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Direct and Inverse Error Estimates
for Finite Elements With Mesh Refinements
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Abstract. The finite element method is used to solve a second order elliptic
boundary value problem on a polygonal domain. Mesh refinements and
weighted Besov spaces are used to obtain optimal error estimates and inverse
theorems.

Subject Classifications. AMS (MOS): 65N15; CR: 5.17

1. Introduction

The problem of the behavior of the finite element method in the presence of
singularities caused by corners of the domain or abrupt changes in boundary
condition has been the focus of intense interest in recent years, see [see 1, 3, 6,
10-12, 14, 15]. This paper studies in detail mesh refinements near the singular
points. Using weighted Besov spaces, we obtain bounds for the error in the
energy norm, and we provide inverse theorems to show that our results are
optimal. This approach removes the necessity to distinguish between uniform
and non-uniform estimates when the usual Sobolev spaces are used, as in [2].
Measured in terms of the number of unknowns (number of degrees of freedom)
our analysis shows that a proper mesh refinement gives the same rate of
convergence of the error as in the case of smooth solutions and a quasiuniform
mesh. In addition we use a duality argument to obtain a weighted L, error
estimate. Qur results are related to [16], which deals with approximation
properties of piccewise polynomial functions on quasiuniform meshes in R™
[16] contains direct and inverse approximation theorems in the framework of
Sobolev and Besov spaces, and shows the analogies with well known results, e.g.,
for approximation by trigonometric polynomials.
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In Sect.2 we define certain weighted Besov spaces that will play a role in our
analysis. In Sect. 3 we give the singular properties of the solution to our problem
at the vertices of Q. We specify the refined triangulations in Sect. 4, and we give
some properties of the associated spaces of piecewise linear functions defined on
these triangulations. Sect.5 contains our error estimates, and Sect.6 contains
the inverse theorem. We have put in an appendix some results required by us,
dealing with weighted Besov spaces, and with interpolation between Sobolev
spaces satisfying boundary conditions.

2. Some Weighted Spaces

Our analysis will be carried out on a polygonal domain Q =« R? with boundary
I'. Let x;, 1 £i< M denote the vertices of Q with 6, being the interior angle of Q
at x;. Let B=(B,, ..., Bp),0< B; <1 be an M-tuple and let

M
93 = [T bx = 2.1)

where |x| means the Euclidian norm,

Further let I' =1, U I, where I}, is the union of some (closed) sides of Q and I
=I'\Ip. For each vertex x;, we let x;=1 if both sides of I" having endpoint x;
belong to I, or Iy, and we let x, =3 otherwise. We set o; =min {1, k;7/6,}. We let
# denote the indices i such that «, < 1. (Note that by allowing a “vertex” x; of Q
to have interior angle 0, =n, we include the later possibility of an abrupt change
of boundary condition within a line segment of I'.) We remark that many of the
results do not utilize the specific form (2.1) of ¢,, but are also true for any
positive weight function. This will be utilized in Sect. 6, where we shall consider
polygonal subdomains of € but will use the function ¢, defined with respect to
the domain Q.

We let H™(Q), m=1,2,... denote the usual Sobolev space of functions with
square integrable derivatives of order <m and with the norm |juj, and scalar
product (., .),,. We let HL(2) denote the set of ue H'(Q) with u=0 on I, (in the
sense of traces) and we let H, '(Q)=(H}(Q))' be the linear functionals on Hp().
Further we let H™#(Q) m=0 be the closure of smooth functions on £ with the
norm (ull,, ; defined by

fullms= i+ [ 51D ul?dx, mz21,
Q

luld = ojudx,
where we denote

iDruft= Y LA
ax’{“ax';’ 3 1= 2=V

m+m=m

and dx =dx, dx,.
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We will deal with various domains Q. When we wish to emphasize the
domain, we will write |ullymg), [Ulgmsg OF (., Jgmg) In particular if B
=(0, ...,0) then we have H™#(Q)=H"(Q).

We remark that

H™ Qe Cm~Q), m=2, (2.2)

with continuous imbedding, where C™~%(Q) is the class of m—2 times con-

tinuously differgntiable functions on © with continuous extensions of its m—2

derivatives on £, furnished with the norm |[ul|cxo,= sup iD'u). For, if m=2, the
xef,i<k

continuity of u at all the points except x,, i=1,....,.M “follows from Sobolev’s
imbedding theorem. To verify the continuity of u at x, =0, say, it suffices to
show the inequality

sup [u(x)2 < Cf [Jul® +|D ul* +r*#1\D*u?]dx, 0<p, <1, (2.3)
2

with r?=]|x]? for all smooth functions u. By use of Theorem A.1we extend u to a
full neighborhood S of 0 preserving the norm of the right side of (2.3). Let p be a
smooth (C*) function with its support contained in S and with p=1 in some
neighborhood 8’ < of 0. Setting v=pu, f=Av we understand v to be defined on
R? by zero extension and define

1
V(x)=§;£f(y) In|x—yldy. (2.4

Because 8, <1 we get by Schwartz’s inequality
V)= Cllul g, (2.5)

We also obviously have A4V =A4v. Integrating in (2.4) by parts and realizing that
f has support in S, we see easily that V(x) -0 as |x| —co. Because v has compact
support, applying the standard (uniqueness) theorem we get V=v. Now (2.5)
yields immediately (2.3) and hence (2.2) in the case m=2. The proof of (2.2) for
m>2 follows by induction.

Our weighted Besov spaces will be defined in terms of interpolation between
the above spaces. We shall use the interpolation spaces of Peetre which are
developed for example in [4]. However, we shall require only the definition and
a few properties of these spaces and we state these explicitly. If Osk<m we
define

X (k,m, B, 0, p) =[H™*(Q), H()];.,-
If 1 £k <m, we define
X y(k,m, B, 6, p)=[H™#(Q) n HA(Q), H*(Q) " Hp(Q)]s, -

We shall only require these spaces in the case p=oc0, and we now define them
explicitly in this case. For ue H* " Hj;, we set
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K(u,ty=imf{{lof, + W], 4}
u=v+w, ve H{Q)nH}(Q), we H™#(Q) " H},(Q);

and we define the norm

(%0 xe,m, 5.6, c0) = SUP {t79K(u,1); t>0},

Then X ;,(k,m, B, 0, 00) is defined to be the set of all ue H*(Q)~ H}(2) with finite
norm. The space X(k,m, f3,0, o) is defined in a similar manner. In Sect.6 we
shall need the reiteration formula [4, Theorem 3.5.3]

XD(1’23 ﬁ> Hs w):[XD(lvzv ﬁ’ 015 w)’ Hé(g)]()z,oo’ 0:0162' (26)

We need to know in which of our weighted Besov spaces certain functions
are. Let x; be one of the vertices of Q, 1<i<M and let (1,.¢,) be polar
coordinates which are centered at x;. Let u(x)=r* ®(¢,;) n(r;), wherea>0 and &, 5
are smooth functions of their arguments be defined on Q. Obviously u(x)e H(Q).
We have, assuming that u=0 on I7,.

Lemma?2.l. Assume k—1<a<m—1—pf, where k and m are non negative in-
tegers. Then ue X p(k,m, B, 0, co) with 8 =(x—k+1)/(m—k—B)).

Proof. Since a>k—1, we easily see that ucH*(Q). We estimate the function
K(u, ). f t =1 setting v=u, w=0 we have K(u, )< ||u|,. To estimate K for t <1,
we use a smooth function &(s), 0<s < oo such that

(=1, 0gs=£1/2,
&(s)=0, 1=s<oo,
and

£(5)=¢ (g) 0<ss1.

Then obviously

dé a(8)

1< CHY
ds’ £Co

with C independent of J. Also we use the obvious relation
Diu(x)|Cr2~J

with C depending on «, j but independent of x.
We now set

v=¢(5(r)u, w=(1-&,(r)u,

where 0<d <1 will be chosen shortly. From the Leibnitz formula we have
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k
iRl [ X DRt | ax

Q Lj=0

3 k
=CJ [Z 5‘2jr2‘“"‘+”+r2“] rdr
oL

=0
< C[éz‘“‘“ l)+52(a+ I)]
< CoReke D),

To estimate
Iwhap=lwla_y+{ $71D"w|* dx
Q
we note that [D/&,(r)[> =0 for j>0 and r,¢(5/2, §). Using the Leibnitz formula

[ p2IDmwrdx<C i | [72P D1 — &) 1D iul*] dx
0 j=0@

s ]
<C [J‘ P28t 20=2m)p gy z §5—2jr2([3;+a——m+j)rdr]
Y j=14/2

_<__C(52(a—m+ﬂ|+ 1y
A similar calculation gives
Wi s = IwiI§+ 1D~ w]* dx
<CH+CH*em*t2),
Hence we get

[ Wiy p< COmHEAY
Combining the inequalities for v and w
K(u )< C[o*F+1qpormHhiti],

Let & be defined by t=56""%"#. Then for 0<t<1 we have d<1 and we obtain

K(u, t)§ C[é"“k+1+5m"‘"ﬁ']§_C(§“_"+ 1 :CIG,

where 8=(x—k+1)/(m—k—p)<1. The lemma follows now from these in-
equalities for K and the basic definition of the interpolated norm.

The spaces X ,,(k,m, f,6;q) are increasing functions of ge[1, 0]. If g< o one
can only assert that ueX ,(k,m, f6—¢&q), ¢>0. For this reason the spaces with ¢
= o0 are needed to obtain sharp estimates.

In the appendix we derive some results on interpolation that will be of use to
us.
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3. The Model Problem

We consider the model problem

—du+tu=f in Q, (3.1a)
u =0 onlI,

P (3.1b)
u

%20 on [;V

and we understand it in the usual weak sense. It is well known that this problem
has a unique solution in HJ}(Q) for each feH} '(Q). Further statements about
the regularity of u depend on the regularity of f and on the interior angles at the
vertices of Q. We shall require the following two results from Kondrat’ev [9].
See also [7].

Theorem3.1. There are functions v,eH}(Q), ie.# which are zero outside a
neighborhood of x; and which have the form

v,(x)=p;(r) 17 &,(0)),

where (r;, 0,) are polar coordinates with origin at x,, p,®, are smooth functions of
their arguments, p,(r)=1, 0<r<a;, a,>0 such that if u is a solution of (3.1) with
feH(Q) then

u=3y Cv;+w

ie M

with we HX(Q) ~ H}(Q2) and

LICI+ 1wl S Cllf Lo

ie M

To state the next theorem, we first note that, using Holder’s inequality and
the inclusion H'(Q) < L,(Q), 1 <p < o, we obtain

Ilullo,_,q={!I2 ¢y 2wt dx}2 < Cllull,,  ueH'(Q). (3.2)

Hence, if feH*#(Q), | f udx defines a linear functional on Hp(). With this
Q

understanding we have [9, Theorem 1.1]

Theorem 3.2. Suppose 0< B, <1, 1 Si<M, and suppose 1 —a,< i, <1, ic.#. Then if
feH%#(Q), the solution u of (3.1) belongs to H*P(Q), and there is a c¢>0
independent of f such that

lullz, g =l fllo,p-

We derive now a corollary of Theorem 3.1,
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Corollary3.1. Let 0<8,<1, ie#, and suppose 6=min {o,/(1—B,),ieM}<]1. If
feH (Q), then ueX (1,2, B, 0, 0) and

“"”xn(1,2,p,o,m)§C“f“o-

Proof. From Lemma2.l we have v,€X,(1,2,8,6, o). The result then follows
from Theorem 3.1.

4. Mesh Refinement

We define a family of triangulations which are refined in a systematic way near
the vertices of Q, governed by the function ¢,(x) defined by (2.1) with y
=(y,... 7p) 0Sy;<1. By a triangulation J of 2 we mean a finite collection of
closed triangles T whose union is Q and such that if S, TeJ then S~ T is either
empty, a common side or a common vertex of S and T. For TeZ we let d;.
=sup {Ix—yl;x,yeT}.

We say that J is a triangulation of type (h,y, L) if:

(i) if Te and 0 is an angle of T,02L"';
(i) if ¢, %0 on T then I 'he (x)<d;SLh¢,(x), xeT;
(iii) if ¢ vanishes at some point of T then L™ *hsup¢.(x)Sd < Lh sug ¢,(x).
x€

If y=(0, ...,0) there is no refinement and the triangulation is quasiuniform. If
y=+0 then the amount of mesh refinement near the vertex x; is determined by ;.
One of the goals of this paper is to illustrate how the theory of quasiuniform
meshes may be generalized to refined meshes through the use of weighted
Sobolev spaces.

We shall measure the error in our finite element approximation in terms of
the parameter h. To justify this we require an estimate on the number of vertices
in a refined triangulation. We have

Lemmad.l. There is a constant ¢>0 independent of h such that if J is a
triangulation of type (h,y, L) and if N is the number of vertices in 7 then

N=ZCh 2.
(C depends in general on @, y, L.)
Proof. We have N<3) 1 where the sum is taken over TeJ . If ¢, does not
T

vanishin T

1S Cd; 2 [dx< Ch™2 | ¢; 2(x)dx.
T T

Since the number of triangles in which ¢, vanishes is finite we have

NS Ch=2{¢73(x)dx
2

and the lemma follows immediately.
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Given a triangulation J of Q we let (7)< H'(Q) denote the corresponding
collection of continuous piecewise linear functions on Q, which are linear on
every TeZ and we let (7)< Hp(Q) denote the corresponding collection of
functions which vanish on I;,, We require an approximation property for
functions in (7). We start with some inequalities.

Lemma 4.2. One has the inequality
1 1 dZ 2
J2[z(ty—a]?dt< Clo) [ 1 (217) dt, o=+l 4.1
0 0

where a=z(0) if a<1, a=z(1) if a> 1.

Proof. For a <1 we start with inequality [8, Theorem 254]

}s‘ 2w(s)?ds<C i w'(s)2ds+ Cw(1)?,  w(0)=0.
0 0

1
Using the inequality w(1)><|w’'?ds, making the change of variables s=t'"¢
0

and setting z(t)=w(t) —w(0), we obtain (4.1). For a>1 we use the inequality [8,
Theorem 255]

O by 8

sT2w(s)*ds<4 [ w'(s)?ds, w(0)=0.
4]

Making the change of variable t =5~ and setting v(t) =w(t) —w(1) for t<1, v(f)
=0 for t>1, we obtain (4.1) in this case.
Let T be a triangle with one vertex at 0. Then we have

Lemmad4.3. Let a+0, and let u be defined on T with weak first derivatives which
satisfy {|xP|D'uj*dx<co. Then there is a constant a, depending on u and a
T

constant C >0, independent of u but depending on o and the minimal angle 0, of T,
such that

fIxP~2lu—al?dx < C [ |x*|D' u|? dx, 4.2)
T T

and

la|SC {r*|D'uldx.
T

In addition if « <0 and u is continuous then a=u(0).

Proof. Let S be the finite sector defined in terms of polar coordinates (r, §) by
0£6<50,, 0<r=<1, where 0, is the angle of T at the origin. Then T may be
mapped into S by a smooth map and so it suffices to prove (4.2) with T replaced
by S. Let

a(r)=0g"! 050 u(r,0)do.
0
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It is easily seen that

jfr’”" dii

0

2
dx < C{rD' uf? dx < oo. (4.3)
S

Using (4.1) and (4.3) we obtain

2

—1 dx

L dii
=L —a]?dr< C [+t
0 5

(4.4)
SC[rD'ufPdx, o=0.
5

We remark that for o <0, i(r) is continuous on [0,1] and a=i(0) in (4.4). In
addition when u(r, 6) is a continuous function on T then in the case a <0 we get
a=u(0).

Integrating (4.4) over § gives

{r2la—al?dx< C{rD'ul*dx. 4.5)
s 5
Further for almost all r, ¢ we get

®
u(r, @) —u(r, W):.{ ug(u, 0)d0,

and therefore

8o ]

lu(r, p)—idi(r)i =105 ! _g dyr ;E/ue(r, 6) de‘

o 1/2

<C [g g7, 9)[2(19] :

and hence
6o 6o
[ [u(r,)—a(r)]>dp < C | lug(r. 0)I> dO. (4.6)

) 0

Multiplying (4.6) by r*~! and integrating over r we get
fra=2lu—ual?dx < C [r*|D" u|* dx. 4.7
s 5

Using (4.5), (4.7) and the triangle inequality we get (4.2).

Lemmadd. Let ¢>0 and let 0<s<1l. Then there is a positive constant C,
(dependent on & and s) such that if T is any triangle with vertices z' =0, 2%, z* and
with minimal interior angle = ¢, if u satisfies

f[luf® + D" u|? +|x|** |D* u[] dx < o0, (4.8)
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and if p is the linear interpolating polynomial to u on T, then

§Oix?*~*fu—pl? +[x?*~ 2 D' (u~p)*] dx
T

(4.9)
S C{IxI**|D?ul*dx.
T

Proof. From (4.8) and (2.2), u is continuous function on T as shown in Sect. 2, so
the interpolating polynomial p is well defined. To prove (4.9) we suppose that T

0
has vertices z! =(0,0), z2=(1,0), z>=(0,1). Let v, —a—uz—l 2. Since O0<s<1 we
use (4.2) to obtain constants g; such that x

i

“ |2s 2 ’_'__a dx<Cf|x}25|D2u12dx i=1,2. (410)

Now we set v=u—a, x; —a,x,. Since s<1 and v is continuous we use (4.2) and
get

fIxPP*=*lv—v(0)*dx =< C f|x}**~2|D' v|*dx. (4.11)
T T

Combining these inequalities, we obtain (4.9) where p is replaced by the
polynomial g(x)=u(0)+a, x,+a,x,. Let uy=u—g=v—v(0), p,=p—gq. Then p,
vanishes at z' =(0,0) and equals u, at z* and z>. We have, by (2.2), u,=v—10(0),
so from (4.10), (4.11),

j’[!xl2s—4 ‘p0|2+lx125—2 IDI Po[z dx
T

< CLlu(x?)1? +uo(x*)*]

4.12)
S C [[uol? +ID* ug|* +1x>* ID? uy|*] dx
T

<C[lx>|D?ul.
T

Using (4.12) and triangle inequality we obtain (4.9) for our triangle. If 7| is
another triangle with the area 1/2 we map T; onto T with a linear transfor-
mation. Using this transformation we get (4.9) for T, with C depending on e.
Since (4.9) remains unchanged with a change of scale we get (4.9) in full
generality.

Using this lemma we give the approximation property for functions in
(T ).

Lemmad.5. Let  be a triangulation of type (h,v, L). Then there is a constant C
depending only on y and L such that for ue H*7(Q)nH)(Q) there is a veS(T)
such that

flu—vl;=Ch !Iuliz,y~

Proof. Let ueH>"(Q)nHy(£2) and let ve#(T) be the piecewise linear in-
terpolation to u. Since u is continuous in Q, v is well defined. Let TeJ If none
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of the vertices of T coincides with a vertex x; of Q with y,>0, then e H*(T).
Applying standard results we have

§Ou—o? +ID*(u—v)l*]dx < CdZ [|D* u* dx
T T

when C depends only on the minimal angle of 7. Hence we have

fOu—of +ID'(u—0)|*]dx< C [$2|D?ul* dx. (4.13)
T T
Suppose that one of the vertices of T is a vertex x; of Q with y,>0. We use (4.9)
with s=y;, and the inequality » <d, to obtain
flu—v? +ID (u—0)*]dx
T
4.14
éc(dr)z(l_mjlx_xilzy' ID?u)* dx. ( )

Since 7 is of type (h,y,L)

drSLhsup{$,(x).xeT)
< Ch{{supix—x", xeT} < Ch(d,)"

Hence (d;)' "% < Ch. Also, for xeT|x—x*< C¢,(x). Using these inequalities
together with (4.14) we see that (4.13) is valid for all triangles. Summing (4.13)
over all triangles we get the result.

In Sect. 6 we shall require an ‘inverse property’ of the functions in (7). We
have

Lemma4.6. Let J be a triangulation of type (h,y,L). Then there is a constant
C >0 depending only on y and L such that for we¥,(J) and 0<0<1/2

[l xpc1, 2. 7.0, 00 S CH™° 1l
Proof. Let ue (') and let
K(u, t)y=inf{{jv], +t[|wl, ,; u=v+w,t>0}.
To prove the result we will show that
Kut)<CEPh % uj,, 0<8Z1/2. 4.15)
Setting v=u, w=0 we have for t>1/4h

K< ul, Cth~° fju],.
h
We now estimate K(u,t) for tgz. For TeJ let

N(T)=U{T'eJ, T' A T+0}.
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For t<h/4 we will construct a twice continuously differentiable function

td
weHL(Q) such that if 6, = hT TeJ, we have

sup Owx)i+ID'w(x)3=C Sup [lu(x)l +{Du(x)], (4.16)
sup [D?*w(x)| < C ;! sup [iu( W +1D u(x)(3, 4.17)
xeT

meas{xeT; u(x)=w(x)} =Cd; 51. (4.18)

Using these properties we get
”“—W“Hl(r)§ca;/2 df”z ”u”Hl(N(T)) (4.19)
because it is easy to see that for ue%,(9),

SUp (1) +1D* (9 Sd7 el xery (4.20)

Further we have
I, 1D Wl oy < Ch™ ' 67 M2 7 Null ys ey, (4.21)

because |D?u|=0, wu only on set of measure <Cd,d, and because of (4.17)
(4.20). Squaring (4.19) and (4.21) and summing over all TeJ we obtain

lu—wii; < Ct"2h= 12 lufj,
i$,D*wllo< Ch= 2t~ 12 [u]],.

From these two estimates (4.15) follows readily. Hence it suffices to satisfy (4.16),
4.17), (4.18).

Let us now construct the function w. Let S and T be two triangles of 4 with
common side (ST) and let xg ; denote the distance from a point x to the
commoi side. Let g5; be the 2 d¢-neighborhood of (ST). If z is a vertex of TeJ,
let B, be the 2 p,-neighborhood of z. We choose d4r and p, so that

057 =Ci[os+07),  Cip.26:2Csp.,

where C, >0, C, >0 depends only on L. We also assume that the situation is as
in Fig. 1.

For TeZ, u is a linear function in T. We let u, denote the extension of this
linear function to Q. We let e(s), — o0 <s<oo denote a smooth function such
that e(s)=1 for s=1, e(s)=~1 for s —1 and e(s)=0 for [s]<1/2. Now we
define a function w on every TeJ as follows. Let T be as shown in the figure,
with vertices z;, i=1,2,3, and with adjacent triangles S;, i=1,2,3. For xeT,
Ix—zizp, i=12,3, set

%[“(x)'*'“si(x)] +%e(xrsi/51s,«) [u(x) —ug,(x)], X€erg, i=1, 2,3,

wy(x)=
u(x), xéers, i=1,23.
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For xeT, define

wix), |x—zl=22p,, i=1,273

Wix) = u(x)+[w,(x) —u(x)] e(lx—z;l/2p,), p, Slx—z|<2p,, i=1,23,

u(x), Ix—z,<p,, =123

Using the properties of the function e, we see that w is a smooth function and
that (4.16), (4.17), (4.18) hold.

5. The Error Estimates

We now give error estimates for the standard finite element approximation to
(3.1) using the subspace %,(7 ). Let 7 be a triangulation of type (h, y, L) and let
u, be the finite element approximation of u using #,(7). Then

lu—wl Slu—wh,, weH(T)

Our basic result is

Theorem5.1. If ue H>"(Q)~HL(Q) then
fu—w,l = Chiul,,.

If ueX(1,2,7,6, ©) then
lu—wu S CH Jullx 01, 2,50, 00

Proof. The first result follows immediately from Lemmad4.5. For the second
result we define the operator E: H5(Q) - Hy() by Eu=u—u,, and we estimate
the norm of E on the interpolation space X p(1,2,7,6, ).

Now we state a corollary of this result in the case that feL,(€).
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Corollary5.1. Let feL,(Q). If y,>1—a;, ic.#, then
lu—u; =Chlflo
If ;<1 —a; for some ic.# then setting

p=min{e,/1 —y;ieH},
lu—wlt, <CH | f1.

Proof. The first result follows from Theorem 3.2 and Theorem 5.1. The second

result follows from Coroliary 3.1.

We note that if there is no mesh refinement, i.e. if y=0, then Corollary 5.1

gives
lu—w,j, =Chifl,

where y=min{o,, ic.#}.

We now consider an L, estimate for the error. Because of our mesh
refinement near the vertices of Q we obtain an error estimate in the (stronger)

weighted L, norm, defined by the formula

1/2
“0“0,—[32{};(]5/3_202 dx} -

Theorem5.2. Let 1 —o, <y, <1,ie#. Then
le—uyllo,_, S Chju—u,l,.
Proof. From (3.2) we have
&, 2—u)lo,,=llu—tyllo,_, S u—u,j; <oo.
Let z denote the solution of the problem (3.1) with right hand side
f=¢; (u—u)eH*(Q).
Applying Theorem 3.2 we get ze H>?(Q)n Hp(Q) and
hzll2,, = Cllu—wullo, _,.
Using this solution we have
lu~u )15, _, = (&5 (u—w,), u—u,)o
=(z,u—u,), =(z—~¢ u—u,),

Slz—cly llu—wul,
where £e5,(7) is arbitrary. Choosing £ as in Lemma 4.5 we obtain

lu—u i3 _, S Chlizll,,, lu—u,

SChiu—ulo, _, flu—ul,.

The result follows immediately.

(5.1)

(5.2)

(5.3)
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6. The Inverse Theorem

We shall establish two converse theorems to Theorem 5.1. For our first result,

Theorem 6.1, we restrict ourselves to the case 0<60<1/2 and we use the inverse

property of S(7) stated in Lemma 4.6. In addition we require an assumption

(H1) on the existence of a family of triangulations of suitable type. Our second

result, Theorem 6.2, allows 6¢(0,1) and does not use Lemma 4.6. On the other

hand, we replace (H1) by a considerably more complicated assumption (H?2).
For our first theorem we require the assumption

(H1) there is a sequence h, »0 and a family , of triangulations, such that
(1) J, is a triangulation of type (h,, y, L),
(i} Z,, is a refinement of 7,
(i) C,27"<h,£C,27" where C,> C, >0 are independent of n.

We let #"=%(7) and we shall let u, denote the finite element solution of

(3.1) using & as the set of trial and test functions. Because of (ii) we have
Frrtsogm

Theorem 6.1. Suppose (H1) holds. Let uc HL(Q). Suppose there is a 6€(0,3), and a
P >0 such that for each n, there is a u, €™ such that

lu—u,ll, SPh.
Then ue X ;(1,2,7,6, ) and for some C >0 independent of u

1l xp01, 2,76,y = CLIHI, + P
Proof. Let 0,€(0,1/2), and let
K(u, ty=inf{||vll; + ¢ [Wllxp 1,2, 7.0, a0y U=V + W}, t>0.

We set

By our assumption we have
lvl,SPH<CP27"
Using Lemma 4.6 we get

n
1l xp01, 2,701, 00 = MU X001, 209000 000 + 2 18— 85 1l xp(1, 2,801 0)
2

éc{“ulul“Lz::”“j_“j-lll 207}
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Since

”uj_uj—ﬂ}lé Huj- —ull,+ lluj~u|{1

<C2-%
we obtain

“uh”XD“,Z,}',Ol,oo)éC{“unl +2n(91—9)}.
Hence
Ku,t)SC{P27" 4t |uf|, +1 2@ -0}
SC[lull, +PJ[e2"@ -9 4 2-0m],

For t<1 we pick n so that 2"<t~ 1% <2"+! Then 29" <t~ ! <2.2%" so setting
0,=0/0, <1,

2~n0=2~ﬂ0102 é C [92,

Qn(61—8) __ andi(1-02) < (0 p—(1~-02)

Hence we have for t <1
K(u,ty< CLjufj, +P1¢*
For t=1 we set u=v and obtain
K(u,0 < C ull £ C Jull, ¢
Using (2.6) we get our result.
Now we will formulate our second assumption.

{H2) there is a sequence h,, an integer N and a family 7%, 0SusN, n=1,...
of triangulations such that

() ¥ is a triangulation of type (h,, v, L);

(it) for each u=0,...,N, 7% , is a refinement of I *;

(ii) for each n=1,2,..., 7.9 is a refinement of 7%, p=1,...,n;

(iv) for each TeZ°, there is a >0 and a TeZ* such that T<T and if
T,€7,°, T,nT+@ then T, T;

(v) C,27"<h,£C,h™" where C,> C,>0 are independent of n;

(vi) there is a finite collection of convex polygons Q,<=Q, 1Sm<R such
that, setting

Q*=U{T:T<Q,, TeZ"},

we have
R
a) {J Qr=0;
m=1

b) for each m=0,...,.R~1, | Q" is a polygon which, together with Q5
i=1
satisfies assumption (H) of the Appendix.
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We shall set " =5(7}) and S™*=S(F}). Because of (i) and (iil) we
have

yn,ucyrwl,u y"’"cym"
, .

Theorem 6.2. Suppose (H2) holds. Let ueH (). Suppose there is a 0€(0,1) and a
P >0 such that for each n and p there is a u, ,€ ™" such that

lu—u, N SPH. 6.1)
Then ue X ;(1,2,7,0, ) and for some ¢ >0 independent of u
1l xpct. 2.v,6, ) = CLIUI  + P

Proof. Let TeZ,° and let x4(x) be the piecewise quintic function on 7.° which is
of class C'{Q), defined in terms of the Argyris triangle [5, p.71] by specifying

the following values: for x a vertex of T, kp(x)= where n(x) is the number of

1

(x)
triangles of Z.° which have x as a vertex; for x a vertex of T'e7, x¢T let k()
=0; all derivatives of x, that may be specified are chosen to be zéro. The family
of functions x,(x), TeZ,° have the following properties:

Yrx)=1, xeQ,
T

k(x)=0, if xeT'eZ,° and SNT=0,
Dk, (0| SCd5, i=0,1,2.

Now to every TeZ,? we associate A(T)=u and T(T)eZ*™ given by (H2) part
(iv). Let us introduce

W,= ) o U ary
Teﬂ’
Since, for fixed T, K7 Uy 2 €H 5(Q) is a piecewise 6th degree polynomial on 7,
which is of class C (Q), so is w,

Let M Q)<H) (Q)(resp y”(Q)cH (2)) denote the class of all piecewise
sextic functions on Z,° which are in C! (Q). Further for any Q' <Q we let FH)
be the restriction of V”(Q) to Q.

Also, let k* =) Kk where the sums are taken over all TeZ.°, such that A(T)
=u. The functions «’ then satisfy

i Ki(x)=1, xeQ, (6.2)
=1
ID'E(ISChy g (x)  i=0,1,2. (6.3

It can be readily seen that

N
=Y khu,,.
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Let u', be the best approximation of u in H'(,,) by functions from ¥™*(Q,).
Because of (6.1) we have
Hu——u;"’u[l,,,mm)§Phg. 6.4)
Because Q,, is a convex polygon we get in the same way as in Theorem 5.2,
o= <z,

n, ,,”HO Q) = é”yl(nm) i um_“n,,‘“m(gm)’

where z;, is the solution of (3.1) on , with right hand side f=(u—u ) d)y‘z
and I;,=9, and where £€5™#((2,) is arbitrary. Also we have

” n“”HZ V(Qm).-C”u un unHl(Qm)
Using Theorem A.1 there exists Z; e H 259(Q) with

=2

H n, ,;HHZ Y (Q)= HHL‘/(Qm)

and z;, =7, on Q,. Using £ as in Lemma 4.5 we get
lu—u ,ligo, ~vip,y S CPhy+° 6.5)

with the constant C depending only on Q,,.
Define

Using (6.3), (6.4), (6.5) we have
e, (=1 Mz o= C 5 ID (u—uy ) dx

+Ch? { ¢;2|u+un,“ldx§Cth"‘ (6.6)

Combining (6.5), (6.6) and (6.2) we get
=Wyl g1,y = C HE. 6.7)

Let us show now that for any TeZ,° and any polynomial z of degree 6 on T we
get

”Z”H%nr)é Ch; ! ”Z”H‘(T)' (6.8)
In fact by a scaling argument we get

d2 {|D?z|*dx < C(L) [ID* z|? dx. (6.9)
T T

If ¢4 does not vanish on T we obtain

h2 [ ¢2|D*z]* dx < C(L) [ID" 2 dx. (6.10)
T
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If ¢, vanishes at a vertex x; of T we use instead of (6.9) the easily derived
inequality

d2 =9 {|x—x'PP|D? 2} dx £ C !.»]Dl z|*dx
and we again obtain (6.8).

Now we estimate the quantity

K (u, 6y =i {10 g gy Wl 03 4 =0+ (6.10)
We set w=w", v=u—w_ and using (6.7) we obtain

K(u, ) S CP K+t Wil e, viony- 6.11)
Write

n
WISWEE 3 W),

By using the inclusion w"—w?" €%/ (Q¥) we get by help of (6.8), namely

J
squaring it and adding over all T belonging to J;°,

m

Wi —wi_ e =C h; ' IWF = Wil 1l - (6.12)

Using (6.7) and (6.12) we get
“WTHHZYV(Q;,)é “W';IHHOW(Q:,,)'*' '22 “W'Jn - WT_ 1 “HO,B(Q;")
j=
SC Wl grar t C Z h} : HW?_W?_ Harasy
j=2

<CLP+ul,]+C .izpzf-ﬂf
<C[P+ |[u|l1+P2(J1“”"].
Using this in (6.11),
K(u,t)< CPH+t C[|ull,+Ph; =91,  1>0.
Suppose t < 1/2 and pick n so that 27"~ ' <t<2~". Then we obtain

Ku, )y Ct®*+C[|u|, 4P
SCLP+|lul 7.

For t>1/2 we set v=u, w=0 and obtain
K= ul; SCE ful,.
Combining these inequalities we find that

ue[H>H(Q%), H{(Q%]. -
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Using Lemma22 we get the desired result. Using (H2), part (vi) and
Theorem A.2 successively for m=1,...,R, we find that ueX(1,2, 8,6, o). Since
ueH}(Q), we find from Theorem A4 that ueX(1,2, 8,6, ), and the proof is
complete.

Appendix

We prove two theorems on the extension of functions lying in weighted Besov
spaces. In the first theorem we show that the Stein extension [13] may be used
for this purpose. In the second theorem we show that the extension operator has
a certain property with respect to the intersection of two domains. We follow
closely the notation and arguments of [13, Chap. 6, Sect. 3].

Let h: R' »>R' be a function which satisfies the Lipschitz condition |h(s)
—h(t)) <M|s—t|, and let D={xeR?; x,>h(x,)}. We call D a special Lipschitz
domain. We further assume that h(0)=0. For x¢D, we let §(x) denote the
distance from x to D, and we let 4(x) denote the regularized distance from x to
D, as constructed in [13}. In particular, C, A(x)=5(x)= C, 4(x), where the
positive constants C; and C, depend only on M. We let S, denote the sector S,
={x: x,<0, K{x,|<|x,|}. Thus, S,,nD={0}. We have

{5
2/1+M%

for 6(x) is = the distance from x to S,,, and the result then follows from a
computation (Fig. 2).

It is shown in [13] that there is a constant C,>0 depending only on M such
that Cy A(x)2h(x,)—x,. We set C,=max(C;,4 C,(1 +M?)!?), and we set 6*(x)

Ix)= X€S, s

X2
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=C, A(x). Then &* is a regularized distance function that also satisfies

() 2 h(x,) —x,,

(A1)
O*(x)=21x,l, x€S,.
Let ¢/ be a smooth function defined on [1, co) which satisfies
fy(ydi=1,  [AFYAHdi=0, k=12,... (A2)
1 1

Let f(x) be defined for xeD. We then define the extension Ef by Ef(x)= f(x),
xeD, and

Ef(x)={f(xy,x, +A0*(x)y(A)dA,  x¢D. (A.3)

Let B=(B,), let H*#(D) be the space of functions with

[ullyz.e={] [lul® + D" uf® + |x1># |D* u|*] dx}'1? < oo,
D

and let H*#(R?) have a similar definition. Then we have

Lemma A.l. E: H>#(D) - H>#(R?) is a bounded map.

Proof. Suppose fe H*#(D)n C*(D), and suppose that f and its first and second
derivatives have continuous extensions to D. Then as in [13], we conclude that
EfeH'(R?) and

VESM w2y = C 1S nsoy

It remains to estimate the second derivatives of Ef Let x=(x,,x,), and X
=(x,,x,+46%(x)). We show that for 121, x¢D,

Ix|< C4 11, (A4
where C, depends only on M. For if xe€S,,,, then using (A.1),

X, +A*(X)Z x,+0%(x) 21X,
)

%2 x3 - 4 M?
Ix? T x2+x3" 1+4M%

and if x¢S,,, -

|22 x3 1
x> T x2+x2T1+4M%
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Calculating the second derivatives of Ef and using (A.4) and the arguments of
[13, p. 187] to estimate ||x{*?1|D?Ef|* dx, we obtain

5|x|2'3l lDzEfIdeg C“f”lzﬂ,B(D)-

The result follows by a limiting argument.
We now consider a polygon Q with vertices x;, 1<i<M, and weights
B:€[0,1) as in Sect.2. We have

Theorem A.1. There is a bounded map E: HY(Q)— HY(R?), such that Eu(x)=u(x),
x€Q. The map E is also a bounded map from H*(Q) to H*#(R?), and from
X(1,2,5,0,p) to [H**(R?), H'(R?)], ,.

Proof. Following the argument of [13], we represent @ as the union of a
collection of special domains, and we use Lemma A.1 and a partition of unity to
construct E, We find from this construction that E is a bounded map on H'(Q)
and on H?#(Q). We then use interpolation to complete the proof.

We now consider special properties of our extension operator when there are
two domains present. Let h;: R' >R', i=1,2, be two Lipschitz continuous
functions with Lipschitz constant M. Let D,={xeR*:x,>h,(x,)} be the cor-
responding special Lipschitz domains. Let E, be the extension operator cor-
responding to the domain D, constructed in Lemma A.1. Then we have

Lemma A.2. If ueHY(D,) and u(x)=0, xeD,nD,, then E (x)=0, xeD)\D,.
Proof. We have as in (A.3),

Ex(x)=°ff(x1,x2+xa*(xwu>dx.

If xeD,\D,, then x, +A5*(x)>x,>h,(x,), so £=(x,,x,+416*(x))eD,. By con-
struction, XeD,, so XeD,nD,, and the integrand is always zero, so E, f(x}=0,
xeD,\D,.

We now consider polygonal domains €,, i=1, 2. Let 2, have vertices x;,
1<i£M, and weights f,€[0, 1). We suppose that ©, and Q, satisfy

(H) For each x*edQ,n0Q, there is a neighborhood u of x*, a linear
transformation of the independent variables x—»% of U- U, and Lipshcitz
continuous functions h;: R*—R!, i=1, 2, such that the image of Ung; in U is
given by {%eU:%,>h,(%,)}, i=1, 2.

We then have

Theorem A.2. Let the polygons Q,, Q, satisfy (H). Then there is a bounded map
E: HY(Q,)— HY(R?), such that Ef (x)=f(x), xeQ,, such that E is also a bounded
map from H*#(Q,) to H*P(R?, and from [H**(Q,),HYQ,)],, 1o
[H*#(R?), HY(R®],,, and such that if f(x)=0 for xeQ,nQ,, then Ef(x)=0 for
xeR,\2,.

Proof. We cover 82, by a finite number of open neighborhoods U such that
either UndQ,=¢, or that Q,nU,i=1,2, can be represented as in (H). We use
Lemma A.1, our linear change of variables, and a partition of unity, to construct
E. Using the arguments of [13] and Lemma A .2, we obtain the result.

We now derive some consequences of these extension theorems.
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Theorem A.3. Let Q,, i=1, 2, be polygonal domains with non-empty intersection
and which satisfy (H). Let Q,=Q,0Q,. Let

Xiz[HZ’p(Qi)ﬂHl(Qi)]O,p! l=17 2’ 3
Then if ueX,, i=1, 2, we have ue X 5, and |ju|x, < C{{lufx, + [ulx,}.
Proof. Using Theorems A.1, A2, let E;: X, — X5, i=1,2, be a bounded map with
the properties

(D) (Ew(x)=u(x), xe&, i=12,
(ii) if ueX; and u=0 on 2, NQ2,, then

Eu(x)=0, xeQ,_,, i=12.

Since ueX,, E,ucX,, so by restriction, E,ueX,. Hence v=u—E ueXz, S0
E,veX,. We claim that

u=E u+E,v. (A.S)

Since v=0 on Q,nQ,, E,v=0 on Q,, so (2.2) holds for xeQ,. If xeQ,,
E,v(x)=v(x)=u(x) — E, u(x), so (2.2) holds in 2, also. Since the right side of (2.2)
is in X,, ue X, and the proof is complete.

Let @ be a polygonal domain. For our next result, we need the following
lemma.

Lemma A.3. There is a bounded map A: H'(Q)-— H}(Q) such that A=the identity
on HA\(Q), and such that A: H**(Q)— H>#(Q) is a bounded map.

Proof. Let S be a disc with SoQ. Let x; be a vertex of 2 with interior angle 6.
We construct a linear transformation of R? to new variables X, and with a new
vertex 6, such that if x;=1,

m+§+L
\\ .

and if K, =1/2, either ,<m/2 or 2n— 0, <n/2. We let 5., 9, denote the image of §
and Q under the transformauon We now distinguish two cases. First, suppose
that

n
> 1
/3,+9'>,

or, in the case of x;=1/2, §,<n/2. Let A, denote the projection of HY$) onto
HL($). Then we seen that if GeH> (), 5= 4,7 satisfies the probiem

—AP+P=—Adi+i  inQ
veHL(S),
and from Theorem 3.1, we find that

[ 75D p|* d% < o0,
i
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where #; is any neighborhood of X; which does not contain the other vertices of
Q. Transforming this operator back to the coordinate x, we obtain a bounded
map

A;: H(Q)-> H}(Q)

such that A;u=u, ueH}\(£), and such that if U, is any neighborhood of x; which
does not contain other vertices of @, then

[ r*#|D*A4,u|* dx < co.
Ui

Now suppose that
n
=<1,
Pt

or in the case of x;=1/2, §,>3n/2. Let B, denote the extension operator,
mapping H'(Q)— H'(S), let B, denote the projection of H'(S\Q)- H(S\Q),

and let B, denote the extension operator, mapping H'(S\Q)— H'(Q). Set 4,
=B;B,B,. Then A, has the above properties, and we obtain a map

A HY(®Q)- HA(Q)

having the above properties in this case also.

Let {; be a smooth partition of unity such that {;(x)=0 near each x,, k3+i.
Let Au=Y {;A;u. Then A is the desired operator.

To state our next theorem, we write

X=X(17 2’ﬂ9 0’p),
XD=XD(172QB, 07p)'
Then we have

Theorem Ad. X ;=X nHJ(9).

Proof. Suppose ueX,. Then ueX, and since ue Hy(Q), ueX n H3(Q). Now let
ueX. By interpolation, 4: X - X, is a bounded operator, so 4ueX . If also
ueH}(Q), then Au=ueX ,, and the proof is complete.
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