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Muse is a simple and efficient approach to Or-parallel implementation of the 
full Prolog language. It is based on having multiple sequential Prolog engines, 
each with its local address space, and some shared memory space. It is currently 
implemented on a number of bus-based and switch-based multiprocessors. The 
sequential SICStus Prolog system has been adapted to Or-parallel implementa- 
tion with very low extra overhead in comparison with other approaches. The 
Muse performanhce results are very encouraging in absolute and relative terms. 

The Muse execution model and its performance results on two different 
multiprocessor machines for a parallel version of Prolog, named Commit 
Prolog, have been presented in previous papers. This paper discusses supporting 
the full Prolog language and describes mechanisms being developed for 
scheduling Or-parallelism in Muse. It also presents performance results of the 
Muse implementation on Sequent Symmetry after supporting full Prolog. The 
results show that the extra overhead associated with supporting the full Prolog 
language is negligible. 

KEY WORDS: Or-parallelism; full Prolog; multiprocessors; experimental 
results; scheduling. 

1, INTRODUCTION 

A variety of approaches toward exploitation of parallelism in Prolog 
programs are under current investigation. Many of these deal with efficient 
implementation of Prolog on multiprocessor machines by exploiting either 
Or-parallelism ~1-8) or Independent And-parallelism t9-11) or a combination 
of both t~2-15). The Muse approach is one of those that exploit only 
Or-parallelism. (~) Execution of a Prolog program forms a search tree. 
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Or-parallel execution of a Prolog program means exploring branches of 
a Prolog search tree in parallel. In the Muse approach (as in other Or- 
paralM Prolog approaches, e.g., Aurora (7) and PEPSysC2)), Or-parallelism 
in a Prolog search tree is explored by a number of workers (processes or 
processors). [In this paper we try to be consistent with the Aurora ter- 
minology/ 7)] This paper describes the basic mechanisms used for exploring 
branches of a Prolog search tree by the Muse workers. It also describes 
mechanisms for maintaining the sequential semantics of cut, findat and 
side-effect constructs. 

The Muse approach is based on having several sequential Prolog 
engines, each with its local address space, and some shared memory space. 
It is currently implemented on a bus-based shared memory machine 
TP881V, from Tadpole Technology, with 4 (88100) processors, a bus-based 
machine with local/shared memory with 7 (68020) processors constructed 
at SICS, a bus-based shared memory S81, Sequent Symmetry, with t6 
0386) processors, and switch-based shared memory machines, BBN 
Butterfly I (GP1000) and II (TC2000), with 96 (68020) and 45 (88100) 
processors respectively. The sequential SICStus Protog, (16) a fast, portable 
system, has been adapted to Or-paralM implementation. The extra 
overhead associated with this adaptation is very low in comparison with 
the other approaches. It is around 3% for TP881V, and 5% for the 
constructed prototype and Sequent Symmetry. The performance results of 
Muse on the BBN Butterfly machines will be reported by Shyam Mudambi 
at Brandeis University who has ported the Muse system into the BBN 
Butterfly machines. Mudambi preliminary results are very promisingJ 17) 
The Muse execution model and its performance results on the constructed 
prototype and Sequent Symmetry machines for a parallel version of 
Protog, named Commit Prolog, have been presented in previous 
papers. ~a'18) Commit Prolog is a Prolog language with cavalier commit 2 
instead of cut, asynchronous (parallel) side-effects and internal database 
predicates instead of the synchronous (sequential) counterparts, and 
sequential and parallel annotations. Cut and sequential side-effect seman- 
tics could be obtained on Commit Protog by annotating Protog programs 
according to some rules. (I~ In this paper, we discuss supporting the full 
Prolog language without such annotation. Some parts of this paper has 
been presented in Ref. 20. 

The paper is organized as follows. Section 2 briefly describes the Muse 
execution model. This helps for understanding the principles for scheduling 
work in Muse. Section 3 discusses principles for scheduling work in Muse. 

2 Cavalier commit prunes branches both to the left and right of the committing branch, and 
is not guaranteed to prevent side-effects from occurring on the pruned branchesJ 19) 
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Section 4 discusses principles for scheduling work in related approaches. 
Section 5 presents and discusses the basic mechanisms for supporting 
scheduling work in Muse. Section 6 discusses implementation of cut, 
findall, and sequential side-effect constructs. Section 7 presents some 
performance results of the Muse system. Section 8 discusses our plans for 
the continued development of Muse. Section 9 concludes the paper. 

2. M U S E  E X E C U T I O N  M O D E L - - A N  O V E R V I E W  

This section briefly describes the Muse execution model presented in 
Refs. 1 and 18. We assume herein that the reader is familiar with Warren's 
Abstract Machine (WAM)/21) 

A node on a Prolog search tree corresponds to a Prolog choicepoint. 
Nodes are either shared or nonshared(private). These nodes divide the 
search tree into two regions: shared and private. Each shared node is 
accessible only to workers within the subtree rooted by the node. Private 
nodes are only accessible to the worker that created them. Another distinc- 
tion is that a node can be either parallel or sequential. Alternatives from a 
parallel node could be executed in parallel whereas alternatives from a 
sequential node can only be executed one at time, from left to right. A node 
is either live (having unexplored alternatives) or dead (no alternative to 
explore). 

A major problem introduced by Or-parallelism is that some variables 
may be simultaneously bound by workers exploring different branches of a 
Prolog search tree. The Muse execution model is based on having a num- 
ber of sequential Prolog engines, each with its own local address space, and 
some global address space shared by all engines. Each sequential Prolog 
engine is a worker with its own stacks. [The assumed worker's stacks are: 
a choicepoint stack, an environment stack, a term stack, and a trail The first 
two correspond to the WAM local stack and the second two correspond to 
the WAM heap and trail respectively/21)] The stacks are not shared 
between workers. Thus, each worker has bindings associated with its 
current branch in its own copy of the stacks. 

This simple solution allows the existing sequential Prolog technology 
to be used without loss of efficiency. But it requires copying data (stacks) 
from one worker to another when a worker runs out of work. In Muse, 
workers incrementally copy parts of the (WAM) stacks and also share 
nodes with each other when a worker runs out of work. The two workers 
involved in copying will only copy the differing parts between the two 
workers states. This reduces copying overhead. Nodes are shared between 
workers to allow dynamic load balancing which reduces the frequency of 
copying. 
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To illustrate how workers share nodes in Muse, let us take a simple 
system having two workers P and Q. A worker Q runs out of work on its 
branch and a worker P has excess load (i.e., live nodes). Assume also that 
Q is positioned at a node, N, which is common to P and Q (see Fig. la). 
P allows Q to share its nodes by creating a data structure called shared 
frame in a shared-memory space for each private node, pointing to each 
shared frame from the corresponding choicepoint frame, and then copy to 
Q all choicepoint frames corresponding to nodes younger than N. [In the 
standard implementation of Prolog, a choicepoint frame is created in a 
choicepoint stack when a nondeterministic predicate is invoked.] Each 
shared frame basically contains information describing unexplored work at 
the node, workers which are at and below the node, and the node lock. At 
this moment, the choicepoint stacks of P and Q are identical and each 
node is associated with a shared frame which is referenced from the 
corresponding choicepoint frames. 

In order to allow Q to execute alternatives from these shared nodes, 
Q has to get a copy of P's current state. Q gets only parts of the WAM 
stack that correspond to nodes younger than N along with P's modifica- 
tions in the uncopied parts. These modifications are bindings made by P 
after creating the node N to variables created before N. These modifications 
are known from P's trail part created after N. Notice that after copying 
and sharing, P and Q have identical states and both share all P's nodes 
(see Fig. lb). Now, they can work together exploring alternatives in the 
shared nodes by using the normal backtracking mechanism of Prolog. 
Reducing sharing and copying overheads in Muse model are described in 
Ref. 1. 

@: Dead Node 
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Shared N i 
Region / 

/ P, Q 
(b) After Sharing 

Fig. 1. Sharing Nodes. 
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3. PRINCIPLES FOR SCHEDULING WORK IN MUSE 

Each worker can be in either engine mode or in scheduler mode. The 
worker enters the scheduler mode when it enters the shared part of the tree, 
or when it executes side-effects or findall. In the scheduler mode, the 
worker establishes the necessary coordination with other workers. The 
worker enters the engine mode when it leaves the scheduler mode. In the 
engine mode, the worker works exactly as a sequential Prolog engine on 
private nodes, but is also able to respond to interrupt signals from other 
workers. 

The two main functions of the scheduler are to maintain the sequential 
semantics of Prolog and to match idle workers with the available work 
with minimal overhead. The main sources of overhead in the Muse model 
are (1) copying a part of worker state, (2) making local nodes shareable, 
and (3) grabbing a piece of work from a shared node. Our scheduling work 
strategies, that attempt to minimize the overhead, are as follows. 

�9 The scheduler attempts to share a chunk of nodes between 
workers on every sharing. This maximizes the number of shared 
work between the workers and allow each worker to release work 
from the bottom-most node on its branch (dispatching on the bot- 
tom-most) by using backtracking with almost no extra overhead. 
Dispatching on the bottom-most allows also less speculative work 
than dispatching on the topmost- -work is taken from the topmost 
live node on a branch (see Ref. 22). (Speculative work is defined as 
work which is within the scope of a cut and therefore may never 
be done by the sequential implementation.) 

�9 When a worker runs out of work from its branch it will try to 
share work with the nearest worker which has maximum load. The 
load is measured by the number of local unexplored alternatives, 
and nearness is determined from positions of workers on the 
search tree. This strategy attempts to maximize the shared work 
and minimize sharing overhead. 

�9 Workers which cannot find any work in the system will try to 
distribute themselves over the tree and stay at positions where 
sharing of new work is expected to be with low overhead. 

�9 An idle worker is responsible for selecting the best busy worker for 
sharing and positions itself at the right position on the tree before 
interrupting the busy worker for requesting sharing. This allows a 
busy worker to concentrate on its task [A task is a continuous 
piece of work executed by a worker.] and to respond only to inter- 
rupts that have to be handled by it. 



450 All and Karlsson 

4. S C H E D U L I N G  W O R K  IN RELATED A P P R O A C H E S  

In this section we discuss scheduling work strategies developed for the 
related Or-parallel Prolog approaches that are based on several sequential 
engines with constant access time of variables and nonconstant task- 
switching time./23) Kabu Wake, (6~ Aurora, (7) and ORBIT, (8) are examples 
of these approaches. 

Four separate schedulers are being developed for Aurora: the Argonne 
scheduler, (19) the Manchester scheduler, (24) the Wavefront scheduler,/25~ 
and the Bristol scheduler. (26) The basic strategy of the first three schedulers 
is that dispatching on topmost and sharing one parallel node on each 
branch at a time. That is, all the three schedulers attempt to maintain at 
most one, live, shareable node on their current branch. The advantage of 
this strategy is that the size of shared region is minimized and the size of 
tasks is kept as large as possible. One disadvantage is that finding a task 
always involves a general search in the tree, leading to relatively high task 
switching costs for fine (and medium) granularity programs. ~27) Another 
disadvantage is more speculative work. 

The Argonne scheduler uses local information that is maintained in 
each node to indicate whether there is work available below the node. 
Workers use this local information to migrate towards parts of the tree 
where work is available. The advantage of this scheduler is its simplicity of 
the design. It gives better performance for coarse granularity programs. 

The Manchester scheduler tries to match workers with the nearest 
available task, where n e a r n e s s  is measured by the number of bindings to be 
updated between the worker's current position and the available work. By 
using this strategy it is hoped to keep the task switching overheads to a 
minimum. The Manchester scheduler tries also to distribute idle workers 
evenly over the tree. The performance results of this scheduler shows 
improvements over the Argonne scheduler for fine and medium granularity 
programs. 

The Wavefront scheduler maintains a data structure known as the 
wavefront which links all topmost live nodes together. Workers traverse 
and extend the wavefront when they are looking for work. The available 
experimental results indicate a small performance improvements for fine 
granularity programs over the Manchester scheduler, and a little worse 
performance for coarse granularity programs in comparison with the first 
two schedulers. 

The Bristol scheduler is based on the Muse (or BC-machine (28)) 
principles; dispatching on bottom-most and sharing several nodes on each 
branch at a time. Bristol scheduler shows some performance improvements 
over the other three schedulers for the fine and medium granularity 
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programs. The overall performance results of the Bristol scheduler is 
similar to that of the Manchester scheduler. 

In spite of the fact that the scheduling work principles of the Bristol 
scheduler is based on the Muse principles, there exist differences between 
the Muse scheduler and the Bristol scheduler. In the Bristol scheduler, a 
busy worker with maximum load will be matched to any idle worker and 
not to the nearest idle worker as that in Muse. Another difference is that 
idle workers in the Bristol scheduler stay at the bottom-most detected dead 
node of their branches, whereas in Muse idle workers distribute themselves 
over the tree (on the current branches) and stay at positions that are 
expected to be better ones. A third difference is the measure used for 
estimating a worker's load. In Bristol scheduler, a worker load is measured 
by the number of live parallel nodes on its branch. It is impractical, for 
efficiency reasons, to keep this load exact. The estimated load by the Bristol 
scheduler is an overestimate of the real load. This leads to busy workers 
that do not have excess load to be asked for sharing exactly as in Muse 
(see Section 5.3.2). The estimate of a worker's load used in Mure is the 
number of unexplored alternatives of private live parallel nodes. The Muse 
measure of load gives better estimate than the one used by the Bristol 
scheduler, because the number of alternatives of each live node is not 
always equal for most programs. We believe that better estimate of the load 
allows better decisions to be made. Finally, all mechanisms presented in 
this paper are completely different from those used by the Bristol scheduler. 

In Kabu-Wake approach ~6) and in ORBIT approach, (8) nodes cannot 
be shared among workers (i.e., processors), because these approaches are 
intended for nonshared-memory multiprocessors. Work at the topmost 
node is split into two parts and each of the two workers involved in 
copying takes a part of the work. This strategy does not allow dynamic 
load balancing between workers. Good results have been obtained only for 
coarse granularity programs. 

Although Muse strategies seem more complex and more difficult to 
implement than those used in the above schedulers, we believe that they 
should lead to a more efficient way of matching work with workers. 

5. S C H E D U L I N G  W O R K  A L G O R I T H M  

The basic algorithm of the Muse scheduler for matching idle workers 
with available work is as follows. (1)  When a worker f inishes a task, it 
at tempts to get the nearest piece o f  available work on the current branch. (2) 
I f  none exists, it at tempts to select a busy worker with excess work fo r  
sharing. (3) I f  none exists, it becomes idle and stays at a suitable position 
on the current branch. 
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In the next three subsections, we are going to present and discuss 
supporting efficiently the above three parts of the basic algorithm. Data  
structure used for supporting this algorithm will be presented in the context 
of using them. In order to simplify the presentation, locking is not covered 
in detail. 

5.1. Nearest  Ava i l ab le  Task 

The nearest piece of available work is found in the bot tom-most  live 
node on the current branch. In order to support this operation efficiently, 
an efficient mechanism for checking whether the nodes in the current 
branch contain a live node and determining such a node is required. In the 
current Muse implementation, we have a simple representation of the tree 
(see Section 6.1) which allows a worker to access only nodes on its branch 
from its current position to the root of the tree. That  is, a worker can only 
move on this part  of the tree. Thus a worker should leave its position on 
the tree (i.e., backtrack) only when the new position is better than the old 
one, i.e., closer to a live node or to a busy worker with excess load. 

Our mechanism assumes an extra field, nearest-livenode, on each 
shared node (i.e., in each shared frame associated with each shared node). 
This field contains either a reference to the nearest upper live node in the 
current branch or a dummy value. The latter means all upper nodes are 
dead. 

When a worker finishes a task, it first checks the bot tom-most  shared 
node on the current branch. If the node is live, it just takes work from that 
node. If the node is dead, the worker checks the nearest-livenode field of the 
node. If nearest-livenode is not the dummy value, the worker checks a chain 
of shared nodes referred from nearest-livenode of the current node to deter- 
mine the location of the nearest live node, keeping its position on the tree. 
(No locking is used in this operation.) If there is no such node, all nodes 
on the current branch get the dummy value in their nearest-livenode field. 
Then the worker backtracks to the nearest node with other workers and 
tries to select a busy worker with excess load as described in Section 5.2. 

If work is found at node N, all shared nodes below N will get a 
reference to N, and the worker will at tempt to position itself at N, as fast 
as possible, in order to take a piece of that work. The worker stops back- 
tracking to N in one of the following situations: 

1. The available work at node N is taken by the other workers. In 
this case, the worker repeats the procedure of determining the 
nearest live node described above by looking for nodes higher up 
than N on the current branch. 
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2. The worker is alone in a sequential node with available work. In 
this case, it takes a piece of work from the sequential node. 

3. There is a pending cut that should be performed by that worker 
(see Section 6.3). 

5.2. M a t c h i n g  W o r k e r s  

The second part of the scheduling work algorithm is matching idle 
workers with busy workers having excess load. Matching each idle worker 
with the nearest busy worker with maximum load is expected to be a good 
heuristic. Such matching minimizes copying overhead by allowing less data 
to be copied and less frequency of copying. Supporting efficiently this 
heuristic is not an easy task, but we now present a mechanism that 
attempts to support a version of this heuristic. 

The goal here is to match idle workers with busy workers having 
excess load in such a way that a worker with maximum load within a 
subtree will be assigned to the closest idle worker. The basic idea of the 
matching mechanism is as follows. When a worker Q becomes idle, it first 
determines a set of busy workers, within its subtree, which are not closer 
to any other idle worker. [When we say a worker subtree, we mean the 
subtree rooted by the current node of that worker.] Then, Q selects for 
sharing the worker P which has maximum load in this set. 

If Q cannot find any worker with excess load in its subtree, it will 
determine a set of busy workers, outside its subtree, that are not closer to 
any idle worker. Then, Q backtracks to the nearest common node on the 
tree with workers in this set. After backtracking to the node, Q will have 
busy workers in its new subtree, and the same idea described above for 
selecting P within Q's subtree could be used. 

If Q cannot find any busy worker with excess load in the system, it will 
try to position itself at a suitable node in its branch as will be described in 
Section 5.3. 

We divide the matching mechanism based in the idea described earlier 
into two parts. The first part is described in Section 5.2.1, and it concerns 
selecting P within Q's subtree. The second part is described in Section 5.2.2, 
and it concerns selecting P outside Q's subtree. The matching mechanisms 
described here use the following global information: 

. A counter, load, is associated with each worker containing the 
current load of the corresponding worker. The measure of load 
used in Muse is the number of private unexplored alternatives. 
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2. A register, currentnode, is associated with each worker containing 
a reference to its current position (shared node) on the tree. 

3. A bitmap, idlemap, contains the current idle workers in the system. 

As mentioned in Section 2, each shared node is associated with a 
shared frame which contains a bitmap, workersbitmap, representing 
workers within the subtree rooted by the node. 

5.2. 1. Matching Workers within 

The idle worker Q selects P 
whether there are busy workers in 
a set of those busy workers which 
Then it will select for sharing the 
this set. 

the Current Subtree 

within its subtree as follows. Q checks 
its subtree. If there are, it will determine 
are not closer to any other idle worker. 
worker P which has maximum load in 

The worker Q can determine which workers are busy (busy-set) and 
which are idle (idle-set), in its subtree, from workersbitmap of its current 
node and from the idlemap. (busy-set and idle-set are two local bitmaps.) 
Q can determine a subset of busy workers, in its subtree, which are not 
closer to any other idle worker, as follows. Q removes from its busy-set 
busy workers that are in the idle-set subtrees. Positions of idle-set workers 
are known from their currentnode registers. Finally, Q determines the one 
with maximum load in the remaining subset of those busy workers by 
investigating their load counters. 

The mechanism allows Q to request sharing from P in situations 
shown in Figs. 2 (a) and (b), but not in (c). (Here, we always refer to the 
current idle worker by Q and the other idle workers by Q 1, Q2, etc.) In 
Fig. 2a, P is not in Q l's subtree. We allow Q to request sharing work from 
P, because Q l 'could take long time to backtrack to a common node with 
P. Q1 could, for instance, reach a sequential node that should be 

(a) Q will request 
sharing from P. 

~ I 
q qs 

P 

(b) Q will request 
sharing from P. 

(c)  0 w i l l  not  r e q u e s t  

s h a r i n g  from P. 

Fig. 2. Matching Workers within Q's Subtree. 
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processed. In Fig. 2b, there is also no other idle workers between P and Q. 
In Fig. 2c, there is an idle worker (Q3) between P and Q, i.e., Q3 is the 
nearest idle worker to P. 

5.2.2. Matching Workers outside the Current Subtree 

When (2 cannot find any busy worker with excess load in its subtree, 
it will try to find one outisde its subtree as follows. It first determines a set 
of busy workers outside its subtree that are not closer to any other idle 
worker. Then, it determines the nearest node N that has any P with excess 
load of those busy workers by investigating nodes in its branch. After that, 
Q performs fast backtracking to the node N as long as none of the 
following situations occurs: 

1. reaching a sequential node that should be processed, or 

2. P's private work is exhausted, or 

3. P is requested by another idle worker. 

After backtracking to the node N, P will be in Q's subtree. Then (2 uses 
the mechanism described in Section 5.2.1 to select a new P that currently 
has maximum load within its new subtree. 

In order to allow other idle workers, in the same situation as Q, to 
select other busy workers simultaneously, we make P and (2 invisible to 
those idle workers. The mechanism used for supporting invisible workers is 
as follows. There is an additional global bitmap, invisibleworkersmap, that 
contains workers similar to Q and P. When an idle worker Q wants to 
reserve a busy worker P while backtracking, Q sets the two bits 
corresponding to Q and P in the invisibleworkersmap. When Q either 
requests sharing from P or will do something else, Q resets these two bits. 
This invisibleworkersmap will be considered only by backtracking idle 
workers to determine the visible workers in the system. 

Notice that P could be requested for sharing by an idle worker that 
has P in its subtree as described in Section 5.2.1. When Q stops back- 
tracking for any of these reasons, it will make itself and P visible again. 

The idle worker Q determines busy workers, that are outside its 
current subtree and are not closer to any other idle worker as follows. It 
first determines which workers are visible and busy (visible-busy-set), and 
which are visible and idle (visible-idle-set) outside its subtree. It determines 
those workers from workersbitmap of its current node, the invisible- 
workersmap, and the idlemap. Then, Q removes from its visible-busy-set 
workers that are in visible-idle-set subtrees. Positions of those idle workers 
are known from their currentnode registers. Notice that if Q itself is in any 
idle worker subtree, Q should not backtrack because that idle worker is in 
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a better position on the tree for requesting sharing. Therefore, before Q 
backtracks it has to check whether it is in a subtree of any idle worker of 
the visible-idle-set. One possible way to perform this check efficiently is that 
Q adds itself to the visible-busy-set before removing any worker, and Q 
checks if it is removed from this set when some workers are removed. If 
removing workers from the visible-busy-set terminates and Q is still in this 
set, Q could backtrack and not otherwise. 

The mechanisms described in this section allow Q to stop back- 
tracking in situations shown in Fig. 3 (a) and (b), but not in (c). In Fig. 3 
(a), P is in Ql 's  subtree. In Fig. 3b, Q is in Q2's subtree, i.e. Q2 is closer 
to P. In Fig. 3c, P is not in Q 3's subtree, and Q finds P visible before Q 3 
does. 

5.3.  Id le  W o r k e r s  

The third part of the basic algorithm is the role of idle workers when 
there is neither any accessible live nodes nor busy workers with excess 
private load. In this case, idle workers will stay at nodes that allow newly 
generated work to be shared with low overhead. In Section5.3.1, we 
discuss heuristics that attempt to achieve that. 

The measure of excess load used in Muse is the number of private 
unexplored alternatives. According to this measure, there can be a situation 
in which there is work at some shared nodes which is not visible to idle 
workers and this work is only visible to busy workers that will not generate 
any new work. In this situation, idle workers will be idle forever, although 
there is excess work in the system. In Section 5.3.2, we will discuss a 
mechanism that detects this situation and allows the idle workers to share 
that work. 

ql 

(a) Q does not backtrack. 

Fig. 3. 

5.3.1. Distributing Idle Workers 

The following heuristics attempt to distribute idle workers over the 
tree in such a way that when a busy worker generates work, an idle worker 

P 

(b) (~ does not backtrack. (c) Q backtracks. 

Matching Workers outside Q's Subtree. 
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will share this work with low overhead. An idle worker, Q, leaves (back- 
tracks from) its current node only if one of the following two situations 
occurs: 

1. there are busy workers outside Q's subtree and Q is not in the 
subtree of any other idle worker, or 

2. all workers in the current subtree are idle. 

In the first situation, each idle worker will block all other idle workers 
in its subtree from backtracking. Only topmost idle workers in nonoverlap- 
ping subtrees will backtrack until one of them reaches a node common to 
all workers in the system. Moving some idle workers to nodes common to 
many busy workers allows sharing of work to be started earlier when a 
worker generates work. If the new position of an idle worker becomes 
closer to a worker that generates work, sharing overhead decreases. But if 
the old position was closer to the worker that generates work, sharing 
overhead increases. Blocking idle workers from backtracking when they are 
in any idle worker's subtree allows none of those idle workers to lose its 
position. Experimental results have indicated performance improvements 
for this heuristic in comparison to different other heuristics for distributing 
idle workers over the tree. 

In the second situation, we allow idle workers to do fast backtracking 
to either the nearest sequential node or a node with a busy worker below. 
This is the right position for an idle worker to stay at for the following 
reasons. The last worker backtracking to a sequential node will take a 
branch from that node for processing and it might generate work. Also, for 
a node that has busy workers below, any of those workers might generate 
work. 

5.3.2. Finding Invisible Work 

The mechanism that finds invisible work for idle workers and allows 
sharing of that work is based on the following idea. When an idle worker, 
Q, cannot find work in the system and there are busy workers in its sub- 
tree, Q asks each of them to check if it has work in its branch. Q will try 
to ask workers, that have been busy for a long time and never asked before 
by any worker in the system. If any of them finds work, such work will be 
shared with Q. 

To support this idea, there is a global bitmap, mayaccessworkmap, 
which contains workers that may access shared work. It is initially empty 
(all bits are reset). On every sharing the two bits corresponding to the two 
workers involved on sharing will be set. When a busy worker is asked for 

828/t9/6-3 
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sharing and it turns out that the worker does not access shared work, the 
worker bit is reset. 

There is also a local bitmap for every worker, stablebusy, which 
contains workers that were busy for a certain amount of time within the 
current subtree. When a worker becomes idle, it sets its own stablebusy 
bitmap to the busy workers within its subtree. While there are busy 
workers within its current subtree, it updates its stablebusy bitmap by 
resetting bits corresponding to workers that become idle. After k iterations 
of investigating the busy workers within its current subtree, it determines 
workers that were busy during the k iterations and never asked for sharing 
after their last sharing by investigating its stablebusy bitmap and the 
mayaccessworkmap. (The selected value of k for the Muse implementation 
on bus-based machines is 10.) Bits that are set in both bitmaps correspond 
to these workers. The idle worker could ask these workers for sharing, but 
it asks only those that are not closer to any other idle worker as described 
in Section 5.2. If any of these workers accesses shared work, that work will 
be shared by the idle worker. Otherwise, the busy worker will refuse the 
sharing request, reset its bit in the mayaccessworkmap, and mark shared 
nodes that are not marked as dead nodes by setting their nearest-livenode 
field to dummy value (see Section 5.1). 

This mechanism allows a busy worker, that does not generate new 
work after sharing and does not access a live node, to be asked for sharing 
at most once. It also allows that worker to mark shared nodes as dead to 
avoid doing that later on. That is, this mechanism incurs almost no extra 
overhead for busy workers. 

6. C U T  A N D  S E Q U E N T I A L  S I D E - E F F E C T S  

The current implementation of Muse supports full Prolog language 
with its standard semantics. It also supports asynchronous (parallel) side- 
effects and internal database predicates. In this implementation we have 
simple mechanisms for supporting cut and all standard Prolog side-effects 
predicates (e.g., read, write, assert, retract, etc.). 

A simple way to guarantee the correct semantics of sequential side- 
effects is to allow execution of such side-effects only on the leftmost branch 
of the whole search tree. The current Muse implementation does not 
support suspension of branches. That is a worker that executes a sequential 
side-effect predicate on a branch, which is not leftmost of the whole tree, 
will wait until that branch is leftmost of the tree. Similarly, for supporting 
findall predicate a worker that generates a findall solution will wait until 
its branch is leftmost of a proper subtree. 

The effect of cut N on a branch is to prune all branches to the right 
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of the branch in a subtree rooted by the node N. In the current implemen- 
tation of cut, when a worker executing cut is not leftmost in the relevant 
subtree, it will prune as much as it can and leave the pruning of the 
remaining branches to a worker to its left and then proceed with executing 
operations following the cut. When a worker detects that all left branches 
have failed, it will try to prune as much as it can until all branches within 
the scope of the cut are pruned. An idea of this cut algorithm has been 
proposed in Ref. 24. 

In general, supporting cut, findall, and side effects requires efficient 
mechanisms for checking whether or not the current branch is leftmost in 
a tree. Also, efficient mechanisms for identifying workers working on 
branches to the right are required for supporting cut. In this section we 
discuss such mechanisms. 

In the current Muse implementation, we have a very simple represen- 
tation of a Prolog search tree. A worker can move only on its branch; i.e., 
there are no extra pointers in the nodes to the sibling nodes. The advantage 
of this simple representation is that adding and removing nodes are very 
efficient operations--neither locking overheads nor extra overheads for 
maintaining the topology of the tree are needed. The disadvantage is that 
a worker cannot traverse nodes on the other branches. This complicates 
the task of the Muse scheduler to perform a leftmost check, and to identify 
workers on branches to the right. To illustrate how the Muse scheduler 
carries out these operations, we first describe the representation of a Prolog 
search tree in the current Muse implementation. 

6.1. Tree Representation 

A Prolog search tree is represented in the current implementation of 
Muse as follows. Each shared node is associated with a shared frame 
containing a workersbitmap identifying workers accessing the node (and 
other information see Section2). Each worker sharing a node has a 
choicepoint frame pointing to the shared frame associated with the node. 
Each alternative of a node is associated with its number. Each worker 
exploring an alternative of a node keeps the alternative number, alt- 
number, in its choicepoint frame associated with the node (or in a separate 
stack). Figure 4 shows the representation of a tree of two nodes a and b, 
and three workers X, Y, and Z. Each worker keeps two choicepoint frames 
in its choicepoint stack corresponding to the nodes a and b. The alt-number 
field in each choicepoint frame contains the corresponding alternative 
number of the node. For  worker X, alt-number is 1 in each of its 
choicepoint frames. 
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Fig. 4. Representation of a Tree. 

6.2.  L e f t m o s t  C h e c k  

Let us suppose that the worker Y in Fig. 4 wants to check if its branch 
is leftmost. It starts from the bottom-most shared node, b, determines the 
other workers accessing b (from the shared frame associated with b), and 
then investigates alt-number in choicepoint frames of these workers to 
determine if  any of them has alt-number less than 2. It finds X with alt- 
number 1. So, Y is not leftmost. But if X wants to perform the same check, 
it will not find any other that has alt-number less than its alt-number in 
choicepoint frames associated with the nodes b and a. Thus, X is leftmost. 

A leftmost algorithm based on this idea is as follows. When a worker 
P wants to check wether it is leftmost on a tree rooted by a shared node 
N, it starts from the bottom-most shared node on its branch, reads 
workersbitmap associated with the node to determine other workers sharing 
the node, investigates alt-number corresponding to that node for the other 
workers in the workersbitmap. The worker P finds alt-number field of each 
other worker by calculating the remote address from the offset of its alt- 
number field in its choicepoint stack and the base address of each 
choicepoint stack of the other workers. If P finds any of these aIt-number 
less than its alt-number, P is not leftmost. But if P does not find any alt- 
number less than its alt-number and the current node is not N, P will repeat 
the same operation at the next upper node and so on until reaching N. 

According to this algorithm, the worker X in Fig. 4 investigates four 
remote choicepoint frames (two at the node b, and then two at the node 
a). For  a branch with n shared parallel nodes and a system of W workers, 
the number of remote choicepoint frames to be investigated will be 
O(n * W). Also, all the n nodes will be investigated. This means that using 
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this algorithm without substantial improvements is impractical for 
efficiency reasons. 

We present improvements to this algorithm that make it practical and 
reasonably efficient. The first improvement reduces the number of nodes in 
a branch to be investigated. The second improvement reduces the number 
of remote choicepoint frames to be investigated from O(n, W) to only 
W -  1. The third improvement reduces the number of remote choicepoint 
frames to be investigated to zero. 

6.2. 1. Reducing Investigated Nodes 

The first improvement reduces the number of nodes to be investigated 
by a worker checking if its branch is leftmost. It is based on associating 
with each shared node a pointer, nearest-leftnode, pointing to the nearest 
upper node with a branch to its left. That node will be investigated next 
when a worker is leftmost at the current node. A worker updates nearest- 
leftnode field of nodes on its branch while performing its leftmost check and 
sharing its private nodes. When a worker performs a leftmost check and 
detects a node N in its branch with a branch to its left, it updates all shared 
nodes below N to point to N. When a worker completes a leftmost check, 
all nodes in its branch will point to the root of the tree. A next leftmost 
check in the same branch reaches the root from any node on the branch 
indicating determination of a leftmost check on the whole tree. 

Each Muse worker shares several private nodes at a time. The nearest 
upper node that could have a branch to its left is the bottom-most shared 
node. So, when a worker makes its private nodes shareable, it sets nearest- 
leftnode field in each private node to the bottom-most shared node. An 
optimization is to allow a leftmost worker at a bottom-most shared node 
to set nearest-leftnode field of its private nodes to the nearest upper node 
with a branch to its .left. This improvement is also useful to all the Aurora 
schedulers, specially the Bristol scheduler. 

6.2.2. Reducing Remote Access 

The idea of the second improvement is that when a worker in an 
alternative L at node N performs a leftmost check, it will investigate only 
workers in the other alternatives at N. It determines these workers from the 
difference between workersbitmaps at N and its child node in the alternative 
L. (Each choicepoint frame associated with a shared node contains a child 
field that refers to choicepoint frame associated with its child node.) If N 
is the bottom-most shared node in a branch, all other workers in N will 
be investigated. For  instance in Fig. 4, the worker X will investigate 
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choicepoint frames Of Y and Z at the node b, but none at the node a; there 
are no new workers at a. 

By this improvement only one choicepoint frame of each of the other 
workers will be investigated in a complete leftmost check on the whole tree. 

6.2.3. Avoiding Remote Access 

The third improvement reduces the number of remote choicepoint 
frames to be investigated to zero on performing a leftmost check. It is 
based on associating with each shared node a bitmap, active- 
alternativesmap, for indicating active alternatives at the node. When an 
alternative is taken from a shared node the corresponding bit is set, and 
when an alternative fails (i.e., when all workers on the alternative are 
backtracked) the corresponding bit is reset. (The size of the active- 
alternativesmap is equal to the maximum number of alternatives in a 
parallel node; i.e., number of clauses in a parallel predicate.) A worker on 
an alternative L of a shared node is leftmost at that node only when all bits 
less than L are reset. 

This improvement reduces the number of remote choicepoint frames 
to be investigated on each leftmost check to zero. Efficient implementation 
of this improvement requires limiting the maximum number of clauses in 
each parallel predicate to the size of one machine word. (For instance, 32 
clauses can be represented by a 32-bits word). This can be done by 
program transformation. This improvement has not been implemented yet. 

6.3. Cut 

The effect of cut N on a branch is to prune all branches to the right 
of the branch in a subtree rooted by the node N. It is implemented in Muse 
as follows. N can be either a private node or a shared node. In the former 
case, cut is processed by a worker which executes it exactly as in the 
sequential Prolog implementation. In the latter case, we have two different 
situations: (1) cutting branch is leftmost, or (2) cutting branch is not 
leftmost. In situation (1), the worker executing cut signals all other workers 
in the node N to backtrack to parent of N, it removes itself from N and all 
shared nodes below N in its branch, deallocates its choicepoint frames 
associated with those nodes, and then proceeds with processing the opera- 
tions following the cut. (Deallocation of a shared frame is done by the last 
worker backtracking from the corresponding node.) 

In situation (2), the worker executing cut finds a shared node M below 
N that has a branch to its left. It removes unexplored alternatives at M, 
saves at M information describing alternative number in the current 
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branch at M, say L, and scope of cut (i.e., N) only if there exist upper 
branches to be pruned, and signals all workers on branches to its right to 
backtrack to parent of M. A simple way of identifying these workers is to 
investigate choicepoint frames of all the other workers at M and signal 
each worker that has its alt-number equal to or greater than L. Another 
efficient way for identifying these workers (based on the idea presented in 
Section 6.2.2) is to first find all the other workers on the child node of M 
in the alternative L, and then investigate only choicepoint frames of the 
new workers at M. The new workers at M are obtained from the difference 
between workersbitrnaps of M and its child node in the  alternative L. 

In order to avoid extra overhead by every worker backtracking to M 
for performing a leftmost check, we save also at M the name of one of the 
workers that are on branches to the left of L. Only that worker will per- 
form a leftmost check for the alternative L at M. If while performinig a 
leftmost check there is another worker Q, that has its alt-number less than 
L and there exist upper branches to its right to be pruned, Q will be saved 
on the node M and the backtracking worker tries to find work on the tree. 
Otherwise, the backtracking worker will restart pruning upper branches by 
examining every node in its branch starting from M's parent until reaching 
the node N. The worker will perform the following at each node: (1) it 
determines the alternative number, L 1, of the node in the current branch 
from its choicepoint frame associated with that node, (2) finds the 
difference between workersbitmaps associated with the node and its child 
node in the current branch, (3) signals workers on alternatives greater than 
L 1, (4) removes the remaining unexplored branches, and (5) checks if there 
is any worker on alternatives less than L 1. If there exists such worker, the 
name of that worker and L 1 will be saved at the node. But if there is no 
such a worker and N is not reached, the same procedure will be performed 
on the next upper node in the current branch. 

7. P E R F O R M A N C E  RESULTS 

In this section we discuss the extra overhead for maintaining informa- 
tion that support cut, findall, and sequential side-effect constructs. We also 
show the performance of the Muse scheduler for different class of 
benchmarks. The timing results of Muse will be compared with the corre- 
sponding results for Aurora (7) with the Manchester scheduler. ~24) This gives 
some ideas about how the Mure scheduler performs in comparison with 
another good scheduler for a similar system. Both Aurora and Muse are 
based on the same sequential Prolog, SICStus version 0.6. Neither Muse 
nor Aurora with the Manchester scheduler handles speculative work 
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properly. [A new Aurora scheduler which handles speculative work 
properly is under development at the University of Bristol.] The main 
difference between Muse and Aurora on implementation of cut, findall, and 
sequential side-effect constructs is that Aurora supports suspension 
of branches whereas Muse does not. For instance, an Aurora worker 
executing cut in a nonleftmost branch of the cut node will suspend the 
branch and try to find work outside the cut subtree. In Muse, the pruning 
operation suspends while the worker proceeds with the next operation 
following the cut as described in Section 6.3. Other differences between 
Aurora and Muse are that: Aurora uses a more general representation of 
a Prolog search tree than the one used in Muse, and Aurora is based on 
another model for Or-parallel execution of Prolog.(291 Finally, both run on 
the same Sequent Symmetry $81, with 16 processors and 32 Mbytes of 
memory, which is available to us at SICS. The total scheduling overhead 
in Muse will also be discussed. 

7.1. Benchmarks 

The group of benchmarks used in this paper can be divided into two 
sets: the first set (8-queensl, 8-queens2, tina, salt-mustard, parse2, parse4, 

parseS, db4, db5, house, parsel, parse3, farmer) has relatively well under- 
stood granularity, and has been used by several researchers in previous 
studies. (1'2~24'27~ 8-queensl and 8-queens2 are two different N queens 
programs from ECRC. tina is a holiday planning program from ECRC. 
salt-mustard is the "salt and mustard" puzzle from Argonne. 
parset-parse5 are queries to the natural language parsing parts of 
Chat-80 by F. C. N. Pereira and D. H. D. Warren. db4 and db5 are the data 
base searching parts of the fourth and fifth Chat-80 queries, house is the 
"who owns the zebra" puzzle from ECRC. Jarmer is the "farmer, wolf, 
goat/goose, cabbage/grain" puzzle from ECRC. This set contains 
benchmarks with coarse grain parallelism (8-queensI, 8-queens2, tina, salt- 
mustard), with medium grain parallelism (parse2, parse4, parse5, db4, db5, 
house), and with fine grain parallelism (parsel, parse3, .farmer). It is 
divided into tree groups known in the following sections by High, Medium, 
and Low respectively. This set of benchmarks does not contain major cuts. 
All the benchmarks of the first set took for all solutions of the problem. 

The second set of benchmarks (mml, mm2, ram3, mm4, numl, hum2, 
num3, num4) contains major cuts and has been used for studying different 
cut schemes. (zz) mm is a mastermind program with four different secret 
codes, numbers program generates the two largest numbers consisting of 
given digits and fulfilling specified requirements. The num was run four 
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different queries. This set is divided into two groups known in the following 
sections by m m  and n u m .  All the benchmarks of the second set look for the 
first solution of the problem. 

7.2 .  R e s u l t s  o f  B e n c h m a r k s  w i t h  no  M a j o r  C u t s  

To evaluate the extra overhead for maintaining information that sup- 
port  cut, findall, and sequential side-effect constructs, we compare runtimes 
of the first set of the benchmarks on a version of Muse supporting full 
Prolog with another version that supports a parallel version of Prolog, 
named Commit Prolog. (1) Commit Prolog is a Prolog language with 
cavalier commit (3) instead of cut, asynchronous (parallel) side-effects and 
internal database predicates instead of the synchronous (sequential) coun- 
terparts, and sequential and parallel annotations. The standard Prolog 
semantics of cut and sequential side-effects was obtained on Commit 
Prolog by following a few rules that restrict the degree of Or-parallelism. (1~ 

Table I presents the runtimes (in seconds) from the execution of the 

Table I. Runtimes (in Seconds) on Muse Version of Commit Proiog 
for the First Set of the Benchmarks 

Workers 
Benchmarks 1 4 8 12 15 SICStus 

8-queensl 6.83(0.92) 1.72(3.65) 0.87(7.22) 0.59(10.6) 0.48(13.1) 6.28 
8-queens2 t7.38(0.95) 4.36(3.77) 2.21(7.43) t.49(11.0) 1.20(13.7) t6.43 
tina 14.44(0.95) 3.67(3.74) 1.90(7.22) t.31(10.5) 1.08(12.7) 13.71 
salt-mustard 2.10(0.96) 0.54(3.74) 0.28(7.21) 0.19(10.6) 0.16(12.6) 2.02 

�9 High)Z 40.75(0.94) 10.29(3.74) 5.26(7.31) 3.59(10.7) 2.93(13.1) 38.44 

parse2,20 5.99(0.95) 1.78(3.20) 1.28(4.45) 1.10(5.17) 1.11(5.13) 5.69 
parse4,5 5.53(0.95) 1.50(3.51) 0.93(5.66) 0.76(6.92) 0.73(7.21) 5.26 
parse5 3.92(0.95) 1.02(3.66) 0.57(6.54) 0.46(8.11) 0.45(8.29) 3.73 
db4,10 2.39(0.95) 0.65(3.49) 0.39(5.82) 0.30(7.57) 0.28(8.11) 2.27 
db5,10 2.91(0.95) 0.80(3.45) 0.47(5.87) 0.36(7.67) 0.33(8.36) 2.76 
house,20 4.41(0.96) 1.33(3.18) 0.83(5.10) 0.66(6.41) 0.62(6.82) 4.23 

Med Z 25.15(0.95) 7.14(3.35) 4.53(5.28) 3.69(6.49) 3.58(6.69) 23.94 

parsel,20 1.59(0.94) 0.60(2.50) 0.56(2.68) 0.59(2.54) 0.63(2.38) 1.50 
parse3,20 1.36(0.96) 0.56(2.32) 0.50(2.60) 0.52(2.50) 0.54(2.41) 1.30 
farmer,100 3.19(0.96) t.38(2.22) 1.39(2.21) 1.38(2.22) 1.40(2.19) 3.07 

�9 Low ~ 6.14(0.96) 2.54(2.31) 2.46(2.39) 2.49(2.36) 2.57(2.28) 5.87 

72.04(0.95) 19.98(3.42) 12.25(5.57) 9.79(6.97) 9.11(7.49) 68.25 
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first set of the benchmarks on the Muse version of Commit Prolog. The 
runtimes given are the shortest obtained from eight runs. Times are shown 
for 1, 4, 8, 12, 15 workers with speedups given in parentheses. These 
speedups are relative to running times of SICStus0.6 on one Sequent 
processor shown in the last column. For benchmarks with small runtimes 
the timings shown refer to repeated runs, the repetition factor being shown 
in the first column. ~ in the last row corresponds to the goal: (8-queensl, 
8-queens2, tina, salt-mustard, parse2*20, parse4,5, parse5, db4.10, db5,10, 
house,20, parsel,20, parse3*20, farmer, lO0). That is, the timings shown in 
the last row correspond to running the whole first set of the benchmarks 
as one benchmark. In the following tables, the last row for each group of 
a set of benchmarks represents the whole group as one benchmark. 

For all programs in Table I, except parsel-parse3 and farmer, 
increasing the number of workers results in shorter runtimes. For 
parsel- parse3 and farmer, increasing the number of workers beyond a 
certain limit results in slightly longer runtimes. This degradation is due to 
the extra runtime scheduling overhead for programs with fine granularity. 
The scheduling overhead will be discussed in Section 7.4. 

Table II presents the runtimes (in seconds) from the execution of the 
first set of the benchmarks on Aurora and the Muse version of full Prolog. 
The runtimes given are for each group of the first set of the benchmarks 
and for the whole first set of the benchmarks. If we compare the runtimes 
for Muse in Tables I and II, we find that Muse of full Prolog is slower than 
Muse of Commit Prolog by around 0 % for the 1 worker case, 2 % for the 

Table II. Runtimes (in Seconds) on Aurora and Muse Version of Full Prolog, 
and the Ratio Between Them for the  First Set of the Benchmarks 

lll,,lll,,ll,,ll,, 

Workers 
Benchmarks 1 4 8 12 15 SICStus 

�9 High Aurora 51.97(0.74) 13.28(2.89) 6.76(5.69) 4.58(8.39) 3.74(10.3) 38.44 
<) Med Aurora 30.20(0.79) 9.09(2.63) 6.25(3.83) 5.37(4~46) 5.09(4.70) 23.94 
o Low Aurora 7,31(0.80) 3.76(156) 3,70(1.59) 3.94(1.49) 4.14(1.42) 5.87 

89.48(0.76) 26.16(2.61) 16.75(4.07) 13.94(4.90) 13,00(5.25) 68.25 

�9 High Muse 41.00(0.94) 10.61(3.62) 5.32(7.23) 3.64(10.6) 2.98(12.9) 38,44 
-k Med Muse 25.24(0,95) 7.23(3.31) 4.64(5,16) 3.85(6.22) 3.70(6,47) 23.94 
�9 Low Muse 6.16(0.95) 2,59(2.27) 2.52(2,33) Z58(2,28) 2.63(2.23) 5.87 

72.40(0.94) 20.46(3.34) 12.50(5.46) 10.09(6.76) 9.31(7.33) 68.25 

Aurora/Muse t.24 1.28 t.34 1.38 1.40 - -  
I I I  I I I I I  I I III I I I I I I  II I 
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4 workers, 2 % for 8 workers, 3 % for t2 workers, and 2 % for 15 workers. 
This means that the extra overhead for maintaining information that 
support cut, findalt, and sequential side-effect constructs in Muse is very 
low. Table II shows in the last row the ratio of the running times on 
Aurora to the running times on Muse for the first set of the benchmarks. 
Aurora timings are longer than Muse timings by 24 % to 40 % between i 
to 15 workers. 

Figure 5 shows the speedup curves of Muse and Aurora for the three 
groups of the first set the benchmarks: High, Medium, and Low. Notice 
that all spedups in this paper are relative to SICStus0.6. The results shown 
in Table II and Fig. 5 illustrate how the Muse scheduler performs welt on 
each group of the first set of the benchmarks, 

7.3. Results of Benchmarks with Major Cuts 

Here we show timing results for programs with major cuts. Table III 
presents the runtimes (in seconds) from the execution of the second set of 
the benchmarks on the Muse version of full Prolog. The runtimes given are 
the mean values obtained from eight runs. For programs with (major) cuts, 
mean values are more reliable than best values because scheduling of 
speculative work changes from one run to another causing larger variations 
of timing results. 
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Tablelll.  

, , , , , , , , , , , , , , , , , , ,  , , ,  

Benchmarks 

Ali and Karlsson 

Runtimes (in Seconds) on Muse for the Second Set 
of the Benchmarks 

l l lnllmltHllUlltl l l l l , , I , I  

Workers 
4 8 12 15 SICStus 

ram1 4.10(0.96) 2.05(L93) 1,16(3.41) 0.99(3.99) 0.93(4.25) 3.95 
ram2 3,23(0,98) 1,09(2.90) 0,8t(3,90) 0.59(5,36) 0.51(6.20) 3.t6 
ram3 9,26(0.97) 3,t7(2.83) 2.12(4.24) t.55(5,79) t,39(6.46) 8,98 
ram4 t5.80(0.96) 5.06(3,00) 2.75(5.52) 1.79(8,47) 1.56(9,72) 15.t7 

�9 m m Y ~  32.39(0.97) 11.37(2.75) 6.84(4,57) 4.93(6.34) 4.39(7,12) 31.26 

numl 1.63(0.99) 0.94(1.72) 0~52(3,12) 0.31(5.23) 0.28(5.79) 1.62 
num2 2.67(0.99) 0.91(2.91) 0.47(5,64) 0.34(7.79) 0.27(9.81) 2,65 
hum3 2.86(0.99) 0.83(3.41) 0,44(6,43) 0.31(9.13) 0.27(10.5) 2.83 
hum4 3.69(0.99) 0.95(3.84) 0,50(7,30) 0.33(11,1) 0.28(13,0) 3.65 

num ~ 10.85(0.99) 3.63(2.96) 1.93(5.57) 1.29(8~33) 1.10(9.77) 10.75 

2 43.24(0.97) 15.t30(2.80) 8.77(4.79) 6.22(6.75) 5.49(7.65) 42.01 

Table IV presents the runtimes (in seconds) from the execution of the 
second set of the benchmarks on Aurora, The runtimes given are for each 
group of the second set of the benchmarks and for the whole second set of 
the benchmarks. It also shows in the last row the ratio of the running times 
on Aurora to the running times on Muse for the second set of the 
benchmarks as one benchmark, Aurora timings are longer than Muse 
timings by 19 % to t01% between 1 to 15 workers. There are two possible 
explanations for this difference of performance results between Muse and 
Aurora for this set of benchmarks, The first one is that dispatching on the 
bottom-most used in Muse allows less speculative work than dispatching 

Table IV. Runtimes (in Seconds) on Aurora and the Ratio Between 
Aurora and Muse Timing for the Second Set of the Benchmarks 

Workers 
Benchmarks 1 4 8 12 15 SICStus 

(3 mmAurora 39.39(0.79) 22.73(1.38) 13,28(2.35) 10.75(2.91) 9.38(3,33) 
�9 numAurora 12.09(0.89) 4.54(2,37) 2.56(4.20) 1.95(5.5t) 1.65(6.52) 

51.48(0.82) 27.27(1.54) 15.84(2.65) 12.70(3.31) tl,03(3,81) 

Aurora/Muse t.19 1.82 1.81 2.04 2.0t 
i i 

31.26 
10.75 

42,01 
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Fig.  6. S p e e d u p s  of  M u s e  a n d  A u r o r a  for  the Second  

Set o f  the  B e n c h m a r k s .  

on the topmost used in Aurora (by the Manchester scheduler). The second 
reason is that for those programs suspension of branches as used in Autora 
is not the best. In general, better handling of speculative work for cut 
programs is the best. 

Figure 6 shows the speedup curves of Muse and Aurora for the two 
groups of the second set of the benchmarks: mm and num. These curves 
correspond to speedups obtained from Tables III and IV. 

7.4. Scheduling Overheads 

In this section, we present and discuss briefly the time spent in the 
scheduling activity in the Muse version of full Prolog. A Muse worker time 
is distributed over the following three basic activities: 

1. Prolog: time spent in executing Prolog, checking arrival of inter- 
rupt signals, and maintaining value of the local load. 

2. Idle: time spents in looking for a worker with excess local work 
and distributing idle workers on the tree when there is no 
available work in the system. 
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3. Scheduling: time spent in scheduling activity. It includes time spent 
in sharing nodes, grabbing work from shared nodes, selecting busy 
workers for sharing nodes, copying data, synchronization, moving 
up within the shared region, spin lock, signalling, etc. 

Table V shows the total time spent in each activity, with the percent 
of that time relative to the total time, for the first set of the benchmarks. 
Times shown in Table V have been obtained from an instrumented system 
of Muse on Sequent Symmetry. Those times include the time spent in the 
measurements. The times obtained from an instrumented system are longer 
than those obtained from an uninstrumented system by around 10%. We 
believe that the percentage of time spent in each activity obtained from the 
instrumented system reflects what is happening in the uninstrumented 
system. 

As mentioned in Section 7.1, this set of benchmarks contains four 
benchmarks with coarse grain parallelism, six with medium grain 
parallelism, and three with fine grain parallelism. This set also represents 
benchmarks with lack of parallelism. Lack of parallelism explains the 
reasons of decreasing the percentage of the Prolog time and increasing the 
percentage of the Idle time when increasing the number of workers in 
Table V. The summation of these two percentages is almost constant (only 
4.1% difference) from 8 workers to 15 workers. The Scheduling, overhead 
increases from the 4 workers case to the 8 workers case by 5.7 %, from the 
8 workers to the 12 workers by 2.3, and from the 12 workers to the 15 
workers by 1.8 %. 

A possible explanation for the increase of overhead when increasing 
the number of workers is shown in Table VI, which shows the effect of 
increasing the number of workers on the number of tasks and task size 
(expressed as a number of Prolog calls per task) for the first set of the 
benchmarks. In Table VI granularity of parallelism is decreased from the 4 

Table V. Total Times (in Mill iseconds) Spent in Basic Activities 
of a Muse Worker  for the First Set of the Benchmarks 

Muse Workers 
Activity 4 8 12 15 

Prolog 80885(90 .0 )  83158(85.7)  84829(63.8)  86424(56.2) 
Idle 2893(3.2) 13010(11 .8 )  28488(21.4)  41765(27.2) 

Scheduling 6 0 6 9 ( 6 . 8 )  13684(12 .5 )  19731(14.8)  25576(16.6) 

Total 89847(100.0)  109853(100.0) 133048(100.0) 153765(100.0) 
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Table VI. Average Number of Tasks and Task Sizes for the First Set 
of the Benchmarks 
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Muse Workers 
4 8 12 15 

Total Number of Tasks 13807 28145 34530 39537 
Prolog Calls per Task 64 31 26 22 

Table VII. Scheduling Overhead per Task for the First Set of the Benchmarks 

Muse Workers 
4 8 12 15 

Scheduling Overhead per Task in Prolog calls 4.80 5.10 6.05 6.51 

workers case to the 8 workers case by a factor around 2 whereas from the 
8 workers to the 12 workers by a factor 1.2, and from the 12 workers to 
the 15 workers by a factor 1.2. 

Tables V and VI illustrate that the scheduling overhead increases 
when reducing the granularity of parallelism. 

The number of Prolog calls that are equivalent to scheduling overhead 
per task are shown in Table VII. Figures in Table VII are calculated from 
Tables V and VI. Table VII illustrates that the scheduling overhead is 
equivalent to around 5-7 Prolog calls per task, where the time of a Prolog 
procedure call is between 83 to 100 microseconds. Similar figures for 
scheduling overhead in terms of Prolog calls per task are reported for 
Aurora with the Manchester scheduler327) The time of a Prolog procedure 
call for Aurora is longer than the corresponding time for Muse by a factor 
around 1.20-1.25, the relative speed of the Muse engine to the Aurora 
engine. That is, the time of scheduling overhead of Muse is less than the 
time of scheduling overhead of Aurora with the Manchester scheduler by 
a factor around 1.20-1.25. 

Both Muse and Aurora with the Manchester scheduler attempt to 
minimize continuous increase of runtime scheduling overhead as the 
number of workers is increased. They achieve that by supporting 
mechanisms that avoid a continuous decrease in task sizes as the number 
of workers grows. The idea used by the Muse system is that when a busy 
worker reaches a situation at which it has only one private parallel node, 
it will make its private load visible to the other workers only when that 
node is still alive after a certain number, n, of Prolog procedure calls. The 
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value of n is a constant value selected in the order of the number of Prolog 
procedure calls equivalent to the scheduling overhead per task. It is 5 on 
Sequent Symmetry. 

The idea used by the Manchester scheduler to avoid a continuous 
decrease in task sizes with increasing workers is that each busy worker 
checks for arrival of signals from other workers on every N Prolog proce- 
dure calls. The value of N is also 5 on Sequent Symmetry. 

The Muse solution costs extra runtime overhead only when a worker 
has only one private parallel node. It also limits the parallelism at this 
situation only, which in turn avoid a continuous decrease in task size. The 
Manchester scheduler solution costs extra runtime overhead on every 
Prolog procedure call for updating a counter. The private work will be 
released on every N Prolog procedure calls. 

8. FUTURE W O R K  

Our future work on the current Muse system is to support free findall 
construct as it is defined in Ref. 19, and to use more advanced implementa- 
tion schemes for cut, commit, findall, and sequential side-effects. Note, in 
the current Muse implementation, commit is translated into cut. 

In the current implementation of cut, we do not maintain information 
describing alternatives with cut. Cut schemes based on maintaining such 
information reduces speculative work. An advanced cut scheme based on 
one of the scheme presented in Ref. 22 will be implemented. 

In the current implementation of assert when a worker is going to 
assert a rule, it waits until its branch is leftmost on the whole tree. An idea 
is to allow the worker to perform most of the work needed for assert and 
delays insertion of the rule until the branch is leftmost on the whole tree, 
and the worker proceeds with operations following assert. Information 
describing the uncompleted assert will be saved in the nearest upper node, 
M, in the branch with a branch to its left. The last worker, which back- 
tracts to M from left branches that have caused delay of completing assert, 
will take care of that uncompleted assert, if it is not already removed by a 
cut. That worker either moves the information describing the uncompleted 
assert to another upper node with a branch to its left, or completes it if 
current branch is leftmost on the whole tree. 

Similarly, adding a generated solution of findall requires the current 
branch to be leftmost on a proper subtree. This idea could be used also 
here to perform most of the work needed for generating a solution and 
delay insertion of the solution until its branch is leftmost on the subtree, 
and the worker proceeds with the next operation. 

Regarding calling dynamic predicates and the other side effects, like 
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retract and input/out, a mechanism for suspending branches is needed. An 
idea of suspension is to save in the shared-memory space the difference 
between the current state of a worker, which is going to suspend its branch, 
and the state corresponding to the nearest upper node, M, with a branch 
to its left. Information describing the suspended branch and the location of 
saved part of state will be stored in M. As described earlier, the last 
worker, which backtracks to M from left branches that have caused 
suspension of a branch, will take care of the suspended branch, if it is 
not already removed by a cut. That worker either moves information 
describing the suspended branch(es) to another upper node, N, with a 
branch to its left along with the difference between the computation state 
at M and N, or restarts the suspended branch if it is leftmost on the whole 
tree. When a worker is going to restart a suspended branch, it first gets the 
state corresponding to that branch from the shared-memory space by using 
information stored in the node M. 

Now how to determine the difference of states between two nodes. It 
is known in the Muse model by incremental copying (see Ref. 1 for details). 

9. C O N C L U S I O N S  

The principles and implementation of scheduling work and supporting 
full Prolog in Muse have been presented. Many of the presented algorithms 
are also applicable to other OR-parallel Prolog approaches. The perfor- 
mance results are very encouraging and the extra overhead for maintaining 
information that support cut, findall, and sequential side-effect constructs 
in Muse on Sequent Symmetry is very low (around 0 % for one worker, 
and 2%-3 % for 15 workers). The total scheduling overhead per task on 
Sequent Symmetry for the set of benchmarks used in Ref. 27, is equivalent 
to around 5-7 Prolog calls per task. For programs with cuts, dispatching 
on the bottom-most gave much better performance results than dispatching 
on the topmost. The suggestions for improvements and new constructs 
mentioned in the paper will be implemented. The implementation of 
efficient and simple form of suspension of branches and speculative work 
will be examined. Using bitmaps in the presented algorithms limit the use 
of these algorithms for systems with too many workers. Mechanisms for 
large systems (like larger configuration of the Butterfly machine) will also 
be examined. 
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