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w 1. Introduction 

The Heisenberg uncertainty principle says that it is impossible to determine 
simultaneously the position and momentum of a quantum-mechanical particle. 
This can be rephrased as follows: the smallest subsets of classical phase space 
in which the presence of a quantum-mechanical particle can be detected are its 
Lagrangian submanifolds. For this reason it makes sense to regard the Lag- 
rangian submanifolds of phase space as being its true "points";  see Weinstein 
[17]. 

Now let G be a compact Lie group and G x X - ~ X  a Hamiltonian action of 
G on X (see w for definitions). It is well-known that the fixed points of this 
action form a symplectic submanifold of X. (See for instance Guillemin and 
Sternberg [5].) However, what can one say about the fixed "points"  of G? 
We will show that they are also the "points'" of a symplectic manifold, Xc. 
This manifold is the Marsden-Weinstein reduction of X with respect to the 
zero orbit in g*, and will be described in Sect. 2. (It was introduced in a 
completely different context fl'om ours by Marsden and Weinstein [12].) 

Problems in classical mechanics can often be reduced to the study of 
Hamiltonian systems on symplectic manifolds and problems in quantum me- 
chanics to the study of linear operators on Hilbert space. This fact has inspired 
a number of efforts to "quantize" symplectic geometry by devising schemes for 
associating Hilbert space to symplectic manifolds. The "no-go"  theorems of 
Groenwald and Van Hove impose some embarrassing limitations on all such 
schemes; however, it seems to be a useful idea heuristically to think of every 
symplectic manifold, X~a~ic, 1, as being symbiotically associated with a Hilbert 
space, Xq,a, t ..... in such a way that the classical observables on the first space 
correspond to quantum observables on the second space. The heuristics further 
suggests that if G is a group of symmetries of X~la~,i~, j, it should also be a 
group of symmetries of Xq,a,,tum. In this heuristic spirit, we will state the main 
conjecture of this paper: 
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"Theorem" Fixed "Poin t" .  Let Xclassica I be a symplectic manifi)ld possessing a 
compact Lie group of symmetries, G. Let (Xquantu~) a be the set of fixed points oJ 
G in Xquantu m. Then 

(Xquantum) G = (XG)quantum, (1.1) 

X~ being the fixed "point" set of G in Xdas,~ioa I. 
By pursuing the heuristics of (1.1) we have been led to a number of rather 

interesting results. In this article we will describe one such result in detail. We 
will assume that X=Xcla~ca ~ is a compact symplectic manifold and G a 
compact Lie group acting in a Hamiltonian fashion on X. To quantize X we 
will use the machinery of geometric quantization developed by Kostant and 
Souriau. Namely we will assume 

A) X is pre-quantizable, 

and 

B) X possesses a positive-definite complex G-invariant polarization. 

(Apropos of B, it is usually the case that if compact symplectic manifolds are 
polarizable at all it is by means of complex polarizations.) Let Xquanlu m be the 
Hilbert space obtained by setting up the machinery of geometric quantization 
on X and turning the crank: in other words, Xquamum=Sections of the pre- 
quantum line bundle which are covariant constant along leaves of the polariza- 
tion. We will prove the following under some genericity assumptions to be 
stated precisely later: 

Theorem 1. a) X~ inherits from X pre-quantum data and a positive-definite 
complex polariztion. 

b) The identity (1.1) holds providing we take for (XG)quantu m the Hilbert space 
obtained by applying the machinery of geometric quantization to X(~. 

Remarks. 1. In the course of proving this theorem we have discovered a 
remarkable connection between the Marsden-Weinstein construction and 
Mumford's construction of a moduli space for the "stable" orbits of an 
algebraic group acting on a projective variety. This connection was also 
observed in a somewhat different setting by Kempf and Ness in [8]. 

2. Theorem 1 gives a formula for the multiplicity with which the zero 
representation of G occurs in Xquantu m. Also, appropriately adapted, it gives a 
formula for the multiplicities of other irreducible representations of G as well. 
See w 6. 

3. In the course of proving Theorem 1 we prove an old conjecture of 
Kirillov: By the Borel-Weil theorem, there is a one-one correspondence be- 
tween integral co-adjoint orbits of G in g* and irreducible representations of G. 
Given an irreducible representation, p, of G let Op be the corresponding-co- 
adjoint orbit. 

4. We will prove Theorem 1 under hypotheses that guarantee that Xa is a 
manifold. For many interestingly these hypotheses are too strong and Xa is 
only a V manifold in the sense of Satake [20], see also Weinstein [21] and 
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K a w a s a k i  [19]. The p roof  of Theorem 1 carries over to this more  genera l  case, 
but, for the sake of s implici ty we will not  present  this more  general  version 
here. 

Theorem 2. The representation p occurs in Xquan  t .... only if Of, occurs in the 
image of the moment mapping q): Xclassic,a~ g*. 

Acknowledgements. We are grateful to David Mumford for pointing out the close connection 
between our results and those of Kempf-Ness. We are also grateful to Gerrit Heckman for some 
inspiring discussions. Part of the motivation of this paper came from our efforts to understand the 
multiplicity results contained in his thesis, [6 I. We are also grateful to the referee for the care with 
which he read the paper and for a number of important suggestions. 

w 2. The Marsden-Weinstein Construction 

Let X be a symplect ic  mani fo ld  with symplect ic  form, f2. The  space of smooth  
funct ions on X is a Lie a lgebra  under  the Poisson bracke t  opera t ion .  More-  
over, there  is a m o r p h i s m  of Lie algebras  

C ~ (X) -*  Symplect ic  vector  fields (2.1) 

which to functions associates  their  H a m i l t o n i a n  vector  fields. Let G be a 
connec ted  Lie g roup  and G x X - + X  an ac t ion  of  G on X which preserves I2. 
Let  g be the Lie a lgebra  of  G. To each element,  ~, of g cor responds  a 
symplect ic  vector  field, ~#, on X. Moreover ,  the ma pp ing  

g - ,  Symplect ic  vector  fields (2.2) 

sending ~ to ~ # is a Lie a lgebra  morphism.  The ac t ion  of G on  X is said to be 
H a m i l t o n i a n  if (2.2) factors th rough  (2.1); i.e. if there is given a Lie a lgebra  
m o r p h i s m  

g - ,  C~"(X), ~ qSr (2.3) 

such that  (2.2) is the compos i t i on  of (2.1) and  (2.3). The existence of  (2.3) is 
equivalent  to the pair  of  condi t ions  

~ I f2=d(a ~, {qS~, q)"} =qb [~'~]. (2.4) 

(The first of these condi t ions  de termines  ~b ~ up to an addi t ive  constant . )  To 
each point ,  x, in X we can associate  an element,  

< r ~) = q~(x). 

As we vary  x, this gives us a smooth  m a p p i n g :  

4': X - , g *  

cI)(x), of g* by the formula  

(2.5) 

(2.6) 

This mapp ing  is by defini t ion the moment mapping associa ted  with the ac t ion  
of  G on X. F r o m  the second of  the two Eqs. (2.4) it is easy to see that  it is 
equivar iant ,  i.e. inter twines the ac t ion  of  G on X and  the co -ad jo in t  ac t ion  of 
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G on g*. Before describing some of its other  propert ies  it will be useful to 
compute  its derivative at points, x e X .  By evaluating r at x we get a linear 
mapp ing  

9 -~  L .  (2.7) 

The symplectic form, f2x, gives us an identification 

T~ = T*, (2.8) 

and compos ing  (2.7) and (2.8) we get a linear mapp ing  

g - ,  T~. (2.9) 

On the other  hand, the derivative of 4~ at x is a mapp ing  d4~ x : 7~--,g*. 

L e m m a  2.1. The derivative of  cI) at x is the dual of(2.9). 

Proof  This is just  a res ta tement  of  the first of  the identities (2.4). 
This l e m m a  has a number  of  interesting corollaries which we leave as 

trivial exercises. 

Corollary 2.2. Let 9x be the Lie algebra of  the stabilizer group oJ" x. Then the 
image of  dcb x is the annihilator o f  9 x in g*. 

Corollary 2.3. The derivative o f  ~ is surjective at x !f and only if the stabilizer 
group of  x is discrete. 

Corollary 2.4. The kernei o f  dq) x is the set o f  all v e T  x such that f2(v,~ff)=O.fi)r 
all ~ ~ g. 

Now let X o = { x E X ,  q~(x)--0}. Because of the equivariance of 4~, X o is a G- 
invar iant  subset of  X. If the origin in 9" is a regular value of ~b, X o is a 
submanifo ld  of X. Moreover ,  by Corol la ry  2.4, the tangent  space of X o at 
x ~ X  o is 

{v ~ r~, t~(v, ~2) = 0}. (2.10) 

Because of the G-invariance the vectors, ~*, are tangent  to X o at x; therefore, 
by (2.10) the tangent  space to X o at x is co-isotropic and its null-space is {~2, 
~c9}.  Finally notice that  since the origin in g* is a regular value of 4~ the 
derivative of  4~ is surjective at x; so by Corol la ry  2.3 the stabilizer group of x 
is a discrete subgroup  of G. Summar iz ing  we have proved  the following result 
of Marsden-Weins te in  [12] : 

Theorem 2.5. I f  the origin in 9" is a regular value of  4,  then X o is a G-invariant 
co-isotropic subman~)ld o f  X.  Moreover, the action of  G on X o is locally,free 
and the orbits of  G are the leaves o f  the null-foliation. 

Suppose  now that  G is compact .  Then  the stabilizer g roup  of x e X  o is a 
finite subgroup  of G. We will hencefor th  assume that  .fi)r all x ~ X o the stabi- 
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lizer group o f x  is trivial. 1 This assumption implies that G acts freely on Xo; so 
the orbit space 

X~; = Xo/G 

is a C ~ Hausdorff  manifold and the projection mapping 

n: Xo-- ' .X G (2.11) 

is a principal G-fibration. Since the fibers are the leaves of the null-foliation, 
there exists a unique symplectic form, ~6,  on  Xa such that 

n ' f 2  o = l 'f2, (2.12) 

1 being the inclusion mapping  of X o into X. X C is called the Marsden- 
Weinstein reduction of X with respect to the zero orbit in g*. (The Marsden-  
Weinstein reduction of X with respect to an arbitrary orbit in 9" will be 
defined in w We will now prove that the fixed "poin ts"  of G in X are 
identical with the "poin ts"  of  X a. To get the cleanest statement possible of this 
result we will assume that the Lie algebra of G has the property, 

.q -- its own commuta to r  = [9, g]. (2.13) 

Theorem 2.6. Let A be a Lagrangian submaniJbld of X~. Theu the pre-image of A 
in X o is a G-invariant Lagrangian submanifi)ld of X. Moreover, every G-invariant 
Lagrangian subman!fold of X is of this form, i.e. there is a one-one correspon- 
dence between Lagrangian subman!fi~lds of X(; and G-im:ariant Lagrangian sub- 
man!folds of X. 

Proof The first statement is a simple consequence of (2.12). To prove the 
second statement, let A be a G-invariant Lagrangian submanifold of X. Then 
for all ~ g  and all x~A ,  ~ is tangent to A at x; so for all v~T~A, ~(~2,v) 
--0. By (2.4) this implies that dq~(v)--0;  so q~ is constant  on connected 
components  of A. Since ~*~ is tangent to A, ~.~*~b"--0 for all ~,r/ in g. By the 
second half of  (2.4) q~t:'"l=0 on A; so by (2.13) q5r on A. This shows that A 
is contained in X o. Since it is G-invariant it is the pre-image of  a subset, A~, of  
Xc.  It is easy to see that A~ is a submanifold and is itself Lagrangian.  Q.E.D. 

Remark. The condit ion (2.13) is a necessary and sufficient condit ion that the 
moment  map be uniquely defined. If (2.13) fails to hold, then if q): X--~g* 
satisfies (2.4), so does 4~+c, where c is in the annihilator of [g,.q-I in g*. To get 
all the G-invariant Lagrangian submanifolds of X, one has to perform the 
construct ion above for all ~ + o's. 

w 3. Geometric Quantization 

The first few paragraphs of this section are a brief review of the material in the 
last two sections of Kostant  [10]. Let X be a symplectic manifold with 
symplectic form, f2. Let 

Most of the results described in the next few paragraphs are true without this hypothesis. 
However Xr (defined below) is then not a manifold but only a ~Zmanitbld 
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[~"2] ~ H2eRham(X) 

be its cohomology class. One says that f2 is integral if [f2] is in the image of 
the map 

Weil 
Hcech(X , Z) ~, HDeRham(X ). 

If (2 is integral there exists a line bundle L on X whose Chern class is [s a 
connection V on L whose curvature form is ~2, and a Hermitian inner product 
( , } on L which is invariant under parallel transport. The data L,V and 
( , } are called pre-quantum data on X. 

Now let G be a connected Lie group and G • X ~ X a Hamiltonian action 
of G on X. Let ~: X ~ t *  be the associated moment  mapping. There is a 
canonical representation of the Lie algebra, 9, on smooth sections of L given 
by the operators 

V~_. + 27zidP ~, ~ 9 .  (3.1) 

The pre-quantum data are said to be G-invariant if there exists a global action 
of G on L such that the induced action of g is given by (3.1). The obstruction 
to extending (3.1) from t to G is topological in nature. For instance it is always 
possible to do this if G is simply-connected. 

Example. (See pages 176-207 of [1133 Let f be an element of 9* and X = O  I 
= t h e  co-adjoint orbit through f. Let G l be the stabilizer group of f and .qy its 
Lie algebra. Consider the linear functional 

Pf: ~gs - ~ 2 7 t i ( f ~ } ~ ] ~ - l R .  (3.2) 

It is easy to see that Pl is an "infinitesimal character" of G I,  that is, vanishes 
on the commutator ,  [9i,  gy]" One says that f is integral if there exists a global 
character XI: GI ~ $ 1  such that d x i = p l .  

Proposition 3.1. Of possesses a G-invariant pre-quantization if and only !l ~ f is 
integral. (This is Theorem 5.7.1 of [1113 

Now let G be a compact  Lie group, X a Hamil tonian G-space and ~b: 
X - ' t *  the moment  mapping. Let X o = { x c X  I~(x)=O}. If G acts freely on X o 
we can, as in Sect. 2, form the reduced space 

X G = Xo/G. 

We will show that if L, V and ( , } are G-invariant pre-quantum data on X, 
then there are associated pre-quantum data on X G. Let 

re: Xo--~ X ~ 

be the projection map and 

t: Xo--~ X 

the inclusion map. 
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Theorem 3.2. There is a unique line bundle with connection, (L6, VG) on X~ such 
that 

z r*L6=l*L and n*VG=t*V (3.3) 

Pro(~ To define L(~ it is enough to define the sheaf of sections of  L~. We will 
take this to be the sheaf of G-invariant  sections of t*L. Let us now show how 
to define a connect ion on L G. Let U be an open subset of  Xa  and s v a non- 
vanishing G-invariant  section of t*L on 7z-I(U). The covar iant  derivative of s v 
is the tensor product  ors  v and a one-form, ~u on X. We will first show: 

L e m m a  3.3. There is a unique one-form fit: on U ~ X G such that ~* flit: = c%. 

Pro(K It is obvious that  %. is G-invariant  since st: is G-invariant.  Since qS~=0 
on Xo,  sit: is covar iant  constant  along the fibers, zt l(m), m ~ U ,  by (3.1); so, for 
each m~ U, the restriction of ~v to the fiber, zt-l(m), is zero. These two facts 
together  imply that  ~v pushes down to a well-defined one-form, fly, on 
X~. Q.E.D. 

Let st: and s v be non-vanishing G-invariant  sections on 7z-I(U) and zt-I(V).  
Then there is a non-vanishing G-invariant  function, fit:v, on 7r-~(Uc~V) such 
that  

SU ~ fuv  SV" 

A simple computa t ion  shows that at: and 7v satisfy the s tandard "gauge"  
condit ions 

~v=C~v + d l o g f u v  �9 

Since f vv  is G-invariant,  it is the pul l-back of a function, gvv, on Uc~ V and 
hence, 

f lv= flv + d log gvv ; 

i.e. the fl's also satisfy the s tandard  "gauge"  conditions, and so define a global 
connection,  VG, on La. Q.E.D. 

Compar ing  (3.3) with (2.12) we obtain  

Corollary 3.4. The curvature of the co~mection, VG, is the symplectic form f2~. 

Since the Hermi t i an  inner product ,  ( , ), is G-invariant,  there is a unique 
Hermi t i an  inner p roduc t  on L~ such that  7z*( , ) a  = t * (  , ). By Corol la ry  3.4, 
L~, V G and ( , )~  are p re -quan tum data  on X G, (so we have accompl ished 
what  we set out to prove.) 

Next,  we will review a few facts about  polarizations.  For  a more  detailed 
account  of  the mater ial  below, see, for instance, [15]. Let V be a 2n-dimen-  
sional real vector  space and f2 a symplectic form on V. Let f2 c be the C-l inear 
extension of f2 to V |  An n-dimensional  complex subspace, F, of V |  is 
Lagrangian if it satisfies f2c(V, w ) = 0  for all v,w ~ F. It is positive-definite if, in 
addition, the Hermi t i an  form 
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is positive-definite on F. Now let X be a 2n-dimensional symplectic manifold 
and T its tangent bundle, A polarization of X is an integrable Lagrangian sub- 
bundle, F, of T |  It is positive-definite, if, for all x e X ,  F x is a positive- 
definite Lagrangian sub-space of T x | C. 

Example. Let G be a compact Lie group. Let B be a positive-definite Ad(~- 
invariant bilinear form on 9. By means of B we get a G-equivariant identifi- 
cation of 9 with g*; so we can identify co-adjoint orbits in g* with adjoint 
orbits in g. Let O be an adjoint orbit, let ~ be a point of O and let T~ be the 
tangent space to O at ~. The map, ad ~: g--~.q maps T~ onto itself and is skew- 
adjoint with respect to B; so its eigenvalues are pure imaginary and half of 
them lie on the positive imaginary axis. Let ~ c ~ |  be the space spanned 
by the eigenvectors corresponding to these positive eigenvalues. F~ varies 
smoothly as one varies 3, and so defines a vector subbundle, F, of the complex 
tangent bundle of O. One can show that F is a G-invariant positive-definite 
polarization. 

Now let G be a connected, compact Lie group, X a Hamiltonian G-space 
and F a G-invariant, positive-definite polarization of X. We will prove: 

Theorem 3.5. There is canonically associated with F a positive-definite polariza- 
tion, FG, of the reduced space, X~. 

Proof For each point, x e X o ,  let F j = ( T ~ X o ) |  x. Let W x be the tangent 
space to the G-orbit through x. We will show below that 

F~ r | C) = 0. (3.4) 

Assuming this for the moment  we show that 

dim F~ -- (dim X~;)/2. (3.5) 

Since (F')Z=F~+Wx@C, by (2.10), and the sum is direct, by (3.4), dim(F~) • 
=(dimX) /2+dimG,  from which one easily deduces (3.5). It follows fi'om (3.5) 
that F" varies smoothly as x varies on X 0 and so defines a vector subbundle, 
F', of the complex tangent bundle of X 0. Now let m be a point of X a and x a 
point on the fiber above m. The derivative of ~, d~x: TxXo- ,  T,, maps F" onto 
a subspace of Tm@C. By (3.4) this map is a bijection; so the image of F_~ is of 
dimension equal to (dim X6)/2 and is consequently Lagrangian by (2.12). Since 
F is G-invariant this image is the same for all x in the fiber above m. Let us 
denote it by (Fc,)m. It is clear that (Fa) m varies smoothly as we vary m; so it 
defines a Lagrangian subbundle, FG, of the complexified tangent bundle of X~. 
To show that it is integrable, let ~1 and ~2 be sections of F~ and let ~'1 and ~2 
be the unique G-invariant sections of F' sitting above them in X 0. Because F is 
integrable, [~'1,E2] is also a G-invariant section of F', and its projection down 
in X a is [El ,E2] .  Thus [Ex,~2]  is also a section o f F  G. Q.E.D. 

We must still prove (3.4). This is a consequence of the following elementary 
fact. 

Lemma 3.6. Let V be a 2n-dimensional real vector space and ~2 a symplectic 
Jorm on V. Let W be an isotropic subspace of V and F a positive-deJb~ite 
Lagrangian subspace of V|  Then (W@C)c '~F=0.  
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Proof Suppose w 1 and w 2 are in W and v=w l + ] / - l w  2 is in F. Then 

~(U, U) = 2 /  " 1~r 1, W2)= 0 

since W is isotropic. But if F is positive-definite this implies v=0 .  Q.E.D. 

Let X::Xclassi~a I be a symplectic manifold. Let L, V, and ( , ) be pre- 
quan t um data  on X and F a positive-definite polarization.  A section s: X ~  L 
is said to be polarized if Vzs=O for all sections, 3, of ft. If X is compact ,  the set 
of polar ized sections forms a finite dimensional  vector space. Using the Her-  
mit ian inner product,  ~ , ) ,  on L and the Liouville measure  on X, this vector  
space becomes  a finite dimensional  Hilber t  space which we denote by Xquantu m. 
If X is a Hami l ton ian  G-space, and the p re -quan tum data  and the polar izat ion 
are G-invariant,  there is a natural  unitary representat ion of G on Xq,~,m, m. 

Example. Let G be a compact ,  connected Lie group and f an integral element 
of .q*. Let O be the co-adjoint  orbit  through f We saw above how to polarize 
and pre-quant ize  O in a G-invariant  fashion. Let Po be the representat ion of G 
which we have just described. 

Theorem 3.7. Po is irreducible. Moreover, the correspondence, O--§ , is a 
bijective correspondence between integral orbits in g* and irreducible unitary 
representations of G. 

This is the Borel-Weil theorem in a guise due to Kostant .  See [10]. We will 
come back to it in w 6. 

Now let X be a compac t  Hami l ton i an  G-space. We will assume that  X can 
be pre-quant ized and admits  a positive-definite polarization.  Let Xquantu m be 
the Hi lber t  space described above and (Xqu~,.tu,,) a the set of G-fixed vectors in 
it. We have proved that  the reduced space, X~, is pre-quant izable  and admits  a 
positive definite polarization,  so it also possesses its quan tum counterpar t ,  
(X~lq.,.,tum. We will conclude this section by showing 

Theorem 3.8. There is a canonical map 

('~quantum)G + (XG)quanIum* (3.6) 

Proof By restricting a G-invariant  section of L to X 0 we get a section of L(; by 
definition. It is clear from Theorem 3.5 that  polarizes sections go into pola-  
rized sections. 

w 4. The Group G c 

Let G be a compac t  connected Lie group and let 9 be its Lie algebra. Let 9 c be 

the complexified Lie algebra, g @ ] / ~ 1 9 .  Our  first result has to do with the 
existence of a "complex  form" of G. 

Proposition 4.1. There exists a unique connected complex Lie group, G c, with the 
Jollowing two properties: 
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i) Its Lie algebra is gc. 

ii) G is a maximal compact subgroup of G c. 

Proof By structure theory for compact Lie groups, G is the product of a 
compact semi-simple group and a finite number of copies of S 1. If G=S 1, 
C c = c  *. If G is semi-simple, its fundamental group is finite; so if E 1 is the 
universal covering group of G, there exists a finite central subgroup, K, of G 1 
such that 

E = G t /K .  

Let G c be the unique simply-connected complex Lie group with gc as its Lie 
algebra. It is clear that G t is a maximal compact subgroup of G c and that the 
center of E c is identical with the center of G I. Let GC= GC/K. 

For the general case let G c be the product of the GC's described 
above. Q.E.D. 

We will now discuss some properties of E-actions on Kaehler manifolds. 

Definition 4.2. A symplectic manifold is a (positive) Kaehler manifold if it 
possesses a positive-definite polarization. 

The next well-known lemma will be used to reconcile this definition 
with the standard one: 

Lemma 4.3. Let V be a (real) symplectic vector space with symplectic form, f2. 
Let F be a positive-definite Lagrangian subspace of V| Then there exists a 
unique linear mapping J: V ~ V such that 

i )  j 2  = _ I .  

ii) F={v+]~---1Jv, v~V}. 

iii) f2(Jv, Jw)=~(v,  w). 

iv) The quadratic form B(v, w)= fJ(v, J w) is symmetric and positive-definite. 

Proof F is positive-definite if and only if the quadratic form ]/~-lf2(v, #) is 
positive-definite on F; so Fc~.~={0}. From this fact it is easy to see that there 
exists a mapping, J, with properties i) and ii). Since F is Lagrangian 

(2(v+ ~ -  lJv, w+ ] / - 1 J w ) = O  (4.1) 

for all v, we V. By evaluating the real and imaginary parts of (4.1) one obtains 
iii) and the fact that, in iv), B is symmetric. Finally B is positive-definite since 

l / -  1 (2(u, if) = 2B(v, v) 

for u=v+]/-s Q.E.D. 

Let X be a symplectic manifold and F a positive definite polarization. By 
the lemma we get for each x e X a mapping 

J~: Tx-~ T~ 
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with the propert ies i), ii), and iii) and a positive-definite quadrat ic  form, Bx, on 
T x. J and B vary smooth ly  with x; so J defines an a lmost -complex  structure 
on X and B a Riemannian  structure. The integrability of F implies that  the 
a lmost -complex structure is complex. Therefore, the quadruple  (X,J,B, f2) is 
Kaehler  manifold in the usual sense. 

Let (X,F)  be a compac t  Kaehler  manifold and G a compac t  connected Lie 
group which acts on X, preserving F. We will prove. 

Theorem 4.4. The action of G can be canonically extended to an action of G c, 
preserving F. 

Proof Let d 1 be a vector field on X. We will say that ~l preserves F if, for 
every section, S, of  F, [ ~ I , Z ]  is also a section of F. It is clear that  ~-l preserves 
F if and only if 

[~1 , J~2]  = J [~-1, ~2] (4.2) 

for all vector  fields, ~2. Suppose now that  ~l preserves F. Then J ~  preserves 
F. Indeed, for all vector  fields, ~1 and ~2, 

J ( [~  1, ~2] -- [J  {, ,  J ~2]) = [ J  ~,, ~2] q- [-~1, J ~2] 

by the integrabili ty of  F. If ~ preserves F, this becomes 

[ J ~ l , J ~ 2 ]  =J[J~,,~-2] 

for all vector  fields, {2; so J{1 preserves F as claimed. In part icular  if both  ~-L 
and {2 preserve F, 

[ J  ~-1, J {2] = - [~-1, ~2]. (4.3) 

Now for every { e g  let ~ be the corresponding vector  field on X. Let 

r: ,qC~(real) vector  fields on X 

be the mapping,  ~1 q - ~ - - l ~ 2 ~ l  e q-J~2 e. By (4.2) and (4.3), r is a morph i sm of 
Lie algebras. Moreover ,  by (4.2), if q e gc, r(r/) is a vector  field preserving F. Let 
Diff(X)v be the group  of analytic di f feomorphisms of X which preserve F. By 
[9], Diff(X)v is a (finite dimensional)  Lie group;  therefore, if G c is simply- 
connected,  r can be extended uniquely to a morph i sm of Lie groups 

G c ~ Diff(X)v. (4.4) 

If G c is not s imply-connected,  let G 1 and G1 c be the universal covermg groups 
of G~ and G1 c respectively. Then there exists a discrete subgroup,  K, of  Gx, 
contained in the center of G c, such that 

G--G~/K and GC=GC/K. 

By the same reasoning as before, r can be extended uniquely to a morph i sm of  
Lie groups 
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G c_~ Diff (X)f .  

Moreover ,  restr ic ted to G1, this map  factors th rough  K since, by assumpt ion ,  
there is an ac t ion  of G on X extending  r. Therefore  K is in the kernel  of this 
mapping .  Q.E.D. 

Suppose  now that  the ac t ion  of G on X is Hami l ton ian .  Let 4): X-~,q* be 
the m o m e n t u m  mapping .  Let  X o = {x e X ,  4)(x)= 0}. We will assume as in Sect. 
2 that  G acts freely on X0; so that  we can form the reduced space 

Xc, = X o/G. 

Let  X,  be the sa tu ra t ion  of X 0 with respect to GC; i.e. 

X ~ = { g x ;  x e X o ,  geGC}. (4.5) 

W e  will call the points  of  X s stable points for the ac t ion  of G c on X. 2 

Theorem 4.5. X s is an open subset o f  X and G c acts f ree ly  ol1 it. 

Proof  Let  V be a real symplect ic  vector  space and F a posi t ive-defini te  
La g r ang i an  subspace  of  V |  Let J and  B be as in L e m m a  4.3. 

L e m m a  4.6. Let  W be a subspace o f  V, and let W l =  { r e  V, f2(v, w)--O,,fbr all 
w e  W}.  Then J W  is the orthogonal complement o f  W • with respect to B. 

Proof  F o r  all v, w e V 

B(J  v, w) = (2(J v, J w) -- (2(tL w). 

If  y e W  the last te rm is zero for all w e W •  so J v  is in the o r t h o - c o m p l e m e n t  
of  W I. Converse ly  if J v is in the o r t h o - c o m p l e m e n t  of W • (2(v, w ) : : 0  for all 
w e  W• so w e  W. Q.E.D. 

We will use this l emma to prove that  Xs is open in X. Let  x be a poin t  of 
X 0 and let  W be the tangent  space to the orb i t  of G through  x. By Theorem 
2.5 

W •  TxXo  . 

Therefore,  by the l emma  

e~-I 
is a comp lemen ta ry  space to TxX o in TxX. This shows that  X~ conta ins  an 
open  ne ighborhood ,  U, of  X 0. Since X s =  [ J g U ,  g e G  c, X s is itself open. This  
a rgumen t  also shows tha t  the s tabi l izer  a lgebra  of x in ,qC is zero;  so the ac t ion  
of  G c on  X s is local ly free. To show that  G c acts freely on  X~ we need a 
ref inement  of this a rgumen t :  If ~ e g  then 

2 If X is a projective variety and G c an algebraic group acting algebraically on X then, by a 
recent result of Kempf and Ness, X s is the set of stable points of X in the sense of Mumford, [14]. 
Consequently Xc, is the moduli space constructed by Mumford in w of [14]. We are indebted to 
Mumford for having spotted this fact. Several of the results described in the next two sections are 
either analogues or symplectic reformulations of results in [14] 
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~+ _j f2 = d~b + 

by (2.4); i.e. 4 + is the Hamiltonian vector field associated with the function, ~b ~. 

Let q = ] / ~ l  ~ ] f - - 1  9. By definition r/+ - - J~+ .  

L e m m a  4.7. r/+ is the gradient vector field associated with the function, (~. 

Proof We have to show that  for all x ~ X and all v ~ T x, 

B # (~x, ~)-- ~d 4~, v~. 

However ,  BOl~x,V)--f2(J~ff,Jv):f2(~ff,v)--(~#lf2)(v); so the assert ion is 
clear. Q.E.D. 

By Proposi t ion 4.1, G is a maximal  compac t  subgroup  of G c. Let 

Gc=pG 

be the Caf tan  decomposi t ion  of G c. It is clear that 

.qC = ] / _ ~  9 | 9 

is the corresponding Car tan  decompos i t ion  of gc, i.e. p = ] f - - l q .  The exponen-  
tial map,  

exp: gC~GC, 

therefore maps  ] / - - l q  bijectively onto  P. Let x be a point  of  X 0 and g an 
element of the stabilizer group of x in G c. Then g = ( e x p q ) k  for some 

q = l f - - l ~ e | f - l q  and keG.  Let y=kx .  Since X 0 is G-invariant ,  y e X o ;  so 
~b+(y)=0. The curve, (exptq)y ,  - ~  < t <  ~ ,  is the integral curve through y of 
the gradient  vector  field of qS~; so if 4 + 0 ,  qS~ is strictly increasing along this 
curve, and in part icular  ~b~>0 at the point  (expr/)y. But (exp ~l)y=x ~Xo,  so 
we get a contradiction.  Thus ~ - -0  and g = k .  But since G acts freely on Xo, k 
has to be the identity element. Q.E.D. 

By (4.5) X C can be represented as the quotient  space 

X~ -- X+/G c. (4.6) 

We know from Theorem 3.5 that  X G is a Kaehler  manifold. By Theo rem 4.5, 
X~ is an open complex submanifold  of  X on which the complex group,  G c acts 
freely and holomorphica l ty ;  so (4.6) provides another  descript ion of the com- 
plex structure on X~. 

w 5. The Bijeetivity of (3.6) 

Now let L, V and ~ , ~ be G-invariant  p re -quan tum data  on X. We will first 
prove an analogue of Theo rem 4.4. 

Theorem 5.1. The action of G on the li,e bundle, L, can be canonically extended 
to an action of G c on L. 
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Proof We will describe how the Lie algebra, gc, acts on sections of  L. If ~ E g 
then by (3.1) 

~,s= V~. s + ZTz ]/-~i (pr (5.1) 

for all sections, s, of  L. If s is ho lomorph ic  (or polarized) we will define 

t/s = ] / -  l { s  (5.2) 

for r / = l ~ - 5  { e l ~ - ~ g .  Since s is ho lomorph ic  and r/" = J { "  

g~. r  

so V~.s=lf-- 1F, .s .  Therefore,  by (5.1) 

r/s = - (V,. s + 2~zOes). (5.3) 

I f f  is a smooth  function and s' = f s ,  one expects to have 

~lS'--(rle f)s+fqs,  

which will be the case if we take (5.3) to be our definit ion of qs for all sections, 
s, of  L. We let the reader  check that  (5.l) and (5.3) define a representa t ion of gc 
on sections of  L. The  p roof  that  this representa t ion corresponds  to a global 
act ion of G c on L is identical with the p roof  of the analogous  result in Section 
4, and we will omit  it. Q.E.D. 

Let s be a section of L, and let (s,s)(x) be the norm of s with respect to 
the Hermi t i an  inner product ,  { ,  )x on L x. By definition (s,s) is a non- 
negative real-valued function. By assumpt ion,  ( , ) is invariant  with respect to 

parallel t ranspor t ;  so for all r / = l / - l ~ e l / - l g ,  

q* ( s , s )=(V, . s , s )+(s ,  V,.s). (5.4) 

Suppose now that  s is GC-invariant. Then by (5.3) 

V,.s= - 2 = 0 ~ s ;  
so  

e (s, s )  = - 4 ~z ~b ~ (s, s). (5.5) 

This equation,  as we will short ly see, plays a crucial role in the p roof  of the 
bijectivity of  (3.6). 

N o w  let Xquantu m be the space of ho lomorph ic  sections of  L over  X and 
(Xs)quantu m the space of ho lomorph ic  sections of  L over  X s. Let 

[Xquantum] G and [(Xs)quantum] G 

be the set of  G-fixed vectors in these two spaces. Let  (XG)quantu m be the space of 
ho lomorph ic  sections of  L~ over  X G. 
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Theorem 5.2. The canonical mapping 

[(X~)q...,u.,] ~ ~ (X~,)q.an,om 
is bijective. 

Proof Let s: X ~ - , L  be G-invariant  and holomorphic .  By (5.2) it is G c- 
invariant.  Since X~ is the sa turat ion of X o by G c, s is determined by its 
restriction, s', to X o. But s' is G-invariant ;  so it is, by definition, a section of 
L G. Since G c acts freely on Xs it is clear that, given a G-invariant  section, s: 
Xo-- ,L,  one can extent it uniquely to a GC-invariant section, s: Xs-*L .  Finally 
if s' is polarized, so is s since G c preserves the polarization.  Q.E.D. 

It is clear that the restriction mapp ing  

C X q u a n t u m ]  G ~ [(Xs)quantum]G, (5.6) 

is injective; so, by Theorem 5.2, to prove  that  (3.6) is bijective, it is enough to 
prove  that  (5.6) is surjective. We will do so below; however,  first we will prove  
a special case of the Kirillov conjecture ment ioned  in the introduction.  

Theorem 5.3. I f  zero is not in the image of the moment mapping, there are no 
non-zero global G-invariant holomorphic sections of L. 

Proof Let s be a global, ho lomorph ic  G-invariant  section. Suppose s(x)+ O. Let 
Z be the closure of  the orbit  of G c through x, and let z be a point  on Z at 
which <s,s) takes on a m a x i m u m  value. Clearly Z is G c invariant;  so for all 

t t = | ~ - 1  # e ~ -  lg, the vector  field, y/~, is tangent  to Z at z. Hence, by (5.5) 

~ < s , s ) =  -4n~<s,s)=O 

particular,  r so zero is in the image of the m o m e n t  for all ~ e g a t  z. In 
mapping.  Q.E.D. 

We can actually prove a somewhat  s tronger  result. 

Theorem 5.4. Let s be a G-invariant holomorphic section of L and x ~ X a point 
where s(x)=#O. Then xEX~. 

Proof We have just shown that  the closure of GCx intersects X 0 non-trivially. 
Therefore,  since X S is an open ne ighborhood  of X o, GCx intersects X s non-  
trivially. Since Xs is GC-invariant, x ~ X~. Q.E.D. 

Let n be a positive integer. Applying Theo rem 5.4 to the Kaehler  manifold  
{X, nf2, F}, we get 

n 

Theorem 5.5. Let x be a G-invariant holomorphic section of the line bundle, (~ L. 
Then if s(x)=t=O, x ~ X s. (See the remarks at the beginning of Sect. 6.) 

In the appendix we will prove the following existence theorem. 

Theorem 5.6. I f  the set X 0 = {x ~ X, ~b(x)= 0} is non-empty and zero is a regular 
value of el), then for some i1, there exists a global non-vanishing holomorphic G- 

n 
invariant section of (~ L. 
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Combining  this with Theorem 5.5 we obtain  3 

Theorem 5.7. The set X u - - X - X ~  is contained in a complex subvariety o f  X of  
(complex)  codimension > 1. 

Finally we will prove 

Theorem 5.8. Let s: X~--~L be a holomorphic G-invariant section of  L. Then 
<s, s )  is bounded and takes its maximum value on X o. 

Before we prove this we note that  it implies the surjectivity of  (5.6). Indeed 
if x is a point  of X,  then we can find a neighborhood,  U, of  x in X and a non- 
vanishing ho lomorphic  section, s 0" U-~  L. Then s =fs  o on U reX,,  f being a 
bounded holomorphic  function. Since X,  c~ U is of complex codimension > 1 in 
U, the singularity of  f at x is removable. Thus s extends to a ho lomorphic  
section of L over all of X. 

We will now prove Theorem 5.8. Let x be a point  of X~. Then y = g x  o with 
x o e X  o and g e G  c. As in Sect. 4, we will make use of  the Car tan  decom- 
position, G c = P G  of G c, and we will write g as (expl/)k with 

~ / = ~ - t ~ ] / - l g  and k e G .  Replacing x o by kx  o we can assume that 
x = (exp  r/)x o. We will prove that 

<s, s)  (x) _-< <s, s> (Xo). (5.7) 

To see (5.7) consider the behavior  of <s, s> along the curve ?,(t)=(exp t tl)x o, 
- ~  < t <  oo. By (5.5) 

(d/dO <s, s> = - 4re d? ~ <s, s> (5.8) 

along 7(0. By Lemma 4.7, ~b ~ is strictly increasing along 7(t); so it is positive 
for t > 0  and negative for t < 0 .  Therefore, by (5.8), <s,s> has a unique maxi- 
mum at t -- 0, and this establishes (5.7). Q.E.D. 

w 6. Multiplicities 

Let (X, ~2) be a symplectic manifold and )~ a non-zero real number.  Then 2f2 is 
also a symplectic form on X. In other  words one can view the pair (X, 2f2) as a 
new symplectic manifold. (In part icular  one often denotes the manifold, 
(X, - (~ )  by X .) If  (X, f2) is a Hamil tonian  G-space and (b: X -~ g* is its moment  
mapping,  then (X,)o~2) is also a Hami l ton ian  G-space and its moment  mapping  
is 24'. (In particular, X -  is a Hamil tonian  G-space and its moment  mapping  is 
- 4 . )  

Let Xi, i = 1 , 2 ,  be a symplectic manifold with symplectic form, ~i. Let hi: 
X 1 x X 2 ~ X  i be the project ion on to  Xi. Then  n ~ 2 1 + n * f 2 2  is a symplectic 
form on Xx x X  2. If  Xi, i = 1 , 2 ,  is a Hami l ton ian  G-space and r X i ~ g *  is its 

3 It would be nice to have a direct geometric proof of Theorem 5.7 which avoids the existence 
theorem 5.6. If G is a torus, we can prove Theorem 5.7 this way using the convexity ideas of [l, 5] 
and [6]. 
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m o m e n t  mapp ing  then X~ x X 2 is a Hami l ton ian  G-space and  its m o m e n t  
mapp ing  is 4~t o rc~ + qD 2 o 7/72. In part icular  let X be a Hami l t on i an  G-space and 
4>: X++~g* its m o m e n t  mapping.  Let 0 be a co-adjoint  orbit  in g*. Then  the 
product  symplectic manifold, X x O -  is a Hami l ton ian  G-space and its mo-  
ment  mapping,  ~ :  X x 0 - ,g*,  is the mapping :  

The set 

is identical with the set 

7' ( x , f ) =  (b(x) - f  (6.1) 

(X • 0 - ) o  = {(x,f), ~P(x,.()=0} (6.2) 

{x ~ X, 4~(x) cO} (6.3) 

by (6.1). Moreover ,  G acts freely on (6.2) if and only if for some (and hence for 
all) ./'e 0, the stabilizer g roup  of j; G s, acts freely on the set 

Xj. = {x e X, g'(x) = f } .  (6.4) 

When  this happens  one can, as in Sect. 2, form the reduced space 

X 0 = ( X  x O )0/G. (6.5) 

This space is called the MarsdeH-Weinsteilz reductio~ of X with respect to O. By 
(2.12) X 0 is a symplectic manifold. Note that i f f e O ,  then, set-theoretically, (6.5) 
is just the space 

XI /G I. (6.6) 

(in fact (6.6) is the definition of X o given in [12].) We will prove  analogues of  
the theorems of w for X o. First, however,  we will review some s tandard  facts 
about  line bundles and connect ions:  

Let  X be a manifold, L a line bundle on X and V a connect ion on L. Let 
I/ 

@ L  be the n-th tensor product  of  L. Then there is a unique connect ion,  V ('), 
n 

on @ L  with the proper ty  

n n 1 

V("~(@ s) =,I( @ s) | 17s 

for all sections, s, of  L. The curvature  of this connect ion is n(curv V). If  ( , ) is 
a He rmi t i an  inner product  on L there is a unique Hermi t i an  inner product  

?1 II 

( , )m) on @ L  such that if s " = @ s  then 

(s",s"y'>=((s,s))". 

In part icular ,  if L, V and ( , ) are p re -quan tum da ta  on the symplect ic  
n 

manifold (X, F2) then @ L ,  V ("1 and ( , )(") are p re -quan tum da ta  on (X,n~2). 
We note also, in passing, that if F is a polar izat ion of (X,~2) it is also a 
polar izat ion of (X, n f2). 
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Next let L* be the dual bundle of  L. There is a unique connection,  V*, on 
L* such that for all sections, s, of L and s' of  L* 

(Vs, s ')+(s,  V*s') =0.  

The curvature of  the connect ion V* is - c u r v  V. If ( , ) is a Hermit ian inner 
product  on L, there is a Hermit ian  inner product,  ( , )*, dual to ( , ) on L*. 
In particular, if L, V and ( , ) are pre-quantum data on the symplectic 
manifold, X, L*, V* and ( , )* are pre-quantum data on the symplectic 
manifold, X - .  Note  also that if F is a (positive-definite) polarizat ion of X, F is 
a (positive-definite) polarizat ion of  X - .  

Let X~ and X 2 be manifolds and L i a line bundle on Xi. Let n~ be the 
projection of  X l X X  2 on X v One denotes by LI[~]L  2 the line bundle, 
~ * L I |  o n  X l X X  2. If 17/ is a connect ion on L i there is a unique 
connection,  17, on L~[-~]L 2 such that if s~, i =  1,2, is a section of  L i then 

V(~s~  |  * *~ * | 1 |  Vs2. 

The curvature of  this connect ion is n] 'curv V l + n * i c u r v V  2. If ( , )i is a Her- 
mitian form on Li, there is a unique Hermit ian form, ( , ) on L I F ] L  2 such 
that 

In particular, if, for i =  1, 2, L i, V i and ( , )i are pre-quantum data on Xi, then 
LI[~]L2,  V and ( , ) are pre-quantum data on X 1 x X 2. Finally note that if 
F 1 and F 2 are polarizations of  X 1 and X 2 then n*F  1 + n * F  z is a polar izat ion of 
X 1 x X 2. 

Combin ing  these remarks with the results of  Sect. 3 we obtain:  

Theorem 6.1. Let  X be a Hamiltonian G-space and 0 a co-adjoint orbit in g*. 
Then to every G-invariant polarization, F, o f  X corresponds a polarization, Fo, c f  
X o. I f  0 is integral, then to every G-invariant set o f  pre-quantum data, L, V and 
( , ) on X corresponds a set o fpre-quantum data, Lo, V o and ( , )o on X o. 

Now let L, V and ( , ) be G-invariant pre-quantum data  on X and F a 
positive-definite G-invariant polarization. Let Xquan tu  m be the space of pola- 
rized sections of  L, and z the unitary representation of  G on this space. Let p 
be an irreducible representat ion of G. By the Borel-Weil theorem (see Theorem 
3.7) there is a unique integral co-adjoint  orbit, O, in g* such that  p is the 
canonical  representat ion of  G o n  Oquantu m. Let V 1 = X q u a n t u m ,  V 2 = Oquantu  m and 

Homc,(V2, I/1) 

the set of  linear mappings  from V 2 to V~ which intertwine the representations, 
p and ~. Let  Lo, Vo, ( , )o and F o be as in Theorem 6.1, and let (X0)quantu m be 
the space of  polarized sections of  L o. 

Theorem 6.2. There is a canonical isomorphism o f  vector spaces 

(Xo)quantu m ~ Horn G (1/2, V1). 
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Proof Let X I = X  and Xz=0.  Let Li, V/, ( , )i and Fi, i=1,2,  be the "quan- 
tum" data described above. Then X1 • X 2 is equipped with the quantum data 

LI[7]L* , V,( , ) and rc*Ft+n*F 2. 

A polarized section of L1[]L*  is by definition a section of LifT]L* which is 
holomorphic with respect to X t and anti-holomorphic with respect to X 2. 
Because of the bijectivity of (3.6) we can identify (Xo)qu,ntu m with the space of 
G-invariant polarized sections of LI[7]L* 2. Let s(xl,x2) be such a section, and 
let dx z be the Liouville measure on X 2. Then the operator 

Ts: C~'(L2) -+ C:~ 
defined by 

(Tsf)(x 1)= 5 S(Xl, x2)f(x2) dx2 

maps V 2 equivariantly onto 1/1, and so defines an element of HomG(V2, V 0. 
Conversely every element of Homa(V2, V 0 can be uniquely expressed as an 
integral operator of this form. Q.E.D. 

A direct corollary of this theorem is the Kirillov conjecture mentioned in 
the introduction: 

Theorem 6.3. Let 0 be an integral co-ad]oint orbit in g * . / f  O is not in the image 
of the moment mapping, then the irreducible representation of G corresponding to 
0 does not occur in Xquanlu m. 

Another corollary is the following: 

Theorem 6.4. Let 0 be an integral co-adjoint orbit in g*. Suppose G acts freely 
and transitively on the set {x e X,  4~(x)~0}. Then the irreducible representation of 
G corresponding to 0 occurs in Xquam .... with multiplicity one. 

Proof If the hypothesis is satisfied, X o consists of a single point. Q.E.D. 

If the polarization, Fo, is "sufficiently" positive-definite, the dimension of 
(Xo)qu,m .... can be computed by the Riemann-Roch formula, and we get the 
following expression for the multiplicity with which the irreducible repre- 
sentation of G corresponding to 0 occurs in X q u a n t u  m : 

e'or[Xo], (6.7) 

being the Todd class of X 0 and co its symplectic form. The Todd class is a 
symplectic invariant of X; so (6.7) is a symplectic recipe for the multiplicity in 
question. (Compare with [3], w 15.) 

Let n be a positive integer. Let X, be the symplectic manifold (X, nf2) and 
O, the co-adjoint orbit {nf, fe0} .  One can show that with X replaced by X, 
and O replaced by O,, the induced polarization on the reduced space is 
"sufficiently" positive-definite when n is sufficiently large; so from (6.7) we 
obtain 
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Theorem 6.5. For n sufficiently large the multiplicity with which the irreducible 
representation of G corresponding to O. occurs in (X.)q~ntu ~ is given by the 
characteristic number 

e"'oT[Xo]. (6.8) 

Remark. 1. For n large (6.8) is approximately equal to n k volume X 0 where k is 
half the dimension of X o because. This estimate on the "asymptotic  multipli- 
city of O" is closely related to some recent results of Gerrit t teckman. (See [6].) 

2. As we have already mentioned the above results can be generalized to 
the case where X~ is a V-manifold. Then the Todd class must be replaced by 
an equivariant Todd class as defined by Atiyah and Singer [18]. Then (6.8) 
follows from Kawasaki 's  Riemann-Roch formula for V-manifolds of [19]. 

Appendix: 

An Existence Theorem 

Let W be an (n+ 1)-dimensional compact, complex domain with a smooth, strictly pseudoconvex 
boundary. Let r: W--~R be a smooth function which is positive in the interior of W, zero on the 
boundary and has no critical points on the boundary, get i: g W--~ W be the inclusion map and let 

Because of the pseudo-convexity, c~ A (de)" is non-vanishing; so ~ is a contact form on ?W~ It is not 
intrinsically defined, since (A.I) depends on the choice of r; however, the manifold 

Y= {(m, 2~m) ; medW, 2eR  + } (A.2) 

is an intrinsically defined submanifold of T* ?,W. The following is elementary to verify: 

Proposition A.I. The condition that ~ A (d~)" be non-vanishing is equivalent to the condition that Y be 
a symplectic submanifold of T*OI4~ 

We will denote by ~Q the restriction to Y of the standard symplectic form on T*M.  Note that 
in addition to being symplectic, Y is positively homogeneous. If (m, ~)~ T* M and 2 ~ R + then 

(m,~)e Y ~=,(m, 2~)e Y 

Now let G be a Lie group and G x W ~  W a holomorphic action of G on W. Then G acts on 
~W and on Y We will prove below 

Proposition A.2. The action of  G on Y is Hamihonian. Moreover the moment mapping, 71: Y ~  9" is 
positively homogeneous: 7 j (m, 2 ~) = 2 ~b (m, ~) fi)r (m, ~) e Y and 2 e R +. 

Let B z be the L 2 closure of the space of holomorphic functions on W. Let B~, be the space of G- 
fixed vectors in B z. The main result of this section is the following: 

Theorem A.3. a) I f  zero is not in the image of the moment mapping, 7J: Y , g*, then dim B 2 < ~ .  
b) Let zero be in the image of  the moment mapping, and in addition, be a regular value qf  the 

moment mapping. Then dim B~ = oe. 

Proof of  Proposition A.2. Let M be a manifold and G a Lie group acting on M. Let T + M = T * M  
- (ze ro  section). We will show that the induced action of G on T ~M is Hamiltonian. To every 
element, ~ of g corresponds a vector field, ~*, on M. Let 7'~: T + M - * R  be the function 
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t/-'~: (z) = (~ * (m),/~) (A.3) 

at z = ( m , p ) ~ T  + M. It is easy to see that 7,r satisfies the analogue of (2.4); so the action of G on 
T ~ M is Hamiltonian and its moment mapping, 7': T + M ~ g  * has (A.3) as its ~-th coefficient. It is 
clear from (A.3) that qJ is homogeneous. If Y is a G-invariant symplectic submanifold of T + M  
then by restricting (A.3) to Y we see that the action of G on Y is Hamiltonian as well. Q.E.D. 

Before proving Theorem A.3 we will first prove a more primitive version of it. Let M be a 
compact manifold and G a compact Lie group acting on M. Let tp: T + M ~ 9 *  be the moment 
mapping, (A.3). Let (T '  M ) o = { z ~ T  ~ M. '/-'(z)=0}. Suppose zero is a regular value of 7-'. Then by 
Theorem 2.4, (T § M)o is a co-isotropic submanifold of T + M and the leaves of its null-foliation are 
the orbits of G. It follows that the orbit relation 

r={(z l , z2) ;  z 6(T+ M)o, Z l - g z  2 for geG} (A.4) 

is a canonical relation. (See for instance, [4] Proposition 2.2.) Now let ~ be a positive smooth G- 
invariant measure on M and let L2(M) be the L 2 space of M with respect to ~. Let LZ(M)G be the 
space of G-fixed vectors in L2(M) and let Pa be orthogonal projection of L2(M) onto L2(M)c. 

Theorem A.4. PG is a zeroth order elliptic Fourier integral operator associated with the canonical 
relation, F. 

Proof Let p: G • M ~ M  be the mapping, (g,m)-~gm and r: G x M---,M the mapping, (g,m)--,m. 
Let 

p*: L2(M)~ L2(G x M) 

be the bounded linear operator, f ~ f o  p, and 

~*: L2(M)~ L2(G x M) 

the bounded linear operator, f - , f o  r. Let (~,)t: L2(G • M ) ~  L2(M) be the transpose of v*. Then 

P~;-(~*)'p*. (A.5) 

Both r* and p* are Fourier integral operators. To describe their underlying canonical relations, let 
us use the right action of G on itself to identify T*G with Gxg*.  The underlying canonical 
relation of r* is then 

((g, 0), z, z), g~G, z ~ T + M  (A.6) 

in T*G x T*M x T ' M ,  and the underlying canonical relation of p* is the "moment Lagrangian" 

((g, tP(z)),z, gz), gcG,  z c T ~  m. (A.7) 

(See [I6], p. 21. Here qJ: T + M  *g* is the moment mapping.) 
The transpose of A.6 is composible with A.7 in the sense of H6rmander, [7], Sect. 4 if and only 

if zero is a regular value of qJ; and if this is the case, the composite relation is (A.4). Since ~* and 
p* are elliptic (have non-vanishing symbols) the same is true of P~;. Q.E.D. 

Let M=PW. If f is a holomorphic function on W its restriction to M is a C "~ function 
satisfying the boundary Cauchy-Riemann equations. Let H 2 be the L 2 closure of the space of all 
such functions in LZ(M). It is sufficient to prove Theorem A.3 with B 2 replaced by H 2. (See [2].) 
Let Ps be the orthogonal projection of LZ(M) onto H 2 (the "Szeg6 projector".) For the following, 

see [2]. 

Theorem A.5. ~ is an elliptic Fourier integral operator (with complex phase). Its associated 
canonical relation is the diagonal in Y x Y 
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Since G leaves H 2 fixed, ~P~  =P~;Ps is orthogonal projection onto H~. 
Combining the previous two theorems with known facts about the compositions of Fourier 

integral operators with complex phase (see [13]) we obtain: 

Theorem A.6. Let Yo = {yG Y, tP(y)=0}. Suppose zero is a regular value of  tp. Then P~;Ps is an elliptic 
Fourier integral operator with complex phase. Its underlying canonical relation is the orbit relation 

{(y, gy), yG Yo, gGG} (A.8) 
in Y x Y  

Corollary 1. I f  zero is not in the image of tp, pGps is a smoothing operator. 
This corollary proves the first part of  Theorem A.3 because if P~Ps is smoothing, the space 

{ f  G L2(M), P(;Psf = f }  

is finite dimensional by the Fredholm theorem. 

Corollary 2. I f  zero is in the image of  tp, the range oJ' P~ Ps is infinite dimensional. 

Indeed if the range were finite dimensional,  P~;Ps would be smoothing. In particular its leading 
symbol would have to be zero. However P~Ps is elliptic. This proves the second part of Theorem 
A.3. 

We will now prove Theorem 5.6. Let (X, F) be a compact symplectic manifold with a positive- 
definite polarization and let L, V and ( , ) be pre-quantum data. Let L*, V* and ( , )* be the 
associated pre-quantum data for X - .  Let 

W={(x,v);  xGX,  vcL*x, (v,v)* < 1} 
and 

M={(x ,v) ;  x e X ,  veL*~, (v ,v)  = 1}. 

W is a compact, complex domain with boundary M. Moreover, since F is positive definite, W is 
strictly pseudoconvex. (See, for instance, [3].) If X is a Hamil tonian G-space and the "quan tum"  
data above are G-invariant, then G acts holomorphically on Vr The circle group, S ~, also acts 
holomorphically on W by the action 

(x, v)e W ~(x,e '~ IV. 

By Proposition A.2 we get a Hamiltonian action of G x S ~ on E The relationship between the 
action of G on X and the action of G on Y is easy to describe. The Hamiltonian action of S ~ on Y 
gives rise to a moment  mapping 

r Y-~R 

which, by Proposition A.2, is positively homogeneous.  Let Y t = { y e  Y, q, l (y)= 1} and let Ys~ be the 
reduced space: 

Ys, = U J $I. 

Since the action of G on Y commutes  with the action of S ~ on Y, G acts in a Hamiltonian fashion 
on Ys,. We will prove 

Theorem A.7. X and Ys~ are isomorphic as Hamiltonian G-spaces. 

Proof Let r: W ~ R  be the function, (x,v)-~l-]]vll ,  and let c~ be the form (A.1) on M = 0 ~  M is a 
principal S t bundle over X, and the connection, V, on L is associated with a "principal-bundle" 
connection on M. It is easy to see that cr is the connection form for this connection; so, in 
particular, if ~2 x is the symplectic form on X and p: M - ~  X the projection of M on X then 

d c~ = p* curv (V) = p* f~x. (A.9) 

Let r be the infinitesimal generator of S ~. Since ct is a connection form, (r ~)= 1; so by (A.3) the 
mapping 
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l: M ~ Y, m -+(m,%,) 

maps M diffeomorphically onto Y1, intertwining the two actions of S t. Thus 

X ~_ M / S  1 ~- Y1/S ~ ~- Ys,. (A.10) 

Moreover, if s r is the symplectic form on Y then by (A.S), t*f2r=O*Qx; so by (2.12), the 
symplectic forms on X and ~., are the same. Finally it is clear that (A.9) intertwines the two G- 
actions. Q.E.D. 

Let T:  Y ~  g* be the moment  mapping associated with the action of G on Y and (b: X - *  g* the 
moment  mapping associated with the action of G on X. With i and p as above we get as a 
corollary of Theorem A.7 the identity 

~ol=q~op. (A.II) 

Let x be the projection of Y onto X. Since 7 j is positively homogeneous,  we conclude from (A.I!): 

Proposition A.8. Let  X o = { x 6 X ,  q~(x)=0} and Y0={y~Y, 7J(y)=0}, then Yo=X l(Xo). In particu- 
lar i f  zero is a regular ralue oJ 4p, it is a regular value of  ~.  

Hence by Theorem A.3, if X o is non-empty and zero is a regular value of 4', dimB~ = ~ .  Since 
the action of S 1 on W commutes  with the action of G on W,, S 1 acts as a one-parameter unitary 
group on B 2, and we can decompose B 2 into a Hilbert space direct sum of the subspaces 

k = {.f~ Bg. ; f ( e  '~ w) = e'k~ (A. 12) 

Therefore (A.12) k is non-zero for some k. However, (A. 12) k is just the space of G-invariant 
k 

holomorphic sections of @ L. 
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