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Summary. We shall consider an application of simple exponential splines 
to the numerical solution of singular perturbation problem. The computa- 
tional effort involved in our collocation method is less than that required 
for the other methods of exponential type. 
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1. Introduction and Description of Method 

In the present paper we shall consider an application of simple exponential 
splines to the numerical solution of the singular perturbation problem: 

ey"+b(x)y'-d(x)y=f(x) ( 0 < x < l )  

y(O)=c~, y(1)=fl  (1.1) 

for small ~ > 0 and for smooth data functions b, d, and f subject to the conditions 
d(x)>O and b(x)>=B>O on [0, 1] for a fixed positive constant B. It is well 
known that the usual centered O(h z) difference scheme may not give an accurate 
approximate solution for a small value of e,. 

Now, by making use of an indicator Z of (0, t]  and an exponential function 
qSp with nonzero real p: 

Cbp(X)=~pexp(px)/{exp(p)-l} ( O < x <  1) 
/o (otherwise), (1.2) 

we may define the exponential B-spline tim+ ~,p: 

c , .+  ~ . , ( x ) = ! z  , z , . . .  , z , 4~,! (x)  (1.3) 
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where �9 means the convolut ion of two functions. This analogous to the convolu- 
tion formulat ion of the polynomial  B-spline Q,,+I: 

Qm+ , (x)=,(Z . Z . ... . Zt (x). (1.4) 
m4-1 

Since Um+ 1, p (X) = (Qm * (~p) (X), from Q,. (x) = Qm (m - x) and q~p (x) = ~b_ p (1 - x) fol- 
lows the symmetry 

U,.+ L , ( m +  1 - x ) =  U,.+ , ,_  p(x). (1.5) 

This symmetry with respect to the transition p ~ - p  can be used to advantage 
for an evaluation of U,.+ 1,p. By means of the convolut ion formulat ion of U,,+ 1,p, 
we may easily check the following properties similar to those of the polynomial  
B-spline Qm + 1 [5, 6] : 

(i) u,,+l.~(x)~Cm-l(-oo, ~) 
(ii) the support  of Um+ 1, p = [0, m + 1 ] and Um+ 1. p (x) > 0 on (0, m + t) 

(iii) lim U,,+l,p(x)=Q,.+~(x), lim U,,+a,p(x)=Qm(x) 
p ~ O  p ~ - o o  

( i v )  U m + l , p ( x ) : U m ,  p ( x ) - U m ,  p ( X - 1  ) (m>2)  

(v) ~" U,.+ 1,p(X--j)= 1 (a part i t ion of unity) 
j =  - o o  

. . . ,  X - 09 (vi) 1, x, x " -1 ,  and exp(px)eSpan{U,.+l,p( - j ) } j = _ ~  
(vii) for seSpan{U. ,+ 1,p(x--j)}j% -co, 

a,.+l_js(k)(j)= ~ a~)+1_js(j) (l_<k_<m-1) 
j= --oo j= -- oc~ 

where a} k) = (k~ �9 U."+ ~.,(j). 
For  later use, we give the explicit forms of the consistency relations (vii) 

(m=  3). First, by (1.3) we have for 0_<x_< 1: 

1 , f e x p ( p x ) - i  x 22 } (1.6) 
U#,p(x)= e x p ( p ) -  1 [ p2 p �9 

Next,  by (1.5)-(1.6) and (v), from (vii) we have 

A(p) sy+, + {1 - A ( p ) - A ( - p ) }  sy + A(--p) sy 1 

= S j +  1 +2s j+s j_ l  

A(p) s)+ l + {1 --A(p)-- A ( - p ) }  s)+ A ( - p ) s ) - i  

=B(p)(st+,-st)+ B(-p)(s j-s j_,)  

(1.7) 

(1.8) 

where sT)= s~k)(j), 

A (p) ( = U4, p(1)) = 1/p z - (�89 + 1/p) {exp(p ) -  1 } 

B(p) ( =  U,[, p(1))= 1 / p -  1/{exp (p)-- 1}. 
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Now,  by making  use of  the above stated B-spline U4, p, we consider a spline 
function s of  the form 

n--1 

s (x )=  ~ ~j U, ,p(x /h- j )  (nh= 1) (1.9) 
j = - 3  

with undetermined coefficients ( a -3 ,  c~-2 . . . . .  a ._  1). For  an appropr ia te  value 
of p, the above  s wilt be an approx imate  solution to the p rob lem (1.1)-(1.2) 
if it satisfies 

esy + b j s ) - d s s j = f j  (O<=j~n) (1.10) 

So=Or, s .=f l  (1.11) 

where s} k) = s ~k)(j h). 
By a simple calculation, Eq. (1.10)(1.11) are equivalent  to the following sys- 

tem of  n + 3 equat ions:  

A(p) a-1 + {1 - A(p)- -A(- -p)}  c~_ 2 + A(- -p)  o~_ 3 =0~ 

e bj 
(as- 1 - 2 a~_: + a~_ 3) + ~- { B (p) (a j_ x - as -  2) 

+ B ( - p) % _  2 - ~ -  3)} - a t  [ A (p) ~ s - ,  + { 1 - A (p) 

- -A( - -p )}  a~_z+A(--p)ot j_3]=f j  (O<j<n) 

A(p)a._  l + { 1 -  A ( p ) -  A ( - p ) }  an- 2 + A ( - p ) a . _  3=fl. 

(1.12) 

(1.13) 

(1.14) 

Since U4,p converges to Q4 and Q3 as p goes to 0 and - ~ ,  respectively, 
our  col locat ion me thod  is situated between the collocation ones with the usual 
cubic and quadrat ic  splines. In Sect. 2, we shall show that  the difference scheme 
derived f rom our  me thod  (p ~ -  m)  is a lmost  the same one presented and ana-  
lyzed in [1]. In Sect. 3, we shall determine an appropr ia te  value of p and analyze 
our  me thod  (1.10)-(1.11). 

2. Limiting case ( p ~  - ~ )  of  our Method 

Let us take a spline s of the form: 

n - 1  

r ( x ) =  ~ '  ajQ3(x /h - j ) .  
j = - 2  

Then, by (iii) letting p ~ - oo we have 

Hence, we have 

s(k)(x) ~ r(k)(x) (k = 0, 1) 

sj " ~ r" S- (I < j < n ) .  

(2.1) 

(2.2) 

(2.3) 
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Theorem 1. The limiting case ( p ~ - - o e )  of our collocation method (1.10)-(1.11) 
reduces to the collocation one with the usual quadratic spline, i.e., 

erT_ +bjr)-djrj=fj (1 <j<n). (2.4) 

ro=C~, r ,=f l  (2.5) 

n--1 

with r(x)= ~" %Q3(x/h- j ) .  
j= - -2  

By means of the consistency relations for polynomial quadratic spline r: 

�89 + r)_ t)=(rj--rj_ t)/h 

(r)--r) ,)/h=ry_, 

we see that Eq. (2.4) are equivalent to 

(b j+ 1 + b j) 
L h r j = ~  ( r j + l - 2 r j + r j - 1 ) +  2h ~( r j+  1 --rj) 

1(  Dj dj+ r j+l+djrj)  - 1 [  Dj + f j ) = 0  
2 \Dj+,  ' 2-~D~7+ 1 f j+ '  

(1 < j < n - -  1) (2.6) 

where Dj = bj + 2 e/h 

~ = 1 +  bj+ l (bj-bj+ l) 
(bj+ 1 + bj) (bj+ ~ + 2e/h)" 

Here, the above difference scheme is exactly the same upwind one for b 
constant on [0, 1] presented and analyzed in [1]. In addition, by property 
(vi) the truncation error of our scheme (2.6) is zero for r =  1, x, x 2, while the 
one of the difference scheme in [1] is zero for only r = 1, x. 

3. Analysis of  our Method 

We assume that b(x) is constant on [0, 1] and h>~. 
By (1.7)-(1.8) and (1.10)-(1. t 1), we have a system of equations in sj (0_-<j =< n): 

g 
Lh s j=~2  (sj+ a - -2s j+ j_  0 +  b {B(p) (s j+ 1 --s j) 

+ B ( - p) (s j -  s j_,)} - [A (p) dj +, sj +, + { 1 - A (p) 

- A ( - p ) }  djsj+ A ( - p )  dj_, s j_l]--[A(p)f j+ , +{1 

- - A ( p ) - - A ( - - p ) } f j + A ( - p ) f j _ , ] = O  (1 =<j<n-- 1) (3.1) 

So--a=0, Sn--fl=O (3.2) 

where b(x) = b. 
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First we notice that  the difference opera to r  Lh satisfies the discrete m a x i m u m  
principle [3. p. 700] if 

e b 
h2 4-~ B(p)-  A(p) di+ ~ >0 (3.3) 

e b 
h 2 h B ( - p ) - A ( - p ) d  r_~>O (3.4) 

or  if, 

~h k P ]  > t ~ + p + 2 }  o~x~,max d(x) (3.5) 

e b 1 
h2 ~ - > ~ -  max  d(x) (3.6) ph p o~x~l 

for - p  sufficiently large. By a simple calculation, we have 

L e m m a  1. For p = - I t  ~c(K = b h/e), the discrete maximum principle is valid if 

I t ~ l + ( e / b  2) max  d(x) (3.7) 
O ~ x ~ l  

O<hN2b/ max d(x) (3.8) 
O~XNI 

provided that tc is sufficiently large, i.e., h >> e. 
Before we est imate the t runcat ion  error,  we shall determine an appropr ia te  

value of p under  (3.7) which would approx imate ly  make  it be min imum.  Be 
means  of L e m m a  2.4 in [4], the solution y of (1.1)-(1.2) can be writ ten in the 
form:  

y(x) = v(x) + w(x) (3.9) 

where v(x)=C1 exp(-bx/e) ( b = b ( 0 ) )  

I w ( k ) ( x ) I  ~" C 2 [ 1  + e - k  + 1 exp(-- 6 x/e)] 

(C1, C2 and 6 are positive constants  independent  of e). Then, since Lhyj=O 
for y = 1, x, x 2 by (vi), there exists a " P e a n o  kernel"  kj such that  

xj+ 1 

Lhyj= j k~(x)y~3)(x)dx. (3.10) 
X j  1 

By (3.9), Lh yj can be approx ima ted  by Lh vj or 

~ (3) C 1 e bh 
~ kj(x)v ( x ) d x ~ g - r  } (3.11) 

xd-  I 
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where q~(/~)= 1 - 1//z. Since q~(/z) is monotone increasing on [1, oo), by (3.7) we 
should take ~ = 1 + (e/b z) max d(x), i.e., 

0_<x_<l 

bh 1+ max d(x (3.12) 
P =  /~ ~ -  0_<X__< 1 

Then, by an elementary and a little tong calculation we have 

Lemma 2. For p defined by (3.12), 

/ "~ ~2 

Lh = O [,_~] exp { -- (a h/Q (j - 1)} + O (h z ) Yj \n- /  

where a is a positive constant independent of h and ~. 
Before we complete the error estimate, we shall prove the following two 

lemmas that are required for a comparison method [3, p. 717]. 

Lemma 3. Lh(Xj-- 2);> b (x; =jh). 

Lemma 4. For p by (3.12), 

Lh( --O-J)j~ O-J/O(h) (0 = 1 + O(h/e2)). 

Since the proof of Lemma 3 is easy, here we only prove Lemma 4. By a simple 
calculation, we have 

where 

O_~)/O_j> ~ (0 -  1) { 1 ~c } 
L h ( - -  = Oh 2 1 - - - - +  p e x p ( / ~ ) - i  

�9 { 0}  

~(U)= 1 -  + e x p ' - - ' - - '  

Since ~g(1 + (e/b z) max d(x))= O(h/~2), we have the desired result. 
O<x< 1 

Combining Lemmas 2 4 ,  we have 

Theorem 2. Assume (3.8) and (3.12). Then, the solutions sj(O <j < n) of (3.1)-(3.2) 
satisfy 

For b not always constant on [0, 1], the solution of the problem (1.t)-(1.2) 
would be largely determined by C1 exp( -b (0 )x /Q,  and so it would be sufficient 
to decrease parameter p, starting at -b(0)h/e ,  until the approximate solution 
is satisfactory. 
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Table 1 (Example 1) 
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Method r  l"s ~,=h 2 

Ours OCI Ours OCI 

n = 3 2  7.4--5 6 . 3 - 3  7.0--6 3 . 0 - 5  
64 6.1--6 2 . 8 - 3  1 .9 -6  3 . 7 - 6  

128 1.4 -- 7 9.6 - 4 4.8 - 7 6.2 -- 7 
256 6.0 -- 8 2.8 - 4 1.2 - 7 t .3 - 7 
512 2.3--8 7 . 6 - 5  3 . 1 - 8  3.2--8 

1024 6.7 - 9 2.0 - 5 7.8 - 9 7.9 -- 9 
2048 1.8 - 9 5.3 - 6 1.9 - 9 2.0 -- 9 

Table 2 (Example 2) 

Method ~ = h  1"5 e = h  2 

Ours EWscheme  Ours EWscheme  

n = 3 2  4 . 9 - 4  2 . 6 - 4  2.4--4 2.5--4 
64 1.3 - 4 6.3 - 5 6.2 - 5 6.6 -- 5 

128 3.6--5 1.6--5 1.6--5 1.7--5 
256 9.4--6 4.1 --6 3.9--6 4.3 - 6  
512 2 . 5 - 6  1.1 --6 1.0--6 1 . 1 - 6  

4.  N u m e r i c a l  I l l u s t r a t i o n  

I n  t h i s  s e c t i o n ,  w e  c o n s i d e r  a n  a p p l i c a t i o n  o f  o u r  c o l l o c a t i o n  m e t h o d  t o  t h e  

n u m e r i c a l  s o l u t i o n  o f  t h e  f o l l o w i n g  t w o  e x a m p l e s .  

Example I [ 3 ] .  

ey"+(x+l)3y'=f ( 0 < x < l )  

y ( 0 ) =  2, y ( 1 )  = (1 /8)  e x p {  - 1 5 / ( 4 0 }  + e x p ( - � 8 9  

w h e r e  t h e  s o l u t i o n  is  g i v e n  b y  

1 1 } ] + e x p ( - - � 8 9  Y(X)=(x + 1)3 e x p [ - - ~  {( x +  1 ) 4 -  

Example 2 [ 2 ] .  

ey"+(x+ 1 ) y ' - - 0 . 3 1  (x  + 1)Sy 

= - - 0 . 2 3 x  z - 0 . 2 9 x - 0 . 4 3  ( 0 < x <  1) 

y ( 0 )  = 2.7, y ( 1 )  = 0 .53 .  

T h e  n o t a t i o n  a - b  = a x 10 - b  is  u s e d  t h r o u g h o u t .  T h e  c o l u m n s  in  t h e  f o l l o w i n g  

t a b l e s  g i v e  t h e  m a x i m u m  a b s o l u t e  e r r o r s  a t  a l l  t h e  m e s h  p o i n t s .  F o r  c o m p a r i s o n ,  
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we also give some numerical results by using particular schemes, i.e., the general- 
ized OCI scheme and the EI-Mistikawy and Werle scheme [2, 3]. The results 
show that the numerical rate of convergence would be O(h 2) even for the case 
when b is not always constant on [0, 1]. It should be noted that computational 
effort involved in our scheme (1.10)-(1.11) (i.e., (1.12)-(1.14)) is significantly less 
than that required for the generalized OCI scheme and the EI-Mistikawy and 
Werle one. In addition, our method gives twice continuously differentiable 
approximate solutions, while EI-Mistikawy and Werle method gives a contin- 
uously differentiable one. 
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