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§ 1. Introduction

The Heisenberg uncertainty principle says that it is impossible to determine
simultaneously the position and momentum of a quantum-mechanical particle.
This can be rephrased as follows: the smallest subsets of classical phase space
in which the presence of a quantum-mechanical particle can be detected are its
Lagrangian submanifolds. For this reason it makes sense to regard the Lag-
rangian submanifolds of phase space as being its true “points”; sece Weinstein
[17].

Now let G be a compact Lie group and G x X — X a Hamiltonian action of
G on X (see §2 for definitions). It is well-known that the fixed points of this
action form a symplectic submanifold of X. (See for instance Guillemin and
Sternberg [5].) However, what can one say about the fixed “points™ of G?
We will show that they are also the “points™ of a symplectic manifold, X.
This manifold is the Marsden-Weinstein reduction of X with respect to the
zero orbit in g* and will be described in Sect. 2. (It was introduced in a
completely different context from ours by Marsden and Weinstein [12].)

Problems in classical mechanics can often be reduced to the study of
Hamiltonian systems on symplectic manifolds and problems in quantum me-
chanics to the study of linear operators on Hilbert space. This fact has inspired
a number of efforts to “quantize™ symplectic geometry by devising schemes for
associating Hilbert space to symplectic manifolds. The “no-go” theorems of
Groenwald and Van Hove impose some embarrassing limitations on all such
schemes; however, it seems to be a useful idea heuristically to think of every
symplectic manifold, X, ;...» as being symbiotically associated with a Hilbert
space, X yanwm» iN Such a way that the classical observables on the first space
correspond to quantum observables on the second space. The heuristics further
suggests that if G is a group of symmetries of X, car» it should also be a
group of symmetries of X In this heuristic spirit, we will state the main
conjecture of this paper:

quantum*
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“Theorem” Fixed “Point™. Let X, ..., be a symplectic manifold possessing a
compact Lie group of symmetries, G. Let (X unum)c be the set of fixed points of
GinX Then

quantum’

X X6)

quantum)G :( quantum? (11)

X being the fixed “point” set of G in X, icar-

By pursuing the heuristics of (1.1) we have been led to a number of rather
interesting results. In this article we will describe one such result in detail. We
will assume that X=X, .. 18 a compact symplectic manifold and G a
compact Lie group acting in a Hamiltonian fashion on X. To quantize X we
will use the machinery of geometric quantization developed by Kostant and
Souriau. Namely we will assume

A) X is pre-quantizable,
and

B) X possesses a positive-definite complex G-invariant polarization.

(Apropos of B, it is usually the case that if compact symplectic manifolds are
polarizable at all it is by means of complex polarizations.) Let X_,...,m be the
Hilbert space obtained by setting up the machinery of geometric quantization
on X and turning the crank: in other words, X, ,...m=5€ctions of the pre-
quantum line bundle which are covariant constant along leaves of the polariza-
tion. We will prove the following under some genericity assumptions to be
stated precisely later:

Theorem 1. a) X inherits from X pre-quantum data and a positive-definite
complex polariztion.

b) The identity (1.1) holds providing we take for (X ¢),uanwm the Hilbert space
obtained by applying the machinery of geometric quantization to X ;.

Remarks. 1. In the course of proving this theorem we have discovered a
remarkable connection between the Marsden-Weinstein construction and
Mumford’s construction of a moduli space for the “stable” orbits of an
algebraic group acting on a projective variety. This connection was also
observed in a somewhat different setting by Kempf and Ness in [8].

2. Theorem 1 gives a formula for the multiplicity with which the zero
representation of G occurs in X _,....m- Also, appropriately adapted, it gives a
formula for the multiplicities of other irreducible representations of G as well.
See §6.

3. In the course of proving Theorem 1 we prove an old conjecture of
Kirillov: By the Borel-Weil theorem, there is a one-one correspondence be-
tween integral co-adjoint orbits of G in g* and irreducible representations of G.
Given an irreducible representation, p, of G let O, be the corresponding-co-
adjoint orbit.

4. We will prove Theorem 1 under hypotheses that guarantee that X is a
manifold. For many interestingly these hypotheses are too strong and X, is
only a V manifold in the sense of Satake [20], see also Weinstein [21] and
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Kawasaki [19]. The proof of Theorem | carries over to this more general case,
but, for the sake of simplicity we will not present this more general version
here.

Theorem 2. The representation p occurs in X

only if O, occurs in the
image of the moment mapping ®: X |, ica— 8™

quantum
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§ 2. The Marsden-Weinstein Construction

Let X be a symplectic manifold with symplectic form, €. The space of smooth
functions on X is a Lie algebra under the Poisson bracket operation. More-
over, there is a morphism of Lie algebras

C*(X)— Symplectic vector fields (2.1)

which to functions associates their Hamiltonian vector fields. Let G be a
connected Lie group and G x X — X an action of G on X which preserves .
Let g be the Lie algebra of G. To each element, ¢, of g corresponds a
symplectic vector field, £*, on X. Moreover, the mapping

g— Symplectic vector fields (2.2)

sending ¢ to ¥ is a Lie algebra morphism. The action of G on X is said to be
Hamiltonian if (2.2) factors through (2.1); ie. if there is given a Lie algebra
morphism

g C*(X), (95, (2.3)

such that (2.2) is the composition of (2.1) and (2.3). The existence of (2.3) is
equivalent to the pair of conditions

é# J de(bé’ {d)é’ ¢'l} :q’)[:' ", (24)

(The first of these conditions determines ¢° up to an additive constant) To
each point, x, in X we can associate an element, @(x), of g* by the formula

(D(x), &> =P (x). (2.5)
As we vary x, this gives us a smooth mapping:
P: X —qg* (2.6)

This mapping is by definition the moment mapping associated with the action
of G on X. From the second of the two Eqgs. (2.4) it is easy to see that it is
equivariant, ie. intertwines the action of G on X and the co-adjoint action of
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G on g* Before describing some of its other properties it will be uscful to
compute its derivative at points, xe X. By evaluating £* at x we get a linear
mapping

g T. (2.7)
The symplectic form, Q,, gives us an identification

T.xT* (2.8)

and composing (2.7) and (2.8) we get a linear mapping
g— TF* (2.9)
On the other hand, the derivative of @ at x is a mapping d®,: T, —g*

Lemma 2.1. The derivative of @ at x is the dual of (2.9).

Proof. This Is just a restatement of the first of the identities (2.4).
This lemma has a number of interesting corollaries which we leave as
trivial exercises.

Corollary 2.2. Let g, be the Lie algebra of the stabilizer group of x. Then the
image of d®_ is the annihilator of g, in g*.

Corollary 2.3. The derivative of & is surjective at x if and only if the stabilizer
group of x is discrete.

Corollary 2.4. The kernei of d®_ is the set of all ve T, such that Q(v,&f)=0 for
all £eq.

Now let X,={xeX, ®&(x)=0}. Because of the equivariance of @, X is a G-
invariant subset of X. If the origin in ¢g* is a regular value of @, X, is a
submanifold of X. Moreover, by Corollary 2.4, the tangent space of X, at
xeX,is

{ve T, Qv ¢F)=0}. (2.10)

Because of the G-invariance the vectors, ¢¥, are tangent to X, at x; therefore,
by (2.10) the tangent space to X, at x is co-isotropic and its null-space is {&¥,
feg}. Finally notice that since the origin in g* is a regular value of @ the
derivative of @ is surjective at x; so by Corollary 2.3 the stabilizer group of x
is a discrete subgroup of G. Summarizing we have proved the following result
of Marsden-Weinstein [12]:

Theorem 2.5. If the origin in g* is a regular value of &, then X, is a G-invariant
co-isotropic submanifold of X. Moreover, the action of G on X, is locally free
and the orbits of G are the leaves of the null-foliation.

Suppose now that G is compact. Then the stabilizer group of xe X, is a
finite subgroup of G. We will henceforth assume that for all xe X, the stabi-
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lizer group of x is trivial.' This assumption implies that G acts freely on X,; so
the orbit space

Xe=X,/G
is a C* Hausdorff manifold and the projection mapping
n Xo— X (2.11)

is a principal G-fibration. Since the fibers are the leaves of the null-foliation,
there exists a unique symplectic form, Qg, on X such that

Qe =1%10, (2.12)

! being the inclusion mapping of X, into X. X is called the Marsden-
Weinstein reduction of X with respect to the zero orbit in g*. (The Marsden-
Weinstein reduction of X with respect to an arbitrary orbit in g* will be
defined in §6.) We will now prove that the fixed “points” of G in X are
identical with the “points” of X . To get the cleanest statement possible of this
result we will assume that the Lie algebra of G has the property,

g=Its own commutator=_[g, g]. (2.13)

Theorem 2.6. Let A be a Lagrangian submanifold of X ;. Then the pre-image of A
in X, is a G-invariant Lagrangian submanifold of X. Moreover, every G-invariant
Lagrangian submanifold of X is of this form, ie. there is a one-one correspon-
dence between Lagrangian submanifolds of X, and G-invariant Lagrangian sub-
manifolds of X.

Proof. The first statement is a simple consequence of (2.12). To prove the
second statement, let 4 be a G-invariant Lagrangian submanifold of X. Then
for all éeg and all xeA, ¥ is tangent to A at x; so for all ve T, A, Q(F,v)
=0. By (2.4) this implies that d¢5(r)=0; so ¢° is constant on connected
components of A. Since &¥ is tangent to A, {* ¢7=0 for all {5 in g By the
second half of (2.4) ¢!“"=0 on A; so by (2.13) ¢°=0 on A. This shows that A
is contained in X ,. Since it is G-invariant it is the pre-image of a subset, 4,, of
X. It is easy to see that A, is a submanifold and is itself Lagrangian. Q.E.D.

Remark. The condition (2.13) is a necessary and sufficient condition that the
moment map be uniquely defined. If (2.13) fails to hold, then if @: X —g*
satisfies (2.4), so does @+ ¢, where ¢ is in the annihilator of [g,q] in g*. To get
all the G-invariant Lagrangian submanifolds of X, one has to perform the
construction above for all ¢ +¢’s.

§ 3. Geometric Quantization

The first fow paragraphs of this section are a brief review of the material in the
last two sections of Kostant [10]. Let X be a symplectic manifold with
symplectic form, Q. Let

' Most of the results described in the next few paragraphs are true without this hypothesis.

However X; (defined below) is then not a manifold but only a ¥-manifold
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[Q] € Héekham (X)

be its cohomology class. One says that Q is integral if [Q2] is in the image of
the map

Weil

H(‘ech(X’ Z) _)HI)eRham(X)'

If Q is integral there exists a line bundle L on X whose Chern class is [2], a
connection ¥ on L whose curvature form is ©, and a Hermitian inner product
{, > on L which is invariant under parallel transport. The data L,V and
{ , » are called pre-quantum data on X.

Now let G be a connected Lie group and G x X — X a Hamiltonian action
of G on X. Let &: X —g* be the associated moment mapping. There is a
canonical representation of the Lie algebra, g, on smooth sections of L given
by the operators

Ve +2mid%,  Eeg. (3.1)

The pre-quantum data are said to be G-invariant if there exists a global action
of G on L such that the induced action of g is given by (3.1). The obstruction
to extending (3.1) from g to G is topological in nature. For instance it is always
possible to do this if G is simply-connected.

Example. (See pages 176-207 of [11].) Let f be an element of ¢* and X =0,
=the co-adjoint orbit through f. Let G, be the stabilizer group of f and g, its
Lie algebra. Consider the linear functional

prceg,—2ni{f,He) ~ 1R (3.2)

It is easy to see that p, is an “infinitesimal character” of G, that is, vanishes
on the commutator, [g,,q,]. One says that f is integral if there exists a global
character y,: G,—S" such that dy =p,.

Propesition 3.1. O, possesses a G-invariant pre-quantization if and only if f is
integral. (This is Theorem 5.7.1 of [11].)

Now let G be a compact Lie group, X a Hamiltonian G-space and ¢:
X — g* the moment mapping. Let X ,={xe X |®(x)=0}. If G acts freely on X
we can, as in Sect. 2, form the reduced space

Xo=X,/G.

We will show that if L,V and ¢ , > are G-invariant pre-quantum data on X,
then there are associated pre-quantum data on X . Let

T Xy X
be the projection map and
11 X,—X

the inclusion map.
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Theorem 3.2. There is a unique line bundle with connection, (L, V;) on X such
that

m*Lg=1*L and w*V =1*V (3.3)

Proof. To define L, it is enough to define the sheaf of sections of L. We will
take this to be the sheaf of G-invariant sections of 1*L. Let us now show how
to define a connection on L;. Let U be an open subset of X; and s, a non-
vanishing G-invariant section of 1*L on n~'(U). The covariant derivative of s,
is the tensor product of s, and a one-form, a,, on X. We will first show:

Lemma 3.3. There is a unique one-form i, on U< X such that n* §,=0oy,.

Proof. 1t is obvious that ay is G-invariant since s, is G-invariant. Since ¢°=0
on X, s, Is covariant constant along the fibers, z~'(m), me U, by (3.1); so, for
each me U, the restriction of o to the fiber, n~'(m), is zero. These two facts
together imply that o, pushes down to a well-defined one-form, f, on
Xs. Q.E.D.

Let s, and s;, be non-vanishing G-invariant sections on =~ '(U) and =~ (V).
Then there is a non-vanishing G-invariant function, f,,,, on n="(UnV) such
that

Sy =fuv Sy-

A simple computation shows that «,; and «, satisfy the standard “gauge”
conditions

oy = oy, +dlogfyy,.

Since fy, is G-invariant, it is the pull-back of a function, g;,, on UnV and
hence,

By=By +dloggyy;

ie. the f’s also satisfy the standard “gauge” conditions, and so define a global
connection, V;, on L;. Q.E.D.

Comparing (3.3) with (2.12) we obtain
Corollary 3.4. The curvature of the connection, Vg, is the symplectic form Q.

Since the Hermitian inner product, { , >, is G-invariant, there is a unique
Hermitian inner product on L, such that n*{ , >o=1*( , >. By Corollary 3.4,
L, Vg and ( , D, are pre-quantum data on X, (so we have accomplished
what we set out to prove.)

Next, we will review a few facts about polarizations. For a more detailed
account of the material below, see, for instance, [15]. Let V be a 2n-dimen-
sional real vector space and Q a symplectic form on V. Let Q. be the C-linear
extension of Q to V®C. An n-dimensional complex subspace, F, of V®C is
Lagrangian if it satisfies Qc(v,w)=0 for all v,weF. It is positive-definite if, in
addition, the Hermitian form

V=10, W)
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is positive-definite on F. Now let X be a 2n-dimensional symplectic manifold
and T its tangent bundle. A polarization of X is an integrable Lagrangian sub-
bundle, F, of T®C. It is positive-definite, if, for all xe X, F, is a positive-
definite Lagrangian sub-space of T, ® C.

Example. Let G be a compact Lie group. Let B be a positive-definite Ad,-
invariant bilinear form on g. By means of B we get a G-equivariant identifi-
cation of g with g*; so we can identify co-adjoint orbits in g* with adjoint
orbits in g. Let O be an adjoint orbit, let & be a point of O and let T, be the
tangent space to O at . The map, ad¢: g— g maps T, onto itsell and is skew-
adjoint with respect to B; so its eigenvalues are pure imaginary and half of
them lic on the positive imaginary axis. Let F,c T, ®C be the space spanned
by the eigenvectors corresponding to these positive eigenvalues. F, varies
smoothly as one varies &, and so defines a vector subbundle, F, of the complex
tangent bundle of O. One can show that F is a G-invariant positive-definite
polarization.

Now let G be a connected, compact Lie group, X a Hamiltonian G-space
and F a G-invariant, positive-definite polarization of X. We will prove:

Theorem 3.5. There is canonically associated with F a positive-definite polariza-
tion, Fg, of the reduced space, X .

Proof. For each point, xe X, let F.=(T X )QCnF,. Let W, be the tangent
space to the G-orbit through x. We will show below that

Fn(W.®C)=0. (3.4)
Assuming this for the moment we show that
dim F,=(dim X ;)/2. (3.5)

Since (F)*=F,+W,®C, by (2.10), and the sum is direct, by (3.4), dim(F))*
=(dim X)/2+dim G, from which one easily deduces (3.5). It follows from (3.5)
that F, varies smoothly as x varies on X, and so defines a vector subbundle,
F', of the complex tangent bundle of X,. Now let m be a point of X and x a
point on the fiber above m. The derivative of n, dn.: T, X ,— T, maps F, onto
a subspace of T, ® C. By (3.4) this map is a bl_]CCtIO‘rl SO the image of F’ is of
dimension equdl to (dim XG)/2 and is consequently Lagrangian by (2.12). Since
F is G-invariant this image is the same for all x in the fiber above m. Let us
denote it by (Fg),. It is clear that (Fg), varies smoothly as we vary m; so it
defines a Ldgrangian subbundle, Fg, of the complexified tangent bundle of X .
To show that it is integrable, let Z, and =, be sections of F(, and let & and &
be the unique G-invariant sections of F' sitting above them in X,. Because F is
integrable, [, %] is also a G-invariant section of F’, and its pI’O_]ecthn down
in X, is [Z,,5,]. Thus [Z,,Z,] is also a section of F;. Q.E.D.

We must still prove (3.4). This is a consequence of the following elementary
fact.

Lemma 3.6. Let V be a 2n-dimensional real vector space and Q a symplectic

form on V. Let W be an isotropic subspace of V and F a positive-definite
Lagrangian subspace of VR C. Then (WRC)nF=0.
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Proof. Suppose w, and w, are in W and v=w,+]/ — 1w, is in F. Then
Q(v,5) =21 —1Q(w,,w,)=0

since W is isotropic. But if F is positive-definite this implies v=0. Q.E.D.

Let X=X a1 D€ @ symplectic manifold. Let L, V, and {, > be pre-
quantum data on X and F a positive-definite polarization. A section s: X —» L
is said to be polarized if V.s=0 for all sections, =, of F. If X is compact, the set
of polarized sections forms a finite dimensional vector space. Using the Her-
mitian inner product, {,>», on L and the Liouville measure on X, this vector
space becomes a finite dimensional Hilbert space which we denote by X, ,num-
If X is a Hamiltonian G-space, and the pre-quantum data and the polarization
are G-invariant, there is a natural unitary representation of G on X

quantum*

Example. Let G be a compact, connected Lie group and f an integral element
of g*. Let O be the co-adjoint orbit through f. We saw above how to polarize
and pre-quantize O in a G-invanant fashion. Let p, be the representation of G
which we have just described.

Theorem 3.7. p, is irreducible. Moreover, the correspondence, 0->p,, is a
bijective correspondence between integral orbits in g* and irreducible unitary
representations of G.

This is the Borel-Weil theorem in a guise due to Kostant. See [ 10]. We will
come back to it in §6.

Now let X be a compact Hamiltonian G-space. We will assume that X can
be pre-quantized and admits a positive-definite polarization. Let X, num D€
the Hilbert space described above and (X ,,,um)¢ the set of G-fixed vectors in
it. We have proved that the reduced space, X, is pre-quantizable and admits a
positive definite polarization, so it also possesses its quantum counterpart,
(X ¢)quantum- We will conclude this section by showing

Theorem 3.8. There is a canonical map

(X ; W%(XG)quamum' (36)

quantum)(x

Proof. By restricting a G-invariant section of L to X, we get a section of L by
definition. It is clear from Theorem 3.5 that polarizes sections go into pola-
rized sections.

§4. The Group G

Let G be a compact connected Lie group and let g be its Lie algebra. Let a¢ be

the complexified Lie algebra, g@}/?lg. Our first result has to do with the
existence of a “complex form” of G.

Proposition 4.1. There exists a unique connected complex Lie group, GS, with the
Sollowing two properties:
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i) Its Lie algebra is ot.

i) G is a maximal compact subgroup of GC.
Proof. By structure theory for compact Lie groups, G is the product of a
compact semi-simple group and a finite number of copies of S'. If G=5",
CC=C* If G is semi-simple, its fundamental group is finite; so if G, is the
universal covering group of G, there exists a finite central subgroup, K, of G,
such that

G=G /K.

Let GS be the unique simply-connected complex Lie group with g€ as its Lie
algebra. It is clear that G, is a maximal compact subgroup of G$ and that the
center of G$ is identical with the center of G,. Let G¢=G$/K.

For the general case let G¢ be the product of the G®s described
above. Q.E.D.

We will now discuss some properties of G-actions on Kaehler manifolds.

Definition 4.2. A symplectic manifold is a (positive} Kaehler manifold if it
possesses a positive-definite polarization.

The next well-known lemma will be used to reconcile this definition
with the standard one:

Lemma 4.3. Let V be a (real) symplectic vector space with symplectic form, Q.
Let F be a positive-definite Lagrangian subspace of V®C. Then there exists a
unique linear mapping J: V — V such that

i) J2=—1

i) F={v+1y —1Jv,veV}.
1) QJ v, Jw)=Q(v,w).
iv) The quadratic form B(v, w)=Q(v,Jw) is symmetric and positive-definite.

Proof. F is positive-definite if and only if the quadratic form 1/:9(0, w) is
positive-definite on F, so F n F={0}. From this fact it is easy to see that there
exists a mapping, J, with properties i) and ii). Since F is Lagrangian

Qo+ —1Juo, w+1/ —1Jw)=0 (4.1)

for all v,we V. By evaluating the real and imaginary parts of (4.1) one obtains
iit) and the fact that, in iv), B is symmetric. Finally B is positive-definite since

V —1Q(u,i)y=2B(v,v)
foru=v+y —1Jv. Q.E.D.

Let X be a symplectic manifold and F a positive definite polarization. By
the lemma we get for each x€ X a mapping

J T.—>T,
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with the properties i), ii), and iii) and a positive-definite quadratic form, B_, on
T.. J and B vary smoothly with x; so J defines an almost-complex structure
on X and B a Riemannian structure. The integrability of F implies that the
almost-complex structure is complex. Therefore, the quadruple (X,J,B, Q) is
Kaehler manifold in the usual sense.

Let (X, F) be a compact Kaehler manifold and G a compact connected Lie
group which acts on X, preserving F. We will prove.

Theorem 4.4. The action of G can be canonically extended to an action of G€,
preserving F.

Proof. Let £, be a vector field on X. We will say that &, preserves F if, for
every section, =, of F, [£,,Z] is also a section of F. It is clear that &, preserves
F if and only if

[,/ E:1=J1¢4.45] (4.2)

for all vector fields, £,. Suppose now that &, preserves F. Then J&, preserves
F. Indeed, for all vector fields, £, and &,,

J([épf.z]_[Jiw']éz]):[*]‘fwéz]‘f‘[éw"éz]
by the integrability of F. If £, preserves F, this becomes

[Jénjéz]:][-lélvéz]

for all vector fields, &,; so J¢, preserves F as claimed. In particular if both &,
and ¢, preserve F,

(& T &0 =—[4. &0 (4.3)
Now for every eg let £¥ be the corresponding vector field on X. Let

1: g% (real) vector fields on X

be the mapping, &, +]/j‘lézaif* +JE&F. By (4.2) and (4.3), 7 is a morphism of
Lie algebras. Moreover, by (4.2), if €S, t() is a vector field preserving F. Let
Diff (X), be the group of analytic diffeomorphisms of X which preserve F. By
[9], Diff(X), is a (finite dimensional) Lie group: therefore, if G€ is simply-
connected, t can be extended uniquely to a morphism of Lie groups:

G€— Diff(X),. (4.4)

If G€ is not simply-connected, let G, and G$ be the universal covering groups
of G, and GY respectively. Then there exists a discrete subgroup, K, of G,,
contained in the center of G, such that

G=G,/K and G®=GY/K.

By the same reasoning as before, 7 can be extended uniquely to a morphism of
Lie groups
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GS— Diff (X),.

Moreover, restricted to G, this map factors through K since, by assumption,
there is an action of G on X extending 7. Therefore K is in the kernel of this
mapping. Q.E.D.

Suppose now that the action of G on X is Hamiltonian. Let &: X — g* be

the momentum mapping. Let X, ={xe X, ®(x)=0}. We will assume as in Sect.
2 that G acts freely on X ,; so that we can form the reduced space

Xy=X,/G.
Let X, be the saturation of X, with respect to G¢; i.e.

X,={gx;xeX,, geG}. (4.5)
We will call the points of X stable points for the action of G¢ on X.?

Theorem 4.5. X _ is an open subset of X and G acts freely on it.

Proof. Let V be a real symplectic vector space and F a positive-definite
Lagrangian subspace of V®C. Let J and B be as in Lemma 4.3.

Lemma 4.6. Let W be a subspace of V, and let Wr={veV, Q(v,w)=0 for all
we W). Then JW is the orthogonal complement of W with respect to B.

Proof. For all vweV
B(Jv,w)=Q(Jv,Jw)=Q(v,w).

If ve W the last term is zero for all we Wt; so Juv is in the ortho-complement
of W+. Conversely if Jv is in the ortho-complement of W, Q(v,w)=0 for all
weWi;soweW, Q.E.D.

We will use this lemma to prove that X, is open in X. Let x be a point of
X, and let W be the tangent space to the orbit of G through x. By Theorem
2.5

Wt=T.X,.

Therefore, by the lemma

nfney/—1g}

is a complementary space to T.X, in T,X. This shows that X, contains an
open neighborhood, U, of X,. Since X,;=(JgU, geGS, X, is itself open. This
argument also shows that the stabilizer algebra of x in ¢ is zero; so the action
of G¢ on X, is locally free. To show that G acts freely on X, we need a

refinement of this argument: If e g then
2 If X is a projective variety and G® an algebraic group acting algebraically on X then, by a
recent result of Kempf and Ness, X, is the set of stable points of X in the sense of Mumford, [14].
Consequently X is the moduli space constructed by Mumford in §5.2 of [14]. We are indebted to
Mumford for having spotted this fact. Several of the results described in the next two sections are
either analogues or symplectic reformulations of results in [14]
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EF _1Q=d¢°
by (2.4); i.e. £* is the Hamiltonian vector field associated with the function, ¢%.
Let =1 —1&e}/ —1g. By definition #* =J&*.
Lemma 4.7. * is the gradient vector field associated with the function, ¢*.

Proof. We have to show that for all xe X and all ve T,

B(n!,v)=<d¢5,v).
However, By}, v)=QUE&¥, Jv)=Q(¢F v)=(¢* J1Q)(v); so the assertion is
clear. Q.E.D.
By Proposition 4.1, G is a maximal compact subgroup of G€. Let
G¢=PG

be the Cartan decomposition of G®. It is clear that
=1 -1g®g

is the corresponding Cartan decomposition of g%, i.e. p=]/ —1g. The exponen-
tial map,

exp: g“— GE,

therefore maps leg bijectively onto P. Let x be a point of X; and g an
element of the stabilizer group of x in G Then g=(expy)k for some
ryz}Clﬁe}/—lg and keG. Let y=kx. Since X, is G-invariant, ye X ,; so
¢°(y)=0. The curve, (exptn)y, —oo<t<oo, is the integral curve through y of
the gradient vector field of ¢°; so if &40, ¢* is strictly increasing along this
curve, and in particular ¢*>0 at the point (expn)y. But (expy)y=xeX,, so
we get a contradiction. Thus (=0 and g=k. But since G acts freely on X, k
has to be the identity element. Q.E.D.

By (4.5) X can be represented as the quotient space
Xo=X,/GC (4.6)

We know from Theorem 3.5 that X, is a Kaehler manifold. By Theorem 4.5,
X, is an open complex submanifold of X on which the complex group, G€ acts
freely and holomorphically; so (4.6) provides another description of the com-
plex structure on X.

§ 5. The Bijectivity of (3.6)
Now let L, ¥ and ¢ , > be G-invariant pre-quantum data on X. We will first
prove an analogue of Theorem 4.4.

Theorem 5.1. The action of G on the line bundle, L, can be canonically extended
to an action of G€ on L.
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Proof. We will describe how the Lie algebra, g%, acts on sections of L. If {eg
then by (3.1)

Es=Vous+2n) —1¢°s (5.1)

for all sections, s, of L. If s is holomorphic (or polarized) we will define

ns=1—1¢s (5.2)
for n=1/—1¢&e})/ —1g. Since s is holomorphic and n* =J&*
Ves *V,—Ws:o;
SO V§35=V?1V"#S. Therefore, by (5.1)
ns=—(V,«s+2me°s). (5.3)
If f is a smooth function and s =fs, one expects to have

ns'=m*f)s+fns,

which will be the case if we take (5.3) to be our definition of s for all sections,
s, of L. We let the reader check that (5.1) and (5.3) define a representation of g©
on sections of L. The proof that this representation corresponds to a global
action of G on L is identical with the proof of the analogous result in Section
4, and we will omit it. Q.E.D.

Let s be a section of L, and let {s,s>(x) be the norm of s with respect to
the Hermitian inner product, { , > on L,. By definition {s,5> is a non-
negative real-valued function. By assumption, { , > is invariant with respect to

parallel transport; so for all n:]/:‘lie]/j_fg,
n* (8,80 =(V,45,5) +<5, Ve s). (5.4)
Suppose now that s is G-invariant. Then by (5.3)

Vis=—2mdes;

n
SO

{* s, 8> = —dnp*(s,s). (5.5)

This equation, as we will shortly see, plays a crucial role in the proof of the
bijectivity of (3.6).

Now let X, . um be the space of holomorphic sections of L over X and
(X Jyuantum the space of holomorphic sections of L over X . Let

[Xquantum]G and [(Xs)quanlum]G

be the set of G-fixed vectors in these two spaces. Let (X ;)
holomorphic sections of L, over X ;.

be the space of

quantum
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Theorem 5.2. The canonical mapping

[(Xs)quamum]c - (XG)quantum

is bijective.

Proof. Let s: X —L be G-invariant and holomorphic. By (5.2) it is G-
invariant. Since X, is the saturation of X, by G® s is determined by its
restriction, s', to X,. But s is G-invariant; so it is, by definition, a section of
L. Since G© acts freely on X, it is clear that, given a G-invariant section, s:
X,— L, one can extent it uniquely to a Ginvariant section, s: X — L. Finally
if s is polarized, so is s since G preserves the polarization. Q.E.D.

It is clear that the restriction mapping

I:XquanlumJG - [(Xs)quantum]G ) (56)

is injective; so, by Theorem 5.2, to prove that (3.6) is bijective, it is enough to
prove that (5.6) is surjective. We will do so below; however, first we will prove
a special case of the Kirillov conjecture mentioned in the introduction.

Theorem 5.3. If zero is not in the image of the moment mapping, there are no
non-zero global G-invariant holomorphic sections of L.

Proof. Let s be a global, holomorphic G-invariant section. Suppose s(x)+0. Let
Z be the closure of the orbit of G¢ through x, and let z be a point on Z at
which {s,s)> takes on a maximum value. Clearly Z is G® invariant; so for all

n=) —1&ey —1g, the vector field, n*, is tangent to Z at z. Hence, by (5.5)
n* (s, sy=—4n¢*(s,s)=0

for all (egq at z In particular, @(z)=0; so zero is in the image of the moment
mapping. Q.E.D.

We can actually prove a somewhat stronger result.

Theorem 5.4. Let s be a G-invariant holomorphic section of L and xe€ X a point
where s(x)}%0. Then xe X .

Proof. We have just shown that the closure of G®x intersects X, non-trivially.
Therefore, since X, is an open neighborhood of X,, G®x intersects X, non-
trivially. Since X is G%-invariant, xe X;. Q.E.D.

Let n be a positive integer. Applying Theorem 5.4 to the Kaehler manifold
{X,nQ, F}, we get

Theorem 5.5. Let x be a G-invariant holomorphic section of the line bundle, X) L.
Then if s(x)+0, xe X . (See the remarks at the beginning of Sect. 6.)
In the appendix we will prove the following existence theorem.

Theorem 5.6. If the set X ={xeX, ®(x)=0} is non-empty and zero is a regular
value of @, then for some n, there exists a global non-vanishing holomorphic G-

n

invariant section of X) L.
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Combining this with Theorem 5.5 we obtain?

Theorem 5.7. The set X, =X — X is contained in a complex subvariety of X of
{ complex ) codimension 2 1.

Finally we will prove

Theorem 5.8. Let s: X ,— L be a holomorphic G-invariant section of L. Then
{s,8) is bounded and takes its maximum value on X .

Before we prove this we note that it implies the surjectivity of (5.6). Indeed
if x is a point of X, then we can find a neighborhood, U, of x in X and a non-
vanishing holomorphic section, s,: U— L. Then s=fs, on UnX,, f being a
bounded holomorphic function. Since X,n U is of complex codimension =1 in
U, the singularity of f at x is removable. Thus s extends to a holomorphic
section of L over all of X.

We will now prove Theorem 5.8. Let x be a point of X_. Then y=gx, with
x,€X, and geGC As in Sect. 4, we will make use of the Cartan decom-
position, G =PG of G¢ and we will write g as (expy)k with
nz}/——ife]/?lg and keG. Replacing x, by kx, we can assume that
x=(expn) x,. We will prove that

{8,50 (x) <5, 50 (x). (5.7)

To see (5.7) consider the behavior of {s,s) along the curve y(t) ={expt#) x,,
—w <t<oo. By (5.5)

(d/dt){s,s>=—dnd*(s,s> (5.8)

along y(t). By Lemma 4.7, ¢° is strictly increasing along y(f); so it is positive
for t>0 and negative for t<0. Therefore, by (5.8), {s,s> has a unique maxi-
mum at ¢t = 0, and this establishes (5.7). Q.E.D.

§ 6. Multiplicities

Let (X, Q) be a symplectic manifold and 4 a non-zero real number. Then AQ is
also a symplectic form on X. In other words one can view the pair (X,1€) as a
new symplectic manifold. (In particular one often denotes the manifold.
(X. —Q)by X)) If (X, Q) is a Hamiltonian G-space and @: X — g* is its moment
mapping, then (X, AQ) is also a Hamiltonian G-space and its moment mapping
is A®. (In particular, X~ is a Hamiltonian G-space and its moment mapping is
~P)

Let X;, i=1,2, be a symplectic manifold with symplectic form, Q.. Let =;:
X, xX,—X; be the projection onto X,. Then nfQ, +7%Q, is a symplectic
form on X, x X,. If X,, i=1,2, is a Hamiltonian G-space and @, X;— g* is its

3 It would be nice to have a direct geometric proof of Theorem 5.7 which avoids the existence

theorem 5.6. If G is a torus, we can prove Theorem 5.7 this way using the convexity ideas of [1, 5]
and [6].
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moment mapping then X, x X, is a Hamiltonian G-space and its moment
mapping is @, 0w, + P,om,. In particular let X be a Hamiltonian G-space and
¢: X —g* its moment mapping. Let 0 be a co-adjoint orbit in g*. Then the
product symplectic manifold, X x O~ is a Hamiltonian G-space and its mo-
ment mapping, ¥: X x 0~ — g*, is the mapping:

P (x.f)=P(x)—[. (6.1)
The set
(X x07)o={(x./), ¥(x,/)=0} (6.2)
is identical with the set
{xe X, P(x)e0} (6.3)

by (6.1). Moreover, G acts freely on (6.2) if and only if for some (and hence for
all) f€0, the stabilizer group of f, G, acts freely on the set

X,={xeX, d(x)=f}. (6.4)
When this happens one can, as in Sect. 2, form the reduced space
Xo=(Xx07),/G. (6.5)

This space is called the Marsden-Weinstein reduction of X with respect to O. By
(2.12) X, is a symplectic manifold. Note that if f€0, then, set-theoretically, (6.5)
is just the space

X,/Gy. (6.6)
(in fact (6.6) is the definition of X, given in [12].) We will prove analogues of
the theorems of § 3 for X ,. First, however, we will review some standard facts

about line bundles and connections:
Let X be a manifold, L a line bundle on X and ¥V a connection on L. Let

h
&)L be the n-th tensor product of L. Then there is a unique connection, V™,

on X)L with the property

PO ) =n(R )@ Vs

for all sections, s, of L. The curvature of this connection is n(curv V). If (, > is
a Hermitian inner product on L there is a unique Hermitian inner product

¢, > on Q)L such that if s"=(@)s then

s, s =({s, )"
In particular, if L, ¥ and ¢, > are pre-quantum data on the symplectic

manifold (X, Q) then ®L, V™ and { , >™ are pre-quantum data on (X,nQ).
We note also, in passing, that if F is a polarization of (X,Q) it is also a
polarization of (X, n€).



532 V. Guillemin and S. Sternberg

Next let I* be the dual bundle of L. There is a unique connection, V*, on
L* such that for all sections, s, of L and ¢ of ¥

(Vs,5) +(s, V*5') =0,

The curvature of the connection V* is —curv V. If ¢ , > is a Hermitian inner
product on L, there is a Hermitian inner product, { , >*, dual to { , > on I*
In particular, if L, VV and <, > are pre-quantum data on the symplectic
manifold, X, I¥, V* and <, >* are pre-quantum data on the symplectic
manifold, X ~. Note also that if F is a (positive-definite) polarization of X, F is
a (positive-definite) polarization of X ~.

Let X, and X, be manifolds and L; a line bundle on X, Let =, be the
projection of X, xX, on X, One denotes by L,[x]L, the line bundle,
nfL, ®n3l,, on X, xX, I V, is a connection on L, there is a unique
connection, ¥, on L,[x]L, such that if 5;, i=1,2, is a section of L, then

Vin s, @nks,)=n¥(V,s)®@n%s, +n¥s, @nils,.

The curvature of this connection is n¥curvV, +n¥curvl,. If {, >; is a Her-
mitian form on L;, there is a unique Hermitian form, ( , > on L,[x]L, such
that

(nts, @n%s,, ns, @nys,>=ni{s;,5,>n5s,,5,

In particular, if, for i=1,2, L,, ¥, and { , »; are pre-quantum data on X,, then
L,[X]L,, V and { , > are pre-quantum data on X, x X,. Finally note that if
F, and F, are polarizations of X, and X, then =¥ F, +n%F, is a polarization of
X, xX,.

Combining these remarks with the results of Sect. 3 we obtain:

Theorem 6.1. Let X be a Hamiltonian G-space and O a co-adjoint orbit in g*.
Then to every G-invariant polarization, F, of X corresponds a polarization, F,, of
X . If Ois integral, then to every G-invariant set of pre-quantum data, L, V and
{, > on X corresponds a set of pre-quantum data, Ly, Vy and { , >, on X,.

Now let L, ¥ and ¢ , > be G-invariant pre-quantum data on X and F a
positive-definite G-invariant polarization. Let X ,...» be the space of pola-
rized sections of L, and 7 the unitary representation of G on this space. Let p
be an irreducible representation of G. By the Borel-Weil theorem (see Theorem
3.7) there is a unique integral co-adjoint orbit, O, in g* such that p is the
canonical representation of G on O Let V=X V,=0 and

quantum* quantum?* quantum

Homg(V,, V,)

the set of linear mappings from V, to ¥, which intertwine the representations,
p and 1. Let Ly, V,, <, >, and F, be as in Theorem 6.1, and let (X ), anwum b€
the space of polarized sections of L.

Theorem 6.2. There is a canonical isomorphism of vector spaces

(XO)quantum = HomG (VZ s Vl)
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Proof. Let X ;=X and X,=0. Let L, V,, ¢, >, and F, i=1,2, be the “quan-
tum” data described above. Then X, x X, is equipped with the quantum data

L[X]I%, V,<,> and n*F, +n*F,.

A polarized section of L,[x]I% is by definition a section of L,[x]I¥ which is
holomorphic with respect to X, and anti-holomorphic with respect to X,.
Because of the bijectivity of (3.6) we can identify (X 9)quanwum With the space of
G-invariant polarized sections of L,[x]I%. Let s(x,,x,) be such a section, and
let dx, be the Liouville measure on X,. Then the operator

T.: C*(L,)— C*(L)
defined by

(T;f)(xﬂzjs(xwxz)f(xz) dx,

maps V, equivariantly onto V;, and so defines an element of Homg(V,, V).
Conversely every element of Homg (V,, V}) can be uniquely expressed as an
integral operator of this form. Q.E.D.

A direct corollary of this theorem is the Kirillov conjecture mentioned in
the introduction:

Theorem 6.3. Let O be an integral co-adjoint orbit in g*. If O is not in the image
of the moment mapping, then the irreducible representation of G corresponding to
O does not occur in X

quantum*

Another corollary is the following:

Theorem 6.4. Let O be an integral co-adjoint orbit in g*. Suppose G acts freely
and transitively on the set {x€ X, ®@(x)e0}. Then the irreducible representation of
G corresponding to O occurs in X with multiplicity one.

guantum

Proof. Tf the hypothesis is satisfied, X, consists of a single point. Q.E.D.

If the polarization, F,, is “sufficiently” positive-definite, the dimension of
(X 0)quantam €an be computed by the Riemann-Roch formula, and we get the
following expression for the multiplicity with which the irreducible repre-
sentation of G corresponding to O occurs in X

quantum :
e[ X o], 6.7)

© being the Todd class of X, and w its symplectic form. The Todd class is a
symplectic invariant of X; so (6.7) is a symplectic recipe for the multiplicity in
question. (Compare with [3], §15.)

Let n be a positive integer. Let X, be the symplectic manifold (X,n€) and
0, the co-adjoint orbit {nf, fe0}. One can show that with X replaced by X,
and O replaced by O,, the induced polarization on the reduced space is
“sufficiently” positive-definite when n is sufficiently large; so from (6.7) we
obtain
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Theorem 6.5. For n sufficiently large the multiplicity with which the irreducible
representation of G corresponding to O, occurs in (X,) is given by the
characteristic number

quantum

e[ X,]. (6.8)

Remark. 1. For n large (6.8) is approximately equal to n* volume X, where k is
half the dimension of X, because. This estimate on the “asymptotic multipli-
city of O~ is closely related to some recent results of Gerrit Heckman. (See [6].)
2. As we have already mentioned the above results can be generalized to
the case where X is a V-manifold. Then the Todd class must be replaced by
an equivariant Todd class as defined by Atiyah and Singer [18]. Then (6.8)
follows from Kawasaki’s Riemann-Roch formula for V-manifolds of [19].

Appendix:

An Existence Theorem

Let W be an (n+ 1)-dimensional compact, complex domain with a smooth, strictly pseudoconvex
boundary. Let r: W-- R be a smooth function which is positive in the interior of W, zero on the
boundary and has no critical points on the boundary. Let 1: ¢ W— W be the inclusion map and let

az[/tTl*ér, (A.1)

Because of the pseudo-convexity, o A (da)” is non-vanishing; so o is a contact form on ¢W. It is not
intrinsically defined, since (A.1) depends on the choice of r; however, the manifold

Y={(m An,); medW, leR*} (A2)

is an intrinsically defined submanifold of T* ¢W. The following is elementary to verify:

Proposition A.1. The condition that a A(d®)" be non-vanishing is equivalent to the condition that Y be
a symplectic submanifold of T*0W.

We will denote by Q the restriction to Y of the standard symplectic form on T*M. Note that
in addition to being symplectic, Y is positively homogeneous. If (m,&)e T*M and AeR™ then

mé&eY=(mideY

Now let G be a Lie group and G x W— W a holomorphic action of G on W. Then G acts on
dW and on Y. We will prove below

Proposition A.2. The action of G on Y is Hamiltonian. Moreover the moment mapping, ¥: Y —»g* is
positively homogeneous: W (m, AE)= Ay (m, &) for (m,)e Y and AeR*.

Let B? be the IZ closure of the space of holomorphic functions on W. Let B be the space of G-
fixed vectors in B2 The main result of this section is the following:

Theorem A.3. a) If zero is not in the image of the moment mapping, ¥: Y— g*, then dim B2 < 0.
b) Let zero be in the image of the moment mapping, and in addition, be a regular value of the
moment mapping. Then dim B = co.

Proof of Proposition A.2. Let M be a manifold and G a Lie group acting on M. Let T* M=T*M
—(zero section). We will show that the induced action of G on T* M is Hamiltonian. To every
element, ¢ of g corresponds a vector field, ¢¥, on M. Let ¥*: T* M —» R be the function
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P (2)=(E* (m), ) (A3)

at z=(m,u)e T* M. It is easy to see that ¥* satisfies the analogue of (2.4); so the action of G on
T* M is Hamiltonian and its moment mapping, ¥: T* M — g* has (A.3) as its ¢-th coefficient. It is
clear from (A.3) that ¥ is homogeneous. If Y is a G-invariant symplectic submanifold of T* M
then by restricting (A.3) to Y we see that the action of G on Y is Hamiltonian as well. Q.E.D.

Before proving Theorem A.3 we will first prove a more primitive version of it. Let M be a
compact manifold and G a compact Lie group acting on M. Let ¥: T* M — g* be the moment
mapping, {A.3). Let (T* M),={zeT* M. ¥(2)=0}. Suppose zero is a regular value of ¥. Then by
Theorem 2.4, (T*+ M), is a co-isotropic submanifold of T* M and the leaves of its null-foliation are
the orbits of G. It follows that the orbit relation

I'={(z,,z,); z,e(T*" M)y, z, =gz, for geG} (A.4)

is a canonical relation. (See for instance, [4] Proposition 2.2.) Now let u be a positive smooth G-
invariant measure on M and let [*(M) be the I7 space of M with respect to p. Let I2(M); be the
space of G-fixed vectors in I?(M) and let P, be orthogonal projection of I2(M) onto I7(M),.

Theorem A.4. P; is a zeroth order elliptic Fourier integral operator associated with the canonical
relation, I'.

Proof. Let p: Gx M — M be the mapping, (g,m)->gm and 1: G x M — M the mapping, (g,m)—m.
Let

p¥ M) — I2(G x M)
be the bounded linear operator, f— fo p, and
% M) — [2H{G x M)
the bounded linear operator, f— fot. Lel (t*): I2(G x M)— [2(M) be the transpose of t*. Then
Py =(e* p*. (A.5)

Both t* and p* are Fourier integral operators. To describe their underlying canonical relations, let
us use the right action of G on itself to identify T*G with G xg* The underlying canonical
relation of t* is then

((g,0%z.2), geG, zeT*M {A.0)
in T*G x T*M x T*M, and the underlying canonical relation of p* is the “moment Lagrangian”
(g P(2).z.82), geG, zeT"M. (A7)

(See [16], p. 21. Here ¥: T* M - g* is the moment mapping.)

The transpose of A.6 is composible with A.7 in the sense of Hormander, [7], Sect. 4 if and only
if zero is a regular value of ¥; and if this is the case, the composite relation is (A.4). Since t* and
p* are elliptic (have non-vanishing symbols) the same is true of P;. Q.E.D.

Let M=aW If f is a holomorphic function on W its restriction to M is a C” function
satisfying the boundary Cauchy-Riemann equations. Let H? be the 12 closure of the space of all
such functions in IZ(M). It is sufficient to prove Theorem A.3 with B? replaced by H?. (See [2])
Let P, be the orthogonal projection of I*(M) onto H? (the “Szegd projector”) For the following,
see [2].

Theorem A.5. P, is an elliptic Fourier integral operator (with complex phase). Its associated
canonical relation is the diagonal in Y x Y.
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Since G leaves H” fixed, PP, =P, F; is orthogonal projection onto H¢.
Combining the previous two theorems with known facts about the compositions of Fourier
integral operators with complex phase (see [13]) we obtain:

Theorem A.6. Let Yy={yeY, ¥(y)=0}. Suppose zero is a regular value of ¥. Then P, P is an elliptic
Fourier integral operator with complex phase. Its underlying canonical relation is the orbit relation

{(y,8)), ye ¥, geG} (A8)
inYxY

Corollary 1. If zero is not in the image of ¥, P, P, is a smoothing operator.
This corollary proves the first part of Theorem A.3 because if P; P, is smoothing, the space

{fe (M), BsRf=f}
is finite dimensional by the Fredholm theorem.
Corollary 2. If zero is in the image of ¥, the range of P, Py is infinite dimensional.

Indeed if the range were finite dimensional, P; Py would be smoothing. In particular its leading
symbol would have to be zero. However F,F; is elliptic. This proves the second part of Theorem
A3

We will now prove Theorem 5.6. Let (X, F) be a compact symplectic manifold with a positive-
definite polarization and let L, ¥ and { , > be pre-quantum data. Let I*, V'* and ¢ , >* be the
associated pre-quantum data for X . Let

W={(x,v); xe X, ve L}, {v,0D* <1}
and
M={(x,v); xe X, ve I*, {v,v) =1}.

W is a compact, complex domain with boundary M. Moreover, since F is positive definite, W is
strictly pseudoconvex. (See, for instance, [3]) If X is a Hamiltonian G-space and the “quantum”
data above are G-invariant, then G acts holomorphically on W. The circle group, §', also acts
holomorphically on W by the action

(x,0)e W >(x,ev)e W,

By Proposition A.2 we get a Hamiltonian action of GxS' on Y. The relationship between the
action of G on X and the action of G on Y is easy to describe. The Hamiltonian action of S' on Y
gives rise to a moment mapping

®,: YR

which, by Proposition A.2, is positively homogeneous. Let Y, ={ye Y, @,(y)=1} and let Y, be the
reduced space:

Yo =U,/S".

Since the action of G on ¥ commutes with the action of S! on Y, G acts in a Hamiltonian fashion
on Y. We will prove

Theorem A.7. X and Y, are isomorphic as Hamiltonian G-spaces.

Proof. Let r: W—R be the function, (x,v) > 1 — ||v|, and let « be the form (A.1) on M=0W. M is a
principal $* bundle over X, and the connection, V, on L is associated with a “principal-bundle”
connection on M. It is easy to see that o is the connection form for this connection; so, in
particular, if £, is the symplectic form on X and p: M — X the projection of M on X then

da=p* curv(V)=p*Q,. (A.9)

Let &, be the infinitesimal generator of S. Since o is a connection form, (&7, 0)=1; s0 by (A.3) the
mapping
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MY, me(ma,)
maps M diffeomorphically onto Y,, intertwining the two actions of S*. Thus
X=M/S'=Y /St=Y,. (A.10)
Moreover, if @, is the symplectic form on Y then by (AS8), *Q;=p*Qy; so by (2.12), the
symplectic forms on X and Y;, are the same. Finally it is clear that (A.9) intertwines the two G-
actions. Q.E.D.
Let ¥: Y— g* be the moment mapping associated with the action of G on Y and @: X — g* the

moment mapping associated with the action of G on X. With 1 and p as above we get as a
corollary of Theorem A.7 the identity

Por=dop. (A.11)

Let 7 be the projection of Y onto X. Since ¥ is positively homogeneous, we conclude from (A.1!):

Proposition A8. Let X ={xeX, ®(x)=0} and Yy,={ye¥, ¥())=0}, then Y,=n""(X,). In particu-
lar if zero is a regular value of @, it is a regular value of V.

Hence by Theorem A.3, if X, is non-empty and zero is a regular value of @, dim BZ = o. Since

the action of S' on W commutes with the action of G on W, S! acts as a one-parameter unitary
group on BZ, and we can decompose BZ into a Hilbert space direct sum of the subspaces

k={feBg; fle"w)=e"f(w)}. (A12)

Therefore (A.12), is non-zero for some k. However, (A.12), is just the space of G-invariant
3

holomorphic sections of &) L.
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