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Rational Chebyshev Approximation on the Unit Disk 
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Summary. In a recent paper  we showed that  er ror  curves in po lynomia l  
Chebyshev a p p r o x i m a t i o n  of  ana ly t ic  functions on the unit  disk tend  to 
a p p r o x i m a t e  perfect circles abou t  the origin [23]. M a k i n g  use of  a theorem 
of  Ca ra th6odo ry  and Fej6r, we der ived in the process a me thod  for calcu- 
lat ing near-bes t  a p p r o x i m a t i o n s  rapid ly  by finding the pr incipal  s ingular  
value and co r respond ing  s ingular  vector  of  a complex  Hanke l  matr ix.  This 
paper  extends these deve lopments  to the p rob lem of  Chebyshev a pp rox ima -  
t ion by ra t iona l  functions,  where non-pr inc ipa l  s ingular  values and vectors  
of  the same matr ix  turn out  to be required.  The  theory  is based on certain 
extensions of  the Ca ra th6odory -Fe j6 r  result which are also current ly  finding 
app l i ca t ion  in the fields of  digi tal  signal process ing and  l inear  systems 
theory.  

It is shown a m o n g  o ther  things that  if f ( e z )  is a p p r o x i m a t e d  by a 
ra t iona l  function of  type  (m, n) for ~>0 ,  then under  weak assumpt ions  the 
co r respond ing  error  curves deviate  from perfect circles of  winding number  
m + n +  1 by a relat ive magni tude  O(E "+"+2) as ~ 0 .  The  " C F  app rox ima-  
t ion"  that  our  me thod  computes  app rox ima te s  the true best  a p p r o x i m a t i o n  
to the same high relat ive order .  A numer ica l  p rocedure  for comput ing  such 
a p p r o x i m a t i o n s  is descr ibed  and  shown to give results that  conf i rm the 
a sympto t i c  theory.  A p p r o x i m a t i o n  of  e z on the unit  d isk  is t aken  as a 
centra l  compu ta t i ona l  example .  

S u b j e c t  C l a s s i f i c a t i o n s :  A M S ( M O S )  30D50,  30E 10, 41A50.  
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1. Introduction 

Let S = {zO12: ]z] = 1 } be the complex unit circle, let D -  {zO12 : ]z] < 1} be the 
open unit disk, and l e t / 5 = D w S .  Let Rm, be the space of rational functions of 
type (m, n) that  have no poles in /5 ;  that  is, the set of  rational functions with at 
most  m finite zeros and at most  n finite poles, with all of  the poles outside of  
the unit disk. Let [I'll be the supremum norm over S. Here is the rational 
Chebyshev approximation problem: given f analytic in D and cont inuous on 
/5, find a rational function r*.cR.,, such that  ]]f-rm.l] = inf [lf-r[I. Such a 

r~Rvnn 
best approximation exists for any f, m, n, but it need not  be unique when n > 0  
[17]. Where  clarity permits we will usually drop  the subscripts m, n of  r*, and 
similar functions. 

For  given f and any r, the image of  S under f - r  describes some curve in 
the plane, which we call the error curve corresponding to r. A best approxima-  
tion r* is a function whose error curve can be contained in a disk of  minimal 
radius about  the origin. This work began with the observation, based on 
numerical  computat ions,  that  for smooth  f, the error curve corresponding to r* 
often approximates  closely a perfect circle about  the origin of  winding number  
re+n+ 1, and that this near-circularity phenomenon  becomes more pronoun-  
ced as m ~ oo [23]. 

For  example, consider approximat ion  of  e z on the unit disk. Figure 1 shows 
error curves corresponding to Pad6 and Chebyshev approximat ions  of type 
(1, 1). Both curves have winding number  3, but  whereas the first one varies in 
radius considerably, the second one evidently approximates  a circle to within a 
fraction of  a percent. The plot is typical for smooth  functions f. If  you 've  seen 
one Chebyshev approximat ion  error curve plot on the unit disk, you have 
(almost) seen them all. 

0.2817 0.08/,8 
Fig. 1. Error curves for rational approximation of type (1, 1) to e z on the unit disk. Error curves 
for Pad4 (left) and Chebyshev (right) approximation are shown plotted on the same scale. The 
latter varies in radius by less than 1%, and this figure decreases rapidly if the degree of the 
numerator is increased, as shown in Table 1 
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Table  1. Rela t ive  devia t ion  c~ from a perfect circle (Eq. (1.1)) of error  curves  of best app rox ima t ions  
r*, to e z on the unit  disk.  Var ious  rn, n. Some figures uncer ta in  

0 1 2 3 

2{-1) 3(-1) 3{-0 2{-1) 
5{-3) 7{-3) 2(-2) 5{-3) 
4(-5) 1{-4) 9 ? 
5(-6) 5(-7) 9 ? 

Let us quantify such near-circularity by defining 

H f -  r - min ] ( f -  r)(z)l 
z E S  

~ (1.I) 
t l f - r l l  

as a measure of the relative deviation of an error curve from a perfect circle. 
Then for each pair (re, n) in the range O<m,n<3,  the winding number of 
e z - r *  on S is in fact exactly r e + n +  1, and Table 1 shows the remarkable 
decrease of ~ with m. 

A previous paper [23] analyzed the near-circularity phenomenon for the 
case of Chebyshev approximation by p o l y n o m i a l s - n  =0. The purpose of this 
paper is to extend that analysis to rational approximation. 

We begin in Sect. 2 with preliminary definitions and propositions. An 
extended approximation space R,,,~_R,,, is defined, and Rouch6's theorem is 
applied to show that any approximation with a nearly circular error curve 
must be close to best. (Too many papers in complex Chebyshev approximation 
invoke the Kolmogorov criterion in places where Rouch6's theorem would 
suffice.) The approximation problem associated with /~,,, is solved in Sect. 3, 
and it is shown that the solution is always characterized by a perfectly circular 
error curve (Theorem 3.2). This is the extension of the Carath6odory-Fej6r 
Theorem, based upon the singular value decomposition of a Hankel matrix of 
Maclaurin series coefficients of f, that this work is founded upon. Section 4 is 
devoted to describing the asymptotic behavior of ~*,, the best approximation 
out of/~,,o on S to a function f (ez) ,  as e ~ 0 .  The purpose is to show that for 
small e, ~* comes very close on S to a rational function in R,,,. Such a function 
is derived from r in Sect. 5 and named the "Carath6odory-Fej6r approxima- 
tion" rm,.Cf It is confirmed that r c f  and ~* become almost equal on S as z ~ 0 ,  
hence that r cf has a nearly circular error curve, hence that it is close to best. 

At this point it has been established that r c f  is near best in the sense that 
j l f-r~Ill  is not much bigger than I I f - r*l l .  If r cl has a nearly circular error 
curve, however, one can show further that in fact IlrCS-r*ll must be cor- 
respondingly small. The required a posteriori estimate is applied in Sect. 6 to 
establish the most important conclusions of this paper: that at least in the 
asymptotic limit ~ 0 ,  best approximations are approximated exceedingly clo- 
sely by the CF approximation (Theorem 6.2), and best approximation error 
curves are exceedingly close to circular (Theorem 6.3). Section 6 also contains a 
summary and a discussion of these results. 



300 L.N. Trefethen 

An extensive amount of numerical experimentation has accompanied this 
theoretical work. Though most of our theorems are asymptotic, the CF method 
is astonishingly successful in many ordinary approximation problems on the 
unit disk. Section 7 describes an efficient method for the numerical com- 
putation of ~* and r el. In Sect. 8 the problem of approximation of e z is 
considered numerically. Section 9 concludes the paper with some final remarks. 

2. Preliminaries 

The sets S, D, /5, the space Rm., and the norm ll'll have already been defined, 
along with the best approximation r*eRm. (not necessarily unique) with respect 
to [1"[[ to a function f 

Let G be the set of functions which are analytic and bounded in 1 <[z]<oo 
- 1  

and zero at z =  oo; that is, with expansions of the form ~ gk zk that converge 

and are bounded outside the closed unit disk. A function geG need not extend 
continuously to S, but it will have a non-tangential limit almost everywhere 
there [14]. By means of these limits we will apply the norm I[" ]l in the obvious 
way to g and to sums of the form g + f  where f is defined on S. 

For  any n >__ 0, define 
R , , = R , , + G ,  (2.1) 

where R.,  still includes only rational functions whose poles lie outside the disk 
/5. Further, for any m > 0, define 

/~,,,-= zm-"/~,,. (2.2) 

It is not hard to see that/~, , ,  is precisely the set of functions that are bounded 
on S and can be written in the form 

r(z)= ~ d kz k e kz k. (2.3) 
k =  - o o  / k = O  

Note that it is not the case that /~m, = R,,,, + G, unless m > n -  1. 
An important tool beginning in Sect. 4 will be the PadO approximation of 

type (m, n) to f, denoted rP,. This is the (unique) rational function of type (m, n) 
whose Maclaurin series matches that o f f  to as high an order as possible. An 
excellent reference on Pad6 approximation is the survey by Gragg [-8]. We will 
also speak of " the"  Laurent series of an analytic function q~(z). Whenever we 
do, th will be analytic on S, and the Laurent series intended is the one that 
converges in a neighborhood of that circle. Its coefficients are given by Cauchy 
integrals on S, and are readily computed numerically by the Fast Fourier 
Transform (Sect. 7). 

A limiting case for the rational approximation problem was already given 
in [15] and in [23]. Here and throughout this paper, the "winding number" is 
with respect to the origin. 
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Proposition 2.1 (c ircular~best) .  Given f analytic in D and continuous on D, 
suppose the error curve of some function reR, , ,  is a perfect circle about the 
origin with winding number > m + n + 1. Then r is a best approximation to f out 
of Rm,. However, this situation can occur only if f is a rational function. 

Proof [23]. The first assertion is a consequence of Rouch~'s theorem and the 
definition of a best approximation. The second follows from the symmetry 
principle and the fact that any function meromorphic in the extended plane 
must be rational. 1 

The argument by Rouch6's theorem extends immediately to give a bound 
on Hf-r*l l  in the case where the error curve of r is not exactly circular but 
nearly so. This proposition is an analog of the de laVall6e Poussin theorem in 
real approximation [17]. 

Proposition 2.2 (nearly circular~near best). Given f analytic in D and con- 
tinuous on D, suppose the error curve of  some function r6Rm, does not pass 
through the origin and has winding number > m + n + 1. Then 

rain I ( f - r ) ( z ) ]< I l f - r* l l  < I I f - r l l .  II 
z~S 

A similar argument is valid for approximation out of/~m,- We will need 
this result in the next section. 

Lemma 2.3. Given f analytic in D and continuous on D, suppose the error curve 
of some function r~Rm. does not pass through the origin and has winding number 
> _ m + n + l .  Then 

min t ( f -~)(z) l  < 1If-~*l[ < 1 i f -  rli. 
z ~ S  

Proof. The second inequality follows from the best approximation property of 
f*. For the first, suppose to the contrary that for some eRm, 

IIf-u ' l l  <rain  [(f-~)(z)l .  
zES 

Without loss of generality we may assume F is continuous on S, for if it is not, 
the inequality will still hold for some function F(Rz), where R > 1 is sufficiently 
close to 1. Then clearly f - f '  has the same winding number as f - f ,  which is 
> m + n +  l. Now it is easy to see that ~ - ~ '  belongs to /~,,+,,2,. However, such 
a function can have winding number  no greater than m +  n, for it is meromor-  
phic in l < ] z l<oo  with at most 2 n + ( m + n - 2 n ) = m + n  poles there. This con- 
tradiction finishes the proof. II 

3. The Extended Best Approximation ~*~ i'~,,,,, 

The Chebyshev approximation problem in R,, n has no closed form solution, 
but the same problem in /~,,, does. Here we present that solution. The theory 
has a clear beginning in the seminal paper of Carath6odory and Fej6r in 1911 
[5], which considered the polynomial case r e = n = 0 .  This original theory was 
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rederived and extended a short while later by Schur in 1918 [19]. The exten- 
sion to rational approximation (m=n4:0)  was first accomplished by Takagi in 
1924 [22], who built upon the work of Schur. Later, essentially the same 
results were rediscovered by Akhieser in 1931 [2, 3], and rediscovered again by 
Clark in 1968 [6]. The most general, complete, and correct exposition can be 
found in the recent work of Adamian, Arov, and Krein [1]. 

Our own presentation will avoid functional analysis, and as a result it is 
closer in spirit to the development of Takagi than to that of Adamian, Arov, 
and Krein. Various minor modifications have been made, however, and in 
particular the language of singular value decompositions is used. The extension 
to m4:n is new, and important for the applications that follow, but mathemati- 
cally trivial. 

Let f be a polynomial f ( Z ) = C o + . . . + C K  zK, and let H I denote the Hankel 
matrix 

g f  ~ c2  

K "'" " 
c 0 

(A matrix is Hankel if its entries are constant along cross diagonals.) H r is 
symmetric but if the c k are not real, it is not Hermitian. Let 

H I = U Z V  H 

be a singular value decomposition of HI; i.e. let the above equation hold with 
U, V unitary and 2; of the form diag(o~,a 2, ...,oK), o I =>a2>..._-->OK_-->0. (Be- 
cause of the symmetry of HI, we may require V= U, but this is not necessary 
in the formulation that follows.) Then here is a kind of reverse generalized 
Carath~odory-Fej6r theorem (labeled "proposit ion" because it will be extended 
further in Theorem 3.2). We will give a partial proof based on a winding 
number argument. 

Proposition 3.1. The polynomial f ( z )  = c o +. . .  +c  K z r has a unique best approxi- 
mation ~* out o f  R, , .  The error is 

IIT-K*II = o.+ l(Hy) 

(where o . + 1 = 0  if n + l > K ) ,  and the error curve is a perfect circle about the 
origin whose winding number is exactly 2n + 1 if 0,+ 1 is simple. ?* is given by 

f ( z ) _ ~ , ( z ) = ~ . +  i z K UI-J-UzZ-}-"'-}-UK ZK-1 
VK+VK_ 1Z+. . .+V l z  r -1  (3.1) 

where u = ( u  1 . . . .  ,UK) ~ is the ( n + l ) s t  column of  U and v=(v l ,  . . . ,vK) T is the (n 
+ 1)st column o f  V in any singular value decomposition H f =  U S V  u. 

Proof. A complete proof is given in [1]. The following argument proves 
everything but uniqueness under the additional assumption that all of the 
singular values of H I are distinct. 
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Let ~* be whatever  function is defined by (3.1); we will show that  it belongs 
to /~,, and is a best approx imat ion  of that  class. Wi thout  loss of  generali ty let 
us assume v=~7, and indeed V =  U. We may  do this because the symmet ry  of 
H~ implies u = w e  i4~ and v = ~ e  ~r for some vector w, and the factor e ~'~ will drop  
out in the quot ient  of  (3.1). The  right hand side of  (3.t) is now a constant  times 
z K times a f i n i t e  B l a s c h k e  p roduc t ,  

Z K UI@U2ZAF'" -~UK ZK-1 

a n + l  I~K_t_ffK_I Z_I_..._~_~I Z K - I  ' 

and therefore it is a rat ional  function of  type ( 2 K -  1, K -  1) that  maps  S onto  
a perfect circle of radius or+ 1. 

Mult iply both  sides of (3.1) by the denomina to r  a K + . . . + t i ~ z  K- t .  This 
yields an equat ion 

[(Co + . . .  + CK z K) -- ~* (z)] ( a  K + . . .  + a I z K - ~ ) = a ,  + 1 zK (u ~ + . . .  + U K z K - ~ ) 

in which each side must  be a po lynomia l  of degree at most  2 K -  1. It turns out 
that  the polynomia l  f * ( Z ) ( f f K + . . . + a ~ Z  K - ~ )  has degree only at most  K - l ,  
however.  For  if we ignore this term and compare  coefficients of  z k for k = 2 K  

-1 ,  2 K - 2 ,  . . . ,  K, we get the system of equat ions 

CK~I ~On+ 1 UK 

C K-1 Ul -~- CK U2 ~ (Tn+ I UK- I 

CI Ul ~-C2 U2 ~- "'" -~CKUK=O'n+ I Ul" 

This system (in reverse order) can be written H i ~ = u c r , + l ,  and therefore it is 
satisfied since H I =  UZ'U ~. 

Thus  f* must  be a rat ional  function of type ( K - 1 ,  K - l )  representable  
with denomina to r  f f K + . . . + g ~ Z  K - 1 .  Suppose  that  it has v poles in 1 < [ z [ < o o  
counted with multiplicity. Then f* can be written in the form g+r~v, where 
r~veRvv and g is analyt ic  in 1 < ]zl =< Go and zero at ~ .  Now if fiK + . . .  + fil ZK --1 

happens  to have any zeros on the circle S, then the numera to r  u I + . . .  +UK z K - 1  

has these as zeros also, so they cancel in (3.1). Therefore  g is bounded  in 
1 <lzl < 0o, which implies g e G  and f*e/~v~. 

Let # be the number  of  poles of f* in D. Then the right hand side of  (3.1) 
has winding n u m b e r  r -  K + v - / ~  on S. Since v +/~__< K - 1, we have r > 2 v + 1. 
It follows now by L e m m a  2.3 that  f* is a best approx ima t ion  to f i n / ~ . * .  

Thus  each of a l , - - . ,  CrK is the error corresponding to a best approx imat ion  
i n / ~  for some v with O < _ v < _ K - 1 .  By the assumpt ion  that  the singular values 
of  H I are distinct, these values of  v must  be distinct and increase monotonica l ly  
with n. Hence  we can only have v = n ,  and the theorem is proved. | 

Propos i t ion  3.1 gives a construct ive description of best approx imat ions  to 
po lynomia ls  out  of  the sets /~,,. It is quite easy to extend this result to 
app rox ima t ion  out o f /~ , , , .  First, if m < n, we natural ly proceed by finding the 

* Note Added in Proof: This argument must be amended slightly to handle the possibility that 
?* has poles at Go 
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best approximation ~*,' to f ' = - z " - m f  out of /~,,. This will involve the right- 
shifted Hankel matrix 

l 
O ... c o c~ CKI 

C O C 1 CK 

H ) v ) ~  C 0 C 1 C K ( K + v •  (v>O) 

ci ' 0 

with v = n - m .  Sinqe z"-"  has constant modulus on S, it is easy to see that 
~*,-~*, ' /z  " -~  must be a best approximation to f out of /~,,,, and that the 
corresponding error curve is a perfect circle with winding number m +n  + 1 if 
a,+ I(H} "-m)) is simple. 

Second, if m > n ,  we again proceed by finding a best approximation ~*,' to 
f ' - z " - " f  This time f '  may possess terms of negative degree, but these have 
no influence on the approximation problem because they are absorbed in G, 
a n d / ~  = R , ,  + G. Thus we now make use of the left-shifted Hankel matrix 

C1 -v  C2 - v  "'" CK 1 

H} v ) ~ [  c:-v. ... ( K + v x K + v )  (v<0). 
\ 0 
\ cK 

We may sum up these results in the main theorem of this section. 

Theorem 3.2 (solution o f  extended approximation problem). The polynomial f (z) 
= c o + . . .  + c r z K has a unique approximation ~*, out o f  Rm,,. The error is 

IIf-P* II =~,+  t(HY '-m~) 

(where ~ , + 1 - 0 / f  n+  1 > K + n - m ) ,  and the error curve is a perfect circle about 
the origin whose winding number is r e + n +  1 i f  r is simple. ?* is given by 

m ZK +n --m -- 1 
z K Ul + . . .  + U K +  n_ 

f ( z ) -  ~*(z) = a ,+l  VK+,_m+ ... +V~ Z K+ . . . .  i (3.2) 

where u =(u 1 . . . .  , UK +,_m) r and v = ( v  l, . . . ,  VK +,_m) r are the (n + 1)st columns o f  
U and V, respectively, in any singular value decomposition H}" -" )=  U S V  n. II 

The contrast between Theorem 3.2 and the situation for ordinary rational 
approximation is great; in the latter problem uniqueness is not assured, exis- 
tence proofs are nonconstructive, and the error curve cannot be very satisfac- 
torily characterized. This is why introducing the extended approximation prob- 
lem is so fruitful. 

Note that if K = m +  1 and or+ I(H} "-m)) is simple, then 7* must have n poles 
in l<]z[<ov ,  which according to (3.2) implies that none can lie inside D. 
Therefore ~*,~R,,,, so ~* =r*. Thus Theorem 3.2 gives the exact solution of the 
Chebyshev approximation problem in this case. (This problem goes back to 
Chebyshev. See [3], p. 278 and [17], p. 166.) 
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The restriction that f must be a polynomial has been adopted for sim- 
plicity. Adamian, Arov, and Krein prove an extension of Proposition 3.1 for 
approximation of an arbitrary function feL'~(S) ,  and here the singular values 
of an infinite Hankel matrix come into play [1]. The uniqueness and winding 
number assertions are no longer so simple. For functions f that are analytic in 
a neighborhood of /5, this kind of result can presumably be derived from 
Theorem 3.2 by considering limits as K approaches oo. In practice, we will 
normally be given a function of this kind, such as e z, and will truncate it to a 
polynomial at some term z K. It is also possible to base a constructive theory 
on the assumption that f is rational of some type (K,K). For this approach, 
and for a presentation of Proposition 3.1 in the language of linear systems 
theory, see for example [20]. 

Theorem 3.2 provides an immediate lower bound for rational best approxi- 
mation errors. In most cases this is much tighter than other lower bounds that 
have been published" 

Theorem 3.3 (a is a lower bound). Let f be analytic' in a neighborhood o f / 5  and 
let a =  lira a,+ 1 from Theorem 3.2; or let f be analytic' in D and belong to 

K~oo 
I2"~ with a defined as the (n + 1)st singular value of  the infinite Hankel matrix 
H) " - ' )  with K = oo. Then 

~<  IIf-r*ll .  (3.3) 

Pro@ (3.3) follows from Theorem 3.2 and the inclusion R,~n_~/~,, .. The limit in 
the first hypothesis must exist, and must be a lower bound for I I f - r *  1[, since under 
that hypothesis f is the uniform limit on 15 of its partial Maclaurin sums. For 
the second hypothesis, see [1]. 1 

4. Asymptotic Behavior of ?* as ~-~0 

Throughout this section we shall assume the following setup. Let f ( z ) = c 0 + c  1 
+ . . . + c r ( z  ~ be a polynomial of degree K, and assume cK4=0 for convenience. 
(For applications the assumption that f is a polynomial is unnecessary, and it 
will be removed in the next section.) For given e>0,  define 

f ( z ) -  f (~:z). 

If Ck--O for k < 0  and k > K ,  then for any e>0,  f has the Laurent series 

. f ( z ) =  ~ ,  Ck(,~.Z) k. (4.1) 
k= - oc3 

Let m > 0 and n > 0 be fixed nonnegative integers, and assume: 

Assumption A. The Pad6 approximant r;V,, of f has n finite poles, and its Taylor 
series agrees with f exactly through the term of degree m + n. 

(If the assumption is true for any e,, of course, it is true for all ~.) Let the Taylor 
series of r p be 

rP(z)= ~ c~(~;z) k, (4.2) 
k =  - - o o  



306 L.N. Trefethen 

with Ck=-O for k < 0 ;  for all sufficiently small e (so that the poles of r e tie 
outside/)),  (4.2) is also the Laurent series for r p. (This means, with respect to S; 
see Section 2.) Both {Ck} and {c~} are independent of e. For given e>0 ,  let ~* 
be the best approximation out of/~m, to f on S given by Theorem 3.2. Let 7" 
have the Laurent series 

?*(z)= ~ UJ(ez) k. (4.3) 
k=-oo  

f r p, ~*, and the coefficients ~ '  depend on e, but we shall indicate none of this 
in the notation. 

This section is the foundation of all the asymptotic results that follow. Its 
main purpose is to show that when e is small, the Laurent coefficients (c k 

-* 8k - c  k) of f - ~ *  decrease geometrically in size as k decreases from r e + n +  1 
towards - ~  (Lemma 4.3). To show this, we begin by showing that 7" is close 
to r e, making use of the nonvanishing of a Hankel determinant implied by 
Assumption A (Lemma 4.1). From this and a winding number argument based 
on the Blaschke representation of Theorem 3.2, it is shown that as e-~0, all the 
poles and zeros of f - J *  either approach 0 like e or approach ~ like 1/~ 
(Lemma 4.2). Lemma 4.3 then follows by Cauchy's estimate. 

The Hankel  determinant argument of Lemma 4.1 is central to our results. 
Though we state it here not in full generality but only in the context of 
relating 7" to r p, the same reasoning will be appealed to twice more in 
Sect. 6 to relate r* to r e and r ~s to r*. The idea is that in the presence of a 
condition like Assumption A, near equality of the first m + n  Maclaurin coef- 
ficients of two functions in Rm. or /~,,, implies near equality of the remainder 
of the coefficients. The argument is a sharpening of one used by Walsh in 
Theorem 1 of [24]. 

Lemma 4.1. Assume the conditions o f  Assumption A. For each e let rP and 7" be 
represented in the form 

d~ +. . .  +d~(~z) ~ 
re(z) = (4.4) 

t + e[(ez) + . . .  + eP,(ez)" 

and, as in (2.3), 

~* (z) = + a*_l (e z)-  1 + a~ + . . .  + am* (e z)" (4.5) 
1 + ~ ' ( e z ) +  . . .  + ~.* (e z)" 

(The numerator o f  (4.5) is understood to converge in 1 <[z]<oo,  while its de- 
nominator has all its zeros in ]z l> l .  Other than this we make no a priori 
assumptions about these representations, for  example that they are unique or that 
common factors  have been cancelled.) Then as g--+ O, 

-* P - (4.6) le k - - ek [ -0 (~ ) ,  1 <_k<n, 

"* - *' ] = O ( e ) ,  ( 4 . 7 )  lOre+n+ 1 gin+n+ 1 
and 

1F.*e k 0 e "+"+2 1 = ( ). (4.8t 
k=m+n+2 
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Proof Assumption A implies the bound 

[If-rPt] = 0 ( :  '+"+1) 

as ~--,0, and this implies in turn 

a,+~ = t l f -~* [I = O ( :  '+"+ ~), (4.9) 

since 7" must be at Ieast as good an approximation to f as r p. Combining these 
bounds yields 

II~*-rPl[ = O ( : + ~  

Therefore by Cauchy's estimate we must have 

~~ 
Ic~ - c~l = O ( :  +"+ ~ % 

for all k, and in particular 

1~* -c~] =O(e) gk<=m+n. (4.10) 

Equating (4.2) and (4.4) and multiplying through by the denominator of 
(4.4) leads to an identity between the numerator polynomial of (4.4) and a 
convergent power series. Terms in this identity can be equated in powers of z. 
Carrying this out for powers z "+~ through z T M  leads to the system of equa- 
tions 

( 'm- -n+ 1 m+ 1 

. .  " = " . ( 4 . 1 1 )  

P ,P \ c~ c , .+._~/\e~/  \c,.+. 

The matrix here is a Hankel matrix. 
By Assumption A, r v has a full n finite poles, hence a pole at infinity of 

order at most m - n .  It follows from the theory of Hankel determinants that the 
matrix in (4.lt) is nonsingular [12, Theorem 7.5.e]. This implies that the 
coefficients e~, . . . , e ,  p, which constitute the solution of (4.I1), are unique after 
att, as indeed could have been made clear on simpler grounds. 

The same term-by-term identification can be carried out for f*. By equating 
(4.3) and (4.5) we derive a second Hankel system 

"~* ~* e Cm + 1 C m - n +  1 Cm 

\ ~*~ era+._-* ~ \o'~/ \co,+.~ 

(4.12) 

Now here is the key argument. Since the matrix (4.11) is nonsingular, its 
condition number is finite. Moreover, from (4.10) it follows that in any norm 
both the right hand sides and the matrices of (4.11) and (4.12) differ by only 
O(~) as e-*0. Combining these facts implies that (4.12) also has a unique 
solution for all sufficiently small ~, and furthermore that (4_6) holds. 

To prove (4.7) and (4.8), we observe that additional coefficients of 7" satisfy 
the recurrence relation 

- - ck+l=ck_ ,+ te ,+ . . .+cke~  V k > m + n ,  (4.t3) 
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which describes addi t ional  rows that  might  be added to the system (4.12). (4.7) 
follows directly from (4.6), (4.10), (4.13) (with k=m+n) ,  and the parallel re- 
lation to (4.13) relating the Pad6 coefficients {cf} and {e}'}. (4.13) also implies 

~* = ( j ~  ) ' C t '  Vk>=m+n. Irk+t1 < I~'*l max  
= 1 k - n +  1 < j < k  

"~* satisfy a Combined  with (4.6) and (4.10), this implies that  the coefficients c k 
bound of  the form 

1~1 < const (const) k V k > m + n  

uniformly in e, for all sufficiently small e, and this implies (4.8). II 

L e m m a  4.2. Assume the conditions of Assumption A. Then there exists a constant 
/3>0 such that for all sufficiently small ~, f - f *  has exactly n poles and K - m  
- I  zeros in 1 < l z J < o o ,  and they all lie in f l /~< lz [<  oo. 

Proof. L e m m a 4 . 1  established that  the coefficients of  the two polynomials  1 
+e~z+ ... P " +e , z  and l + O * z + . . . + ~ * z "  differ by only 0 ( 0  as e--*0. Since the 
first one has a full n zeros, so must  the second, for all sufficiently small e. 
Moreover ,  their zeros {~f} and {~*} must  coalesce as e ~ 0 ,  with a worst-case 
convergence rate of  

I~t--~1 =0(d/') 
in the event of  n-fold multiplicity. Rescaling by e, it follows that  the zeros of 1 

p n +oT(~z)+.. .+~*(ez)" converge to those of  l+e~(ez )+ . . .+G(ez )  at a rate 
O(et/"-1). The latter have modulus  greater  than  p c - l ,  where p is any number  
smaller  than the modul i  of  all poles of  r p when e =  1. This proves the claim 
abou t  pole location, taking any /?  < p. 

To  determine the location of the zeros of  f - f * ,  we use a winding number  
argument .  Let II'llr denote  the sup remum norm over the circle abou t  the origin 
of  radius r. Apply ing  Cauchy ' s  es t imate to (4.9) as in the last proof,  we derive 

~* +n+ 1 -k I G - G  f < c o n s t  x e" 

This implies that  for [z} =fl/~, where/3  is any fixed positive number ,  

[(G - g~') (e z)k[ < const x e" +" + 1 (e/fl)- k, 

and from this the bound  

~ "  (G c*) r xefl"+"/(1-~/fl)  (4.14) 
(~z) k < const  

k= --co 

follows provided e<fl .  Now since the poles o f f - f *  all lie outside Izl=p/e, we 
also have 

I G - g * l < c o n s t  x p -k V k > m + n + 2  (4.15) 

for some const > 0 ,  and from this a comp lemen ta ry  bound  

a=, ~+,+ 2 (G-g~) (ez )  k < c o n s t  X(f l ]  m+n+2/(t --fl/p) (4.16) 
/~/~ \ P !  

follows, this t ime for any fl with 0 < fl < p. 
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(4.7) implies that  the degree m + n + l  term of f - ? * ,  on the other hand, 
satisfies 

l(Cm+n+ t --C~+n+ 1)('f;Z) re+n+ I[ = ICm+n+ I __CPm+n+ 1 l flm+n+l _~ 0(~) 

uniformly for Izl =fl/e. If fl is fixed small enough, this es t imate must  be greater  
than the sum of (4.14) and (4.16), for all sufficiently small e. This implies that  f 
- f *  has the same winding number  as (ez) m+"+1 on Izl=fl/e, namely r e+n+ 1. 

N o w  f - f *  is the finite Blaschke product  given in formula  (3.2) of  Theo-  
rem 3.2. Its winding number  on any circle is the number  of poles minus the 
number  of  zeros in the region of  the extended plane outside that  circle. Outside 
Izl=fl/~, f - ~ *  has K poles at infinity (since cK+O), n finite poles (proved 
above), and hence by (3.2) at most  ( K + n - m - 1 ) - n = K - m - I  zeros, which 
correspond by symmet ry  to poles of  f - f *  in the unit disk. Therefore on ]zt 
= fl/e, f -  f* must  have winding number  at least (K + n ) -  (K - m - l) = m + n + 1, 
and it can only be that  small, as we have just  shown that  in fact it is, if a full 
K - m -  1 zeros lie outside lz[=fi/e. | 

L e m m a  4.3. Assume the conditions of  Assumption A. Then there exist constants 
M < c~, 7 < o~ such that for all sufficiently ,small ~:, 

I c ~ - ~ i  < m &  "+2"+2 -k(~e)-k 

for all integers -- eo < k <= m + n + 1. 

Proof. This result follows f rom L e m m a  4.2 and the Blaschke product  repre- 
sentat ion of Theorem 3.2. By L e m m a  4.2, for some fixed fl and all sufficiently 
small ~>0,  f - f *  must  have n zeros ~ . . . . .  ( ,  in O<[zl<e/fl  and K - m - 1  
zeros (,+~ . . . .  , ~K+ . . . .  i in fl/e<lzI < oo. F r o m  Theorem 3.2, we may write f 
- f *  as 

~=~ \ { ~ z - l /  ~=,+, \ ~ z - l l "  

Consider  the size of this expression on the circle Izl =2e/fl. Easy est imates show 
that on this circle the four factors 

K + n - ~ - - i  

have  magni tudes  O(g  ~+"+1) (by (4.9)), O(eK), 0(~"), and O(e-~K-m-l)), respec- 
tively. Combin ing  these bounds  gives 

( f - f * ) ( z ) = O ( e  2"+2"+2) on Iz[=2e/fl. 

By Cauchy 's  est imate there follows 

[(c k - ?~) etl = O (e2,, + 2, + 2) x (2 e/fl)-k 

uniformly for all k, which proves the theorem with y =  ~/fl. | 

A final corollary wilt be needed tbr the a posteriori  a rgument  of  Sect. 6. 
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L e m m a  4.4. Assume the conditions of Assumption A. Then as ~--*0, 

( f - f * ) ( z )=(%+,+l  -cm+,+i)(ez)P m+,+ 1 + O(E,+-+ 2 ) 

uniformly on S. 

Proof. From Lemma 4.3 it follows easily that the magnitude on S of the sum of 
all terms of degree <m+n in the Laurent expansion of f - f *  is O(e m+"+/) as 
e ~ 0 .  (4.8), on the other hand, implies the same for the sum of all terms of 
degree > m + n + 2. The claim follows from these observations and (4.7). | 

5. The Near-Best  Approximat ion rCY~ Rmn 

The purpose of studying the extended best approximation ~'6/~,. .  is to derive 
from it a nearby approximation r c~ that belongs to R,... The foregoing asymp- 
totic results will show that, at least if f is smooth, such an r cl can be chosen 
that is nearly equal to f* on S. 

If re=n, then ~* can be written in the form (2.1) 

r..=r..+g 

where r,,~R,, and g6G. In this case a natural choice for r cf would be r~ - r , , .  
A generalization of this choice can be defined in any problem in which m>n 
- 1 .  Let ~*, be expanded as in (4.3) in a Laurent series with respect to S. Then 
if re>n-1 ,  the nonnegative degree terms of this series must define a rational 
function belonging to Rm,. For  m>n this follows from (2.1) and (2.2), which 
imply in this case that the nonnegative degree portion of the series can be 
written in the form z" - " r , ,+p  . . . .  ~, where p . . . .  ~ is a polynomial of degree 
at most m - n - 1 .  This sum is in R,,,. The case r e = n - 1  is similar. For  m<n 
- 1,/~,,, 4= Rm, + G, however, as was remarked in Section 2, and because of this, 
truncating negative degree terms in f*, does not in general yield a function in 
e r n n  o 

To make possible a uniform treatment for any m and n, therefore, we shall 
define r Cf by a different truncation. Let ~* r2, . be written as a quotient as in (2.3). 
r 4 will be constructed by simply dropping all terms of negative degree in the 
numerator:  

d~ + " "  +~*zm (5.1) 
r2,(z)=-l +E.z  +... §  

(In degenerate cases with fewer than n finite poles outside/5, r r is not uniquely 
defined.) This choice of r CI will prove sufficient for deriving asymptotic results 
concerning near-circularity of the error curve of r*. 

The Carath6odory-Fej6r theory of Sect. 3 was developed only for poly- 
nomials f although it was remarked that comparable statements hold for 
arbitrary functions feL~~ For  asymptotic results with e--,0, however, any 
function that is analytic in a neighborhood of the origin becomes arbitrarily 
close to a polynomial as e--*0, so there is no need to restrict the consideration 
to polynomials. Specifically, given f analytic at z=0 ,  let f r  be the degree-(2m 
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+ 2 n + 2 )  partial  sum of its Maclaur in  series, and define f ( z ) = f ( e z )  as before 
and f r ( z ) = f r ( e z ) .  Then 

f[ f _ f  r 11 = O (~:2 m + 2  n + 3 )  (5.2) 

as e ~ 0 .  F r o m  now on define ?* and rcy to be the rat ional  functions obtained 
by applying the CF theory and (5.1) to f t .  (K is then the degree of the largest 
nonzero  term in f r ,  at most  2 m + 2 n + 2 . )  The  bound (5.2) is small enough so 
that  the strength of our  subsequent  asympto t ic  theorems will not be affected by 
the f~__r t runcat ion.  In a part icular  computa t iona l  example,  of course, one 
might  choose K larger than 2 m + 2 n + 2  and expect a slight gain in accuracy. 

With  these definitions it is s t ra ightforward to derive the asymptot ic  be- 
havior  of  the error  curve of r cs from previous results: 

L e m m a  5.1. Let  f be analytic at the origin and assume the conditions of  
Assumption A.  Then as e--, O, 

,P 1)(ez)m+n+l-~-O(~ re+n+2) (i) ( f  - rcy) (z) = (c m +, +, - c m +, + 

uniformly on S, and 

(ii) [1 f -  r Cf It - rain [ ( f -  r Cf) (z)] = 0 (g2 m + 2, + a). 
z~S 

Thus the error curve of  r 4 is nearly circular with a relative deviation in radius 
that is O(em+"+2), and it has winding number exact ly  m + n + l  for  sufficiently 
small ~. 

Proof  (i) and (ii) follow from L e m m a  4.4 and the exact circularity of  f r _  ?, on 
S, respectively, together  with (5.2) and the bound 

1] r* - rcf I1 = O (e 2" + 2, + 3) (5.3) 

as e ~ 0 .  Let us establish this bound.  By (4.5) and (5.1), f * - r  ~I has an expan- 
sion of the form 

. . .  ~- ~*_ 2(EZ) - 2  ~-I~ ~ - I(~Z) - 1  
(f* - r e)  (z) = ~ 1 ~  ~ . .  ~ ~ * ~  " (5.4) 

F r o m  (4.6), each ~ '  is bounded  as e--, 0, which implies that  the denomina to r  of 
(5.4) behaves like 1 +O(e)  on S as e--,0. Therefore  (5.3) will follow if 

II "'"-~- d*- 2(/~Z) - 2  -1-I~*-1 (gZ) - 1  [I =O(~'2m+2n+3) �9 (5.5)  

Now by (4.3) and (4.5) we have readily 

--C k -}-Ck_~e 1 + . . .  + C k _ n e  n, 

and f rom this, the boundedness  of  the e k~*, and L e m m a  4.3, (5.5) follows. II 

By Proposi t ion 2.2, L e m m a  5.1 implies the very s t rong result 

Proposit ion 5.2 (r ~f is near best). Let  f be analytic at the origin and assume the 
conditions of  Assumption A.  Then as e ~ O ,  

[If - r 4 [ l -  llf - r* l l  =0(ezm+2n+3) 
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and thus I f - r ~ l  I exceeds the minimal error by a relative magnitude O(e "+"+2) 
as e~O. I 

6. Main Asymptotic Results 

At this point an approximation r cf to f has been constructed whose error 
curve is nearly circular. Now we will show that it follows that Ir~S-r*ll is nearly 
zero, hence that the error curve of r* is also nearly circular. As in the last 
section, here f is any function analytic at 0, and f ( z ) - f ( e z ) .  

A lemma is needed on the behavior of the denominators of r* and r cf. 

Lemma6.1. Let f be analytic at the origin and assume the conditions of 
Assumption A. For each e>0,  write r4=p~f/q ~f and r*=p*/q* with q~I and q* 
normalized to have constant term 1. Then as ~ 0 ,  

and 

qCf (z) = 1 + 0(~) (6.1) 

(6.2) q*(z)= 1 § 

uniformly on S. 

Proof qCl is also the denominator of f*, so (6.1) follows from (4.5) and (4.6) of 
Lemma 4.1. (4.6) was derived by means of Hankel determinants by comparing ~* 
to r p. The only facts about f* used for this were f*e/~m, and the best ap- 
proxiamtion property I f - ~ * l  < l f - r P l .  As both facts hold also for r*, the 
same argument proves (6.2). 1 

Lemma6.1 suggests that asymptotically as e ~ 0 ,  rational approximation 
becomes less and less nonlinear. This fact enables us to show that Ir*-rCl I is 
small by the same a posteriori argument used for polynomial approximation in 
[233. 

Theorem 6.2 (rCf,,~r*). Let f be analytic at the origin and assume the conditions 
of Assumption A. Then as e ~ O, 

II rOY - r* II - -  O (/3 TM + 2 n + 3). (6.3) 

Proof Let Ac=c,,+,+ 1 - c ~ + . +  l; from Assumption A, Ac+O. By Lemma 5.1 i, 

( f  - r <I) (z) 
Ac(ez)m+,+ ~ - 1 + O(e), (6.4) 

and by Lemma 5.1ii this function varies in modulus by only O(e m+"+2) on S. 
Since r* is a best approximation to f it follows that adding (r cl 
-r*)(z)/[Ac(ez)  "+"+l] to (6.4) can increase the modulus of (6.4) by no more 
than 0(~ "+"+z) at any point on S. In particular, we must have 

(rCf-- r*) (z) =O(em+.+z) 
Ac(~z) "+"+I 
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uniformly over  all points  where the a rgument  of  this quot ient  has modulus  less 
than, say, rt/4. Since r 4 -  r* = (p~Yq* - p* q~f)/q~f q*, and since (q~f q*) (z) = 1 + O(e) 
as e-- ,0 by L e m m a  6.1, it follows that  

(p~f q,  _ p* q4) (z) 
Ac(ez),,+,+, = O ( g  "+ '+2)  

uniformly over  all points  where this quotient  is real and positive. Now this 
quot ient  is a polynomial  P in z -~ of degree at most  re+n+ 1 with constant  
term 0. It follows ( L e m m a  5, [23]) that the image of ]z-11 < 1 under P covers 
complete ly  the disk about  z -1 = 0  of radius 2 -(m+"+ I)[IPI[. This necessitates the 
bound 

P~f q * -  P* q~ =O(g.rn+n+ 2), 
ac(~z)m+.+~ 

hence 
N p4 q* _ p* qcf II = 0 (~:2,~ + 2, + 3), 

and hence (6.3), again since (q4q , ) ( z )=  1 + O(~:). II 

L e m m a  5.1 and Theorem 6.2 imply immediate ly  

Theorem 6.3 (the error  curve of r* is nearly circular). Let f be analytic' at the 
origin and assume the conditions of Assumption A. Then as e--,O, for all 
sufficiently small ~, the error curve of r* has winding number exactly m +n + 1, 
and 

] [ f - r * [ I -  min I ( f  --r*)(Z)I=O(,fj2m+ 2n+ 3). II 

Summary of Asymptotic Results. Let us summar ize  what  we have established, or 
could readily establish with addi t ional  combinat ions  of the foregoing argu- 
ments,  about  asymptot ic  approx ima t ion  of a function f analytic at the origin 
that  satisfies Assumpt ion  A. As e-+ 0 

Ilfll =O(1) ,  (6.5) 
whereas  

[ I f - r * l [ ]  (6.6a) 
l l f - r r l [~=O(e  =+"+~) but not O(em+"+2). (6.6b) 

I I f - / S l l  J (6.6c) 

r p and r* have relative contact  O(e) on the scale of  these errors, 

I l rp-r*l l  = O(gm+"+ 2), (6.7) 

while r cs and r* have relative contact  o(gm+"+2), 

I I / f -  r* [1 = O(g 2m+ 2n+ 3). (6.8) 

For  sufficiently small e, r* and r p a n d / f  all have exactly n finite poles, and all 
of  their  error curves have winding number  exactly m + n + 1. The  error curve of 
r p deviates f rom a circle by a relative radius O(e), 

t l f -  FP[I - min I ( f -  rP) (z) l  = O( gsm+"+ 2), (6 .9 )  
z6S 
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and those of r cl and r* deviate by a relative radius O(,f,m+n+2), 

II f -  rCl I[ - min 1 ( f -  r~I) (z)l ] (6.10 a) 
z~s /=O(~2m+2,+3). 

I I f -  r* II - min I ( f -  r*) (z)l (6.10b) 
z E S  

Discussion. The agreement (6.7) of r* and r p was essentially established by 
Walsh [24], through not stated in this form. It is likely that Walsh also knew 
of the following corollary, which follows form the winding number results for f 
- r *  by the argument principle, but he seems not to have published it: 

Corollary. Let f be analytic at the origin and assume the conditions of 
Assumption A. Then for all sufficiently small e, r* interpolates f at exactly m + n 
+ 1 points in D, counted with multiplicity. | 

This extends a result of Motzkin and Walsh [18] for polynomial approxi- 
mation, discussed also in [23]. 

It is interesting to see that although the best approximation r* need not be 
unique, (6.8) implies that it is nearly so: if r* and r* are any two best approxi- 
mations for each e > 0, then 

IIr* - r*l l  = O(e2m+ 2"+ 3). 

Our presentation has described approximation on the fixed disk D of a 
function that grows smoother as e-~0, but obviously the results pertain equally 
to approximation of a fixed function f on the shrinking disk Iz[<e. This was 
the setting considered by Walsh. He showed then that as e ~ 0 ,  r * ~ r  v uni- 
formly on any compact set not containing poles of r v [24]. Our arguments 
duplicate this conclusion, showing that rV-r* =O(e) on any such compact set. 
A third application of the argument of Lemma 4.1, in fact, shows the much 
stronger result that rC~r-r*=O(g ~+'+2) on such sets. This is another way of 
expressing the fact that whereas Pad6 approximation captures analytically the 
first term in an asymptotic description of r*, CF approximation captures the 
first m + n + 2 terms. 

7. Numerical  Computation of i*  

Here we sketch how the coefficients of ~* as a quotient of the form (2.3) can be 
computed numerically. Additional details, in the context of digital filter design, 
are given in [10]. 

Step 1. First, one must decide at what degree K to truncate the Maclaurin 
series of f, and then find the K + 1 required coefficients. In realistic appli- 
cations the series may converge fairly slowly on /5, so we must assume that K 
may be fairly large: say, between 10 and 100. If the Maclaurin coefficients are 
not known analytically, they can be computed by the Fast Fourier Transform 
[13, w 
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Step 2. The most time-consuming part of the problem is to find the ( n + l ) s t  
singular value and vector of the K + n - m  by K + n - m  Hankel matrix H 
=H} "-"). The most straightforward approach to this is to compute a full 
singular value decomposition of H by unitary reduction to bidiagonal form 
followed by a QR iteration, an algorithm developed by Golub and Kahan and 
implemented in both EISPACK [21] and L IN PACK.  This will take O(K 3) 
floating point operations. However, our problem is special in three ways: H is 
Hankel, it is triangular, and we only need one singular value and vector. One 
would like to take advantage of as much of this structure as possible. If the 
coefficients of f are real, then an additional fact to be exploited is that the 
singular value problem reduces to an eigenvalue problem. 

Unfortunately, no methods are currently known that take substantial advan- 
tage of general Hankel (or Toeplitz) structure in singular value or eigenvalue 
problems. We have contented ourselves with reducing the O(K 3) time constant 
by computing only some eigenvalues and one eigenvector of H via Sturm 
sequencing and inverse iteration [21], in the case where f has real coefficients. 
Even this saving is not as great as one would like, however, for while we seek 
the ( n + l ) s t  eigenvalue of H in magnitude, the Sturm sequence approach 
isolates eigenvalues according to magnitude and sign. Thus we are forced to 
search both ends of the spectrum of H in order to determine which eigenvalue 
it is that we want. E ISPACK provides routines for this. 

Step 3. Now one must extract the coefficients of f* from (3.2). Let us write the 
denominator  of the Blaschke product in (3.2) in the form qin(Z)qout(z), where q~n 
and qou, are polynomials with all zeros inside and outside D, respectively. Then 
the denominator of f* is precisely qout, or may be taken to be such in the 
degenerate case in which a zero of qout is cancelled by an identical zero in the 
numerator  of the Blaschke product. Thus to find the denominator of f*, we 
need to find the polynomial subfactor of zTk+... +~1 zk-1 containing precisely 
those zeros outside D. For this we have used an excellent technique proposed 
by Henrici [13, w based on forming the logarithmic derivative of lik+...  
+ ~ z k-~ and computing certain of its Laurent coefficients, making use of the 
Fast Fourier Transform. The accuracy of this procedure depends on the zeros 
of fik +. - -  + ~7i z ~ - ~ lying not too close to S, but this is a limitation one can live 
with, as the CF method itself will give poor approximations when some of 
these zeros have magnitude close to 1. 

Once qout is known, the numerator  of f* can be found multiplying (3.2) by 
qout- The resulting equation gives ~* qout in the form of a Laurent series that 
converges in ]zl > 1, which is precisely the form that we seek. The fastest way to 
compute desired coefficients of this Laurent series is by means of another FFT. 

Step 4. Finally, r 4 is formed by dropping the terms of negative degree in the 
numerator  of f*. 

The total time required for these computations depends strongly on K. For 
approximation of e z, K = 20 is ample to give r cl accurate to ten places when m 
and n are small, and the computation requires roughly 0.1secs on an 
IBM 370/168. A typical time for a function with a less quickly converging 
power series might be 1 second. 
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8. Numerica l  Example:  Approximation of  e z on the Disk  

To i l lustrate the foregoing results,  let us see how the C F  me thod  per forms in 
a pp rox ima t ing  e z. Because the  Mac lau r in  series of  e z decreases so rapidly ,  K 
= 2 5  is equivalent  to K = oe for our  numer ica l  purposes.  We will ta lk  as if K 
= oe. C o m b i n i n g  Propos i t ion  2.2 and Theorem 3.3, therefore,  we get the s imple 
b o u n d  

a,+ i < [leZ--r*[} < II ez -rCIIl (8.1) 

p rov ided  the error  curve of  r ~s has the expected winding number  m + n +  1. 
(Clear ly it does, a l though this has  not  been p roved  for all m, n.) 

Sample  Computat ions  f o r  (m, n) = (1, 1) 

Cons ide r  a p p r o x i m a t i o n  of type  (1, 1). The s implest  cand ida te  is the Pad6 
app rox iman t ,  

1 + 0 . 5 z  
rPl(z) = 1 - 0 . 5 z "  (8.2a) 

The  co r re spond ing  er ror  (to the accuracy  shown) is 

I[e z - rfl  l[ = 0.282. (8.2 b) 

The  e r ror  curve, as shown a l ready  in Fig. 1, is not  close to circular.  
Next,  we compute  the ex tended  best  a p p r o x i m a t i o n  f* by the me thod  

descr ibed  in Sect. 7. It is 

... + 0.00000983 z - 2 + 0.00024668 z -  1 _1_ 0.99613054 + 0.58955195 z 

~'1 - 1 - 0.43416584z (8.3 a) 

with co r respond ing  er ror  

I1 e z - ~'111 = or2 (H~ ~ = 0.08455. (8.3 b) 

The  e r ror  curve here winds  3 times, and  is a perfect circle (assuming K = oo). 
N o w  by t runca t ing  negat ive  powers  we get 

0.99613054 + 0.58955195 z 
r ~ ( z ) -  I - 0.43416584z ' (8.4a) 

with e r ror  

JJeZ-r~ 11 <0.08493. (8.4b) 

Evident ly  r cs a p p r o x i m a t e s  e z to within 0 .5% of  the min ima l  error.  Its e r ror  
curve is c i rcular  to within a re la t ive  dev ia t ion  of  less than  1%. The  Pad6 
a p p r o x i m a t i o n  (8.2), in contrast ,  is n o n - o p t i m a l  by more  than a factor of  three. 
If  we were to increase m, the compa r i son  would  become even more  str iking.  

F o r  a true appra i sa l  of r el, we need to compa re  it to the best  a p p r o x i m a -  
t ion r*. In general ,  compu t ing  r* numer ica l ly  to the high accuracy  requi red  for 
this compa r i son  is a difficult mat ter .  The  Remes  a lgo r i thm for ra t iona l  Cheb-  
yshev a p p r o x i m a t i o n  on a real  interval ,  for example ,  does  not  extend to 
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complex approximation.  Stephen Ellacott (private communica t ion)  has tackled 
this problem with Lawson 's  algorithm, but as we have discussed elsewhere 
[23], Lawson 's  algori thm ceases to converge precisely as the error curve 
approaches a circle. Because of  this problem, Ellacott 's coefficients for r* are 
generally not  as close to correct as the more  easily computed  coefficients of  the 
approximat ions  r C ~  r* are, for m__> 3. (In defense of  Lawson 's  algorithm, how- 
ever - it does get near a best approximat ion quickly, and the last fraction of  a 
percent is un impor tan t  for most  purposes.) 

For  the case (m, n )= ( t ,  1), Ellacott 's computa t ion  is sufficiently accurate, 
and we have checked it against a "brute  force" computa t ion  by a general- 
purpose optimizat ion program. We find 

with error 

0.99625 + 0.58952z 
r * l ( z ) -  1 -0 .43414z  (8.5a) 

II eZ - r*1 l] = 0.08480. (8.5 b) 

A compar ison of  (8.5) with (8.4) suggests that in practice, r cs can be expected to 
approximate  r* very closely. Note  that (8.5b) lies between (8.3b) and (8.4b), as 
it must. 

In this example IleZ-rCI]l would fall all the way to 0.08481, and the 
relatively poor  constant  terra in the numera tor  of r cl would rise to 0.99624, if 
the choice of  r cl first considered in Sect. 5 were used rather than the one finally 
adopted there for convenience of  generalization. Undoubtedly  the first choice is 
better, in practice, when m > n. 

Dependence  on m and n 

Let the measure c~ of  relative circularity of  equation (1.1) be applied to rcy for 
various m, n. Table 2 shows the results. Note  the general agreement between 
the numbers  of  Table 2 and those of  Table 1. This is an indication that at least 
for the present problem, the CF method is an effective approach to the 
phenomenon  of  near-circularity. It may  appear  worrisome that in both tables c~ 
is roughly independent of  n, for this seems to contradict  the asymptot ic  results 
of Sect. 5. The explanation is that  the constants in those results increase with n. 
Dependence on n is always more  difficult to analyze than dependence on m in 

Table 2. Relative deviation c~ from a perfect circle (Eq. (1.1)) of error curves of CF approximations 
r~, to e z on the unit disk. Various m, n 

n m . . . - - " ~  0 1 2 3 

t ( - l )  6 ( - t )  6(-1) 3(-1) 
4(-3) 1(-2) 1(-2) 9(-3) 
3(-5) t (-4)  6(-5) 7(-5) 
5(-6) 5(-7) 2(-6) 3(-7) 
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Table3. ~,+a=][e=-~*.[I for various m , n  (see (8.1)). Underlined digits are known to agree with 
corresponding digits of best approximation errors lie = -  r*,ll 

~ =  . 0 

!.25836 65707 
0.5_.5575290694 
0.17737 38152 
0.04336 8926832 

1 2 

0.39659 05141 0.!1527 04209 0.02919 04410 
0.08454 87259 0.01295 01410 0.00186 66235 
0.01459 00251 0.00139 32413 0.00013 47402 
0.00218 6196115 0.00014 2307100 0.000009931757 

Table 4. Relative deviation c~ from a perfect circle (Eq. (1.1)) of error curves of CF approximations 
r~ to e "~ on the unit disk. Various 

4 0.170(+2) 0.723 0.461 
2 0.810 0.123 0.296 
1 0.849(-  1) 0.978(-2) 0.314 
1/2 0.104(-  1) 0.594(-  3) 0.312 
1/4 0.130(-2) 0.349(-4) 0.307 
1/8 0.163(-3) 0.215(-5) 0.306 

rational approximation, because it is there that the nonlinearity lies. As it 
happens, in this example c~ begins to decrease steadily if n is increased further. 

To sum up how close to best r cl may be, Table 3 shows /eZ-~*l  as a 
function of m and n for m, n < 3. Thus the (m, n) entry in the table is just the (n 
+ l ) s t  singular value of a Hankel  matrix H~"~ -m). Digits in which / e=-~* /  is 
known to agree with IleZ-r*[[ (usually on the basis of (8.1)) have been under- 
lined. 

Asymptotic Behavior for  (m, n) = (1, 1) 

Finally, it is easy to confirm that as e ~ 0 ,  Ile==-rCIil-minIe~=-rCI[ 
z6S 

=O(eZ"+2"+3), as predicted in Lemma5.1 .  Tab le4  lists le~=-rCf[l and the 
same c~ as in Tab le2  as a function of e for (m,n)=(1, 1). The final column 
shows that as expected, ~ decreases like e l+ l+2=e4 .  Moreover, it shows that 
the constant involved is small. Evidently D is already a small disk as far as the 
smoothness of e ~ is concerned. 

9. Additional Remarks 

The phenomenon of nearly circular error curves has been observed by a few 
people over the years, but not speculated about in print until [23]. Since the 
tendency to near-circularity is so strong, it is likely that interesting features of 
the Chebyshev approximation problem have been overlooked as a con- 
sequence. The approach described here does not yield a satisfying explanation 
of "why"  error curves are nearly circular, but perhaps the results it leads to 
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can at least make this phenomenon  a recognized feature of  the Chebyshev 
approximat ion  problem. Any such feature must  have theoretical and practical 
consequences. One practical consequence, as ment ioned in the last section, is 
that Lawson's  algori thm is not suitable for comput ing  Chebyshev approxi- 
mations to high accuracy. 

That  is the geometric aspect of  this work;  the other  theme has been the 
algebraic one, namely the remarkable connect ion with Blaschke products  and 
the singular value analysis of  a Hankel  matrix of Maclaurin coefficients. The 
Carath6odory-Fej6r  theorem and related results belong traditionally to the 
study of  function theory on the unit disk, and are only recently being borrowed 
for other  purposes. The papers of  Adamian,  Arov and Krein [1] are currently 
inspiring active work in systems theory by Bettayeb, Bultheel, de Wilde, Genin, 
Kung,  Silverman, and perhaps others [4, 7, 10, 16, 20]. Problems in systems 
theory reside naturally on the unit disk, however, whereas in approximat ion 
theory they need not. At  least some of  the techniques described here can be 
transplanted to more  general regions by a conformal  map, as for example in 
Theorem 12 of [23], but algebraic simplicity is lost in the process. It remains 
to be seen how fruitful such transplantat ion can be. 

For  the disk there is no doubt  of  the power of  the CF  approach.  The great 
weakness of  the theorems proved here is that  with the exception of Theo-  
rem 3.3, they are entirely asymptotic.  If non-asymptot ic  results can be found 
that capture the true strength of  CF  approximation,  the method might become 
a powerful theoretical tool. For  example, it might then be easy to prove strong 
theorems about  best approximat ion  in the more difficult asymptot ic  cases 
m--* oo and n ~ ~ .  Some conjectures along this line can be found in the book  
by Meinardus  [17, e.g. (9.14)]. Many  of  the estimates in this paper have been 
far from best possible, so it has not appeared worthwhile to tackle these 
problems, as was done for the polynomial  case in [23]. 

Most  surprisingly, it turns out that  the CF method extends with no loss of 
algebraic simplicity to approximat ion  by real functions on a real interval. N o w  
a Hankel  matrix of  coefficients in an expansion in Chebyshev polynomials  is 
needed, tn fact, the CF  idea turns out to be even more powerful in real 
approximat ion  than in complex approximation.  The real CF  method is pre- 
sented by Gutknech t  and Trefethen in [11] and discussed further by Gut-  
knecht  in [9]. 
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