functional 

R CF (x, Y)] - - F  (s, t) -- P EF (s, t)]. 

A point (a, b) which satisfies Property 3.t on the standard triangle T is (a, b) = 
(0, 0). Consider the Sard space boldface Bn_m,r~(T ), where m = En]2]. Suppose R 
is an admissible functional on boldface Bn . . . .  (T). Then application of the Sard 
Kernel Theorem and the precision of the interpolation operator P give that  

l 

R f l  = X f K"-J,;(s, t; ~)F~_;,j(~, 0) g~ 
i < m  0 

+ f f  K"-","(s ,  t; ~, y)F~:,~,,,(~, y)a~ a:~ (6.1) 
T 

1 

+ Y~ fK~'"-~(s,t;y) F~,,,_~(O,y)dy. 
i<n--m 0 

From (6.t) it follows by the triangle inequality and H61der's inequality that 

[IR EC lk,<,,,,-~ ,X J[ IlK"-i,+(s, t; ~)k:+ll~<,,,~ll~-;,;(~, o) IL,<~, 
j<ra  

+ll IlK"-=,"(s, t; ~, ~)[L:(w,w, li~,(,,,)ll~-m,=(~, Y)[L.(~, ~) (6.2) 
+ Y, II [IK', "- '  (s, t; y)IL:,~,IL,~,,)IIF,,,,_,(o, y)~,,~,, 

i < n - - m  

where Lt~(s, t) denotes the Lp norm over the triangle T with respect to (s, t), 
L,I (~) denotes the L,I norm over [0, t ] with respect to ~, etc., and t / r  1 + t/r'l = t ,  
t / r z + l / r ' ~ = t .  The norms of the kernels in (6.2) are constants which can be 
estimated. However, (6.2) is not a bound in the Sobolev space WrY(T) because of 
the presence of the univariate norm terms. The device of taking (a, b) = (s, t)to 
obtain Sobolev space results is not possible here, as it is for the rectangle, since 
the rectangular domain of influence of the Sard Taylor expansion would then go 
outside the triangle. 

Remark.  For x, ~E T, (a, b) = (0, 0), (3.7) becomes 

{t0 ~ < x  
~o(0, ~, x) = ' otherwise. 

Thus the functions which occur in the kernels can be expressed in terms of the + 
function as follows: 

I(x --~)C0 if ~ < x ,  
(x--~)10~(0, s x) =(x- - ,~)~  = [0 otherwise, (6.3) 

etc. 

The treatment of the functional 
~h+h 

Rh, k[F] - -  OshOt* R [ F ]  
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is best considered in relation to the particular interpolation operator P. Firstly, 
one must consider whether the functional is admissible, and secondly whether or 
not the Zero Kernel Theorem, is applicable. In the particular example of linear 
interpolation considered below, the Ri,o and R0,1 functionals are not admissible; 
however, results are derived by direct application of the functional to the Sard 
Taylor expansion. One example of an interpolant for which the hypotheses of the 
Zero Kernel Theorem holds is given in the following theorem: 

Theorem 6.1. Let  P be the interpolation operator defined by the Lagrange 

polynomial of degree N which interpolates F(x, y) at the nodes (x i, Y i ) = ( N '  

~ ) , O ~ i + j ~ N , i . e . ,  

P IF(x, y)] -- Y. p~,i(x, y) F(x~, Yi), (6.4) 
O~i+i~_N 

where 
t i--i i j--i I ~--i 

P,,i(x, y ) =  i! H [I II  (6.5) 
~=0 , = 0  v=0  

and i +l '  + k  = N .  Then P satisfies the hypotheses (4.2) and (4.5) of the Zero 
Kernel Theorem, where the i and I" of that  theorem satisfy i < h ~ N;  ~" < k ~ N. 

Pro@ We show that  P [xig(y)l is a polynomial in x of degree = i  for the 
nontrivial case 0 ~ i < N, from which the conclusion follows. Now, 

N N- - j '  

P~x~g(Y)] = E E Pi',i'(x,Y) @g(Yj') 
i ' = 0  i ' = 0  

N (6.6) 
---- Z ai" (x, y) g (y,.,), 

i'=O 
where 

N--l" 

a,,(x, y) = Y, pi, i,(x, y) xi,.i (6.7) 
i '  =0  

The cardinal function pv,i,(x, y) is a polynomial of degree N - -  i '  in x. Thus for 
j' > N - - i ,  ai,(x, y) is a polynomial in x of degree ~ i .  Now for O ~ j ~ N - - i - - 1 ,  

N-- i  

(6.6) with g(y) ----gi(Y) ~ M (Y--Y,) gives 

N 

P [xigi(Y)] = Y' gi(Yi') ai'(x, Y) 
i'=O 

N 

=gi(Yi) ai(x, Y) + E gi(Yi') aj,(x, y) 
i ' = N - - i + I  

= xi gi(Y), by the precision of P. 

The last two steps of the above equation cart be considered as an equation in 
a i (x, y), from which it follows that  a i (x, y) is a polynomial in x of degree _ i, 
0 < j-< N - - i - - t .  The proof for _P [/(x) y ]  is dual. Q.E.D. 

Example o[ linear interpolation on the triangle T. The following results are 
generalizations of those given in 13arnhill and Whiteman [5]. Further details 
including calculations for quadratic interpolation on T can be found in Barnhill 
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and Gregory [2]. Consider the linear interpolation remainder functionals: 

R IF] =F(s, t)-- IF(t ,  0) s + F ( 0 ,  t ) t  + F ( 0 ,  0) (1 --s--t)] 
Rl,o[F ] =F~,o(s, t) + F ( 0 ,  0 ) - -F( I ,  0) (6.8) 

Ro,~[F ] =Fo,x(s, t) + F ( 0 ,  0)- -F(0,  t) 

defined on the Sard space boldface BI,I(T ). The functional R is admissible on 
boldface B1,1 (T) and thus from (6.2) it follows that 

[[R[F][]L,,(,,,) <=CII[F,~ o(e, O)[L,(.;)+C;,][F~,I(e, y)[IL,,(,;.,;) (6.9) 

+ G IlFo,~ (o, y) L,(;), 
where 

C 1 = [[ I lK 2'0 (s, t ;  e ) I L l  (w)L <~, *, 

: [I [IK~ s, t; ~)ILr (6.1o) 

c~ = [l II K~' ~(~, t; ~, y)IL: (~, ~)IL (,,,,, 
t/r~ + l/rl = t, t/r~ + 1/r'~ = t, and 

K%~ t; e) :K~ s; e) = R  [ ( x - e ) + ]  : ( s - e ) + - s ( l  - e ) ,  
(6.11) 

K 1' 1 (s, t; e, y) = R [(x-- e)~ (y--  y)~_ ] ---- (s-- e)~ (t-- 9)~-. 

Careful evaluation of (5.10) yields 

/ ( , 1  '1/" B , ~ X ~ )  { (p +1  p+2)}'~P, r~<o% p <o% 
c1 /1  / I y , ,  , (6.12) 

(~-kr~T~]  ' r1<_-o% p = o %  

{S (P14 + 1, Pit'2 + 2)}'/P, fi, p < oo, 
{•  , 

C 2 = \ 4 ]  ' r $ <  oo, p =  oo, (6 .13)  

where B is the Beta function. 
The functional R1, o and its dual Roa are not admissible on boldface B1,1 (T). 

However direct application of RI, o to the Sard Taylor expansion in boldface 
B1,1 (T) gives 

(/ [// 1 RI,o[F]:RI,o (x-- e) F~.,o (e, o) de  +Rl,o Fl,x(e, 9)dedy 

+RI ,oI / (Y- -Y)  Fo,z(O,y)dY ] 
x 1 (6 .14)  

= j K',~ t; e)V~,o(e, o) ,~e + J KO,'(s, t; ~)~0,,(o, Y) d~ 
0 0 

o/i + ~ ~,~(e, y) dy de 
0 0 
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where the first and last terms can be evaluated in Sard kernel form with 

Also 

K*'~ t; ~ ) = R l , o E ( X - - s  ] ---- (s-- ~)~_-- t + ~ ,  ~ = s ,  

K~ t; y) = R l , o  [ (y - -y)+  ] ----0, 

a T  F I , I ( X '  •) d y a x =  F l , l ( S '  y)  d y .  
o o o 

(6.t5) 

(6.t6) 

Now, for p < 0% H61der's inequal i ty  gives tha t  

II/ I: " F,,~(s,y)ay < f f Ill]~,;{;}llF,,,(s,~)llL,(~>dsdt 
(s, f) o 0 

1 

_-< f Iit*t'~ L',,II II ~ . ,  (s. :~)IL; (~> IIL,{.> at 
0 

I 

< f (t - t)'/,' t~#: at IIF,,, (~, ~)ILL,(,, ~), 
0 

(6.19) 

where L,, (p) is over [0, t], Lq (s) is over [0, t - -  t], q =- r2/P and hence p __< r 2 _< 0% 
q' ~-r2/(rs--p) .  Thus 

IlRl,o f ]  ]k,{,,,)< C~l)&,o(~, o)tL,{~)+ C, IlFx,l(S, Y) IL,{,,~) (6.20) 
where 

C 4 = {B  (p/r'a + t ,  2 - -  p - -  p/rD} lip, (6.21) 

and C 3 is defined by  (6.t8) and (6.15). Calculation of the constant  C 3 for the case 
p = 2  gives 

I V Y / V %  ' ' 2 , r 1 = 1, r 1 = OO, 

V3 ' C 8 = / t / 2  , r 1 = r  1 = 2 ,  

/ , rl ----- 0% rl = 1 .  

The bound IlRo,1 [F] ]}L,{s,,} is the dual of (6.20). 
Bounds for linear interpolat ion over an a rb i t ra ry  triangle can be obta ined by  

affine t ransformation.  For  example, the t ransformat ion of (6.20) to the triangle ~" 
say with sides [0, HI and [0, K] gives 

+ c ,  H"' -" .  K'+"'-'/"IIP,., L.  a->. (6.23) 

(6.22) 

cf. (6.2). 

Remark.  For  the first kernel in (6.t 5) s ----s is a jump set. The second kernel is 
an example of the Zero Kernel  Theorem to which Theorem 6.t is applicable. 

The Lp norm of (6.t4) and the triangle inequal i ty  give 

= (6.17) [[R~'~176 ~ [1%(~)+ F~'x (s' Y) {,,,I 
where 

c~ = It IIK~'~ t; s {6.18) 
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where L,,(s) is on 0 ~ ]--< H.  Such a result  (which allows the degenerate  case of 
one angle of the tr iangle not being bounded away  f rom zero) is also shown b y  
Babuska  [t]. 

Remark. The der ivat ion of error bounds for more  general in terpolants  on a 
general tr iangle by  considerat ion of an affine t rans format ion  f rom the s tandard  
tr iangle is only applicable when the in terpolant  is invar ian t  under  such a t rans-  
format ion.  

Applicat ion of the Sard Kernel  Theorem to calculate the constants  in the error 
bounds for smooth  interpolat ion on triangles is considered in Barnhil l  and  Mans- 
field E4]. 

7. Application to Differential Equations 

We consider the model  p rob lem 

Au----O on O----[0, r e ] •  re], (7.1) 

u]a ~ = 0 except  tha t  u (x, 0) = sin x, 0 =< x =< re, 

discussed in Barnhill ,  Gregory,  and  W h i t e m a n  [3]- For  linear interpolat ion on a 
tr iangle Th, we obta in  the following bounds:  

h8 
Hu--Pa ]tL, Crh) ~-- ] / ~ ,  (7.2) 

h 8 
I{u-p~lJ~(~-<_ ~-, (7.3) 

II v ( u -  pl)IL ~r,, ----< V~ h~, (7.4) 

II v (,, - p,)II'~, --II RI,o u II~-, + II Ro,1 u IlL 

-- Z [IIRI,o ~ll~.(~'h, + llRo,1 ull~,(~h,], (7.5) 
(h) 

where the summat ion  is over  all T h and  Th*, Th* being the upper  r ight  t r iangle 
analogous to the lower left r ight  t r iangle T~. Inequali t ies  (7.2), (7.4) and  (7.5) 
lead to the following bounds:  

l l* , -pl IL (,,~ < .  70 hL (7.6) 
2~ 

II v ( u -  pl)IlL, (~, -<-- 7~- h. (7.7) 

The actual  errors a t  the midpoints  of the sides of one subtr iangle are 0.0043, 
r, 

--0.0t07, and 0.0t27, which compare  with (7.3) which is 0.078 if h =  ~- .  
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