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Summary. The multigrid full approximation scheme (FAS MG) is a well- 
known solver for nonlinear boundary value problems. In this paper we re- 
strict ourselves to a class of second order elliptic mildly nonlinear problems 
and we give local conditions, e.g. a locat Lipschitz condition on the derivative 
of the continuous operator, under which the FAS MG with suitably chosen 
parameters locally converges. We prove quantitative convergence statements 
and deduce explicit bounds for important quantities such as the radius of 
a ball of guaranteed convergence, the number of smoothings needed, the 
number of coarse grid corrections needed and the number of FAS MG 
iterations needed in a nested iteration. These bounds show well-known fea- 
tures of the FAS MG scheme. 

Subject Classifications: AMS (MOS): 65N20; CR: 5.15. 

1. Introduction 

We consider the following class of second order elliptic mildly nonlinear bound- 
ary value problems on an open, connected, bounded domain f2 c 11t 2 with smooth 
boundary 0 I2: 

-V.(aVu)+bgou=f on f2 

u = 0  on t?O 

with aeCl(~), min{a(x)lxeO}>O, beC(O), min{b(x)lxeO}>O, feL2(f2), 
geC1 (IR), g'(t)>=O for all tMR. 

Existence and uniqueness of a solution of such a boundary value problem 
is proved in literature using the global monotonicity of the problem. We reformu- 
late the above problem in an equivalent variational form and give a finite element 
discretization. Now, after discretization we have a nonlinear system of equations 
to be solved. Two methods frequently used in a multigrid context to solve 
such a system of equations are the following. One can use an iterative linearisa- 
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tion process like (a modified) Newton's method combined with a linear multigrid 
method to solve the linear equations occurring in this Newton process. Another 
method is a nonlinear multigrid method, known in literature as Full Approxima- 
tion Scheme (FAS; Brandt in [2]) or Nonlinear Multigrid Iteration (Hackbusch 
in [6]). With respect to the first method we note that for the Newton iteration 
and the linear multigrid solvers seperately many theoretical analyses of conver- 
gence properties can be found in literature (e.g. [9, 1, 6]). However the only 
analysis of the first method known to the author is [10]. One might expect 
(for experimental results see ch. I in [7]) that asymptotically, i.e. in a small 
enough neighbourhood of the solution, the two methods (Newton+lin.  M G  
and FAS) behave similarly. 

A convergence proof  of a FAS-iteration scheme is given (only) by Hackbusch 
in e.g. [6]. Hackbusch imposes general conditions on for example the derivative 
of the discrete operator  and the derivative of the relaxation operator used. Under  
these general conditions he deduces the qualitative result that on a fine enough 
discretization level in a small enough neighbourhood of the discrete solution 
the FAS scheme with a bounded number of smoothings per iteration and a 
bounded number  of coarse grid corrections converges. He also proves that 
asymptotically, under conditions, the convergence factor agrees with what one 
expects. 

In this paper we only consider FAS. We abandon generality and restrict 
ourselves to the class of nonlinear problems defined above. We do note that 
in our analysis of the FAS iteration all conditions and results are local ones 
and thus our analysis can be applied to nonlinear problems which locally (in 
a neighbourhood of the solution) behave like the above stated (monotone) prob- 
lems. Having restricted to the above nice class of nonlinear problems we define 
a class of suitable nonlinear Jacobi-like smoothing operators and a suitable 
FAS iteration and prove a convergence statement in which quantitative state- 
ments about  e.g. a domain of guaranteed convergence, the number of smoothings 
needed, the number of coarse grid corrections needed and the coarsest acceptable 
grid are given. As Hackbusch does, we prove convergence by linearising the 
FAS iteration. In essence the only assumption we make about the continuous 
operator (apart from the monotonicity) is that its derivative satisfies a local 
Lipschitz condition and a regularity condition. We discuss properties of g which 
induce that these conditions are fulfilled. 

Because of our more quantitative convergence statement we can prove 
among other things the following features of a FAS iteration with suitably 
(we will specify what is "suitable") chosen parameters applied to the above 
mentioned nonlinear system of equations : (more precise statements can be found 
further on) 

- the FAS two grid scheme (FAS TG) with one pre-smoothing and one post- 
smoothing locally converges (the smoothers are nonlinear Jacobi-like 
smoothers). 

- under natural conditions the FAS multigrid (FAS MG)  with W-cycles locally 
converges. 

- on fine enough grids (levels) there is a ball of guaranteed convergence (of 
FAS TG) with a radius that is about  inversely proportional  to a local Lip- 
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schitz constant of the derivative of the continuous operator (just as in many 
Newton like iterations). So this radius is in essence independent of the level. 

- for FAS MG convergence, the coarsest level (grid) used should be such 
that the discretization error on that level is smaller than the radius of the 
ball of guaranteed TG convergence. 

- if FAS MG is used in a nested iteration, we need only a good enough 
starting vector on a coarsest (but fine enough) level to generate acceptable 
starting vectors for MG on finer levels. Suppose we have suitable finite 
element spaces (Sk)k = o, I .... on a sequence of ever refining grids (indexed by 
k). Now suitable FAS MG generates a sequence of approximations UkeSk, 
k = 1, 2 . . . .  (approximating the discrete solution on level k) with error smaller 
than the relative discretization error on level k. In this nested iteration we 
need fewer FAS MG iterations for larger k, and in a FAS MG iteration 
on level k we need fewer coarse grid corrections for larger k. Moreover 
the number of FAS MG iterations needed and the number of the coarse 
grid corrections needed tend ot expected lower bounds (for k ~ oo). 

In this paper we use the convergence theory for linear TG methods for 
symmetric elliptic problems as in [-1]. The idea of linearisation is easy but our 
proofs are somewhat technical because we need uniformity in some parameters 
and we have to deal with (complicated) higher order terms occurring after linear- 
isation of the FAS TG iteration. 

The paper is organized as follows. 
In w we consider the continuous problem and a finite element discretization. 
We discuss existence and uniqueness of solutions. 
In w we collect notations and conventions and prove relations between different 
energynorms. In w we introduce a class of linear two grid operators and prove 
a uniform convergence statement. 
In w 5 a FAS two grid iteration is defined and after linearisation, using estimates 
for higher order terms and the convergence thm. of w a local convergence 
statement is proved. In w we deal with a FAS multigrid iteration and prove 
convergence using the FAS two grid convergence theorem of w Finally in 
w we consider a nested iteration using FAS multigrid (Full Multigrid Algo- 
rithm). In w we discuss simple conditions on the function g such that the 
assumptions we make in w 3-7 about the continuous problem are fulfilled. 

2. A Class of Mildly Nonlinear Differential Equations 
and their Discretization 

In this section we consider a class of second order elliptic mildly nonlinear 
boundary value problems and their finite element discretizations. The continuous 
and discrete problems have unique solutions and assuming a Lipschitz condition 
a natural bound for the discretization error can be given. 

Definitions 2.1. Let ~ c ~  2 be an open, connected, bounded area with smooth 
boundary. By H k (~) ( k e N )  we denote the Sobolev space of all functions u e L 2 (~) 
whose distributional derivatives D~u for I~l __<k are elements of the space L2(f2). 
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For u~Hk(~) its norm Ilullk is defined by IlUllk=( ~ ]lD~ull~2) ~, We also define 
I~l<k 

H~ (f2) to be the closure in Hk(g2) of D (f2)..= {~b e C ~ (f2) l supp(q~)c g2}. On H~(f2) 
the norm I1.111 is equivalent to I1.II which is given by llull=(u,u)~ where 
(u, v)= ~ Vu. Vvdx(u, veH~(O)). 

2.2. The Problem Considered and its Discretization 

We consider the following class of second order elliptic nonlinear boundary 
value problems: 

-V . (aVu)+bgou=f  on f2 
(1) u = 0  on 0~2 

Here a ~ C ~ (O), min {a(x)[ x ~ ~} > 0, b ~ C (O), rain {b (x)] x ~ ~} > 0, f ~ L  2 (~) and 
g~C ~ (IR), g ' ( t )>0  for all t~lR. 

We also give a variational formulation of (1): 

(2) Find u~H~(Y2) such that: a(u, v)+(bgou, V)L2=(f, V)L2 for all wH~(Y2). Here 
(',')L~ is the L 2 inner product and a(u,v)= ~ aVu.Vvdx. The operator 
u ~a(u, .)+(bgou,.)L2 will be denoted by n. 

We assume a sequence of standard linear finite element spaces (i.e., a regular 
affine family of continuous bilinear finite elements; see e.g. w in [5]), denoted 
by So c $1 c . . .  c H i(O) with corresponding "stepsizes" ho > h~ > .... We assume 

O<K~<=hi+l<_K2<l for i>0.  Let {~1,~2,--- ,  ~,~} be the standard bilinear 
hi - 

finite element basis of Sk, then we define U k = N  "~ and the isomorphism 
n k  

Pk: Uk--* Sk, Pka = ~ Cdi)Oi where a(~) is thej- th  coordinate of ae  U,. 
3=1 

Now a finite element discretization of (2) is given by: 

(3) Find UkeSk such that: a(Uk, Vk)+(bg~ VR)L~ = ( f  Vk)L~ for all VkeSk. 
And an equivalent formulation is given by: 

(4) Find age U, such that Nk(ak)-'=Akak + ~,(ak)=bk, where A, is a standard Pois- 
son discretization: (A,)i, ~ = h[ z a(Oi, 0~), and 

(gk(O~k))(J)=hk 2 f b(x)g(PkO~k)~j(x)dx, b(kJ)=hk 2 I f(x)~h~(x)dx. 

2.3. Existence and Uniqueness of Solutions 

From [-4] one can deduce that there exists a unique solution of (1) in 
H2(tJ) (n Hol (0), say u*. 

Clearly u* is a solution of (2). Monotonicity, i.e. a(ux--U2, Ut--u2).-k 
(b (g o ul - g ~ u2), ul - U:)L: > 0 for all ul 4= u: ~ H01 (~), guarantees uniqueness, so 
u* is also the unique solution of (2). 

Existence and uniqueness of a solution of (3) (and thus (4)) can be shown 
by using monotonicity arguments as in the proof of existence and uniqueness 
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of the continuous solution (actually: Nk is maximal monotone and coercive, 
see [3]). Another possibility, which in addition yields information about the 
smoothness of the inverse, is to apply a suitable (global) version of the implicit 
function theorem. Using Theorem 15.4 and 15.2 in [12] results in: Nk is a 
Cl-diffeomorphism on Uk. The solution of (3) is denoted by u*. 

Remark 2.4. In the remainder of this paper we will often use the following Sobo- 
lev embedding theorem (see e.g. [5]): 

Vq~[1, oo [ 3dqelR: VueHg(12): Ilullcq <dq Null. 

We define the function I: El, o o [ ~ ]  0, oo[ by: 

I (q)=sup { llullLq IluIl-1 lueH ~ (g2), u + O}. 

Lemma 2.5. Let a_:=min{a(x) lxsO} ,  b+,=max{b(x)[xeO}.  H~(f2) is denoted 
by H. U:=I(2) aSl(b+ ]Ig(0)llL2+ IlfllL=) and B=={veH[ Ilvll < U}. 

Assume n maps B into H' and I(n(v)-n(w))(u)[ <C~llv-wl t  Ilull for all v, weB,  
all u e H  (cf. 8.4 (a2)). Then with u* and u~' as in 2.3 the following holds: 

S c > 0 : V k > 0  I lu*-u~' t l  <=Chk. 

Proof Our proof runs as the proof of Theorem 5.3.4 in [5]. We have: 

Ilu* II 2 <=ass l a(u*, u*)= aSs t {n(u*)(u*)-(b(gou* - g(0)), u*)L~- (bg(0), u*)L~} 

< a -  -1 {(f u*)L2- (bg(0), u*)L~} <ass lI(2)(llf]lL~ +b+ IIg(0)llL=)Ilu* II- 

So: Ilu*ll < U. The same bound holds for u*. 
Now for arbitrary WeSk we have: 

]l U* - -  U~ II 2 ~ a SS 1 (n ([,/:g) _ n(u*))(u* -- u*) = aS 1 (n(u*)-- n(u*))(u* -- w) 

<ass1fBIlu*-u*ll  Ilu*-wll. 

This implies Ilu*-u*ll <a=  ~ CB inf{llu*-wll IweSk}. Now the use of standard 
finite element estimates and the fact that u* e H2(~2)c~ H~(f2) proves the lem- 
m a .  [ ]  

3. Assumptions, Definitions and Fundamental Relations 

In the remainder of this paper we assume that the nonlinearity of the problem 
as stated in 2.2.(2) fulfils certain conditions. These conditions are stated in 3.1 
and 4.7. We comment on these in 3.3, 4.8 and 5.15. 

In this section we also define norms and operators that we will frequently 
use further on and we prove equivalence of a class of norms. In 3.5 we give 
a bound for the error made by linearizing the nonlinear problem 2.2.(2). 

Assumption 3.1. We denote H~(~) by H. In Sect. 3-7 we assume that the operator 
n: u --* a (u,.) + (b g o U,.)L2 satisfies: 

(1) n maps H into H'  (the space of all continuous linear functionals on H). 
(2) n is Fr6chet differentiable on H (Fr6chet derivative denoted by D n). 



256 A. Reusken 

(3) for all u e H  the ope ra to r  (v, w ) ~  Dn(u)(v)(w) defines a symmetric,  bil inear 
form on H x H. 

(4) for every bounded  subset B of  H there exists a constant  ~ such that:  

V v, weB  V u, z e H : ](On(v)- On(w))(u)(z)l < ~ l lv-  wH [lull Ilzl]. 

Sufficient condit ions on the function g implying assumpt ion  3.1 will be given 
in w 

Using (1) and  (2) of  3.1 and  because (n(u+h)-n(u)) (h)>a(h,h)  for all 
u, heH~(~2) (results f rom g ' > 0 )  we obta in  that  Dn(u)(h)(h)>=a(h, h). A n d  thus 
(v, w)--* D n(u)(v)(w) is coercive on H i  (f2) x H i  (f2). 

Definitions and Conventions 3.2. 
-- The  space Hol(fJ) is denoted by H (with inner p roduc t  ( . , . )  and n o r m  [1.1[ 

as in 2.1). 
- We recall the definition of the bilinear form a: H x H --* IR: 

a(u, v)= S aVu .Vvdx .  We define a n o r m  [[. [[. on H by [ [ u [ [ . . . = ~ .  
~2 

-- Fo r  u e H  the symmetr ic  cont inuous  coercive bilinear form on H x H given 
by (v, w)~Dn(u)(v)(w)  is denoted by bu (also used as opera to r  H--+H'). We 

also define the no rm ][. [[u on H by [[v[Ju,=]/bu(v, v). 
- We use an obvious  nota t ion  for opera to r  norms,  e.g.: j :  H--*H', u e H  then 

[[j[[,=sup{lj(v)[[veH, [Iv][,< 1}. 
- F o r  j :  H ~ H '  we denotejlsk:  Sk~S'k byjk andjlsk:  Sk--*S'k-1 bY JR,k-I- 
- We define the reals a _ ,  a+ ,  b_ ,  b+ by:  

a_ =min  {a(x)[xe~}, a+ =max {a(x) lxe~} ,  

b_ =min{b(x)]xe~} ,  b+ =max{b(x ) [xe~} .  

- Let w* be an element of H c~ C(~). In Sect. 3, 4, 5, 8 we keep this w* f ixed 
and in 5.13, w  and w we will specify a suitable w*. 

-- Fo r  vei l ,  r e [0 ,  oo[  we define B(v;r) ,={ueH[ Nu--v[]~<=r}. 
Also:  B* (v; r) =B(v;  r) c~ S,, B(r),=B(w*; r), B k (r),=B(r) c~ Sk. 
-- With  ~ f rom 3.1.(4) we define F~.-=a: 1�89 

Remark 3.3. With respect to assumpt ion  3.1 we note the following. The condi-  
t ions in 3.1 m a y  be weakened in the sense that  there is some open ball B contain-  
ing w* on which n is differentiable (with derivative as in 3.1(3)) and on which 
Dn satisfies a Lipschitz condi t ion as in 3.1.(4). 

Our  analysis is then still applicable and our  results do not  really change 
(they only become " m o r e  local ' ) .  Howeve r  these weaker  condit ions cause addi- 
t ional technical difficulties because we have to make  sure that, after choosing 
a start ing vector  (for the FAS algori thm) within B, "every th ing  remains within 
B ' .  These addit ional  difficulties we have wanted  to avoid. 

We also note  that  the analysis and results can be adapted  in a s t ra ightforward 
manner  if we only assume a H61der condi t ion on D n instead of a Lipschitz 
condition.  The  condi t ion (3) we consider to be reasonable  because in s tandard  
convergence theory  for linear mult igrid methods  [1, 6, 11] assuming symmet ry  
is c o m m o n  practice (to make  possible and  analysis using energy norms). 

We c o m m e n t  on the condi t ion (4) in 5.15. 
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The following lemma compares different inner products and all sorts of 
equivalent norms. In the remainder we will often use estimates from this lemma. 

Lemma 3.4. The following holds: 

(1) Ib~(u, z)-bw(u, z)[ < ~  IIv-wll  Ilull llzll < ~  IIv-wll,~ Ilull,~ Ilzll,~ 
for all v, weB(r), all Yi, u, zeH. 
There exists a function G: H ~ [0, oo[ such that the following holds: 

(2) Ib~(u, z ) -a(u ,  z)l<G(v)llull llzll for all u, v, zeH; 
(3)  a _  Ilull2< 2 = Ilull, < tlull~ __<(a+ + a(v))Ilull 2 for all u, ve i l ;  
(4) I lul l~<(l+a~F~ltv-wll) l lul l~<(l+F~ttv-wlly)l lul l  2~ for all v, weB(r), all 

u, yeH;  
(5) Ilull 2 <(a+ +G(w)+a_ ~ IIv-wll,)Ilull z for all v, weB(r), all u, y e l l ;  
(6) tlull~ z <(1 +aS 1G(w)+ F~ Ilv- w{],)Ilull2, for all v, weB(r), all u, ye l l .  

Proof The proof of (2) is easy using the fact that b~ and a are bounded bilinear 
forms on H x H. The first two inequalities of (3) are also easy (cf. remark after 
3.1), the third follows from (2); (1) follows from assumption 3.1.(4) and from 
(3); (4) is easy using (1) and (3). Now note that using (1), (2) and (3): 

Vv, weB(r) Vu, yeH: 11ull~ Ilull2~ 2 2 - Illullv-llullwl+lllull2-tlull21 
<(a_  F~ J]v- wJ}r + G ( w ) ) I l u l l  2 (*) 

Now (5) is easy using (*); (6) follows using (*) and (3). [ ]  

The following lemma gives a bound for the error made by linearizing n. 

Lemma3.5 .  For v e i l  let d~: H x H ~ H' be defined by dv(u, w)=n(u)-n(w)  
- b v ( u - w ) .  For all r >= 0 and all u, v, we B(r) the following holds: 

Proof 

IId~(u, w ) l l ~ ( l l u - v l l ~  + I ]w-vI Iv) I lu -  wll~, 

IId~(u, w)ll~ = II n (u ) -  n(w)-bv(u - w) llv 

i O n ( w + t ( u - w ) ) ( u - w ) - b v ( u - w ) d t  
0 

<=i Dn(w+t(u--w))(u--w)-b~(u--w) dt 
0 

1 

= ~ Itbw+,u-w~(u-w)-bv(u-w)lrvdt 
0 

1 

< ~ ~ II(1 - t ) (w-v)+ t(u-v)ll=dt I lu-wll= 
0 

< � 8 9  Ilu-vllv)llu-wlI~. [] 

(using 3.4.(i)) 
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4. A Class of Linear two Grid Operators 

In this section we define a class of linear two grid operators and using the 
convergence theory of [-1] we prove uniform convergence for this class of opera- 
tors. 

Definition 4.1. Let Ik : Sk x Sk ~ lR be a continuous, symmetric, positive definite 
bilinear form. Let vEH, for W~Sk let ~ be the unique element in Sk such that: 
Ik(~,y)=lk(W,y)--bv(w,y) for all yESk. We define Ro: S k ~ S k  by Rvw=~.  If 
Ik, by are seen as operators Sk ~ S'k we have Ro= ids~--Ik 1 bo. Let v6H, for eeSk 
let e~Sk-1 be the element in Sk-1 such that bo(~,y)=bo(e,y) for all yeSk-1.  
We define Co: Sk ~ Sk by Coe = e--  ~. Note that Co is the bv-orthogonal projection 
upon Sk I_ 1 ( •  w.r.t, bo). 

Remark 4.2. The operator  RvCoRo: Sk ~ Sk can be seen as a so called two grid 
operator  (cf. [1] and [7]). Classical convergence proofs give bounds smaller 
than one independent of k for IIR~CoRollo for fixed v. Here, we want uniform 
bounds in v. Theorem 4.10 gives such a result. 

Assumption 4.3. For  all k~N,  all r e ] 0 ,  oo [ let Ik, r: S k X Sk-- ) '~  be defined with 
the following properties: 

(1) VkVr: Ik, r is a continuous, symmetric, positive definite bilinear form. 
(2) 3n3c: VrVkVv6B(r) Vy6Sk: bo(y, y)~lk, r(y, y)__--<C(1 +F,r)"hk 2 Ilyll~2 (with F, 

as in 3.2). 

Notation 4.4. R~ as defined above, with l k : lk, r is denoted by R~,,. 

Examples 4.5. Possible choices for Ik, , are: Richardson relaxation where 
Ik,,(q/i, q/j) = O, i #:j, lk,,(q/i, q/i) = C(1 + F,r) with suitable c (depending on bw.), and 
"damped  Jacobi relaxation" where lk, r(q/i, q/j)=O, i=t=j, lk,,(q/i, q/i)=c(l + F,r) 
(1 +F,  oro) boo(q/i, q/i) with vo~B(ro) and suitable c (depending on bw.). 

Lemma 4.6. Let k be given. 1/14th the definitions of R~,~ and Co as in 4.1, 4.4 
the following holds: ltRo,~llv< 1 for all v~B(r), [[Coll~__< 1 for all v~H. 

Proof For  all w, yeSk: Ik.,(R~,,w, y) = lk,,(W, y)-- b~(w, y) = lk,,(y, w)-- b~(y, w) 
=lk,~(Ro,,y,w) SO Ro, , is lk,,-symmetric and consequently bo-symmetric. Since 
O<Ik,,(Ro,,w, w)(lk,~(w, w))- 1 = 1--bv(w, W)(Ik, r(W, W))- 1 < 1 for all v~B(r), all 
w e S  k (use 4.3) we have that for the spectrum a(R~, ,) of Ro,,: ~(Ro,,)~_[0, 1] 
and thus I[R~.,I]o<l. Because Co is the bv-orthogonal projection upon S~-_~ 
(•  w.r.t, bo) wehave  IICollo<l. []  

Assumption 4.7. In the remainder of this paper  (except w we assume that for 
all r > 0  there exists a constant dBt,) such that for all vEB(r) and for all 
m~L2(f2)=H ' the unique solution u of bou=m belongs to H2(f2) and satisfies 

ttu][2_-< dst,)llmllL~. 

Remark 4.8. In line with Remark  3.3 we note here that our analysis is still appli- 
cable and the results do not really change if in 4.7 "for all r >__ 0" is replaced 
by "for some r > 0 " .  Such a local uniform regularity condition we consider 
to be reasonable because it is a natural generalization for our nonlinear problem 
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of regularity condit ions that  are c o m m o n  practice in s tandard  convergence 
theory for linear methods  (e.g. [1, 6]). 

In w we give condit ions on g under  which assumpt ion  4.7 is fulfilled. 

In 1-1] convergence of a two grid me thod  is determined by the so called 
"general ized condit ion number" ,  denoted by x. Using arguments  deduced from 
1-1] we prove  existence of (and give a bound  for) a uniform x for a whole 
class of problems.  This uniform K implies a uniform convergence statement.  

L e m m a  4.9. For v e i l  define S~,_ l:={UeSklbv(y, u ) = 0  for all y e S k _ l } .  With lk, r 
as in 4.3 the following holds: 

V r > 0 ~  KB(r): V k V ve B(r) V u e S[,_ 1: Ik, r(U, U) <= KB(r)bv(u , U). 

Proof. First we note  that, using s tandard  finite element spaces, the following 
holds ([5] theorem 3.2.1): for all veH2(f2) there exists a constant  e ( independent  
of  k) such that  min{ l iv-yl l  [yeSk} ~ehk IIv[12 - (*) 

Recall that  h k _ l < K ? l h k  (2.2). N o w  take k e N ,  veB(r) and ueS[_ 1. For  
meL2(f2) let zeH2(f2) be the solution ofbvz =m (cf. 4.7). N o w  using l emma 3.4(5), 
a s sumpt ion4 .7  and (*) we get, with XeSk-1 suitably chosen and ki( r ) . '=a  + 
+ G(w*)+a_ F~r (cf. 3.4): 

(m, U)L2 = b j z ,  u ) = b J z -  x, u)< Itz xllv ]lu[l~<kl(r) ~ Hz-xl l  llull~ 

< kl (r)~eK; 1 hk llzlI2 Iluliv < kt (r)&eK11 hkdB(r ) llmllz= IlulI~. 

So we have:  

IIUlIL2 = max  {(m, U)L~ ] m e  L2 (f2), IlmllL= = 1} <k~ (r)~eK; 1 h j m ,  ~ ]lulls. 

Finally using assumpt ion  4.3 we get: 

lk, r(U , U)~C(1 + Frr)nhk 2 [lull~= <cK-~Z e2k,(r)(1 + F~r)"d~( 0 Ilull2== ~B(r)Ilull~. [ ]  

N o w  using the convergence p roof  of  Bank and Douglas  [1] in combina t ion  
with l emma  4.9 results in the following uniform convergence s ta tement :  

Theorem 4.10. With xn(,) from lemma 4.9 and fimr)< 1 defined by: 

= f(1 - -  K B ( ) ) )  2 /f XB(,) > 3 

3n(~) (XB(,)~7 /f ~m,)<3 

we have for R~,~CvR~,~: Sk--* Sk as defined in 4.1M.4: 

Vr>0:Lm~).-= sup (I[R~,~C~R~,~[I~)<fm,j<I. 
k; veB(r) 

Remark 4.11. The reader  may  check that  ~a(~) is an increasing function of r. 
The uniform contrac t ion  factor  La(~) need not  be an increasing function of r. 
When  we restrict to r~rma x and take lk,~=l k . . . . .  for all r<=r . . . .  then R~,, 
= R . . . . . .  for all r =< rm~x and LB(,) is an increasing function of r for r =< rma x. 
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5. Two Grid Full Approximation Scheme Convergence 

In this section we prove local convergence of the well-known two grid FAS- 
iteration (see e.g. [2]). By linearisation and using the convergence theorem of 
w we prove a local uniform convergence statement. The uniformity makes it 
possible to prove multigrid convergence in the next section. As in the Newton- 
Kantorovich theorem a domain of guaranteed convergence is determined by 
a Lipschitz constant. 

Given meS'k we want to approximate the solution U*~_S k of the Galerkin 
discretization: n(v*, y)= re(y) for all YeSk. 

Definition5.1. For  r > 0  let lk,r: SkXSk ~P~ be as in 4.3. For WeSk let #~Sk 
be the unique element in Sk such that: 

Ik,,(#,y)=lk,r(w,y)+m(y)--n(w,y) for all yeSk. 

We define Rr: Sk--* Sk by RAw)= #. With the notation of 3.2 we also have: 

R~ = ids~ + Ik, X~ m-- lk-,lr n k. 

Choices of Ik., as in 4.5 correspond to Richardson relaxation and nonlinear 
damped Jacobi with a modified Newton iteration. 
1 For  every ~ S k - l ,  s ~ ] 0 , ~ [ ,  m~S'k we define C: Sk~Sk by C(e)=e+ 
- ( ~ - f i )  where ~ S k - 1  is the unique element in Sk-1 such that: 
S 

n(~,x)=n(~,x)+s(m(x)--n(e,x)) for all X6Sk-1 

(for existence of such an ~ see 2.3). With the notation of 3.2 we also have: 

C (e)= e + 1- [nk-ll (nk-1 (fi) + s(m-- nk,k-1 (e)))-- ~]. 
S 

We define Fk: ]O, oo[• ooEXS'k~Sk by: Fk(r, w, ~, s, m) 
=R, CR,(w) with C as above (corresponding to fi, s and m). For given r ~  ~o)s  o) 
and m a two grid Full Approximation Scheme iteration for solving nk(U)= m 
is defined by: 

w(j + 1)~_ Fk (rti), wO), ~(j), s(j), m). 

We will indicate suitable choices of r (j), ?N ) and s (j) later on. 

Remark 5.2. The above definition in variational formulation of the FAS two 
grid iteration is equivalent to the more familiar and practical definition in matrix 
formulation (cf. (3), (4) in 2.2) as given in e.g. [2] and [61. 

Clearly for convergence of the FAS iteration we are interested in the ratio 
of IllF~(r, w, ~, s, m)-v*lll  and I[Iw-v*lll for a suitably chosen norm Ill-l[[ on S k. 
Theorem 5.10 gives a bound for this ratio. We first give some lemmas, trying 
to make the technical proof  of Theorem 5.10 more transparant. 

Lemma 5.3. The following holds (for definition of G(w*) see 3.4): 
(a) For all w~H and all v~B(r): 

IIb~Xbvll~<~ with ~:=l+a-lG(w*)+l~,r. 
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(b) For all v, weB(r): 

Ilb; l bvIlv< l + 2r~r 

(c) For all v, weB(r), for all ye l l :  

][bw 1 bv-idnllv<exp(F~ [ iv-  wUr)-  1 < exp(2 F~r)-- 1 

Proof. Notice that for v e B(r), w, z e H:  by(z, z) < (1 + 7) bw(z, z) with ~ = a 7_ ~ G (w*) 
+F~r (follows from 3.4 (6) and (3)); we may take 7 = 2 F ,  r if weB(r) (follows 
from 3.4 (4)). Now note that bwlbvu=z is equivalent to: bv(u,y)=bw(z,y) for 
all yell ,  and thus 

[Izll~ 2 = b~(z, z)<(1 +y)  bw(z, z)=(1 + 7) b~(u, z)<(1 +~)[]u]lv IIz]]v. 

This results in ]lzl]v<(1 +7)l[ul[v and thus 

lib; ~ bv[[v = m a x  {[[b; 1 bvu][~[ ueH, []uUv= 1} =< 1 +y .  

This proves (a) and (b). For  (c) note that  for v, weB(r), u ,z~H with b;~b~u=z 
we have: 

llz-ulj~ =b . ( z -  u, z-u)=bo(z, z-u)-b~(z,  z-u)<=1; fJv-wJl~ llzL, JIz-uIJ. 

(using 3.4 (1) with Yl = y~H, Yz = w, Y3 = v). This implies: 

Nz- uL=  < r. Ilv- w[l~ H~II~_-< C tlv- wll~ (1 +/ ;  IIv- wll~? IluL; 

in the last inequality we used: 

bw(z, ~)= bo(u, z)< ItuL Ilztto<= IluL(1 +r,  IIv-wll~) + llz II~ 

(use 3.4 (4)). Conclusion: 

lib; 1 b~u-uH,<= F, ]Iv- wily(1 + F~ ]Iv-  w}ly) ~ Hull, < (exp (F~ I lv-  wily)- 1)Ilu tl~ 

<(exp(2  F~r)- 1) [[u[], (take y = w*). [ ]  

The following lemma will be used further on to linearize n-z .  The nice looking 
proper ty  5.4 (a) will be used several times; the more  general statement in 5.4 (b) 
will be used only once. 

Lemma 5.4. For t~[0,  1] we define o),: H x H'--* H by o2t(u, (p)=n- l(n(u)+tq)). 
The following holds: 
(a)  V r > 0  VueH VcpeH' WeB(r):  ]lcol(u, cp)--ul]~</~, Ilq~ll~ (/~ as in 5.3). 
(b) We define ~: H • H' ~ ~ by 

?(u, q0)=inf{slco,(u, ~o)eB(s) for all re[O, 1]} 

then: Vr>OVu~H Vcp, ~eH'  Vv~B(r): I1cox(u, ~o)-u-b21 q/II~ 
< {expEFmax~,,~(.,~,))(llv-u]l~ + F, llcpllo)]- l } I1~,tI~+~ II~~ 

Proof The reader may check that n: H ~ H '  is a C1-diffeomorphism (as in 
2.3 for Nk). Now take ueH, ~p, O6H', v~B(r) and for t e [ 0 , 1 ] :  z(t):=n-l(n(u) 
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+ t q ) ) - u - b ~ @  so n(z(t)+u+b2~O)=n(u)+tq~ and z(0)=-b~-~k.  By differ- 
entiating w.r.t, t we get: 

Dn(z( t )+u+b2 ~ , . .~  , ~)(z (O)---(p b,o,~..~)z ( t )=q) '~z ' ( t ) -b  -~ - -  o ~ , ( u , ~ o ) q 9  

implying: 
1 1 

z(1)= ~ z'(t) dt  + z(O)= ~ b~,,~.,,p)q)dt-b~ 1 ~9 
0 0 

1 1 

= ~ (b~,~.,~)bv-id) b~ ~ Cd t+  ~ b~,~.,~)b~b~ '(tp--O) dt 
0 0 

Taking norms, using the continuity in t and [Ib;-~[[v= 1 results in: 

1 1 

0 0 

Taking ~, = 0  and using 5.3 (a) proves (a). 
For the term [Ibgt~u,,)b v -  idltv we note that using 5.3(c) we get: 

- - i  Jr b,o, tu,,) b y -  zd[[ v < exp (Fmaxtr,,(u, ~)) if v-- e),(u, ~o)If ~)-  1 

<exp(Fmax(,,~(,,o))(ltv-ull~+ [Ico,(u, ~0)- ull~))- 1 

<exp(F~,x(r,~(,,~,))(llv--ull~ + ~ t  llq~ll~))- 1, 

where in the last inequality we used (a). Now (b) follows. [] 

Remark 5.5. By using 5.3 (b) instead of 5.3 (a) in the proof of 5.4 it may be 
seen that/~, in 5.4 may be replaced by 1 + 2 Fm, x(,, ~t,,~o))" max (r, f(u, (p)). 

Suppose in 5.4 we are interested in the following situation: 

forevery r > 0 :  u, veB(r); forevery r > 0 :  q)eH' with I]~Ollw._<__f(r) 

where f (r)  is a continuous increasing function of r with f (0)=0.  Then ~'(u, ~o) 
-<__f(r)/~,+r and thus ~ in (a) and (b) can be replaced by the factor 
1 +2Fi(,)/;+~.(f(r) ~+r) ,  which goes to 1 if r+0 (note that/],A/if r ~0). 

Remark 5.6. In lemma 3.5, 5.3, 5.4 the results do not change if H is replaced 
by some closed linear subspace/ t  of H and n, b~ are seen as operators/4 ~ /4 ' .  

In the remainder of this section we assume some fixed S > 0. 

Definition5.7. We now define Lipschitz constants on different balls. For  
r>0 ,  r(~ oo[ is such that for all veB(r): B(v;r)a_B(rt~ For 
r, r(~ rtX)e[r (~ oo [ is such that for all k, all veBk(r) the relaxation operator 
R,: S k ~ S k  as defined in 5.1 with m=nk(v) satisfies R~(Bk(v;r))~_B(rm). For 
r, r t~ r(~)>0, r(2)e[rm, oo[ is such that for all k, all veBk(r), all ~eBk-~(r), 
all s<=S the operators R, and C as defined in 5.1 with m=nk(v) satisfy: 
CR, (B k (v; r)) c_ B (r(2)). 

Also define r (3):=r + S(r (~) + r(2)). 
The Lipschitz constants F~,~ are denoted by F/(i = 0, ..., 3), Finally we define 

y,.-= max F~= max(F2, F3) (Lipschitz constant on a large enough ball). 
i = 0 , 1 , 2 , 3  
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Remark 5.8. Actual  bounds  for r (~ r (t), r (2) in terms of  r and the Lipschitz con- 
stant F~ can be deduced from lemma 3.4 and proposi t ion 5.9. It turns out  that  
r (1) i = 0, 1, 2 can be chosen such that they are cont inuous  increasing functions 

r(i) 2 
of r with lim - -  = . Also note that for S small enough 7, = Fz- 

r,LO r 

Proposi t ion 5.9 gives bounds  for higher order terms that occur when we 
linearize the FAS two grid iteration (cf. 5.10). 

Proposition 5.9. For  r > 0 and v e Sk we define A Rv, r : Sg ~ Sk by 

ARv.r(u) = Rr(v)-- Rr(U)-- Rv, r(V-- u) 

where Rr is defined as in 5.1 with m = n, (v) and R,.,  as in 4.4. 
For  VeSk define AC,,: Sk--~ Sk by 

Co(u) = C ( v ) -  C ( u ) -  C~(v-  u) 

with C as defined in 5.1 with m=n, (v )  and Cv as in 4.1. 
Then for all veBk(r), all ~eBk- l ( r ) ,  all ueBk(v;r)  and all s < S  we have, 

with R, and C as in 5.1 with m=nk(v):  

(1) IIARo,,(u)IIv<IFo IIv-ull 2 __< �89 IIv-ull~ z. 
(2) IIZf,,(R,.(u))ll,,<ar(y, Ilv-ullv, 7, IIv-~Ttlv)IIv-ullv where A,: [0, oo [ x [0, ~ [ 

[0, ~ [ -  is given by A, . (x ,y )=(exp(y+Sz , . (x ) ) - - l ) (1  +�89189 with 
z , ( x ) = ~ x e  x and ~ from 5.3. 

(3) tlARv, r(Ce,(u))llv<~,(~,rllv-ullv, Y, tlv-~llOllv-ull~ where Ar: [0, oO [ 
X [0, oO [ --, [0, oO [ is given by "4r (x, y) = (1 + �89 x + Ar (x, y))2 �89 x. 

Proof. Take k e N ,  r > 0 ,  veBk(r), f~eBk-l(r),  ueBk(v;r) ,  s<=S and let R, and 
C be as in 5.1 with m = nk (V). 

Proof  of  (1): let E :=  {y e S k Ilk,, (Y, Y) = 1 }. 

N o w  
]]ARv, r(u)llv= bv(AR,,,(u), AR~,r(u))~ < lk, r(ARv,,(u), AR,,,(u)) �89 

= maxllk,,(R,(v)-- Rr(U)-- R , , , (v - -  u), y)[ 
yEE 

= max [bv (v - u, y) - n (v, y) - n (u, y)[ = max [d, (v, u)(y)[ 
y~E yeE 

< max [d,,(v, u)(y)l = liar(v, u)llv_-<�89 llv-ullZ~ (use 3.5)<�89 IIv-ullv 2. 
Ityllv= 1 

This proves (1). 
P roof  of  (2): let 

q) :=S(nk, k- 1 (V) -- nk, k- 1 (Rr(U))) 

and for 0_%< t _< 1 : 
{Oc'= ns (nk- 1 (a) + t ~o). 

The definition of C with s t instead of  s implies: 

C (R,(u)) = R,(u) + ~ { o~,-- a} 

tp :=s(b~)k,k- 1 (v-- Rr(u)) 

( t ,  o) 
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and so for all t~]0,  1] we have: 

II cot - w* II w, --< S- i .  II C (Rr (u)) - R,(u)II w, + tl ~ -- w* II w, 

<S(r(1) +rt2))+r=r ~3) (cf. 5.7). 

Easy writing out using the definitions results in: 

A C~ (R, (u)) = -- 1_ (09, - ~-- (bv);_~l ~), 
S 

now using lemma 5.4 (b) (with Sk- ~ instead of H) results in: 

ITAC~(Rr(u))tI~ <1- {expl-F3(Ilv-~ll~ + ~ 11 ~o II~)] - 1} I1~[1~ + 1- ~ IIq~- ~'ll~. 
S S 

Now note that: 

IIq211v<S(llv-R,(u)tl~+ Ild~(v, Rr (u))ll ~) 
(definition of do, see 3.5; use [l(bv)k.k- 111, < 1) 

II~ll~<sllv--Rv(u)llo, Ilq2-~ll~<=slld,(v, Rr(u))]l~ 
Ildv(v,R~(u))l[~<�89 Ilv--Rr(u)ll~ (see 3.5) 

11 v -  R~(u) ll~ < II v -  u II ~ + �89 F0 I1 v -  u II ~ (using (1) and 11R~.r 1]~ < 1, see 4.6). 

Using these estimates in (*) and tedious writing out results in: 

IIAC~(R~(u))IIv<=A~(~,IIu--vlI~, 7r I i~-v l l~) l lu-v l t~  with 
A~(x , y )=(exp (y+Sz , ( x ) ) - - l ) ( l+ �89189  where z , ( x ) = ~ x e  x. 

This proves (2). 
Proof of (3): as in (1) one can prove: 

IIAR~,,(ERr(u))IIv < �89 II CRr(u)-- vll~. 
Also: 

A. Reusken 

(*) 

(**) 

II CRr(u)-- vIlv = 11CRr(u)- CR,(v)ll v ~ II C~II~ II R,(u)- Rr(v)ll ~ + II AC~(Rr(u))IIv 
< I lu-vl lv  + �89 I Iv -  ull~ + Ar(Tr Ilu--vlTv, ~r IItT--vll ~)flu-- Vllv 

(using 4.6 and (1) and (2) above) 

<(1 +�89 IIv-ullv+ar(vr Ilu-vllv, ~r II ~--Vllv))Ilu-- Vllv. 

Combining this with (**) leads to the result. [ ]  

Now we are able to prove the theorem about uniform FAS two grid conver- 
gence for a whole class of problems that we announced in the beginning of 
this section. We will also use this theorem in the next section to prove FAS 
MG convergence. For  comments concerning this theorem see 5.13, 5.14. 

Theorem 5.10. FAS two grid convergence. (For definitions see 5.1 and 5.7). 
Let r > 0  be given; suppose k o such that Bk~ r)~F~. Then for all k > k o ,  all 
rne S'k with v* ,=n~ 1 (m)~ Bk(w ,;  r), all ~ B k- 1 (w* ; r), all w~ Bk(v * ; r) and all s < S 
the following holds: 
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]} F k (r, w, t~, s, m)-- v* I1 v* < [LB(r) + OB(r)(Tr [I W -- V* II v*, 7~ [] ti - v* t[ ~*)] ]1 w -  v* [I ~* 

with Lm,)< 1 as in 4.10 and: 

OB(~)(X, y):=�89 x + A~(x, y)+(1  + �89 x + A~(x, y))2 �89 

where A, is as in 5.9(2), i.e.: 

Ar(x, y)=(exp(y+ Sz~(x))- 1)(1 +�89189 with zr(x)=F, xe x. 

Proof. Take t7 ~ B k- 1 (r), s < S, m E S~, with v*,= n~ 1 (m) ~ B k (w* ; r) and w ~ B k (v*; r). 
Simple writing out using the definitions of 5.1 and 5.9 results in: 

II Fk (r, w,  fi, s, m) -- v* I1 ~* = II R~ CR~ (w) - v* II ~* < II R~.,~ Cv.  R v*,r II v. I1 w -  v* II v, 
+ [iRv,,~lr v, ]lCv, lf~, IiARv,,(w)ll~, + []R~,.,ll ~, f[ACv,(R,(w))llv, 
+ ]IAR~,r(CRr(w))[Iv,. 

Now using Lemma 4.6, Theorem 4.10 and Proposi t ion 5.9, the proof  is complet- 
ed. [ ]  

In the first order  terms of the function A,(x,y) (see theorem) the factor 
occurs. We can replace ~ by a better factor if we make a suitable assumption 

about  S. The following lemma makes this clear. 

Lemma 5.11. The factor ~ in A~ (see 5.9(2) and 5.10) can be replaced by: 

(a) l+2F~(~)~c(r) r with c(r):=F,S exp(1 �89  1. 

This new factor has the desirable proper ty  that it tends to 1 if r J, 0. However  
to analyze its behaviour  for y,r  small is much more  complicated than it is 
for ~.  For some ~ > 0  assume S = S l ~  -1 e x p ( -  1�89 with $1<1 ,  then for all 
r<?~  in Ar can be replaced by: 

(b) l+2F~,+l ) r (S~+l ) r<l+2(S~+l )~rr .  

Proof. Inspection of the proof  of 5.9(2) shows that the factor ~ is caused by 
the fact that we use 5.4 where the factor F, occurs. We now use the variant 
of 5.4 as ment ioned in 5.5. We use the nota t ion as in the proof  of 5.9(2). 

II~o,-w*llw,< I1~o,- ~ll~,+ r_-<(1 +F~r)~t  [l~01l~+r 

(using lemma 3.4(4) and 5.4(a)). 

Using estimates as in the proof  of Lemma 5.9(2) one can easily show: 

]lq~[l~< S exp IF1 I[v--ul[~] ]lv--u[[~; 

using this and t e [0 ,  1], ueB(v; r) we get: 

llo) t -  w*l]~, < (1 +F~r)~I~,S exp(F1 r) r+r<exp(�89 r) ~S  exp (Fl r) r +  r 

= ( ~ S  exp(1�89 r )+  1) r. 

Now using 5.5 results in (a). The second statement is easy (use F2,<_y,). [ ]  

Remark 5.12. In the next section we will again use the following estimate, that  
occurs in the proof  of 5.11 (also in the proof  of 5.9(2)): 
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V k V ve Bk(w*; r) V ue  Bk (v ; r): [Ink.k- 1 (V)-- rig, k_ I ( R,(u))I] v 

_-<exp EFt [Iv-uI[v] ][v--u[Iv<=exp[Flr] r, 

where R, as in 5.1 with m=nk(v).  

Remark 5.13. If we want to prove two grid convergence only, we do not need 
the uniformity in m in 5.10. Suppose for feS'k we use a FAS two grid iteration 
for the problem nk(U)=f (solution denoted by u*). Taking w*= v*= u* in theo- 
rem 5.10 shows that convergence will occur if we take w (starting vector) within 
the ball B k ( U ~ ,  r) and fie B k - 1 ( U * ,  r) with r such that On(r)(Yr r, 7r r) < 1 -- Ln(r), 
and k large enough such that B k- 1 (u* ; r) • r 

With respect to Omr)(7rr, ~rr) we note the following: 

O~(~)(7~r, ~,rr)~ 2 �89 ~rr + h.o.(y,r) 

for all r with yrr_-< 2 and S small enough (see below). Here h.o. denotes higher 
order terms, and as an example: h.o. (0.3) ~ 1.40, h.o. (0.2) ~ 0.25, h.o. (0.1) ~ 0.06. 
To make this clear we note the following. If we take S = 0 in the definition 
of OB(r) (SO ~ in A r may be replaced by l + 2 y r r ;  see 5.11) and neglect higher 
order terms OB(r)(~,rr, 7, r) results in 2�89 So in order to get OB(,(yrr, yrr)< 1 
we restrict to r e ] 0 ,  ro] with ro such that Yroro =2.  Now assume S small enough 
such that S ~ o ~ l ,  then l + S ~ e x p ( y r r ) ~ l  (r<ro) and for r < r o ~  in Ar may 
be replaced by ~ 1 + 2 7 , r  (see 5.11). Using this in the definition of On(r) we 
get the above result. 

Remark 5.14. In order to assess the sharpness of the theorem we consider two 
extreme situations. Clearly, if we take Yr = 0 (linear problem) the theorem results 
in the expected convergence statement. Another extreme situation is the follow- 
ing: in the two grid situation of 5.13 we take the k - 1  and k level identical, 
resulting in Cu.--0, and we also take S+0. Now the " two"  grid FAS iteration 
is a modified lqewton iteration proceded and followed by a relaxation iteration 
that is not locally convergent (llRr(u)-u*[[,~<= I lu-u~ [tu~-~Irrl ItU__IA k* 11,~).2 Let A~~ 

be the function Ar of Theorem 5.10 with S=0 .  Inspection of the proof of the 
theorem and of 5.9(3) shows that because C,, = 0  we can get a somewhat better 
(but analogous) result than in theorem 5.10: ~onvergence in B k(u*; r) is guaran- 
teed if r is such that A~ yrr)+(A~ y~r))2�89 1 (use LB(r)=0). We have 
that A~ Trr)+(A~ y,r))2 �89 y, r=1 �89  y, r + h.o.(yrr) with (as an example) 
h.o.(0.4)~0.78, h.o.(0.3)~0.35, h.o.(0.2)~0.13. The above kind of condition for 
a domain of guaranteed convergence is well-known for Newton iterations. More- 
over, if we also assume fi=w, resulting in a non-modified Newton iteration, 
we see that as a bound for the convergence factor we get (with e k : =  l] W--U* l[u~): 

0 0 2 1  1 A e ,  e + A  e ,  e e 1 e + h o  e r ( ~ r ~ )  ( , ( ~ r ~ r ~ ) ) ~ =  ~ r ~  "'(~'~)" 

This exhibits the quadratic convergence of the Newton iteration. 

Remark 5.15. Finally, we reflect on the dispensability of the Lipschitz condition 
that we assumed in 3.1.(4). We first recall that this Lipschitz condition could 
be weakened to a local HSlder condition (see 3.3). 
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In this section our goal is to prove a quantitative convergence statement 
for a FAS TG scheme for solving nk(Uk)--f=O which is uniform in k (that 
is, we wish to obtain explicit expressions for a domain of guaranteed convergence 
and for a bound on the contraction factor which are independent of k; cf. 
Theorem 5.10). In Remark 5.14 it is noticed that for an extreme choice of parame- 
ters (hk- 1 ---" hk, S $ 0) the FAS T G  scheme reduces to a Newton kind of algorithm. 
Thus our conditions should certainly warrant a quantitative convergence state- 
ment that is uniform for this set of Newton algorithms. Now for a quantitative 
convergence analysis of Newton iterations a Lipschitz condition (a local H61der 
condition) on the derivative is a common requirement (cf. [9]), and it is, indeed, 
not clear how one could do without. This leads then to Lipschitz conditions 
on the Dn k uniform in k. Finally, recall that nk is just nlsk: Sk"*Stk and that 

U Sk = H. Hence, in our opinion, the Lipschitz condition on D n in 3.1 is rather 
k 

a minimal condition. 

6. Multigrid Full Approximation Scheme 

In this section we define a multigrid FAS iteration with a bounded number 
of coarse grid corrections on each level and prove convergence with contraction 
number smaller than one, independent of the level, provided we start in a ball 
with radius small enough (independent of the level) and provided the coarsest 
level is fine enough. 

Assume p e n  and fELZ(O)cS'p. We want to approximate the solution Up 
of the Galerkin discretization %(u)=f  using FAS multigrid on level p. 

In 6.1 we define a FAS multigrid iteration on level p and in 6.5 and 6.6 
we will prove a convergence statement. 

Definition 6.1. If Fk: ' Sk x Sk Sk is defined, then for n e N ,  n > 2  we define F k.-"" 
Sg x S'k ~ Sk by F~,(u, m) = ~ (ff~- l(u, m), m). 

We will now define a FAS multigrid iteration on level p e N .  
For  k = ko . . . . .  p let there be given r k > O, Uk- 1 e Sk- i, ak : Sk X Sk ~ ] O, ~ [ 

and ~keN. 
We define ~ :  Sk X S'k ~ S k  by the following (cf. 5.1): 

(1) k=k0 :  ~o(W,m)=Fko(rko, W,~ko_l,ako(V*,W),m) with Fko from 5.1 and 
v* .'= n~-o I (m). 

(2) ko<k<p:  choose WeSk, meS'k and let v*:=n~l(m); define Rrk: Sk~Sk  as 
in 5.1. Define 

C: Sk ~ Sk by C(e)=e+ak(V*, w)- l  {O--fik-1} 

with 

0 = f ~ _  1 (ak- 1, nk_ 1 (a~_l)  + a~ (v*, w) { m -  n~, ~_ 1 (e)}). 

Now Fk(W, m),=Rr~ CR,k(w). 
A FAS multigrid iteration on level p for solving np (u )= f  is defined by: 

w(j+ 1)= Pp(w(j), f) .  
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In 6.2-6.5 we assume that  there is some fixed w*~C(O)c~H. The reader may  
think of the following two possibilities for w* (cf. 6.6): w* = u *  (u* the solution 
in H of n(u)=f) ,  w* =up* (u* the solution o f t h e  Galerk in  discretization np(u)=f).  
Also in the remainder  of  this section we assume some fixed S > 0. 
Given w* as above  we define k_ : ] 0, ~ [ ~ N by k_ (r) = min {nlB"(w*; r) ~ 4>}. 

Conditions 6.2. We state the following conditions,  which we will use in 6.5. We 
will discuss the feasibility of  these condit ions in 6.3. 

(A) ("choice of  r") Define (cf. 5.1, 5.10): 

Nmr)=NRo~.:,):=sup{jjFk(r,w, fi, s,m)--v*j]~.jlw--v*j[~.l[ k>k_(r ) ,  m e S i  
with v*.'= n ;  1 (m) ~ B k (r), ~ ~ B k- 1 (r), w ~ B k (v* ; r) with w + v*, s _-< S}, 

Let  N < I  and r > O  be such that  N B , ) < N  for all t e ] O , r ] .  
(B) (" choice of  cr k'). Fo r  rl e ] O, 1 [, t > 0 let ~r k : Sk X SR ~ ] O, S] satisfy: 

1[ n [ ) l  { nk -1 (Uk -1) + ak (V, U) (nk, k -1 (V) -- nk, k -1 (Rt (u))) } -- Uk -1 II w. 

< q t ( l  + Gt) -~ 

for all Ua- i ~ Sa - i ; here Rt is as defined in 5.1 with m = nk (V). 

(C) ("choice of  ~k"). Suppose  we have sequences (a.) ,>0, (b,),>=o in IR such 
that :  

(1) 3 A > 0 :  A < a , < a o < l  fora l l  n, and l i m a , = A .  
n - - )  oo 

(2) ~ B > I "  B < b , < b o  for all n, and l i m b , = B .  
n ~ o o  

N o w  let (z,),>l be a sequence in N such that  with q~.(x):=a. + b , x  ~" 
(x s [0, i ])  the sequence x l . '=al ,  x .  + 1.'= ~0, + l(x,) (n > 1) satisfies" sup (x , )<  1. 

n 

Remarks 6.3. 

(A 1) Theorem 5.10 implies that  NR(r) < LR(r) + OB(~)(7~r, yrr(1 + y~r)~'). F r o m  4.10 
we deduce that  LR(,) < 6B(,)< 1 for all r > 0 and 3R(r) is an increasing function 
of r. Us ing  the definition of  OR(,) it is clear that  there exist r, N : Nmt ) < N < 1 
for all t e  ]0 ,  r]. 

(B 1) Possible choices for ~k are: 
(a) ak related to the defec t : i f  veB(w*; t )  then l emma  5.4(a) combined  with 

l emma  3.4 implies that  with ~ '=rig, k -~ (V) -  rig, k- l(Rt (u)) we have:  

+I;t) ~k(v,u)~II(oll~ (*) []ngJ1{nk_,(~a_l)+ak(v,u)Cp}--ak_tllw.<(1 �89 

, , ( m i n { S ,  q t ( l + ~ t ) - l ~ - l I l ~ p l j 2 1 }  if 0 + 0  
SO ffkI, V , U) ='~ . . . . . . . .  

l a r m t r a r y  m 3 u, ~d if 0 = 0 

suffices. 
(b) ~k constant :  if veBk(w*;t) ,  ueBk(v; t )  then 5.12 results in Ilqsll~ 

<exp(�89 t. So using this and  the est imate (*) in (a) results in the 
choice: ak(V, u ) = m i n  {S, q/~t-%xp(--1�89 t)}. No te  that  with Fit small 
enough and S suitable (cf. 5.11) this results in ak (V, U) ~ min (S, q). 



Convergence of the Multigrid Full Approximation 269 

(C I) Possible choices for (rk)k>= 1 are: 
(a) take z o e N  such that  (po(X):=ao+bo x~~ has a fixed point  x * ~ ] 0 ,  i[-. 

N o w  Zk = ZO for all k > 1 is a possible choice. 
(b) let r ~ N  be the minimal  element in N such that  ( p ( x ) : = A + B x  ~ has 

fixed points xL, x Re] 0, 1 [ with xL < xg. Suppose  a o < XR. Now choose 
)7 such that  max(xL, a o ) < ) ; < x  R .  Define Zk:=min{meNlak+bkym<=~}. 
The smallest fixed point  of  % ( x ) = a . + b . x  ~" is denoted by x,.* It is 
easy to verify that  Zk = Z for k large enough, x* __< 3~ for all n, lim * - X n - -  X L 

n ~  

and x , + l < m a x ( x * + l , x . )  for all n > l  ((x,),>__i as in 6.2 (C)). So the 
sequence (x,),>__l satisfies s u p ( x , ) <  1. No te  that  if (a.) .~l  and (b,),~l 

n 

are decreasing sequences then for (z,),>=l we have %+1__<z,, and 
lim x,  = xL. 

Definitions 6.4. In the following we will need a Lipschitz constant  on a large 
enough ball. Fo r  this we define 74).'=r(2)+(1 +F~r)~r with ?2) as in 5.7. And  
with ~ as defined in 5.7: 7~.'=max(Fmw,;~,~ ), 7~)- 

We also define the function M~: ]0,  oe[--*]0,  oo [ by: 

M ~ ( x ) = 1 � 8 9 1 8 9  2 x ( l + x ) ~ ) x  (A~ as in 5.9(2)). 

This function will arise in the p roof  of 6.5. 

Theorem 6.5. FAS multigrid convergence. Let f ie ]0 ,  1[ be given, let r be such 
that 6.2 (A) is satisfied. Define ko :=k_ (fir) (k_ as defined above); assume sequences 
(rk)k>=ko, (~tk)t~ko with rko:=r and for k > k o  rk, Uk-1 such that O<rk <=rk_ 1 and 
UR- 16 B k- 1 (w* ; fl rk) (this is possible; cf. definition of  k _ ). Also for k > ko assume 
ak as in 6.2 (B) with 11=1- f l ,  t=rk  and let Zk be as in 6.2 (C) with at=NBr~ 
and bk =(1 + M~k(~rk)  ) ~ exp(3 y~rk). 

Now let Fk be as defined in 6.1 with r,, ft,_ 1, a, ,  z, (ko < n <=k) as above, 
then the following holds: 

for all k > ko, all meS'k with v* ".=rig l(m)eBk(w*;rk), all we  Bk(v*;rk): 

]IFk(W,m)--V*II~*<ZkIIw--v*II~* with 

)~ko+l=ako+1, )~k+~=ak+~+bk+lZ~k ~+', k > k o  (notethatZkdependsonw*).  

Proof  We will p rove  the assert ion of the theorem by induction with respect 
to k. Note  that  if the assert ion holds for some k, then also ]lr~,(w,m)-v*t[~, 
_-<x~l[w-v*[[~, for h e N .  

k = k 0 + 1: choose m eSk with v* ,=nk~(m)eBk(w*; rk) and weBk(v*;rk) (these 
exist). Then" 

II ffk (W, m) -- v* II ~* = I] Fk (rk, W, bl k - I ,  trk (V*, W), m) -- V* [1 ~* 

<=Nm,.k) [] W -- V* ]l o* = Zk Ilw-- V* L* 

(use definition of Nm~ ) in 6.2 (A)). 
Suppose  that  the assert ion is true for k -  1 ; we now consider k. We have: 

IlFk(W, m)--v* II~, < Ilfk(rk, W, ~k-1, ak(V*, W), m) -- v*ll~, 

+ HFk(rk, W, Uk-x, trk(V*, W), m)--Fk(W, m)l] ~,. 



270 A. Reusken 

Using the definition of Nn(r) (6.2 (A)) we have: 

II Fk (r k, W, Uk - 1, Crk ( V*, W), m) -- v* II v*----< Na(,k) II w -  v* tlv*. 

We also have, using the notat ion as in 5.1 and 6.1: 

II~(w, m)- -  Fk(rk, W, i l k - l ,  (rk(V*, W), m)llv, = IlR~k CR~k (w)- -  Rrk CR~k (w)llv, 

< llR~,,,kll~, t l C R , k ( w ) - C R r k ( w ) l l ~ , +  Ildv,(CR~,(w), CR~(w))l lv , .  (1) 

The last inequality can be shown as in the proof of 5.9(1). Now use that  
lIRa, ~llv,< 1 (see 4.6); denoting R,~(w) by y and Cek(V*, W) by ak we get: 

= H C y - - C y l t v , =  ] ] ( y + a [ l ( y - - f k - O ) - - ( y + a [  1(37-ik_ 1))11~. 
= a [  111 f f~-  1 (fig- 1, cO - n[-11 (e)II v* with 

= nk-  1 ( ~ k -  ~) + o-k (m - nk, k -  ~ (Y))- 

Now note that because of 6.2(B) and UR-ae B k -  ~ (w*;fl rk): 

IIn~21(~)--w*llw, < Iln~-lx ( ~ ) - - i k -  l ll~, + [lrk <rk  < r k - 1  

so n k J l  (Ct) ~ B k - a (w* ; rk-1). (2) 

Also : 

I I n[2 t  (~) -  tTk _ 1 t[,~_,, (,)__<(1 + g~ rk) ~ 11 n [ ) l  (a) -- fig _ 11] ~* ----< (1 -- fl) rk <= rk -1 ,  

so ilk- 1 e Bk -  1 (n[_11 (c0; rk_ 1). (3) 

NOW (2) and (3) make that  we may use the induction hypothesis, implying: 

~zk 
I] CRr~ ( w ) -  C R ~  (w)II ~, = a k  1 II Fk -1 (Uk-1, O0 -- nk-ll (~)[1 ~* 

< ak- X (1 + 2 F,~ rk) ~ II-PT, ~- 1 (~k-1, ~) -- nk-21 (~)II .~-,, (,o 

< a  k 1(1 + 2 F, krk)Zi?-i I]fik- ~ -- n{21 (ct)l[~* 

~-< Z~k-1 (1 At-2 Frkrk)/~r k II nk,k-, (V*)--nk,k-~ (Y)II v* 
(using 5.4(a)) 

< Z~_ 1 (1 + 2F~rk) ~ exp[-v~rk] IIv*-- wily, 
(use 5 .12)  

--< Z~, ~- 1 ~ exp [3 ?~k rk] l] V* -- W ][ ~,_--< r k. 

The last inequality can be deduced from /~,~ exp[-3v,krk] X~_l <bkX~_~ < 1 (cf. 
definition of bk and 6.2(C)). 

Summarizing: 

1 1 ~ R ~ ( w ) - - C R ~ ( w ) l [ ~ , < Z ~ _ ~  exp[37 ,~rk] l lw- -v* l l~ ,<rk  . (4) 

Now note that tl CRr~(w)-w* I1~*_-< r(~ 2~ (definition of r (z), see 5.7) and that  

tl (~R,~ (w) - w* l[ ~, < II CR,k(w)  -- w* II w, + II C R ~ ( w )  - CR,~ (w)II ~, 

__< r(~ + (1 + r . .  ~)~ ~ = r(~ ~ 

(see definition of r t4) in 6.4 and use (4)). 
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Now returning to (1) and using Lemma 3.5 and (4) we get: 

I[Rr, CRrk(w)-Rrk CR,k(w)llo,< I]CR,~(w)--CR,k(w)IIv, 

+ �89 Y,~ (11 cg~u (w) - v* ]] v* + ]l CRr~ (w)-- v* ]I v,) ]1 cgrk (w) - cgrk (w)1I ~, 

(definition ~,: see 6.4) 

< 1-1 + �89 ~,~ (1[ CRr~ (w) -- CR,~ (w)[1 v* + 2 L] CR~ (w) - v* 11 v,)] Z~, ~_ 1 ~ 

�9 exp [3 7,, rk] [l V* -- W II ~*. 

The reader may  check (cf. p roof  of 5.9(3)) that:  

�89 ~7~ (11CR,k (w) - CRr~ (w)II ~. + 2 II CR~ (w) - v* I/~.) 

< �89 r~ + 'L~ II CRrk(W)- v* II ~.< M~(~;r~rk) 
with M,(x)=1�89189 2x(I+x)�89 (At as in 5.9(2)), 

Finally we get: 

II fig (W, m)--v* iI v* < gs(~)Ilw - v* II~* +(1 + Mrk(~rkrk) ) X~ k- 1 ~k exp [3 yrk rk] Ilv* - WHy, 

= [N~(~)+ Z~,~_ 1 (1 + M~(~,rk) ) ~ exp[3  y,~ rk] ] ITv* - wlI~, 

--(ak +bkZk-Ollv*--wll~,=ZkllV*--wll=,. [] 

Remark 6.6. Take  w * =  u* ( =  n-~(f))  and with fl and r as in the theorem take 
rk=r for k>__0, and the 0-level fine enough such that  Ilu*-u*tlu,<flr for all 
k_->0. Then k o = 0  and the theorem guarantees convergence of the FAS M G  
iteration on level k__> 1 for solving nk(u)=f when starting within Bk(u~; r) and 
the contract ion number  is bounded  by max {X, 10 < n__< k} =< sup {)~n In > 0} < t. If 
in addit ion we assume c~ with 0 < e < fl and the 0-level fine enough such that 
there exists ~oeS o with [l~o-U*ll,,__<(fl-c0 r and [lu*-u*ll~,_-<c~r, then the fol- 
lowing choice for ft, is possible: take ~n = fi0 for n > 1, then: 

II~.-u*Ilu* < ll~o-U'dllu*+ Ilu*-u*llu,<(fl-~) r + e r = f l r .  

Another  choice for fin will be mentioned in the next section. 
Take  w * = u *  for some p. Again take fl and r as in the theorem and r k = r  

for k>ko (ko as in the theorem). Assume ko<p. Then  the theorem guarantees 
convergence of the FAS M G  iteration when starting within BP(u*;r) and the 
contract ion factor is bounded  by max{Xk[ko<k<=p}<l (a bound depending 
on p). This holds even if u* is "far  away"  from u* (coarse level). However,  
an impor tant  condit ion is k0 < p  which means that there are coarser levels than 

�9 sufficiently accurate:  k , .  B (up,flr)4:~) the p-level on which we can approximate  Up 
for ko < k < p. 

Remark 6.7. Let  r be as in the theorem and take rk=r for all k>ko (cf. 6.6). 
Then with (ak)k>ko , (bk)k>=ko, ('Ck)k>ko as defined in the theorem we have for all 
k>ko :  

ak = ag o, bk = bk o, "Ok = ZO, with Zo such that ako-Jr" bko X~~ has a fixed point. 

Suppose  ako=NBlr)< �88 Now if ~7~r small enough and S small enough (cf. 5.11) 
we have that bkoako< �88 SO TO=2. So we have local convergence of the FAS 
M G  algori thm using W-cycles. 
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7. Nested Iteration 

From the theorems in w w it is seen that a better starting vector (for FAS 
MG) not only results in a smaller initial error but also in a smaller bound 
for the contraction factor. Also better coarse grid approximations ~k result in 
a smaller bound for the contraction factor. By using Nested Iteration we can 
make an algorithm that "automatically" generates good starting vectors and 
good coarse grid approximations ~k. In this section we specify a nested iteration 
algorithm and prove a convergence statement which induces nice (expected) 
properties of the algorithm. 

Definition 7.1. We are now going to define a sequence of nested iteration approxi- 
mations vkeSk of u* (k>0);  u* is the solution (in Sk) of nk(Uk)=f. 

For all k>  1 let there be given rk>O, ak: Sk X Sk ~ ] 0 ,  ~ [ and T k, ikeN. 
We also assume voeSo to be given. Now for k>  1 we define Vk'=F~,k(Vk_ 1 , f )  

with ~ the FAS MG iteration on level k as defined in 6.t with r, ,  o,,  z, (I < n < k) 
as above and ft,-1 =v , -1  (1 <n<k).  

Assumptions7.2. In this section for w* we take w*=u*.  We assume 
[lu*--u*+~ll,G<ek and It u* -- u* [lu. < 3k (k>0) with ek, G such that there are 

constants e+, e_,  3+, 3_ : 

0 < e  < e k + l e ~ l < e + < l ,  0 < 3 _  <3k+13k-1<3+ < l forall  k 

(cf. 2.5: discretization error Ilu* - u* II < c hk ). 

Main-theorem 7.3. Let fl E ] O, 1 [. For k > 0 define (with e_ 1 = Co, 3_ 1 = eo) : 

rk.-=max {((1 +~k_ ~G- 1) ek-1 + G -  l) fl- 1, (1 + ~ _  ~ek- 1) ek-1 +ek-  1}- 

Take r such that 6.2(A) is satisfied. Assume Co, 3o small enough "("O-level fine 
enough") such that r o < r (then ko in theorem 6.5 equals zero). 

For all k> 1 let ak, rk and Zk be as in 6.5 with (rk)k>=O as above. 
Take ik~N, ik>log((2 + F~k_ , ek- 1) e2 ~) log- 1 (Zk- I) (k> 1). Assume vo~So with 

[[Vo-U*[]~<eo. Then the nested iteration approximations Va (k >O) as defined 
in 7.1 with rk, rra, Zk and ia as above satisfy: 

IIVk-- u~ Ilu~ ~ ek. 

Proof k = 0 is obvious. Now consider k, assuming t lv,-  u* I1 u* < e, for all n __< k -  1. 
Note that 

11u*--u*liu, <3n<=r, so u*~B"(u*;r,)foratln. (t) 

F o r n < k - l "  
I I v , -u*L ,  < IIv,-u*L,+ Ilu*-u*llu, < IIv,-u*llu, + 3,. 

And because u* e Bn(u*; 3n), using 3.4(4) results in: 

][v,--u*I]u. <(1 + I'~, t]u*--u*[]u,)]fVn--U*I[,* <(1 + F~ 3n) en 
( n < k - 1 ) .  
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So we get: 
I Iv . -u* l l , , .<( l+l '~ . )e .+~.<f l r .+1  ( n < k -  1). (2) 

Because u*, u*_ l~B(u*;~k-1) applying 3.4 (4) results in: 

Ilv~- * _ u~ - u k - ,  il.~)Ilvk- 1 1--Uk-III.r<(I+F~k ~II * * -u*-lll.~, <( I+F~.  , e k _ x ) e k _  x 

SO 

IlVk-1- u*[{.~ < [[Vk-1--U*-I I].~+ [IU*-1- U*I[.~ <(1 +F~_,ek-t)ek-1 +ek-1 < rk. (3) 

Using (1), (2), (3) and the assumptions about or., z., we conclude that we may 
apply theorem 6.5 with 

w * = u * , ~ . _ l = V . _ l ( 1  <=n<=k), v*=u~, w=vk_ l, 

resulting in: 
[I ffk (Vk- l, f )  -- U* II,~ < Xk II Vk - ~ - -  U*  I1.;, 

implying (see definition of Vk in 7.1): 

< X g ~ ( I l v k _ I  - -  u * _  x II.z+ Ilu~*- x - -ul '  I[.Z) < X~(ll Vk , - - U L ,  I1~ z + e k -  1) 

<Zik~((l+F~k_~ek_Oek_l+ek_O<Zik"(2+F~_,ek_Oe(lek (see 7.2) 

<ek (using choice ofik). [] 

Concluding Remarks 7.4. Because (rk) k >= 0 in Theorem 7.3 is a decreasing sequence 
with lim rk=O we have that (bk)k>=O (see 6.5) is a decreasing sequence with 

k~oo 

lim bk = 1. We also have: lim ak = lim NB(r) = lim LB(r)=: L o (linear two grid con- 
k ~  k~co r~LO r~.0 

vergence factor). For  ease we assume that (ak)k> =0 is also a decreasing sequence 
(cf. definition of a k in 6.5 and remark 4.11). In the following we use 6.3(C 1)(b). 
Let ~ ( x ) = L o + x  ~ with z ~ N  minimal such that ~0 has two fixed points XL<XR. 
NOW the (Z'k)k> I in Theorem 7.3 are a decreasing sequence with Zk= Z for k large 
enough. As an example take Lo = 3 ,  then Zk = 2 for k large enough (i.e., "W-cycles 
on high levels') and XL=�88 XR =3. Assume that r = r  o is small enough such 
that ao=Na(~o)< 3. Now for the s e q u e n c e  (~(k)k~l we have that Zk~ 3 for all 
k and lim Zk=�88 (cf. 6.3(C 1)(b)). Now for i k in Theorem 7.3 we have that, assum- 

k~oo 

ing F~k_ 1 e k_ 1 ~ 0 . 1 ,  i k = 5 suffices for all k, but for k--, oo i k =  1 already suffices 
("approximately one FAS MG iteration on high levels"). The above shows 
that using a suitable nonlinear nested iteration (consisting of a bounded number 
of suitable FAS MG iterations on each level), starting on a coarsest level that 
is fine enough with a good enough approximation of the discrete solution on 
that level we get an approximation of the discrete solution within the relative 
discretization error on arbitrarily fine levels. Besides, this nested iteration has 
the nice property that we need fewer FAS MG iterations on finer levels and 
in the FAS MG iterations we need fewer coarse grid corrections on finer levels. 
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8. Simple Conditions on the Function g Instead of Conditions on the Operator n 

The assumptions we made in the foregoing sections about the operator 
n: u-~ a(u, .)+ (b go u, .)L2 are stated in 3.1 and 4.7. In this section we give condi- 
tions on g which induce that n has the properties as assumed in 3.1 and 4.7. 

Definition 8.I. Let h: R ~ R .  For  p>= 1 we define: h has property LBA(p) ("Lip- 
schitz-continuous for bounded arguments") iff the following holds: 
u--*hou maps H into LP(O) and for every bounded subset B of H we have 
a finite Lipschitz constant 

F(B; p):=sup { llhou-hovllLp I lu-vl l-  11 u. veB, u 4= v}. 

Remark 8.2. If h has property LBA(p) then h has property LBA(q) for all q 
with 1 <=q<=p. 

Lemma 8.3. Let heClOR). I f  for some me[0,  oel- sup {]h'(t)l(1 + ItLm) T M  1 ] teR} < oe 
then h has property LBA(p) for all pe[1,  oo [. 

Proof Take pe[1 ,  oo[ and let B be a bounded subset of H with Ilull_<M for 
all ueB. For e, t ieR,  I~,~ denotes the closed interval in R with endpoints c~ 
and ti. 

Now for u, veB and for almost all xef2 we have, with suitable constant C: 

u~x) ] 
Ih(u(x))-h(v(x))t= S h'(t)dt < max Ih'(t)ilu(x)-v(x)t 

v(x) t~lu (x), v(x) 

N max C(1 + ]tlm)[u(x)--v(x)] ~ C(1 + ]U(x)]m-'[ - IV(X)] m) In(x)-- V(X)]. 
tElu(x), v(x) 

So we get, using the embedding theorem of 2.4: 

I lhou-h~ < C(ll l llL2, + Ilull~%m + tlvl[~d2pm) llu-vllL~, 

<C(l]lllL~+ 2(de,mM)m)d2pltu-vll. [] 

Lemma 8.4. The collection of all bounded subsets of H is denoted by ~.  The 
following holds: 

(a) if g has property LBA (m) for some m > 1 then: 
(aO the operator n: u ~ a(u, .)+(bgou,.)L2 maps H into H' ; 
(a2) V B e ~  3c: Vv, weBVueH:  [(n(v)--n(w))(u)]<=c ilv-wtl Ilull; 

(b) if g' has property LBA (m) for some m > 1 then: 
(bl) g has property LBA(s) for all s e l l ,  m[; 
(b2) n is Fr~chet differentiable on H with derivative 

D n(w) (u)(z)=a(u, z) + (b(g'o w) u, z)L~; 
(b3) VBe~33c: Vv, weBVu,  zeH: ](Dn(v)-Dn(w))(u)(z)[<c IIv-wt[ [lull llz[l; 
(b4) / f m > 2  then: 

V B ~  3 c : V v, we BV u, z e n : ](Dn(v)-- Dn(w))(u)(z)] < c ]Iv-w/] Ilull tlZtIL~; 

byp, 0 Proof For  pe ]  1, oe [ we denote 1 - 1 - p  \p'  p 

(a) for pe[1 ,m] ,  B e ~  let F(B;p) be as in 8.1 with h=g.  Take q e ] l , m ]  and 
u, ve i l .  Now the following holds: 
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la(u, v) + (b gou, V)c~] <=a + Ilull Ilvlt +b+  Ilgoullg~ IlvllL~, 

<(a+ Ilull +b+  IIgoullL~l(q'))llvll; 
this proves (a0. 

Take B e N  and v, weB ,  ueH.  Now we have: 

l(n(v)-n(w))(u)l <a+ Ilv-wll Ilull +b+  Ilgov--goWllLq Ilullzq, 

<(a+ + b+ F(B; q) I(q'))IIv-wll  Ilull, 
this proves (a2). 
(b) for pe [1 ,  m] B e N  let F'(B;p)  be as in 8.1 with h=g' .  

Take B e N ,  p,q, r e ] l ,  ~ [ w i t h p < m  and 1 + 1 + 1 = 1 ,  v,w, yeB ,  z e L  r. Then:  
p q r 

[(g o y -  go v - (g' o w) (y - v), z)L2I 
1 

< ~ ~ Ig'(v(x) + t ( y ( x ) -  v (x ) ) ) -g ' (w(x) )  I }y(x)-  v(x)] lz(x)l d t d x  
.Q 0 

1 

= ~ (Ig' ~ (v + t (y-- v ) ) -  g' ow[, lY-  vl Izl)L2 d t (using Fubini 's theorem) 
0 

1 

< ~ I Ig '~176  Ily-vllL~ IlzllLrdt 
0 

1 

< F'(conv(B);  p) ~ I I ( 1 - t ) ( v - - w ) + t ( y - w ) l l  d t I (q ) I l y - v l l  IIZlILr 
0 

(conY (B): convex hull of B) 

< �89 p) I(q)(jlv--wll + IlY--wll)IlY- vii IIzlIL~ (*) 

1 1 1 To prove (bl) take s e ]  1, m[  and p ,q , r  as above with p e ] s , m [ ,  - =  - - .  Then 
r s 

the functional z ~ (g o y -  g o v -  (g' o w)(y - v), Z)L2 is an element of (U)', and 

Ngoy--gov--(g'ow)(y--v)IIL~ <cBlJy--vll with cB,=U(conv(B) ;p) I (q)d iam(B) .  

Taking w e B  fixed and t >  1 such that  t s < m  we have that for all y, veB:  

IIg~176 < l lg~176176 + fig'~ wilL-IlY-- rilL-, 

< (cB + Ilg'~ wlle,  I (st')) I lY-  vii. 

This proves (b0. 
Assume B is some open ball, w e B  fixed. Define the cont inuous linear opera- 

tor/~w: n ~ n '  by ~ (h)(e) = a (h, e) + (b (g' o w) h, e)L:. Using (*) with y = w + h e B, 
v=w,  z e H  with IIzll = 1 we get: 

[n(w + h ) ( z ) -  n ( w ) ( z ) -  6~(h)(z)l 

= I(b(g o(w + h ) - g o w - ( g ' o w )  h), Z)L2[ <b+ �89 p) l(q) l(r)[Ihl[ 2. 

Now (b2) easily follows. 
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For  (b3) and (b4) note  that  with v, weB,  u, z eH:  

](D n (v) - D n (w))(u) (z)] = [(b (g' o v-- g' o w) u, z)L2[ 

< b+ ]lg' o v - g '  ~ IIU]IL, [[zllL,<b+ F'(B; p)I(q)[Iv--wl[ l[u]l ]]z[IL,. (**) 

Now (b3) follows using Ilzl[t,<l(r)Ilzl[. 
If m > 2 we can take p e l  2, m] and r__< 2, and (b4) now follows from (**). [ ]  

Remark 8.5. With respect to the Lemmas 8.3 and 8.4 we note that  a restriction 
on the growth of the function g is necessary to get a reasonable opera tor  n. 
This is shown by the following example. 

Let  ~ (r).'= {(x, y) e ~  x N. IX 2 + y2 < r} (r > 0). 
For  e e ] 0 , � 8 9  u(x,y):=log~((xZ+y2) -1) on O(�88 g( t ) :=exp(f f - ' )  for t e [ 0 , ~ [  
and g is defined on ] - ~ ,  0 [- such that g e C~ (]R) and g' > 0. 

Also v(x,y):=l on O(�88 and v is suitably extended such that v > 0  and 
veHol(K2(1)). It is easy to check that ueHl(O(�88 now extend u such that u > 0  
and ueHol(~(1)). Now we have (taking b=- 1): 

[n(u)(v)l = la(u, v)+(gou, v)L~l > [(g ~ u, v)L=[-a+ Ilull Ilvll 

1 
= ~ ~g(u(x , y ) )v (x , y )dxdy-a+ Itull Ilvll > ~ ~ x ~ y 2 d x d y - a +  Ilull Ilvll 

~(1) t)(�88 

= dr dq~-a+/lul l  Ilvll = +oo. 
o o r 

So for this (too rapidly growing) function g we have that n does not  map  
H into H'. This also implies (use 8.4.(al)) that g does not  have proper ty  LBA(m) 
for any m > 1 (cf. 8.3). 

Remark 8.6. Using Lemma 8.4 it is clear that  if g' has proper ty  LBA(m) for 
some m > 1 then the opera tor  n is such that  Assumption 3.1 is fulfilled. 

Lemma 8.7, Let Assumption 3.1 be fulfilled. Assumption 4.7 is fulfilled if n is 
such that: 
(1) bw, is two-regular, i.e.: 3di: VmeLZ(O)cH':  bw,~meH2(f2) and 

llb~,.l ml]2 < dx IlmllL2. 
(2) Vr__>0 ~c,: WeB(r )  Vu, z e n "  I(bv-bw.)(u)(z)l <-_c, Ilull IIZlIL2- 

Proof. Note  that  by is uniformly one-regular, i.e.: 

3d2: V v e H  VmEL2 (O): ]lb~- i roll _<-d2 ]lm]tL:. 

This is clear using 3.4(3): 

l[ b [  1 m I12 = (b~- 1 m, b~- 1 m) < a_- 1 by (b~- 1 m, b~- 1 m) = a s 1 (m, b~- 1 m)L2 

__< aS 1 I(2)Ilm[[L2 tlb~ -1 roll. 

Take r > 0 ,  veB(r)  and meLE(f2). Note  that bw2 maps L2(f2) into HE(o) and 
b y -  bw, maps H into L 2 (~2) c H'. Using bU 1 = b~,l _ bw,1 (b~- bw,) bU l we have 
that  b~- ~ maps L2(t2) into H E ( o )  and taking norms  results in: 

llb~lmtI2 <dl  tlmllL2+d~ H(b,-bw.)b~ amHL2 <d~(l +cra--~ I(2))llmllL=. [] 
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Remark 8.8. Note that (1) and (2) in Lemma 8.7 are fulfilled if g' has property 
LBA(m) for some m>2.  This is easily concluded from 8.4 (b2) and (b4) and 
the well-known fact (see e.g. [8] Ch. III) that bw,(=Dn(w*)) of the form as 
in 8.4(b2) is two-regular (use that g'o w*e C(~)). 

Combining this with lemma 8.7 and the remarks 8.6 and 8.2 we have that 
the operator n satisfies the Assumptions 3.1 and 4.7 if g' has property LBA(m) 
for some m>2.  This last condition is fulfilled (Lemma 8.3) if geC2(lR) and g" 
has atmost polynomial growth. 
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