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Conditions are derived for dynamically stabilizing the Rayleigh-Taylor instability of 
a fluid interface and for attaining the corresponding dynamic equilibrium. These 
conditions could be proved in experiments using an aqueous solution of Potassium 
Jodide (ph= 1.6 g/cm 3) as the heavy fluid and oil (viscosity SAE 140, pl=0.9 g/cm 3) 
as the light one. Parametric resonances were suppressed, but could be observed using 
oil of lower viscosity. 

Introduet ion 

The equi l ibr ium of superposed  fluids with a hor izonta l  b o u n d a r y  is 
uns table  if the density, Ph, of the upper  f luid is greater  than  the density, 
p~, of the lower  one 1-4.  Neglect ing the effects of viscosity and surface 
tens ion and assuming the thickness,  d, of the b o u n d a r y  layer  to be small  
c o m p a r e d  with the wavelengths,  L, of the pe r tu rba t ions  considered,  the 
ins tabi l i ty  growth  rate,  D, was found  to be 1-3 

QZ = _ ~  g_ ( Ph -- Pt ] . 
\Ph+PI/ 

(1) 

Fur the rmore ,  if the b o u n d a r y  between the two fluids is no t  hor izonta l ,  
no equi l ibr ium exists at  all. 
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This paper  describes a me thod  of s tabi l izing the above  ment ioned  
instabi l i ty  and  a t ta in ing stable equi l ibr ium in the case of non-hor izon ta l  
boundar ies  as well. A n  es t imate  of the s tabi l i ty  condi t ions  is derived,  
and  exper imenta l  results showing the feasibil i ty of this k ind  of stabil i-  
za t ion  are presented.  

The Rayle igh-Tay lor  instabi l i ty  has also been considered for  the case 
where the lower l iquid is replaced by  a magnet ic  field paral le l  to the bound-  
ary layer 4 and  the remain ing  fluid is of infinite electrical  conduct ivi ty .  
This gives the connec t ion  to p l a sma  physics,  where macroscop ic  equil ibri-  
u m  and stabil i ty are ,usually analyzed by  means  of the so-called magne to-  
h y d r o d y n a m i c  ( M H D )  model .  The exper iments  descr ibed in this paper  
thus also have some relevance to the a t tempts  to  stabil ize dynami-  
cally s -14  M H D - u n s t a b l e  p l a sma  conf igura t ions  and  to a t ta in  dynamic  
p l a sma  equil ibriaIS.  " 

Stability 

In  o rder  to stabi!ize the Ray le igh-Tay lor  instabil i ty,  we enforce a 
ha rmon ic  osci l lat ion of the f requency o) and  ampl i tude  a in the  vert ical  
direct ion upon  the system conta in ing  the two fluids. This osci l la t ion 
causes a p e r i o d i c . a c c e l e r a t i o n ,  b, perpendicu la r  to the hor izon ta l  
b o u n d a r y  layer. The t ime dependence  of the ins tan taneous  accelera t ion 
act ing on the fluids is then given by  g + b, where 

and bma x =ao~ 2. 
b = bma x cos fot (2) 
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The effective time-averaged potential, Uef~, of a single particle of 
mass rn in a fast oscillating field with co>f2 is derived by Landau and 
Lifschitz ~6 to be: 

f2  
geff = Us ~ 2 m co 2' (3) 

where Us is the potential of the static case and f is the periodic force 
due to the oscillation. Applying Eq. (3) in a general way to our problem, 
where we consider a perturbation of the horizontal boundary with wave 
length L and amplitude ~, the static potential becomes 

G = Uo - ~ -  Q2 r (4) 

where m is now the mass of the displaced fluids and Uo is the arbitrary 
potential of the unperturbed boundary. The maximum value of the force 
f is given by ~ Us/O~ when replacing g by bm.x in the expression for f2 z, 
thus 

fmax-- bmax m ~c22 r  (5) 
g 

N o t e  t h a t f  2 is f,~axl2. Combining Eqs. (3)-(5) yields 

1 2 2 1 2 Q ~  m b m a x "  
Ueff= U 0 --'~- m Q ~ -[ 4 g2 -~2 r (6) 

This leads to the stability condition 

2g 2 
bmax > a f2 2" (7) 

Using the value of f2 from Eq. (1) yields 

>'+ 
I " (8) 

Eq. (8) shows that the power necessary for stabilization increases, 
firstly with increasing wavelength of the perturbations, and secondly 
with decreasing difference in the density of the two fluids, the latter 
result being somewhat surprising. 

16. Landau, L.D.,  u. E. M. Lifschitz: Mechanik, S. 108--110. Berlin: Akademie- 
Verlag 1962. 
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For practical applications, therefore, the smallest possible value of 
the instability growth rate, which can occur in a certain device, is of 
interest. This is found considering the lowest value of the oscillation 
frequency, ~2o, of standing surface wave modes in the stable case, where 
Pz is above Ph. Assuming the depths of the fluids to be large compared 
with the vessel diameter or greater lateral length, D, the value of Qo for 
standing waves in a basin with bounded extent can be described by 17 

(22 = m o  g Ph-- Pill. (9) 
Pa + Pl 

For a cylindrical vessel such that the fluid interface takes a circular cross 
section, the smallest value of mo is found at the first maximum of the 
Bessel-function J l (mo  D/2). For  a vessel of rectangular cross section, 
by contrast, the smallest value of m 2 becomes lz2/O 2. This yields 

mo=3.68/D circular cross section 

m o = n/D rectangular cross section. 
(10) 

Consequently, the stabilization condition, for instance for the cylindrical 
vessel, becomes 

(P +P'I (11) bma• ~0"54 g ~ -  \P--~--P~ I " 

Parametric Resonances 

Besides the Eqs. (7), (8), and (11), however, there is another restriction 
which has to be observed if no new instabilities are to be induced by the 
forced oscillations. The resulting criterion follows from the condition 
that the instantaneous growth rate should not exceed the value of co, 
i.e. o) 2 has to be greater than the right hand side of Eq. (1) if g there is 
replaced by bma x (g<~bmax). Hence for the smallest possible wavelength, 
Lml n, the growth rate of which can still be fairly described by Eq. (1), 
we obtain the condition 

L m i , ~ Z r c a ( P h - - P l ] .  (12) 
\ Ph + Pt /  

This demonstrates the necessity of physical mechanisms for suppressing 
fast growing short wavelength perturbations. Such mechanisms are 

17. Wehausen, J. V., and E. V. Laitone: Encyclopedia of Physics, vol. IX, p. 623. 
Berlin-G6ttingen-Heidelberg: Springer 1960. 
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provided by viscosity, surface tension or finite density gradient* in the 
boundary1,4.  The latter effect is of practical importance in plasma physics, 
where in the case of diffuse pressure profiles the short wavelengths can 
have about  the same growth rate .8 or can be damped tg. However,  even 
for wavelengths larger than Lml n some damping is required to prevent 
the development of parametric resonances, which would occur whenever 
f2~nm/2 (n positive integer). Those can be found using a more rigorous 
treatment which leads to Mathieu 's  stability chart  2~ Note  that  the most  
dangerous case n < 3 is already covered by Eq. (12). 

Dynamic Equilibrium 

Furthermore,  we are considering the situation where the forced 
oscillation is applied in the horizontal  direction. The equilibrium 
position of the boundary  is then no longer horizontal,  but  is at some 
angle, c~, to the vertical. This case will be treated by analogy with the 
pendulum with horizontally oscillating support  where 16 

2g  2 
s i n ~ = ~ .  (13) 

a bma x f~ 

Assuming this relation can be generalized to the case of fluids, and 
restricting ourselves to small values of c~, we can use the Eqs. (9) and (10) 
to describe the value of f2 in a horizontally placed vessel with either 
circular or rectangular (vertical) cross section. This yields 

gD (ph+p, 1 
sin c~ = 0.54 aff ,~x \ Ph -- Pt / 

for the cylindrical vessel and 

(14) 

2 gD (P"+P'I 
sin cr = - 

~r abmax \Ph -Pz !  
for the rectangular one. 

(15) 

* R.S. Pease (private communication) has pointed out the problem that for small 
density gradients values of -Q can occur (even for short wavelength modes) 
which are smaller than t2 o as given by Eqs. (9) and (10). 

18. Wobig, H. : Garching Report IPP 6/57 (unpublished) (1967). 
19. Bodin, H. A.B., A.A. Newton, J. Wesson, and G.H. Wolf: Submitted for 

publication Phys. Fluids (1968). 
20. Meixner, J., u. F.W. Sch~ifke: Die Grundlagen der mathematischen Wissen- 

schaften, Bd. LXXI. Berlin-G6ttingen-Heidelberg: Springer 1954. 



296 G . H .  Wolf :  The D y n a m i c  Stabilization of the  Rayle igh-Taylor  Instabil i ty 

When starting with a horizontal boundary surface, which is then 
exposed to the horizontally applied oscillation, a wave-like pattern of 
the surface will be excited. The eigenfrequency, f2 s, of the standing 
surface waves is also described by Eq. (1) if we denote the quantity L 
to be the horizontal wavelength of the perturbations. Hence a rough 
estimate of c~ can be obtained in this case by combining the Eqs. (1) and 
(13) to give 

sin c~- g L (16) 
bma x 7"c a " 

Eq. (16), of course, is only valid for small amplitude waves. For  large 
amplitude waves, by contrast, the Eq. (14) or (15) becomes relevant, 
although the value of f2 used there is no longer the correct one since the 
assumptions leading to Eq. (9) or (10) are violated in this case. 

Experiments 
Experimentally, a cylindrical glass vessel of inner diameter D = 2.8 cm 

and axial length A =6  cm was mounted on a vibrator which applied 
oscillations to the vessel in the axial direction. The vessel was com- 
pletely filled with equal quantities of an aqueous solution of Potassium- 
Iodide (Ph = 1.6 g/cm 3) and of a very viscous oil (SAE 140, Pt =0.9 g/cm3). 
The problem how to superpose the heavier fluid upon the lighter one 
was solved - after some other unsuccessful attempts - by starting off 
with the static stable arrangement, i.e. the oil on top. The vibrator was 
then adjusted to parameters expected to meet the conditions for dynamic 
stabilization [Eq. (11)] and for dynamic equilibrium [Eq. (14)]. It turned 
out that for the resulting value of a 2 e) 2 the condition (12) was violated 
when oils of lower viscosity were used. With an oil of viscosity SAE 90, 
for instance, the plane boundary surface started to become covered 
with bubbles when for ro=3.5 x 102 sec -1 the value of bma x o v e r c a m e  

47 g. With oil of viscosity SAE 140, this effect was not observed up to 
bmax=60g, which was the greatest acceleration available from the 
vibrator. These oscillation parameters were maintained, and the whole 
device was placed in a horizontal position, where the boundary surface 
is determined by the dynamic equilibrium condition according to Eq. (14). 

Photographs of the oscillating surfaces are shown in Fig. 1, a) with 
vertical cylinder axis and Pl above Ph, and b) with horizontally placed 
cylinder axis resulting in an inclined boundary surface. The exposure 
time was 10-1 sec, and a flash lamp synchronized with each oscillation 
was used to give a superposition of several single pictures. 



Fig. l a - - e .  Pho tographs  showing  the bounda ry  surface of the fluids exposed to 
enforced oscillations in var ious  directions a o )=1 .1  ~ x l 0 Z s e c  -1,  b m a x = 6 0 g ,  
statically stable a r rangement ;  b co= 1.1 ~ x 102 sec -1,  bmax= 60 g, dynamic  equilib- 
r ium separat ing the  fluids horizontal ly;  c r e =  2 z~ • 102 sec -1,  bmax = 60 g, statically 
uns table  a r rangement ;  d r e =  1.1 z~ • 102 sec -1,  bmax= 33 g, beginning of turbulent  
state;  e co = 2 ~ • 102 sec -  1 bmax = 40 g, wave-like pat tern  developing when  surface 

originally horizontal  
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Fig. 2a and b. Experimental results compared with theoretical predictions a) for the 
condition of dynamic stabilization according to Eq. (11); b) for the relation of dynamic 

equilibrium according to Eq. (14) 

Furthermore, from the horizontal position, Fig. 1 b, the device was 
turned into the final state of Ph above p~, i.e. where the Rayleigh-Taylor 
instability is dynamically stabilized. This case is shown in Fig. 1 c for 
e) = 2~ x 102 sec-1 and bma x = 60 g since this higher frequency produces 
an even smoother and extremely plane surface compared with ~o= 
3.5 x 10 z sec -1, where some (stable) surface waves could still be ob- 
served. The latter became more prominent in the horizontal case shown 
in Fig. 1 b. There higher frequencies could not be used (keeping bmax 
constant), since the value of ~ then increased until the surface began 
to split up into successive wedge-shaped parts and a sawtooth-like 
structure finally developed, each flank of which was again inclined 
towards the horizontal. 

In the dynamically stabilized state (Fig. 1 c) the value of bma x could 
gradually be reduced until the stabilization condition was violated and 
the horizontal surface behaved like "slipping off", leading to a turbulent 
interchange of the fluids. A photograph of this phase is shown in Fig. 1 d, 
where, at ~o =3.45 x 102 sec -1, bin,x=33 g. 

The last photograph in Fig. 1 shows an example of the wave-like 
pattern which is excited when the horizontal oscillation is applied to an 
originally horizontal surface; the particular parameters are co = 2 ~  x 102 
sec-1 and bm,x =40 g. When the value of a bma x is increased the ampli- 
tudes and horizontal wavelengths of this pattern grow and change 
continously into the above mentioned sawtooth structure. Preliminary 
quantitative results on dynamic stability and equilibrium are shown in 
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Fig. 3. Experimental results from the sawtooth-like structures excited by horizontal 
oscillations. The theoretical curve is derived from Eq. (15), where the quantity D is 

now the altitude of a sawtooth 

Fig. 2, where on the left hand side (a) the value of bmax/g is plotted 
versus co; the theoretically linear dependence is taken from Eq. (11). 
On the right hand side (b) the value of sin c~/D. [b,,ax/g] 2 is plotted versus co, 
and there the theoretical curve is derived from Eq. (14). The good 
agreement between the experimental results and the theoretical predic- 
tions shows firstly, that the simple model used for the calculations 
represents a fair description of the physical processes, and secondly, 
that viscosity and surface effects did not affect the gross dynamics of 
the fluids determined by the vessel diameter. 

The wave-like or sawtooth-like patterns as shown in Fig. 1 e have 
also been analyzed for various parameter values, and the results are 
plotted in Fig. 3. Although a quantitative description of this situation 
is based only on vague assumptions, the results were found to lie near 
the theoretical curve based on Eq. (15) and to deviate from the predic- 
tions based on Eq. (16) by less than a factor of two; better agreement 
was not expected in view of the more complex situation of that case. 

The experiments described here are being extended in order to vary 
the essential parameters, to study the parametric resonances more ex- 
tensively, and to investigate the stabilization of diffuse boundary layers. 

Conclusion 

It  is concluded that the Rayleigh-Taylor instability can be dynami- 
cally stabilized, and that the corresponding dynamic equilibrium can be 
established, both for times which are long compared with the growth 
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t imes wi thout  oscil lation. The quant i ta t ive  results agreed with pre- 
dict ions based  on simple physical  models.  Paramet r ic  resonances  were 
only excited if the domina t ing  viscosity was too  low. These results 
encourage  fur ther  a t temps to stabilize dynamica l ly  M H D - u n s t a b l e  
p l a sma  configurat ions ,  which, l ike the Ray le igh-Tay lor  instabil i ty,  have 
a whole  spec t rum of unstable  modes ,  bu t  where the growth  rates of the 
shor t  wavelength  modes  are also damped.  
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