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Summary.  We derive lower bounds for the oo-condition number of the n x n- 
Vandermonde matrix V,(x) in the cases where the node vector x r =  
[x~, x2 . . . . .  x,] has positive elements or real elements located symmetrically 
with respect to the origin. The bounds obtained grow exponentially in n, 
with 0(2") and O(2"/2), respectively. We also compute the optimal spectral 
condition numbers of V.(x) for the two node configurations (including the 
optimal nodes) and compare them with the bounds obtained. 

Subject Classifications: AMS (MOS): 15A12, 49D15, 65F35; CR: G1.3, G1.6. 

1.1. Introduction 

The condition of Vandermonde matrices 

V,(x)= xl x2 ... x ,  , x r = [ x l , x 2 , . . . , x , ] ,  n > l ,  (1.1) 

"-'1 x~- '  ... x: 'A 

where the nodes xv are real or complex numbers, and the related question 
of estimating the norm of [V,(x)] -1 have been studied in [2-5]. In [4] we 
considered the problem of minimizing the condition number 

x,,p(x) = condp V,(x)= [I V,(x)ltp II V.- x (x)[I p, (1.2) 

where p =  oe, over all positive node vectors x~lR~., or all real symmetric node 
vectors x ~ " ,  x v + x , + 1 _ v = 0  ( v = l , 2  . . . . .  n). We managed to obtain certain 
necessary conditions for optimality, computed optimal node configurations for 

* Dedicated to the memory of James H. Wilkinson 
** Supported, in part, by the National Science Foundat ion under grant CCR-8704404 



242 w. Gautschi and G. Inglese 

n = 2 and  n = 3 in the case of  posi t ive nodes,  and  for 2 < n < 6 in the case of 
symmetr ic  nodes,  but  d id  not  address  the ques t ion  of  how fast 

x-, v = inf K,, v(x) (1.3) 
x 

grows with n (when p---oo). Whi le  the exact  g rowth  rate  is still unknown,  we 
now derive lower  bounds  for •,, oo which show that  the growth  of  ~c,, ~ is expo-  
nential ,  namely  at least 0(2") and  0(2 n/2) in the two respective cases. W e  also 
compu te  G,2 for 2 < n <  10 in the former,  and  for 2 < n <  16 in the la t te r  case, 
and  depic t  the  op t imal  nodes  graphical ly.  

W e  first recal l  from [-4] some key formulas  that  will be needed. In  the case 
of  nonnega t ive  nodes 

x~ > x 2  > ... > x ,  > 0, (t .4) 

we have 

where 

K,, ~ (x) = max  {n, g,(x)} �9 max  g,, ~(x), 
l ~ v ~ n  

(1.5) 

" -  ~ (1.6) g.(x)= x.  , 
p = l  

v = l ,  2 . . . .  , n. (1.7) (x) = O. 1 + x u g., v 
= I x ~ - x . l '  

F o r  real  symmetr ic  nodes  

Xv-}-Xn+l_v=O, v = l ,  2 . . . .  ,n ,  

X I ~ X  2 ~ . . . ~ X [ n / 2 ] ~ O  

(note tha t  x(,+ 1)/2=0 if n is odd), we have 

(1.8) 

where 

G , . ( x ) : m a x { 2 , f . ( x ' } "  1 

[n/2] 

f . (x )=  ~ "-~ 
p = l  

f , ,~ (x )=  1 + Ix~-x~l' 
, u = l  
p : l :v  

1 + xv ("uO)/2 1 + x 2 

f . ,  ~(x) = ~ x ~  [x~ --x2l  ' 
p4=v 

f . , ( ,+ , ) /z(X)= 2 

max  f~ (x), (1.9) 
<- v <[(n + 1 ) / 2 ] " a  

(1.10) 

v =  1, 2 . . . .  , ( n -  1)/2, 

(n odd). (1.12) 

v = l , 2  . . . . .  n/2 (n even), (1.11) 
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Empty products in (1.11), (1.12), when n = 2  or n=3 ,  are understood to have 
the value 1. 

2. Posit ive Nodes  

Although the following Theorem 2.1 will subsequently be sharpened, we state 
and prove it here because of its simplicity and elementary proof. 

Theorem 2.1. Let Kn, ~ be the infimum in (1.3) (for p = Go) taken over all nonnegative 
nodes (1.4). Then, for n > 2, 

x,, o0 > 2"- 1. (2.1) 

Proof The optimal point is known to be finite (cf. the remarks preceding Theo- 
rem 3.1 of [-4-]). Letting 

E c =  {xe•":  C = x l  >Xz > ... > x ,  >0}, 

it suffices therefore to show that 

x . ,~ (x )>2  "-1, all x e E  c, all C>0 .  

At the heart of the proof is the elementary observation that 

l + u  1 
inf - - -  1 4 

O<v<u<C H - - l )  C ~ 

(2.2) 

(2.3) 

where the infimum is attained for u = C, v = 0. 
Assume first C > I .  Since, by (1.6), g , (x )>C "-1 for x e E c ,  we have from 

(1.5), (1.7) 

, -1  l + x u  
~n,~(x)>= C"-  ~ gn.n(x) = c " -  ~ I-I 

.u = 1 X# - -  X n 

n - 1  n - 1  l + u  
> C " - ~ i n f  l-[ l + x " > c " - t  1-I inf 

Ec #=1 X # - - X n  # = 1 0 < v < u < C  b l - - U  

1\"-  1 
= C  "-1 1 + C )  = ( 1 + C ) " - 1 > 2  "-1, 

where (2.3) has been used to evaluate the last infimum. Similarly, if C _-< 1, 

n--1 l + x  u t 1\n-1 
lq __>nil 

#=1 X l z - - X n  \ "J-C/~1 
>2 .2n -  t >2n-1 

if n>2.  [ ]  

We now improve upon Theorem 2.1 by establishing the following 

Theorem 2.2. Let to,, ~o be as in Theorem 2.1, Then, for n >= 2, 

l,,n 1,}. 1  24, 
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In particular, 

K,,o~ > (n - -  I)-2 "-1 , n > 2 .  (2.5) 

Proof By Theorems 5.2 and 5.3 of [4], if x = a is a minimum point  of x,, | (x), 
then 

n-1  
. -  1 ( 2 . 6 )  a , = 0 ,  g . ( a )=  ~ a u =n, 

#=1 

and, by (1.5), 

x,, ~ (x) ~ x,, ~ (a) = n. 1 <v< g , , m a x  v (a). 

In particular,  therefore, 
.--1 

x. ,~(x)>n.g, , , (a)=n H 1 +a, (2.7) 
u= 1 au 

To  get a lower bound,  we minimize the product  in (2.7) subject to the constraint  
in (2.6) (thereby changing the meaning of the variables a.). Using Lagrange 
multipliers, we obtain the necessary condit ions 

1 , i l l  l + a ~ + 2 ( n  - . - 2 _  1)a~ - 0 ,  v=  1, 2, n - l ,  2 " ' ' '  av u=l a .  
/ag=v 

or, equivalently, 

. -1 1+% 
av (1 +av), v = l ,  2 . . . . .  n - 1 .  1]  - 2 ( n - -  1) , - a  

/a= i au 

This implies al = a2 = . . .  = a ._  1 = a, hence, by (2.6), 

( ~ > - - 1 / ( n - 1 )  
(n-- 1) a " - I  =n ,  a =  1 -  

Substituting in (2.7) gives 

to., ~o(1)> n (1 + ~ - - )  "-1 , 

which is (2.4). The corollary (2.5) is an immediate  consequence of (2.4). [ ]  

Expanding the lower bound  in (2.4) in powers of n -  a, we can also write 

x . ,~>n.2"-a(1- �89 n>2. (2.4') 

The five terms shown provide an accuracy of about  2 correct  significant decimal 
digits when n = 2 ,  and 7 correct  digits when n =  16. 
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3. S y m m e t r i c  N o d e s  

Since the infimum of ~:., ~o(x) over all xelR" is at tained at a symmetric node 
configuration, if it is unique (see [4, Thin. 3.1]), the study of symmetric nodes 
is particularly appropriate.  We have, in this case, results analogous to those 
in Theorems 2.1 and 2.2. Since the proofs are similar, we try to be brief. 

Theorem 3.1. Let •,, o0 be the infimum in (1.3) (for p= co) taken over all nodes 
satisfying (1.8). Then, for n> 2, 

~c,, ~o > 2 n/2. (3.1) 

I f  n > 2, then (3.1) holds with strict inequality. 

Proof. We now let 

Ec = {xelR": xl  = C>x2 > ... > xt,/2] > 0, xv+x.+ l _ v = 0  all v} 

and consider first the case n even. If C > 1, then by (1.9)-(1.11), 

x, oo(x)>C "-1 max L,v(x)>C"-lf , , , /z(X) 
' - -  1 < v < - n / 2  

= C  n-1 [ 2 2 ' + - -  I-I 1 
Xn/2 I~ = 1 X# -- Xn/2 

and thus, by (2.3), 

1 \ / 1 \~./2)- 1 
K,,, ~o (X) >= C "-1 1 + ~ ) ~ 1 + ~ )  = ( 1 + C ) ( 1 + C 2 ) ( n / 2 ) - 1 > 2  "/2. 

Likewise, for C < 1, if n > 4, 

, n ( +~)1 \(,/z)-I >2.2"/2>2 "/z. x, ~(x)>=2f,,,/z(x)>=2"2 1 

For  n = 2  one has K2, ~ ( x ) > 2  (see [4, Eq. (4.1)]). 
Consider  now n ( > 3 )  odd. Then, for C >  i, by (1.9), (1.10), and (1.12), 

x.,~o(x)>C "-x - max f ,  v(x)>Cn-lf .  (,+1)/2(x) 
l~_v<(n+l)/2 ' 

= 2 cn-1 u--I~II(n-1)/2[[1 +~2)>2Cn- 1(1 ,-, - - -  -}-~)1 \(n- 1)/2 

= 2(1 + CZ) ~"- 1)/2 > 2./z, 

and, for C __< 1, 

(n 1)/2 
1 + 1 ~ t  > n- 2 (n- 1)/2 > 2,/= Kn, o a ( X ) ~ f n , ( n +  l ) / 2 ( x ) : n  i-l= ( X~] = [ ]  
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Theorem 3.2. Le t  x , ,  ~o be as in Theorem 3.1. Then, f o r  n > 4, 

](n--2)  { l q - ( 1  2~--2/(n--1))~(n--2)[2 
X, o~ > - - n ]  j , n even, 

" 1 ( n - 3 ) { 1 + ( 1 - 3 ) - 2 / ' " - 1 ) } ' " - 3 ) / 2 ,  nodd.  

In  particular,  

>-J'(n - 2). 2 ("- 2)/2, n even, 

Xn, o~ ( (n - -  3)- 2 ~"- 3)/2, n odd, 

P r o o f  By [4, Thm. 3.3], if x = a is a minimum point, then 

(3.2) 

(3.3) 

where 

and 

n 
x,, o~ (x) > ~ max f,,~ (a), 

1 =<v<[(n+ 1)/2] 
(3.4) 

[n/2] 
y, aVl=  -n (3.5) 

2 S = I  

a I > a 2 >  . . .  >a[n/2]>O. 

We assume first n ( > 4 )  even. Then, by  (3.4), 

~a / | \ (n/2)-  1 (n/2)-  1 
> . . . .  / a~/2) s_-I_-]l l + a ~  >~.2.n I-I l + a 2  x ,  oo (x) = ~ f . , , / 2  (a) = ~ 1 + 2 2 2 

" as  --  an~ 2 s = 1 as 
(3.6) 

We have used here a,/2 < 1, which must  certainly hold if (3.5) is to be true. 
We now minimize the last product  in (3.6), subject to 

(n/2)-  1 l , l  

V a n . - 1 = " _  -1 .  (3.7) as 2 n/2 
s = l  

(We may assume here that an~ 2>0 is fixed.) Using Lagrange multipliers, we 
get 

2 ("/i2i -1 l + a  2 k_2 (n_ l ) a~_2=0 ,  v = l ,  2, n - - l ,  
3 2 " " ' 2  

av s = 1 ~ 
S ~ v  

or, equivalently, 

~.//_[ 12)- 1 + a  2 _ 1 2 ( n _ l ) a ~ _ X (  1 +a2)  ' 
2 2 

#= 1  a #  

n 
v = 1 , 2  . . . . .  ~ - -1 ,  

which implies a 1 = a 2 . . . . .  atn/2)-1 = a. By (3.7), 

2 ) n n -  1 n -1 ~"-1=~-a./2 <~, 
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hence 

Therefore, by (3.6), 

//1 "{- (Z2~ (n - 2) /2  
> n "  

{1 +(1-2) -2/("- ,)}(,,-2)/2 
/'/ ~ ( n - 2 ) / ( n - 1 )  

n - 2 ]  

which, 
in (3.2). 

Assuming  now n ( >  5) odd, we have 

n n 1 -t- a ( n  _ 1)/2 (n- 1)/2 - 1 
~ . |  2 ~ z - -  l~  

" a l n -  1)/2 g = ,  

( n -  11/2-- 1 l+au2 
> n ' 2 "  1-I 2 

2 ,,= 1 a ,  

by increasing the denomina to r  to n/(n-2),  yields the first inequality 

l + a ~  
2 2 

a u -- a(. ,)/2 
(3.8) 

We are led to the same prob lem as before, namely  to minimize the last product  
in (3.8) subject to 

( n - l ) 2 - - 1  H 
n - 1  n - ,  

a, 2 a(,_ ,)/2. / t = ,  

We find a I = a 2 = . . .  = a(,_ 3)/2 = ~, with 

~ < ( 1 _ 3 ~  - I/(n- 1) 

n] 
hence, by (3.8), 

( 1 ~ 2 ) ( n  - 3)/2 
Kn, ~(X)>n- > n -  (~ . -  3 ) / ~ . - .  

n--3] 

[] 

F o r  n = 2  and n = 3 ,  we have trivially x2, 0o=2, x3,o~ = 5  ([4, Eqs. (4.1), (4.2)]). 
We can write (3.2), in expanded  form, as 

f o (n -2 ) /211  ~ - 1  3 ~ - 2  1 . - 3  7 n - 4 ~  n ' ~  ~x - - i~  - - ~ l ~  - - 2 ~  - - 2 4  ~, ~ . . . j ,  
/ r  o (n -3 ) /211  3 ~ - 1  3 3 ~ - 2  3 9 ~ - 3 ~  75 ~ - 4 t  X 

n ' . ~  tx - - ' 2 n  - - ~ - n  - - y ~ n  ~ T ~ n  T . . .1 ,  

n (even) > 4, 
(3.23 

n (odd) > 5. 

The accuracy provided by the five terms shown is abou t  3 correct  significant 
decimal digits, when n = 4, and  increases to 6 correct digits for n = 15. 
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4. Numerical Results 

In order  to assess the quality of  the bounds  obtained, it would be desirable 
to compute  the op t imum condit ion number  x,, o~ numerically. This would require 
the solution of  nonlinearly constrained opt imizat ion problems [-4, Eqs. (3.13), 
(5.10)] or  nonlinear p rog ramming  problems 1-4, Eqs. (3.15), (5.12)]. Since, at this 
time, there seems to be no easy access to reliable software in this area, we 
decided to minimize the spectral condit ion number,  

,rl (V.(x)) 
~:,,, z (x) = c o n d 2  1.1. (x) = o-,, (V,, ( x  (4.1) 

where tr~=a~(V,), al  > a 2 > . . .  > o r ,  are the singular values of  V,. This requires 
only unconstrained opt imizat ion and singular value decomposit ion,  for which 
there exists s tandard software. Having found K,,2 =infK.,2(x),  we can use the 
inequality 

1 
x,,, o~ > n G,, 2 (4.2) 

to get a lower bound  for x,,o~. Indeed, if t % , ~ = c o n d ~  V,(a) and x,,2 = 

conda V.(b), then, since HAI[2<]//nIIAI[~ (see, e.g., [6, Eq.(2.2-14)]), we get 
x,, 2 = conda V,(b) < cond2 V,(a) < n condo~ V,(a) = n x,, ~ .  In the case of nonnega-  
tive nodes, we make the usual substitution 

x ~ = a ~ + ( b ~ - a v ) s i n 2 G ,  v = l ,  2 . . . . .  n, 

where a, ,  b~ are lower and upper  bounds  for x~, in order  to reduce the problem 
to an unconstrained problem in the variables G- In our  case, a~=0,  and we 
took for b~ variously b , = 2 ,  2.5, and 3. Using the I M S L  routine Z X M I N  (cf. 
[7, pp. Z X M I N  1-43) for minimizat ion (with initial approximat ions  G = w r /  
(2n+2) ,  v = l ,  2 . . . . .  n), and the E I S P A C K  routine SVD (cf. 1-1, p. 265]) for 
singular value decomposit ion,  to compute  x,, 2, we obtained for the lower bound  
in (4.2) the results in the second column of  Table 1. (The computa t ion  was 
done in single precision on the C D C  6500. Integers in parentheses denote deci- 
mal exponents.) The routine Z X M I N ,  for n beyond 10, was unable to produce 
reliable answers. In the third co lumn of  Table 1 we show the lower bounds  

Table 1. Lower bounds for x,, ~ in (4.2) and Theorem 2.2 for n = 2(1)10 

n (4.2) Theorem 2.2 n (4.2) Theorem 2.2 

2 1.207 3.000 
3 4.250 9.899 
4 1.764 (1) 2.781 (1) 
5 7.892 (1) 7.167 (1) 

6 3.715 (2) 1.754 (2) 
7 1.812 (3) 4.150 (2) 
8 9.062 (3) 9.582 (2) 
9 4.621 (4) 2.173 (3) 

10 2.393 (5) 4.858 (3) 
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nodes 

1.2-  

1.0 - ~ ~ 

0 . 8 -  

0 . 6 -  

0 . 4 -  

0 . 2 -  

0 . 0 -  

l I [ I I [ I [ I 
2 3 4 5 6 7 8 9 10 

order n 

Fig. 1. Optimal positive nodes for n=2(1)10 

compu ted  f rom Theorem 2.2, Eq. (2.4). I t  can be seen tha t  the b o u n d  from Theo-  
rem 2.2 is compet i t ive  with the one from (4.2) for abou t  n < 5, but  then g radua l ly  
weakens.  Both  bounds  should  be c o m p a r e d  for n = 2 and  n = 3 with the values 
~:z, ~ = 3, x3. ~ = 12.708 c o m p u t e d  in I-4, Sect. 5]. 

The op t ima l  nodes,  as c o m p u t e d  for the spectral  norm,  were found to have 
x,  = 0. The  posi t ive nodes  are depic ted  in Fig. 1, where the largest,  second-largest ,  
etc. are connec ted  by  s t ra ight  lines for visual  effect. 

In  the case of symmetr ic  nodes,  we used the same rout ines  as above,  with 
the Chebyshev  nodes on [ -  1, 1] as initial  approx imat ions .  The  results a re  shown 
in the second co lumn of  Table  2. We c o m p a r e  them in the th i rd  co lumn with 
the lower  bounds  c o m p u t e d  from Theo rem 3.2, Eq. (3.2). In  this case it was 
possible to go as far as n =  16. Again,  the b o u n d  in (3.2) is compet i t ive  with 
the one f rom (4.2) for abou t  n <  10, bu t  then slowly deter iorates .  No te  also 
from [4, Sect. 4] that  K 2 , ~ = 2 ,  K~3,~=5, X4,~=11.776,  X5,~=21.456,  and  
x6, ~ = 51.330. 

The nonnegat ive  op t ima l  nodes  in the  symmetr ic  case are shown graphica l ly  
in Fig. 2. 

Table 2. Lower bounds for K.,~ in (4.2) and Theorem 3.2 for n=2(1)16 

n (4.2) Theorem 3.2 n (4.2) Theorem 3.2 

2 0.500 
3 1.049 
4 1.465 5.175 
5 2.904 5.162 
6 5.216 1.894 (t) 
7 1.092 (1) 1.945 (1) 
8 2.149 (1) 5.444 (1) 

9 4.644 (1) 5.610 (1) 
10 9.607 (1) 1.415 (2) 
11 2.119 (2) 1.457 (2) 
12 4.522 (2) 3.479 (2) 
13 1.012 (3) 3.574 (2) 
14 2.204 (3) 8.250 (2) 
15 4.986 (3) 8.457 (2) 
16 1.102 (4) 1.908 (3) 
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1.2- 

1.0- 

0 .8 -  

nodes 0.6- 

0.4-  

0 .2 -  

0 .0 -  

2 4 6 8 10 12 I4 16 

order n 

Fig. 2. Optimal symmetric nodes for n = 2(1)16 

Interestingly, the same results were obtained if the initial approximations 
were chosen to be nonsymmetric, for example the Chebyshev points on [0, 1]. 
(Since the routine takes considerably longer to converge in this case, we verified 
this only for 2 < n<  10.) This seems to indicate that the optimally conditioned 
Vandermonde matrix (in the spectral norm) indeed has symmetric nodes. 
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