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Abstract. The finite element method is used to solve a second order elliptic 
boundary value problem on a polygonal domain. Mesh refinements and 
weighted Besov spaces are used to obtain optimal error estimates and inverse 
theorems. 
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1. Introduction 

The problem of the behavior of the finite element method in the presence of 
singularities caused by corners of the domain or abrupt changes in boundary 
condition has been the focus of intense interest in recent years, see [see 1, 3, 6, 
10-12, 14, 153. This paper studies in detail mesh refinements near the singular 
points. Using weighted Besov spaces, we obtain bounds for the error in the 
energy norm, and we provide inverse theorems to show that our results are 
optimal. This approach removes the necessity to distinguish between uniform 
and non-uniform estimates when the usual Sobolev spaces are used, as in [2]. 
Measured in terms of the number of unknowns (number of degrees of freedom) 
our analysis shows that a proper mesh refinement gives the same rate of 
convergence of the error as in the case of smooth solutions and a quasiuniform 
mesh. In addition we use a duality argument to obtain a weighted L 2 error 
estimate. Our results are related to [16], which deals with approximation 
properties of piecewise polynomial functions on quasiuniform meshes in R". 
[163 contains direct and inverse approximation theorems in the framework of 
Sobolev and Besov spaces, and shows the analogies with well known results, e.g., 
for approximation by trigonometric polynomials. 
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In Sect. 2 we define certain weighted Besov spaces that will play a role in our 
analysis. In Sect. 3 we give the singular properties of the solution to our problem 
at the vertices of Q. We specify the refined triangulations in Sect. 4, and we give 
some properties of the associated spaces of piecewise linear functions defined on 
these triangulations. Sect. 5 contains our error estimates, and Sect. 6 contains 
the inverse theorem. We have put in an appendix some results required by us, 
dealing with weighted Besov spaces, and with interpolation between Sobolev 
spaces satisfying boundary conditions. 

2. Some Weighted Spaces 

Our analysis will be carried out on a polygonal domain ~'-2~R 2 with boundary 
F. Let x~, 1 <_ i < M  denote the vertices of t2 with 0i being the interior angle of t2 
at x i. L& fl = (fit . . . .  , tiM), 0 < fll < 1 be an M-tuple and let 

M 

4,~(x)= [I Ix-x,t p' (2A) 
i=1  

where Ixl means the Euclidian norm. 
Further let F = F  o wF  N where F o is the union of some (closed) sides of f2 and F s 

= F \ F  o. For each vertex x i, we let ~:i = 1 if both sides of F having endpoint xi 
belong to F o or F N, and we let ~c~ =�89 otherwise. We set cq =min  {1, ~:~rr/0~}. We let 
~ t  denote the indices i such that ~i < 1. (Note that by allowing a "vertex" x~ of f2 
to have interior angle 0~ =re, we include the later possibility of an abrupt change 
of boundary condition within a line segment of F.) We remark that many of the 
results do not utilize the specific form (2.1) of qSp, but are also true for any 
positive weight function. This will be utilized in Sect. 6, where we shall consider 
polygonal subdomains of s'2 but will use the function q~p defined with respect to 
the domain f2. 

We let Hm(O), m = 1, 2 . . . .  denote the usual Sobolev space of functions with 
square integrable derivatives of order <m and with the norm flutlm and scalar 
product (., .),,. We let nol(f2) denote the set of u~Ht(~2) with u = 0  on F o (in the 
sense of traces) and we let H~ t(f2)=(Hol(f2))' be the linear functionals on Hol(O). 
Further we let H"'P(Y2) m > O  be the closure of smooth functions on f2 with the 
norm [lullm,p defined by 

2 2 tluli,,a = llutlm_ t + f q6~lO"uJ 2 dx,  
f~ 

m ~ l ,  

where we denote 

(~m u 2, 
io-u,2=+  m,__>0,+220, 

and d x = d x t d x  2. 
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We will deal with various domains ~. When we wish to emphasize the 
domain, we will write [lultn~(a), ttulln~.~(~) or (., .),~(~). In particular if fl 
=(0, ...,0) then we have H"'P(O)=H"(O). 

We remark that 

Hm,~(o) ~ c '~- 2(6), m>= 2, (2.2) 

with continuous imbedding, where Cm-2(~) is the class of m - 2  times con- 
tinuously differentiable functions on ~ with continuous extensions of its m - 2  
derivatives on ~, furnished with the norm tlUllck(e)= sup tD~ul. For, if m=2 ,  the 

xef~,i <=k 
continuity of u at all the points except xi, i=  1 , . . . ,M follows from Sobolev's 
imbedding theorem. To verify the continuity of u at x 1 =0, say, it suffices to 
show the inequality 

suplu(x)]2<=C~[]u[2+lD~ul2+r2al[D2u[2]dx, O < f l t < l  , (2.3) 
12 

with r 2= Ixl 2 for all smooth functions u. By use of Theorem A.lwe extend u to a 
full neighborhood S of 0 preserving the norm of the right side of (2.3). Let p be a 
smooth (C *) function with its support contained in S and with p =  1 in some 
neighborhood S ' c  S of 0. Setting v =p  u, f =  A v we understand v to be defined on 
R 2 by zero extension and define 

1 1 V(x) = ~ - ! / ( y )  n l x - y l  dy. (2.4) 

Because/3~ < 1 we get by Schwartz's inequality 

I V(x)l _-< C Ilull ~,~. (2.5) 

We also obviously have A V= A v. Integrating in (2.4) by parts and realizing that 
f has support in S, we see easily that V(x) -*0  as Ixl- ,  oo. Because v has compact 
support, applying the standard (uniqueness) theorem we get V=v.  Now (2.5) 
yields immediately (2.3) and hence (2.2) in the case m=2,  The proof of (2.2) for 
m > 2 follows by induction. 

Our weighted Besov spaces will be defined in terms of interpolation between 
the above spaces. We shall use the interpolation spaces of Peetre which are 
developed for example in [4]. However, we shall require only the definition and 
a few properties of these spaces and we state these explicitly. If O<=k<rn we 
define 

X(k,  m, fl, 0, p) = [Hm'# (~), Hk(f2)]0,p. 

If 1 <__ k < m, we define 

Xo(k ,  m, fl, O, p) = I n  m'a ((2) n H~(O), n k (Q) ~ H~(.Q)]0,p. 

We shall only require these spaces in the case p = oo, and we now define them 
explicitly in this case. For  ueH k n H~, we set 
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K(u, t) = inf{ IIVl[k + t I[wllm,~} ; 

u = v + w, v~Hk(f2) m H~(t2), w ~H m'~ (f2) n H~(t2); 

and we define the n o r m  

[lullxtk,~,o,o,o~=sup { t -~  K(u,t);  t > 0 } .  

Then XD(k, m, 8, 0, oo) is defined to be the set of  all u~Hk(fl)c~ H~(Q) with finite 
norm. The space X(k ,m,  8, 0, oo) is defined in a similar manner.  In Sect. 6 we 
shall need the reiteration formula [4, Theorem 3.5.3] 

Xo(1,2, f l ,  O , oo)=[Xo(1,2 , f l ,  O,, oo), H~(f2)] 0 . . . .  0 = 0 , 0  2. (2.6) 

We need to know in which of  our  weighted Besov spaces certain functions 
are. Let x i be one of  the vertices of  I2, l < i < _ M  and let (ri.q5 3 be polar 
coordinates which are centered at x i. Let u ( x ) = ~  @(~bi)~/(r3, where c t>0 and ~, ~/ 
are smooth  functions of  their arguments  be defined on f2. Obviously u(x)~Hl(f2). 
We have, assuming that u = 0 on F o. 

Lemma2.1 .  Assume k - 1  < c t < m - l - i l l  where k and m are non negative in- 
tegers. Then uEXD(k, m, fl, O, oo) with 0 = (~ - k + 1) / (m-  k - fli). 

Proof. Since ~ > k - 1 ,  we easily see that ueHk(s We estimate the function 
K(u, t). If  t > 1 setting v =u ,  w = 0 we have K(u, t)< Ilu Ilk. To estimate K for t < 1, 
we use a smooth  function r 0 < s <  oo such that 

r  0 < s < l / 2 ,  

~(s)=0,  l < s < c ~ ,  

and (s) ~(s)=~ ? ,  0<.~1. 

Then obviously 

with C independent  of  ~. Also we use the obvious relation 

tD ~ u(x)l < C ~  - j  

with C depending on ~, j but  independent  of  x. 
We now set 

v = r w = ( 1  - r 

where 0 < 3 < 1 will be chosen shortly. F rom the Leibnitz formula we have 
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k 
[1/2" 2 ~ C s [j=~o 'Dj ~a'2 [Dk-Ju[2-}- ~2b/2] dx 

k 
<=Ci[~6-2 'r2(~-k+"+rZ']rdr  

0 Lj=0 d 
C[62{ct-k+ 1)+32(=+ 1)] 

< C 6 2 { ~ - t +  11 

To estimate 

Ilw[I~,a = [tw[12_ ~ + ~ q~[Omwl z dx 
~2 

we note that lDJ~6(q)[ z = 0  for j > 0  and rd~-(6/2, 3). Using the Leibnitz formula 

S ~bg [D''wl2dx<= C k ~ t-r/2a'lD~(1 -r dx 
f~ j=O~ 

<= C r2~'+ 2~- 2m)r dr + 6- 2Jr2(P'+~-m+ J)r dr 
LO j= 1 6/2 

< C62(~-m+fl,+ t~ 

A similar calculation gives 

Ilwll 2_ x= llwllo2-+-j [D"-lwlZdx 
C + C 6  2{=-m+ 2) 

Hence we get 

Ilwlt.,.e__< C6~-m+a'+ ~ 

Combining the inequalities for v and w 

K(u, t) < C[6 =-k+ t + t6,-m+~,+ 1]. 

Let 6 be defined by t = 6  m-k-I~'. Then for 0 < t < l  we have 3 < 1  and we obtain 

K(u, t)< C[6 ~-k+ 1 + O~,-k-~,] < C6~-k+ 1 = Ct o, 

where O = ( ~ - k + l ) / ( m - k - f l l ) < l .  The lemma follows now from these in- 
equalities for K and the basic definition of the interpolated norm. 

The spaces XD(k, m, fl, O;q) are increasing functions of qe[1, ~ ] .  If q < ~ one 
can only assert that u EXD(k, m, fl0-- eq), e > 0. For this reason the spaces with q 

~ are needed to obtain sharp estimates. 
In the appendix we derive some results on interpolation that will be of use to 

US. 
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3. The Model Problem 

We consider the model problem 

- A u + u = f  in O, (3.1a) 

u =0  on F D 

t?u 
- - = 0  on F N 
dn 

(3.1b) 

and we understand it in the usual weak sense. It is well known that this problem 
has a unique solution in H~(f2) for each f ~ H ~  1(t2). Further statements about 
the regularity of u depend on the regularity o f f  and on the interior angles at the 
vertices of t2. We shall require the following two results from Kondrat'ev [9]. 
See also [7]. 

Theorem3.1. There are functions vieH~(t2), iejlct which are zero outside a 
neighborhood of x i and which have the form 

Vi(X) --- pi(ri) ~i ' ~ i (  O,), 

where (rl, 0 3 are polar coordinates with origin at x+, P~i  are smooth functions of 
their arguments, pi(r)=l ,  O<=r<=a~, ai>O such that if u is a solution of (3.1) with 
f ~H~ then 

u =  ~.  C i v i + w  
ied, l 

with w~H2(O)c~H~(O) and 

IC,[+ Ilwtl2 < fll fI[o . 
iEJI 

To state the next theorem, we first note that, using Holder's inequality and 
the inclusion Hi(O)eLy(f2), 1 <p  < o0, we obtain 

IlUllo_p={~;2uZdx}X/2<=Cllullt, uent(f2). (3.2) 
12 

Hence, if feH~ ~ f udx defines a linear functional on HI(G ). With this 
12 

understanding we have [9, Theorem 1.1] 

Theorem 3.2. Suppose 0 <__ fli < 1, 1 < i <_ M, and suppose 1 - ~i < fl~ < 1, ieJlr Then if 
f~H~ the solution u of (3.1) belongs to H2'/~(Q), and there is a c > 0  
independent of f such that 

[lu ll2,o <= c lJ f [J o,~. 

We derive now a corollary of Theorem 3.1. 



Direct and Inverse Error Estimates for Finite Elements 453 

Corollary3.1. Let O<fli <1, ieJg,  and suppose 0=min  {cti/(1-fll),i~dr <1. I f  
f e n~  then ue X o(1 , 2, fl, O, o~) and 

Ilult xD~l, 2,a,o, ~ <  C II f '  II o- 

Proof. From Lemma2.1 we have vgeXD(1,2,fl, O, oo ). The result then follows 
from Theorem 3.1. 

4. Mesh Refinement 

We define a family of triangulations which are refined in a systematic way near 
the vertices of f2, governed by the function qS(x) defined by (2.1) with 7 
=(?~ ... ~M) 0<? i  <1. By a triangulation Y of s we mean a finite collection of 
closed triangles T whose union is f2 and such that if S, T e J -  then S c~ T is either 
empty, a common side or a common vertex of S and T. For T e J  we let d T 
=sup { [x -  yl ; x, ye T}. 

We say that 9-- is a triangulation of type (h, Y, L) if: 

(i) if T e J "  and 0 is an angle of T,O>L-I;  

(ii) if ~bT=~0 on T then L- l h c ~ ( x ) < d r < L h ~ ( x ) ,  x eT ;  
(iii) if 4) vanishes at some point of T then L-lhsupc~r(x)<dT<Lhsupc~y(x).  

x E T  

I f  ? = (0 . . . . .  0) there is no refinement and the triangulation is quasiuniform. If 
y4=0 then the amount of mesh refinement near the vertex xi is determined by ?i- 
One of the goals of this paper is to illustrate how the theory of quasiuniform 
meshes may be generalized to refined meshes through the use of weighted 
Sobolev spaces. 

We shall measure the error in our finite element approximation in terms of 
the parameter h. To justify this we require an estimate on the number of vertices 
in a refined triangulation. We have 

Lemma4.1. There is a constant c > 0  independent of h such that if ~-- is a 
triangulation of type (h, ?, L) and if N is the number of vertices in J- then 

N < C h  -2. 

(C depends in general on f2, y, L.) 

Proof. We have N <3~ ,  1 where the sum is taken over T ~ - .  If ~b does not 
T 

vanish in T 

1 < Cd~ ~ ~ dx<~ Ch -~ S 4';~(x) ax. 
T T 

Since the number of triangles in which J r  

N < Ch-  2 ~ dp; 2(x)dx 

and the lemma follows immediately. 

vanishes is finite we have 
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Given a triangulation J -  of t2 we let 5P(3 -) cHI(Q) denote the corresponding 
collection of continuous piecewise linear functions on O, which are linear on 
every T~Y- and we let ~o(9"-)cH~(f2) denote the corresponding collection of 
functions which vanish on F o. We require an approximation property for 
functions in 5go(Y- ). We start with some inequalities. 

Lemma 4.2. One has the inequality 

1 1 

t ~- z [z(t) -- a] 2 dt =< C(o 0 ~ t ~/dz\2 [~[) dt, c~+ 1, (4.1) 
0 0 

where a = z ( 0 ) / f  ~<1 ,  a = z ( 1 ) / f  c~> 1. 

Proof For ~ < 1 we start with inequality [8, Theorem 254] 

1 1 

~s-2w(s)2ds<C~w'(s)2ds+Cw(1)  2 , w(0) =0 .  
0 0 

1 

Using the inequality w(1)2<~ w'2ds, making the change of variables s= t  1-~, 
0 

and setting z( t )=w(t)-w(0) ,  we obtain (4.1). For ~ >  1 we use the inequality [8, 
Theorem 255] 

oo 

s-2w(s)Zds<4~ w'(s)Zds, w(0) =0 .  
0 0 

Making the change of variable t = s  1 -~, and setting v(t)= w( t ) -  w(1) for t < 1, v(t) 
= 0  for t > l ,  we obtain (4.1) in this case. 

Let T be a triangle with one vertex at 0. Then we have 

Lemma4.3.  Let ~ 0 ,  and let u be defined on T with weak first derivatives which 
satisfy ~[x[~lDlu]Edx<oo. ?'hen there is a constant a, depending on u and a 

" T  

constant C > O, independent of u but depending on c~ and the minimal angle O r of T, 
such that 

~" ixl =- 2 [u - a l  2 dx < C ~ txl = ID 1 u[ 2 dx, (4.2) 
T T 

and 

tat < C S r~ Ioaul dx. 
T 

In addition if a < 0  and u is continuous then a = u(O). 

Proof Let S be the finite sector defined in terms of polar coordinates (r, 0) by 
0<0-<0o ,  0 < r < l ,  where 0 o is the angle of T at the origin. Then T may be 
mapped into S by a smooth map  and so it suffices to prove (4.2) with T replaced 
by S. Let 

0o 

a(r) = 0o 1 j" u(r, 0) dO. 
0 
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It  is easily seen that  

i r ~ + l  d i 2  
o dr dx<=C~ratDlulZdx<~'s 

Using (4.1) and (4.3) we obtain 

o i / ' - l [ i ( r ) - a ] 2 d r < C !  d i  dx 

<C~r~lDlul2 dx, 
S 

~ 4 0 .  

(4.3) 

(4.4) 

We remark  that  for c~ < 0, a(r) is cont inuous on [0, 1] and a = if(0) in (4.4). In 
addi t ion when u(r, O) is a cont inuous function on T then in the case e < 0  we get 
a = u ( 0 ) .  

Integrat ing (4.4) over 0 gives 

~ r~- Z l i - a l e  d x <  C ~ r~[D1ul2 dx. (4.5) 
S S 

Fur ther  for a lmost  all r, (9 we get 

4, 
u(r, 4J) -- u(r, ~) = S uo(u, O) dO, 

qJ 

and therefore 

lu(r, (a) - if(r)[ = 0 o i ~176 iUo(r, O) dO 

<= C Uo(r  , 0)[ 2 dO , 

and hence 

00 0o 
S [u(r, c~) - fi(r)] 2 d(a < C ~ [Uo(r, 0)] 2 dO. (4.6) 
0 0 

Mult iplying (4.6) by r ~- 1 and integrating over  r we get 

~r ~- 2 [u-g[2 dx < C ~r ~ ]D 1 u[ 2 dx. (4.7) 
S S 

Using (4.5), (4.7) and the triangle inequality we get (4.2). 

Lemma4 .4 .  Let e > 0  and let 0 < s < l .  Then there is a positive constant C, 
(dependent on ~ and s) such that if T is any triangle with vertices z 1 =0,  z 2, z 3 and 
with minimal interior angle > e, if u satisfies 

[-[u] 2 + [D 1 ul 2 + Ix] 2s [D ~ u[] dx < c~, (4.8) 
T 



456 I. Babu~ka et al. 

and if  p is the linear interpolating polynomial to u on T, then 

[ ixl2S- 4 l u - p t  5 + Ixl 2s- 2 IDl(u-p)l 5] ax 
r (4.9) 

-< C ]" [xl 2~ ID 2 ul 2 dx. 
T 

Proof. F r o m  (4.8) and (2.2), u is cont inuous function on T as shown in Sect. 2, so 
the interpolating polynomial  p is well defined. To  prove (4.9) we suppose that T 

Ou 
has vertices z I =(0,0),  z2=(1,0) ,  z3=(0,  1). Let  v i = - - i = 1 , 2 .  Since 0 < s <  1 we 
use (4.2) to obtain constants a i such that  ~xi 

2s_2[a u 15 
Ixl -~x-a, dx<fSlxl2~lO2ul2dx, i = 1 , 2 .  (4.10) 

N o w  we set v = u - a  1 x 1 - a 2 x  2. Since s < l  and v is cont inuous we use (4.2) and 
get 

lxl 2~-* I v -  v(0)l 2 dx < C ~ Ix[ 2s- 219 1 vt5 dx. (4.11) 
T T 

Combining these inequalities, we obtain (4.9) where p is replaced by the 
polynomial  q(x )=u(O)+a 1 x I + a 2 x  2. Let  U o = U - q = v - v ( O  ), p o = p - q .  Then Po 
vanishes at z 1 =(0,0)  and equals u o at z 2 and z 3. We have, by (2.2), u o = v - v ( 0 ) ,  
so from (4.10), (4.11), 

S [Ixl 2s-"  lPol 2 + [xl 2~- 2 iO 1 po12 dx 
T 

< C [lUo(X2)l 5 + JUo(X3)[ 2] (4.12) 

< C ~ [luol 5 + ID 1 uol 5 + Ixl 2~ ID 5 uol 5] dx 
T 

< C ~ Ixl 5~ Io 5 ul 5. 
T 

Using (4.12) and triangle inequality we obtain (4.9) for our  triangle. If T1 is 
another  triangle with the area 1/2 we map T I onto  T with a linear transfor- 
mation.  Using this t ransformat ion we get (4.9) for T t with C depending on ~. 
Since (4.9) remains unchanged with a change of scale we get (4.9) in full 
generality. 

Using this lemma we give the approximat ion  proper ty  for functions in 
~ ( : ) .  

L e m m a  4.5. Let  5-  be a triangulation of  type (h, 7, L). Then there is a constant C 
depending only on 7 and L such that for  ueH2'r (O)nH~(f2)  there is a v~6eo(9- ) 
such that 

I[u--vl]l < C h HuH 2,~. 

Proof. Let ueHZ'~(t2)c~H~(t2) and let v ~ ( 3 - )  be the piecewise linear in- 
terpolat ion to u. Since u is cont inuous in t], v is well defined. Let  T e Y  If none 
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of  the vertices of T coincides with a vertex x~ of O with y~>0, then t/~H2(T). 
Applying s tandard results we have 

[]u - v[ 2 + JO' (u - v)} 1] dx < C dgr ~ ID = ul 2 dx 
T T 

when C depends only on the minimal angle of T. Hence we have 

y []u - vl z + ]Dl(u - v)[ 2] dx < C ~ qb~ ]D 2 u[ z dx. (4.13) 
T T 

Suppose that one of the vertices of T is a vertex x~ of f2 with 7~ > 0. We use (4.9) 
with s = ?  i, and the inequality r < d  T, to obtain 

[[u - v] z + ID'(u - 0I 2] dx 

r (4.14) 
C(dT) 20" -~')I IX --Xi 12r' ] D2 ul 2 dx. 

Since Y is of type (h, 7, L) 

d r < L h sup { qSr (x), x e T} 

< C h {sup J x - xi] ~', x e  T} <__ C h(dr) r'. 

Hence (dr) l -  ~'<= Ch. Also, for x e T l x - x J '  < C~or(x). Using these inequalities 
together  with (4.14) we see that (4.13) is valid for all triangles. Summing (4.13) 
over all triangles we get the result. 

In Sect. 6 we shall require an ' inverse property '  of the functions in S~o(~-- ). We 
have 

Lemma  4.6. Let ~-- be a triangulation of  type (h, 7, L). Then there is a constant 
C > 0  depending only on 7 and L such that for weSeo(~-- ) and 0<0_< 1/2 

[ lu lxor  < C h - ~  Ilulll 

Proof. Let u66eo(J-) and let 

K(u, t )=inf{  llvll 1 + t  Ilwtl2,~; u = v +  w, t>0} .  

To  prove the result we will show that 

K(u,t)<=Ct~176 p 0<0<=1/2.  (4.15) 

Setting v=u,  w = 0  we have for t >  1/4h 

K(u, t) < Ilutl 1 < C t o h - ~  Itull 1. 

h 
We now estimate K(u, t) for t < g .  For  T6~-- let 

N ( T ) = U { T ' ~ 9 ~ , T '  n T # O } .  
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For t<h/4 we will construct a twice continuously differentiable function 
t dr 

w~H~(O) such that if 6 T =--h- ,  T ~ , ,  we have 

sup [[w(x)[ + ID 1 w(x)[] < C sup [[u(x)l + ID l u(x)[], (4.16) 
x~T x~N(T) 

sup ID2w(x)[ <= C6~ 1 sup [tu(x)l + [D 1 u(x)l], (4.17) 
xeT x~N(T) 

meas {x~ T; u(x) 4= w(x)} =< C dy 6 r. (4.18) 

Using these properties we get 

llu--wlln,tr) < C 6~/2 dr 1/2 tIU[IHI(N(T) ) (4.19) 

because it is easy to see that for ueS:D(9- ), 

sup [[u(x)[ + ]D 1 u(x)[] <d~ 1 ]]U]lHlCmr))" (4.20) 
x~N(T) 

Further we have 

114'~ to 2 wltlHotr)<= C h- t 6~ t/2 d~/2 Ilull.ltNtr)) (4.21) 

because [D2ul=0, w#-u only on set of measure < Cdr6 r and because of (4.17) 
(4.20). Squaring (4.19) and (4.21) and summing over all T e : -  we obtain 

Ilu-wll l < C t x/2 h-  x/2 Null t, 

Hq~r D2 wl[ 0 ~ C h- 1/2 t -  1/2 [lull x" 

From these two estimates (4.15) follows readily. Hence it suffices to satisfy (4.16), 
(4.17), (4.18). 

Let us now construct the function w. Let S and T be two triangles of : -  with 
common side (ST) and let Xs, r denote the distance from a point x to the 
common side. Let esr be the 2 6sr-neighborhood of (ST). If z is a vertex of T~J,, 
let B z be the 2 pz-neighborhood of z. We choose 6st and Pz so that 

t ~ s T ~ C I [ f S W t ~ T ] ,  C l p z < t ~ T ~ C 2 p z ,  

where C 1 >0,  C 2 > 0  depends only on L. We also assume that the situation is as 
in Fig. 1. 

For  Te~,, u is a linear function in T. We let u r denote the extension of this 
linear function to f2. We let e(s), - ~  < s < ~  denote a smooth function such 
that e ( s ) = l  for s_>_l, e ( s ) = - I  for s < - I  and e(s )=0  for Is[<l /2.  Now we 
define a function w on every Te~-- as follows. Let T be as shown in the figure, 
with vertices z i, i=1 ,2 ,3 ,  and with adjacent triangles S i, i= 1,2,3. For xeT, 
]X--Zit>=pz, i=1 ,2 ,3 ,  set 

=1�89 +�89 x~ers,, i=  1, 2, 3, 

WI(X) / 
(u(x), XCers,, i =  1,2,3. 
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Pz I 

~ 2 P z  t 

Fig. 1 

For xeT, define 

[wa(x), Lx-zil>=2p~,, i=  1,2,3 

w(x)=tu(x)+[wl(x)-u(x)]e(lx-zil/2pz ), pz <[X-Zil<2pz,, i=1,2 ,3 ,  

tu(x), Ix -z t l<pz:  i=  1,2,3. 

Using the properties of the function e, we see that w is a smooth function and 
that (4.16), (4.17), (4.18) hold. 

5. The Error Estimates 

We now give error estimates for the standard finite element approximation to 
(3.1) using the subspace S~o(J-). Let g be a triangulation of type (h, y, L) and let 
u h be the finite element approximation of u using ~ ( J - ) .  Th en  

ltu--uhltl<llu-wlll, we~o(:). 

Our basic result is 

Theorem 5.1. If  ueH 2" ~(f2) ca H~,(O) then 

llu --UhH x ~ C h {lut[z,r. 

I f  uEXD(1 , 2, 7, 0, oe) then 

Ilu-uh][1 <= C h ~ Itullxocx, 2,~,0, ~)" 

Proof. The first result follows immediately from Lemma4.5. For the second 
result we define the operator E: HI(O) -o H~(f2) by E u = u - u  h, and we estimate 
the norm of E on the interpolation space XD(1, 2, 7, 0, 0o). 

Now we state a corollary of this result in the case that f~L2(12). 
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Corollary 5.1. L e t  f~L2(f2 ). I f  7i > 1 - ~i, i ~J r  then 

I lu- uhl[ I < C h  Itflt o. 

I f  71< 1 - a l  f o r  some i ~ g  then set t ing 

=min  { , i / 1 - 7 i ;  iE~g}, 

][u--uhH x < C h "  Ilfll- 

Proof.  The first result follows from Theorem 3.2 and Theorem 5.1. The second 
result follows from Corollary 3.1. 

We note that if there is no mesh refinement, i.e. if 7=0, then Corollary 5.1 
gives 

[l u - un l[1 < C h" lt f tl o 

where/~ =min  {,~, ieJg}. 
We now consider an L:  estimate for the error. Because of our mesh 

refinement near the vertices of f2 we obtain an error estimate in the (stronger) 
weighted L 2 norm, defined by the formula 

Hvtlo _# = { ~ ; 2  v 2 d x }  '/2. 

Theorem 5.2. L e t  1 - ~ < 7~ < 1, iEJ# .  Then 

I]u --uh[Io , _ ~ <  C h Ilu --Uhll t. 

Proof.  From (3.2) we have 

l lek;Z(u-u , ) l lo ,~  = Ilu-uhlIo,_ ~ < tlU--UhltX < ~ .  (5.1) 

Let z denote the solution of the problem (3.1) with right hand side 

f = ~b~- 2 (u -uh)EH ~ r(O). 

Applying Theorem 3.2 we get z E H  2' r ( t2 )n  H~(t2) and 

Ilztl2,~< C [lU--Uhl[O,_ ~. (5.2) 

Using this solution we have 

tlu ~ _ -5 -uhll0,_~-(ck~ (U--Uh),U--Uh)0 

= (Z, U -- Uh) 1 = (Z -- 4, U -- Uh) 1 (5.3) 

< IIz--~IIx Ilu--uhlll 

where ~6eD(F ) is arbitrary. Choosing ~ as in Lemma 4.5 we obtain 

tlu-uhll0~,_~_-< Ch Ilzll2,~ I lu-u ,  II x 

=< C h IIu-uhll0,_~ Ilu--uhll 1. 

The result follows immediately. 
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6. The Inverse Theorem 

We shall establish two converse theorems to Theorem 5.1. For our first result, 
Theorem 6.1, we restrict ourselves to the case 0<  0 < 1/2 and we use the inverse 
property of 6eo(r ) stated in Lemma 4.6. In addition we require an assumption 
(H 1) on the existence of a family of triangulations of suitable type. Our second 
result, Theorem 6.2, allows 0~(0, 1) and does not use Lemma 4.6. On the other 
hand, we replace (H 1) by a considerably more complicated assumption (H2). 

For our first theorem we require the assumption 

(H 1) there is a sequence h, ~ 0 and a family ~ of triangulations, such that 

(i) ~,, is a triangulation of type (h., ~, L), 

(ii) ~ +  1 is a refinement of ~-~., 

(iii) C~ 2-"__<h.__< C22-"  where C2> C~ > 0  are independent of n. 

We let Y" =6~o(Y) and we shall let u. denote the finite element solution of 
(3.1) using ~ "  as the set of trial and test functions. Because of (ii) we have 
~.+ i ~ ~.. 

Theorem 6.1. Suppose (H 1) holds. Let usHg(f2). Suppose there is a Oe(O, �89 and a 
P > 0  such that for each n, there is a u, e6 r such that 

1Lu-u.lll <=Ph ~ 

Then ueXo(1,2,?, O, oo) and for some C > 0  independent of u 

llUllx~,(1,2.,,o,| C[llutl ~ + P ] .  

Proof. Let 01e(0, 1/2), and let 

K(u,t)=inf{llVtll +tllWllxo(1,e,,,o,~);u=v+w}, t>0 .  

We set 

n 

w=u. =u, + ~(u~-u~_ O, 
2 

V = U - - W .  

By our assumption we have 

Ilvlt 1 < P h ~  CP2-~ 

Using Lemma 4.6 we get 
n 

NlgnlIXD(1, 2,~',01, m)~-~ tIUl N XD(1, 2,'e,01, ~)  -]'-Z IIUJ --  Uj_ I II XD(I,  2,,8, 01, oo) 
2 

n 

< C{llul II, + Z  [luj-uJ-1 {1 2~ - 
2 
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Since 

I lus -u j_  x [}a --< Ilu~_ a -Ul t l  + Iluj-ulll 
< C2-OJ 

we obta in  

IlUhllxo,. 2,~,0,, ~)< C{llulI 1 + 2"~~176 

Hence  

K(u, t)< C{P2-~ +t  ]lull l+t2"<~176 

=< C[]{ult i + P ]  [t2"t~176176 

For  t < l  we pick n so that  2 " < t - 1 / ~  "+t.  Then  2~ -1 <2.2 ~ so setting 
02 = 0/01 < 1, 

2 -"o -- 2 -"~176 =< C t ~ 

2.~o,- o) = 2.o,<~ -02)< C t -~1 -o2). 

Hence  we have for t < 1 

K(u, t)< C[tlull 1 + P ]  t~ 

For  t___ 1 we set u = v and obtain  

K(u, t)< C llutl 1 _-< C liult x t ~ 

Using (2.6) we get our  result. 
N o w  we will formulate  our  second assumption.  

(H2) there is a sequence h,, an integer N and a family J,u,  0 < / ~ < N ,  n = l  . . . .  
of  t r iangulat ions such that  

(i) j u is a t r iangulat ion of  type (h., 7, L); 

(ii) for e a c h / x = 0  . . . .  , N, ~,~+1 is a ref inement  of  ~-~,~; 

(iii) for each n = l , 2  . . . . .  o3-0 is a refinement of~-~, ~', # = 1  . . . . .  n; 

(iv) for each T~-~, ~ there is a # > 0  and a 7"6Y, u such that  Tm~C and if 
T I ~  ~ T tnT#-O then T I ~ T  , 

(v) C 1 2 - "  < h. < C 2 h - "  where C 2 ~> C 1 ~> 0 are independent  of  n; 

(vi) there is a finite collection of convex polygons f2m~f2, l < m < R  such 
that, setting 

f2* = U { T; T ~K2 m, TEe'I~ 

we have  

R 

a) U O * = f ] ;  
m = l  

b) for each m = 0  . . . . .  R - 1 ,  0 f/* is a polygon which, together  with f2* 
i = 1  

satisfies assumpt ion  (H) of the Appendix.  
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We shall set 5go"'" =SPo(~.u ) and 5 e"'u =Se(~-~."). Because of (ii) and (iii) we 
have 

~San, u c~q'~+ t,u, S,o",u csfn, o. 

Theorem 6.2. Suppose (H2) holds. Let u6H~(f2). Suppose there is a 0~(0, 1) and a 
P > 0  such that for each n and # there is a u,,u66f"'u such that 

Ilu-u.,,llt <Ph~ (6.1) 

Then u~Xo(1, 2, 7, 0, oe) and for some c > 0 independent of u 

llU{lxD(t.2,~,O, oo) < C[lfu[I t + P ] .  

Proof. Let T6J~, ~ and let XT(X ) be the piecewise quintic function on ~-~o which is 
of class Ct(f}), defined in terms of the Argyris triangle [5, p. 71] by specifying 

the following values: for x a vertex of T, ~:T(X)=n~--~ where n(x) is the number  of 

triangles of W, ~ which have x as a vertex; for x a vertex of T 'eJ , ,  x C T l e t  ~cr(x) 
= 0 ;  all derivatives of ~c T that may be specified are chosen to be z~ro. The family 
of functions rCT(X ), T e ~  ~ have the following properties: 

~. ~:r(X) = 1, xe(2, 
T 

~:T(X)=0, if x e T ' e Y .  ~ and Sc~T=O, 

IDiKT(X)[<CdT i, i=0 ,1 ,2 .  

Now to every T e J .  ~ we associate 2 ( T ) = #  and 7"(T)e~ ~m given by (H2) part  
(iv). Let  us introduce 

W n = T~.q_onls Un,)'(T)" 

Since, for fixed T, lCTUn,;~(T)EH~)(Q ) is a piecewise 6th degree polynomial  on ~-~o 
which is of class Cl(O), so is w,. 

Let  ffeo"(f2)cH~(f2)(resp. 5~"(~2)cHX(f2)) denote the class of all piecewise 
sextic functions on r which are in C~(f2). Further  for any f2' c f 2  we let ff'"(f2') 
be the restriction of 5~"(g2) to f2'. 

Also, let x," = ~  K r where the sums are taken over all T e J ,  ~ such that 2(T) 
=# .  The functions x." then satisfy 

N 

~c."(x) = 1, xef2,  (6.2) 
# = 1  

tO ~ x~(x)[ < C h2'  ~b~-~(x) i =  0, 1, 2. (6.3) 

It can be readily seen that 

N 

Wn"~- 2 Kn Un, ~" 
g = l  
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Let un~,u be the best approximat ion  of u in Hl(f2m) by functions from 6e"'"(f2,n). 
Because of (6.1) we have 

l[ u - u.m ~[[ hi(an) < P h~ (6.4) 

Because f2,, is a convex polygon we get in the same way as in Theorem 5.2, 

ItU-unm, ulIft ~ -~(0, , ,)~ Ilzn~--~ It~'~O..)]lUm--Un,~,lln1(~m)' 

where znm, is the solution of (3.1) on f2 m with right hand side f=(U--Un,  u) 4) r m  -2 
and Fo =~J, and where ~e6en'u(f2.) is arbitrary. Also we have 

IIzTA~2,~o.)< c Ilu- u:.lln,~o~v 

Using Theorem A.1 there exists ~ , ~ H  2"r(s with 

Z m 

and m _--,n Z,,,,--Zn, u on f2m. Using ~ as in Lemma  4.5 we get 

II u - Un ~, ~, II no, - ~, r  < CP hln + o (6.5) 

with the constant  C depending only on f2 m. 
Define 

N 
m # m 

Wn = Z K'n bln,~" 
/ / = 1  

Using (6.3), (6.4), (6.5) we have 

]{Xnr,(U m Z < C x ,n z [D ( u -  un, u)] 

+ Ch~ 2 (. 4); 2 lU=Unm#l dx<-_ CPh~ ~ (6.6) 
1"2.1 

Combining (6.5), (6.6) and (6.2) we get 

m O Ilu --Wn Iln,~a,~) < C h n. (6.7) 

Let us show now that for any T e ~  ~ and any polynomial  z of  degree 6 on T we 
get 

[I z II n=, ~r) < C h ;  1 II z II u~r). (6.8) 

In fact by a scaling argument  we get 

d~ ~ [D z z[ z dx  < C(L) ~ ]D ~ zl z dx.  (6.9) 
T T 

If 4)a does not  vanish on T we obtain 

hZn ~ 4)~ ]O 2 zlZ dx  < C(L) ~ ]O ~ z] z dx. (6.10) 
T 
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If ~b~ vanishes at a vertex x i of T we use instead of (6.9) the easily derived 
inequality 

d ~ " - " )  f Ix - x i [  2r' IO 2 zt 2 dx<= C ~lO 1 zt 2 dx 
T 

and we again obtain (6.8). 
Now we estimate the quanti ty 

K(u,  t) = inf{ ]l v]l/~,~o~ + t 11 w 1t n2,, co*); u = v + w}. (6.10) 

We set w = w  7, v = u - w ' ~  and using (6.7) we obtain 

w m (6.11) K(u,  t) < C P h ~ + t II , tlH 2, ~C~*~" 

Write 

w7 = ~  + ~ (wT-wT_ ,). 
j = 2  

By using the inclusion w~-w~j_l~S~J(o*) we get by help of (6.8), namely 
squaring it and adding over all T belonging to j jo ,  

[L w 7 - w 7- t I[ H2, ~(~*)~ C h~ x [lw7 _ wj~ 111H'~O~" (6.12) 

Using (6.7) and (6.12) we get 

n H , ( f~)  = 
j = 2  

j = 2  

< El-e+ Itull ~] + C ~ P2 j-~ 
j = 2  

< C[P+ Ilult ~ + P  2"-~ 

Using this in (6.11), 

K ( u , t ) < C P h O + t C [ [ l u l t l + P h ~ ( 1 - ~  t > 0 .  

Suppose t <  1/2 and pick n so that 2 - " - x  < t < 2  -". Then we obtain 

g ( u ,  t) < C t ~ + C[llul[ x + P t " -~  t 

< C [ P +  Ilull ~] t ~. 

For  t > l / 2  we set v = u ,  w = 0  and obtain 

K(u,  t )<  llutt ~ < C t o Itutt t. 

Combining these inequalities we find that 

2,/~ * 1 * 
u ~ [ n  (~'~m), n (~'~m)]0, co" 
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Using Lemma2.2 we get the desired result. Using (H2), part (vi) and 
Theorem A.2 successively for m=  1 . . . . .  R, we find that u~X(1,2,fl, O, or). Since 
ueH~((2), we find from TheoremA.4 that ueX(1,2,fl, O, oo), and the proof is 
complete. 

Appendix 

We prove two theorems on the extension of functions lying in weighted Besov 
spaces. In the first theorem we show that the Stein extension [13] may be used 
for this purpose. In the second theorem we show that the extension operator has 
a certain property with respect to the intersection of two domains. We follow 
closely the notation and arguments of [13, Chap. 6, Sect. 3]. 

Let h: R 1 -~R 1 be a function which satisfies the Lipschitz condition Ih(s) 
-h(t)l <M Is-t], and let D = { x ~ R 2 ;  X 2 >h(x0}.  We call D a special Lipschitz 
domain. We further assume that h(0)=0. For  xCD, we let 6(x) denote the 
distance from x to D, and we let A(x) denote the regularized distafice from x to 
D, as constructed in [13]. In particular, C1A(x)<6(x)<C2A(x), where the 
positive constants CI and C 2 depend only on M. We let S K denote the sector Sx 
= { X :  X2<=O , KIXII<=[X21 }. Thus, S M ~ b = { 0  }. We have 

Ixzl 
6 ( x ) > 2 ~ ,  xES2M, 

for 6(x) is > the distance from x to SM, and the result then follows from a 
computation (Fig. 2). 

It is shown in [13] that there is a constant C 3 >0  depending only on M such 
that C3A(x)~h(xO-x z. We set C4 =max(C3,4  C2(1 +M2)1/2), and we set 6*(x) 

x 2 

0 

S2M 
Fig. 2 
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= C 1 A(x). Then  3" is a regularized distance function that  also satisfies 

6*(x)> h ( x l ) -  x2' (A.1) 

~*(x)>21x2l, xeS2M. 

Let 0 be a smooth  function defined on [1, oo) which satisfies 

co 

~ 0 ( ; 0 d 2 =  1, S 2k O(A)d2=0,  k = l , 2  . . . . .  (A.2) 
1 1 

Let f (x)  be defined for xe / ) .  We then define the extension E f  by Ef(x )=f (x ) ,  
xe / ) ,  and 

El(x)  = Sf (x , ,  x~ + 2 3*(x)) 0(2)d2, x~b.  (A.3) 
1 

Let B=(fll) ,  let H2'~(D) be the space of functions with 

Ilull~2,o = { ff [[ulZ + lD x ul2 + lxl 2,p' ID2 ulZ] dx} l/e < oo, 
D 

and let H2'a(R 2) have a similar definition. Then we have 

L e m m a  A.1. E: H2"a(D)--* H2"a(R 2) is a bounded map. 

Proof. Suppose feH2'a(D)c~ C2(D), and sup_pose that f and its first and second 
derivatives have cont inuous extensions to D. Then as in [13], we conclude that  
E f eHI(R 2) and 

IIEftI,~(R2)< C llfllm(o~. 

I t  remains  to est imate the second derivatives of Ef.  Let x=(xl ,x2) ,  and 
=(xl,xa+26*(x)).  We show that  for 2 > 1 ,  x~/) ,  

Ixl-<_ 63 I~1, (m.4) 

where C 3 depends only on M. For  if xeS2M, then using (A.1), 

x 2 + 2  a*(x)>_- x2 + a*(x)__> Ix2[, 

so 

19~[2> X2 2 > 4 M 2  

ix l~=  2 2 =  x~ +x 2 1 + 4 M  2' 

and if x~S2u �9 

I~l 2 > x 2 > 1 
[x[2 = 2 2 =  x I + x  2 1 + 4 M  2" 
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Calculating the second derivatives of E f  and using (A.4) and the arguments of 
[13, p. 187] to estimate ~lxlZ'al IDZEfl2dx, we obtain 

j" Ixl zal [D2Ef[ 2 dx < C tl f 1l~2,~tvr 

The result follows by a limiting argument. 
We now consider a polygon f2 with vertices x i, 1 < i < M ,  and weights 

flie[0, 1) as in Sect.2. We have 

Theorem A.1. 7here is a bounded map E: Hi ( f2 )~  H X(R2), such that Eu(x)=u(x) ,  
xef2. The map E is also a bounded map from H2'a(f2) to H2'a(R2), and from 
X(1, 2, fl, O,p) to [H2'~(R2), n l(RZ)]o, v. 

Proof. Following the argument of [13], we represent f2 as the union of a 
collection of special domains, and we use LemmaA.1 and a partition of unity to 
construct E. We find from this construction that E is a bounded map on H~(O) 
and on H2'a(f2). We then use interpolation to complete the proof. 

We now consider special properties of our extension operator when there are 
two domains present. Let hi: R1---~R 1, i=1,2 ,  be two Lipschitz continuous 
functions with Lipschitz constant M. Let Di={x~Ru:XE>hi(x , )}  be the cor- 
responding special Lipschitz domains. Let E 1 be the extension operator cor- 
responding to the domain D1, constructed in Lemma A.1. Then we have 

Lemma A.2. I f  u~HI(D1) and u(x)=0,  xeD  1 ~D2,  then El(X) =0  , xeD 2~D t. 

Proof We have as in (A.3), 
oo 

E l(x) = ~ f ( x  1, x 2 + 2 fi* (x)) ~(,~) d2. 
1 

If x e D 2 \ D  1, then x2 + 26*(x)> x z >hz(Xl), so ~2=(xl,x2 + 2fi*(x))eD 2. By con- 
struction, YceD 1, so 2eD 1 c~ D 2, and the integrand is always zero, so E 1 f ( x )=0 ,  
x e D 2 \ O r  

We now consider polygonal domains f2~, i=  1, 2. Let 12~ have vertices x i, 
l < i < M ,  and weights file[0, 1). We suppose that t21 and 0 2 satisfy 

(H) For each x*eOt21c~Of22 there is a neighborhood u of x*, a linear 
transformation of the independent variables x ~ 2  of U ~ U ,  and Lipshcitz 
continuous functions h~: R ~ R ~, i = 1, 2, such that the image of U n f2 i in U is 
given by {92e0:x2>hi(x~) }, i=1,  2. 

We then have 

TheoremA.2. Let the polygons f21, 0 2 satisfy (H). 7hen there is a bounded map 
E: Hl( t21)~ Hl(R2), such that E f ( x )= f (x ) ,  xeI21, such that E is also a bounded 
map from H2'~(O1) to H2'#(RZ), and from [n2'#([21),H1(g21)]o.p to 
[H2"a(RE),HI(R2)]o. ~ and such that /f f ( x ) = 0  for xeI21 ~f22, then Ef (x)=O for 
xet22\t21. 

Proof. We cover ~3f2~ by a finite number of open neighborhoods U such that 
either U c~ t3f22 = ~b, or tha t /2  i c~ U, i = 1, 2, can be represented as in (H). We use 
Lemma A.1, our linear change of variables, and a partition of unity, to construct 
E. Using the arguments of [13] and Lemma A.2, we obtain the result. 

We now derive some consequences of these extension theorems. 
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Theorem A.3. Let f2i, i= 1, 2, be polygonal domains with non-empty intersection 
and which satisfy (H). Let t2s =-I2 t wf2 2. Let 

X,  = [H2"a (O~), H l ( Q i ) ] o , v ,  i = 1, 2, 3. 

Then if ueXi ,  i= 1, 2, we have u~X3, and Ilullx < C{llullx~ + Hutlx~}. 

Proof Using Theorems A.1, A.2, let E~: X~---,,X 3, i =  1,2, be a bounded map with 
the properties 

(i) (Eiu)(x)=u(x), x~121, i=1 ,2 ,  

(it) if u~X i and u = 0  on f2, n O  2, then 

Eiu(x)=O , x6f23_i, i = 1 , 2 .  

Since u6X~, E~uEX 3, so by restriction, E t u e X  2. Hence v - .~u-E~u6X z, so 
E2vEX 3. W e  claim that 

u = E t u +  E2 v. (A.5) 

Since v = 0  on f21c~f22, Ezv=O on f2 t, so (2.2) holds for x~t2t. If xef22, 
E 2 v(x)= v(x)= u ( x ) - E  t u(x), so (2.2) holds in f22 also. Since the right side of  (2.2) 
is in X 3, u~X 3 and the proof  is complete. 

Let f2 be a polygonal  domain. For  our next result, we need the following 
lemma. 

Lemma  A.3. There is a bounded map A: Ht(f2)--,Hlo(f2) such that A =the identity 
on H~(f2), and such that A" H2"~(~)--~ H2'/~(~2) is a bounded map. 

Proof Let S be a disc with S ~ O. Let x i be a vertex of f2 with interior angle 0. 
We construct  a linear t ransformation of R 2 to new variables ~, and with a new 
vertex 0~ such that if K~ = 1, 

~+ f f / 4 :1 ,  

and if'~, = 1/2, either 6 < ~/2 or 2~z- ~ < ~/2. We let S,, t~ i denote the image of S 
and t~ under the transformation. We now distinguish two cases. First, suppose 
that  

X 

or, in the case of ~ i=  1/2, 0i<~/2. Let ,4+ denote the projection of Hi(l))  onto 
H i ( t )  ). Then we seen that  if UEH2"#(~), V =,4i fi satisfies the problem 

- - A ~ + ~ = - A ~ + f i  in 

and from Theorem 3.1, we find that 
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where fil is any neighborhood of 21 which does not contain the other vertices of 
O. Transforming this operator back to the coordinate x, we obtain a bounded 
map 

A,: HI(O)--+ H~(C2) 

such that Aiu=u, u~H~(~2), and such that if U~ is any neighborhood of x i which 
does not contain other vertices of O, then 

r 2~' [O2Aiu l  2 dx < ~ .  
uf 

Now suppose that 

f l i + o < l ,  

or in the case of x~=1/2, ~>37t/2. Let  B t denote the extension operator, 
mapping HI(f2) ~ H~(S), let B z denote the projection of H~(S\I2)-+ H~(S\f2), 
and let B 3 denote the extension operator, mapping H~(S\O)--,H~(O). Set A~ 
=B3BzB t. Then Aa has the above properties, and we obtain a map 

A,: Ht(O)--+ H~(O) 

having the above properties in this case also. 
Let ~, be a smooth partition of unity such that ~(x)---O near each x k, k:~i. 

Let A u = ~  ~iAiu. Then A is the desired operator. 
To state our next theorem, we write 

X=X(1,2,f l ,  O,p), 

X ,  = Xo(1, 2, fl, O,p). 

Then we have 

T h e o r e m  A.4.  X o = X n H~(f2).  

Proof Suppose u~X o. Then u~X, and since u~H~(O), u~X nHlo(f2). Now let 
u~X. By interpolation, A: X ~ X  o is a bounded operator, so Au~X o. If also 
u~H~(O), then Au =u~Xo, and the proof is complete. 

References  

1. Babu~ka, I.: Finite element method for domains with corners. Computing 6, 264-273 (1970) 
2. Babu~ka, I., Kellogg, R.B.: Nonuniform error estimates for the finite element method. SIAM J. 

Numer. Anal. 12, 868-875 (1975) 
3. Babu~ka, I., Rosenzweig, M.R.: A finite element scheme for domains with corners. Numer. Math. 

20, 1-21 (1972) 
4. Bergh, J., L6fstrom, J.: Interpolation Spaces. Berlin, Heidelberg, New York: Springer: 1976 
5. Ciaflet, P.: The finite element method for elliptic problems. Amsterdam North-Holland: 1978 



Direct and Inverse Error Estimates for Finite Elements 471 

6. Fried, I., Yang, S.K.: Best finite element distribution around a singularity. AIAA J. 10, 1244- 
1246 (1972) 

7. Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or 
polyhedral domain. In: Numerical Solution of Partial Differential Equations - I I I ,  Hubbard, B. 
ed pp. 207-274. New York: Academic Press 1976 

8. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd ed., Cambridge: Cambridge Univ. 
Press 1952 

9. Kondrat'ev, V.A.: Boundary problems for elliptic equations with conical or angular points. 
Trans. Moscow Math Soc. 16, 227-313 (1967) 

10. Raugel, G.: R6solution num6rique de problemes elliptiques dans des domains avec coins. Thesis, 
University of Rennes, 1978 

11. Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane 
polygonal domains, Part I. Math of Comp. 32, 73-109 (1978) 

12. Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane 
polygonal domains, Part II. Math. Comput. 33, 465-492 (1979) 

13. Stein, E.: Singular integrals and differentiability properties of functions. Princeton: Princeton 
University Press, 1970 

14. Wait, R., Mitchell, A.R.: Corner singularities in elliptic problems by finite element methods. J. 
Comp. Physics 8, 45-52 (1971) 

15. Whiteman, J.R., Barnhill, R.L.: Finite element methods for elliptic boundary value problems. 
Proc. Equadiff 3, Czechoslovak Conf. on Diff. Eqns., Brno, Czechoslovakia 

16. Widlund, O.: On best error bounds for approximation by piecewise polynomial functions. 
Numer. Math. 27, 327-338 (1977) 

Received June 7, 1979 


