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Summary. We shall consider an application of simple exponential splines
to the numerical solution of singular perturbation problem. The computa-
tional effort involved in our collocation method is less than that required
for the other methods of exponential type.

Subject Classifications: AMS(MOS):65L10; CR:G.1.7.

1. Introduction and Description of Method

In the present paper we shall consider an application of simple exponential
splines to the numerical solution of the singular perturbation problem:

ey"+b(x)y —d(x)y=f(x) (0=x=1)
yO)=a, y()=p (1.1)

for small ¢>0 and for smooth data functions b, d, and f subject to the conditions
d(x)=0 and b(x)=B>0 on [0,1] for a fixed positive constant B. It is well
known that the usual centered O(h?) difference scheme may not give an accurate
approximate solution for a small value of .

Now, by making use of an indicator y of (0, 1] and an exponential function
¢, with nonzero real p:

& (x)_{p exp(px)/{exp(p)—1} (O<x=1)
SR {otherwise), (1.2)

we may define the exponential B-spline U,,,; ,:

Upir,p(X) =0 xx ... x xx9,) (%) (1.3)
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where * means the convolution of two functions. This analogous to the convolu-
tion formulation of the polynomial B-spline Q,, . ;:

Om+ 1 () =00r g+ 1) (). (1.4)

Since Uy 4 1, ,(X)=(Qm* ¢,) (x), from Q,,(x)=Q,,(m—x) and ¢, (x)=¢_ ,(1 —x) fol-
lows the symmetry

Un+1,pMm+1=x)=Unsy, —p(x). (L.3)

This symmetry with respect to the transition p - —p can be used to advantage
for an evaluation of U, .y ,. By means of the convolution formulation of U+ ,,
we may easily check the following properties similar to those of the polynomial
B-spline Q,,,, [5, 6]:
(1) Um+ I,p(x)ecm_ 1(_ 0, OO)
(ii) the support of U, ,=[0,m+1]and U, ., ,(x})>00n(0,m+1)
(i) 1 Up-1, ()= O3 (9, B Uy () =0 ()

(lV) Ur:|+1,p(x): Um,p(x)—Um,p(x—l) (mgz)

(V) Y Uusy p(x—j)=1(a partition of unity)
j=—w
(vi) 1,x,...,x"" !, and exp(px)eSpan{U, .+, ,(x—N}% - o
(vii) for seSpan{U, . ,(x—)}> -,

m—1

o«

Z am+1-js(k)(j)= Z asr,:)-i-lfjs(j) (1=sk=m-1)

j=—w j=—o

where a =U¥ ; ,(j).
For later use, we give the explicit forms of the consistency relations (vii)
(m=3). First, by (1.3) we have for 0<x<1:

B 1 exp(px)—1 x x?
U“”’(x)_eXp(p)—l{ p’ _;_7}' (16)

Next, by (1.5)+1.6) and (v), from (vii) we have

A@P)sj 1 +{1—-A(P)—A(=p)} ] +A(=p)s] 4

=$;41+28;+5;_,4 (1.7)
A(p) 41 +{1—A(p)— A(—p)} sj+ A(—p) sj-1
=B(p)(sj+1—s;)+B(—p)(s;—s;-1) (1.8)

where s =s®(j),

AP)(=U,, ,(1)=1/p* —(3+1/p) {exp(p)— 1}
B(p)(=Us,,,(1))=1/p—1/{exp(p)—1}.
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Now, by making use of the above stated B-spline U, ,, we consider a spline
function s of the form

n—1

s)= Y o; Uy (x/h—)) (nh=1) (1.9)

j=-3

with undetermined coefficients (x_3,%_,,...,a,. ). For an appropriate value
of p, the above s will be an approximate solution to the problem (1.1)}1.2)
if it satisfies

esi+b;si—d;s;=f; (0<j<n) (1.10)
So=0a, S,=f (1.11)
where s =s®(jh).
By a simple calculation, Eq. (1.10)-(1.11) are equivalent to the following sys-
tem of n+ 3 equations:

Ao +{1—-ApP)—A(—p}a_,+A(—pla_3=a

e b,
F(‘xj— 1 ‘“2“,‘—2‘*’%'—3)‘*'# {B(p)(a;- 1 —a;_>)

+B(—p) (aj#Z—aj—3)}_-dj[A(p) Aj—1 +{1_A(P) (1.12)
—A(=p)a;_,+A(-pla;_3]=f; (0=j<n) (1.13)
AP oy 1+{1-AP)—A(—p)} -2+ A(—D)ay_3=B. (1.14)

Since U, , converges to Q, and Q3 as p goes to 0 and ~ oo, respectively,
our collocation method is situated between the collocation ones with the usual
cubic and quadratic splines. In Sect. 2, we shall show that the difference scheme
derived from our method (p — — o0) is almost the same one presented and ana-
lyzed in [1]. In Sect. 3, we shall determine an appropriate value of p and analyze
our method (1.10)+1.11).

2. Limiting case (p - — o) of our Method

Let us take a spline s of the form:

n—1

r(x)= Y o;Qs(x/h—)). @0

j=-2
Then, by (iti) letting p - — co we have

sOx)—r®(x) (k=0,1) (2.2)
sj—=ri_  (1£jZn) (2.3)

Hence, we have
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Theorem 1. The limiting case (p — — o) of our collocation method (1.10}~(1.11)
reduces to the collocation one with the usual quadratic spline, i.e.,

erf_+b;ri—d,r,=f, (1<j<n). (24)
ro=o, r,=p (2.5)
n—1
withr(x)= . o; Qs(x/h—)).
j=-2

By means of the consistency relations for polynomial quadratic spline r:

2+ =~ /h

(rj—r;-)h=rj_,

we see that Eq. (2.4) are equivalent to

€ (b;y,+b;
Lhrjzﬁ(rjﬂ—zrj+rj—1)+%‘l—)"(rj+l_rf)
1/ D; 1/ D;
—E(Fivldﬁrlrj+1+djrj)—§(D._:1fj+1+fJ>:O
J 7
(1=j=n-1) (2.6)
where D;=b;+2¢/h
bivith;—b;s1)
k=1+ Jri g .
(bjs1+b) (b +2¢/h)

Here, the above difference scheme is exactly the same upwind one for b
constant on [0, 1] presented and analyzed in [1]. In addition, by property
(vi) the truncation error of our scheme (2.6) is zero for r=1, x, x2, while the
one of the difference scheme in [1] is zero for only r=1, x.

3. Analysis of our Method

We assume that b(x) is constant on [0, 1] and A>e.
By (1.7)1.8) and (1.10)~(1.11), we have a system of equations in 5; (0=<j<n):

& b
Ly szﬁ(sj+l—23j+j—l)+—l; {B(p)(sjx1—5))

+B(—p)(s;—s;- )} —LAP d;4 1 54 +{1 - Alp)

—A(=p)}d;s;+ A(=p)d;- 1 5;- 11~ [AP) fi+, +{1

—A(p)—-A(-p)} f;+A(=p) f;-11=0 (1=jsn—1) (3.1
so—a=0, s5,—p=0 (3.2)

where b(x)=».
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First we notice that the difference operator L, satisfies the discrete maximum
principle [3. p. 7007 if

g b

72+ BO)—A(p)d;. 20 (3.3)

e b

775 B(=p—A(=p)d;., 20 (34)

or if,

¢ b1 1 11
w3 a0 =
e b

F+ﬁ>? Orgilgld(x) (3.6)

for — p sufficiently large. By a simple calculation, we have

Lemma 1. For p= — ux(k =bh/¢), the discrete maximum principle is valid if

u=1+(g/b?) max d(x) (3.7
0=5xs1
O0<h=2b/ max d(x) (3.8)
0<xs1

provided that x is sufficiently large, i.e., h>¢.

Before we estimate the truncation error, we shall determine an appropriate
value of p under (3.7) which would approximately make it be minimum. Be
means of Lemma 2.4 in [4], the solution y of (1.1)-(1.2) can be written in the
form:

y(x)=v(x)+w(x) (3.9)
where v(x)=C, exp(—bx/e) (b=5b(0))
WH ()= Co[1+e7*" Texp(—dx/e)]

(C{,C, and J are positive constants independent of ¢). Then, since L, y;=0
for y=1, x, x? by (vi), there exists a “Peano kernel” k; such that

Liyy= | ki(x)y(x)dx, (3.10)

By (3.9), L, y; can be approximated by L, v; or

i k() ¥ (x) dx ~ Ch‘f () exp{—b—:— (- 1)} G.11)

Xji-1
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where ®(u)=1—1/u. Since @(u) is monotone increasing on [1, o0), by (3.7} we
should take p=1+(g/b?) max d(x),ie,
0gxs1

p=— ”"{Hb—z max d(x)} (3.12)

Then, by an elementary and a little long calculation we have

Lemma 2. For p defined by (3.12),
Lyy;= (hz) exp{—(ah/e)(j— 1)} + O(h?)

where o is a positive constant independent of h and .
Before we complete the error estimate, we shall prove the following two
lemmas that are required for a comparison method [3, p. 717].

Lemma 3. L,(x;—2);2b (x;=jh).
Lemma 4. For p by (3.12),
Ly(—079);2079/0(h) (0=1+O0(h/e?)).

Since the proof of Lemma 3 is easy, here we only prove Lemma 4. By a simple
calculation, we have

NgmistO-Df 1 ok
L,(—6" )1/0 2 K2 {1 u+exp(MK)—1}

P (-6}

_ 1 exp(ux) _l K
W“)"{I“Z*exp(m)—l}/‘{l u+exp(uk)—1}'

Since P (1 +(¢/b?) max d(x))=0(h/c?), we have the desired result.
0<x<1

where

Combining Lemmas 2-4, we have

Theorem 2. Assume (3.8) and (3.12). Then, the solutions s;{(0<j<n) of (3.1}(3.2)

satisfy
2 —(-1
{s,.—yj|§0(h2)+o(fh—){1+o(£§>}( '

For b not always constant on [0, 1], the solution of the problem (1.1)}~1.2)
would be largely determined by C, exp(—b(0) x/e), and so it would be sufficient
to decrease parameter p, starting at —b(0) h/e, until the approximate solution
is satisfactory.
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Table 1 (Example 1)

Method e=h'? e=h?
Ours OCI Ours OCI
n=32 74-—5 63-3 7.0—6 3.0--5
64 6.1—6 28-3 1.9-6 37-6
128 14-7 96—-4 48-17 62-17
256 6.0-—8 28—4 1.2-7 1.3-7
512 23-8 765 31--8 3.2-8
1024 6.7-9 20-35 78-9 79—-9
2048 1.8—9 5.3-6 1.9-9 20-9
Table 2 (Example 2)
Method g=h'? e=h?
OQurs EW scheme Qurs EW scheme
n=32 49-4 264 24—-4 2.5—4
64 13-4 635 62-—5 6.6—5
128 3.6-5 1.6—5 1.6—5 1.7--5
256 94—6 41-6 39—-6 436
512 2.5—6 1.1-6 1.0-6 1.1-6

4, Numerical Tllustration

In this section, we consider an application of our collocation method to the
numerical solution of the following two examples.

Example 1 [3].
ey'+x+1Py=f (0=x=<])
y(0=2,  y(1)=(1/8) exp{—15/(4e)} +exp(—})

where the solution is given by

1 1
y(x)=(x+—1)3 exp[—4—8 {(x+1)*— 1}]+exp(—%x).
Example 2 [2].
ey +(x+1)y —031(x+ 1)y
= 023x>—029x—043 (0<x<1)
y(0)=27, y(1)=053.

The notation a—b=ax 10~% is used throughout. The columns in the following
tables give the maximum absolute errors at all the mesh points. For comparison,
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we also give some numerical results by using particular schemes, i.¢., the general-
ized OCI scheme and the EI-Mistikawy and Werle scheme [2, 3]. The results
show that the numerical rate of convergence would be O(h?) even for the case
when b is not always constant on [0, 1]. It should be noted that computational
effort involved in our scheme (1.10}{1.11) (i.e., (1.12)«(1.14)) is significantly less
than that required for the generalized OCI scheme and the EI-Mistikawy and
Werle one. In addition, our method gives twice continuously differentiable
approximate solutions, while EI-Mistikawy and Werle method gives a contin-
uously differentiable one.
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