
International Journal of Parallel Programming, Vol. 19, No. 6, 1990

Full Prolog
Or-Parallelism

Khayri A. M. Ali 1 and

and Scheduling
in Muse

Roland Karlsson 1

Received December 1990; Revised May 1991

Muse is a simple and efficient approach to Or-parallel implementation of the
full Prolog language. It is based on having multiple sequential Prolog engines,
each with its local address space, and some shared memory space. It is currently
implemented on a number of bus-based and switch-based multiprocessors. The
sequential SICStus Prolog system has been adapted to Or-parallel implementa-
tion with very low extra overhead in comparison with other approaches. The
Muse performanhce results are very encouraging in absolute and relative terms.

The Muse execution model and its performance results on two different
multiprocessor machines for a parallel version of Prolog, named Commit
Prolog, have been presented in previous papers. This paper discusses supporting
the full Prolog language and describes mechanisms being developed for
scheduling Or-parallelism in Muse. It also presents performance results of the
Muse implementation on Sequent Symmetry after supporting full Prolog. The
results show that the extra overhead associated with supporting the full Prolog
language is negligible.

KEY WORDS: Or-parallelism; full Prolog; multiprocessors; experimental
results; scheduling.

1, INTRODUCTION

A variety of approaches toward exploitation of parallelism in Prolog
programs are under current investigation. Many of these deal with efficient
implementation of Prolog on multiprocessor machines by exploiting either
Or-parallelism ~1-8) or Independent And-parallelism t9-11) or a combination
of both t~2-15). The Muse approach is one of those that exploit only
Or-parallelism. (~) Execution of a Prolog program forms a search tree.

Swedish Institute of Computer Science, SICS, Box 1263, S-t64 28 Kista, Sweden.

445

0885-7458/90/1200-0445506,00/0 �9 I990 Plenum Publishing Corporation

446 Ali and Karlsson

Or-parallel execution of a Prolog program means exploring branches of
a Prolog search tree in parallel. In the Muse approach (as in other Or-
paralM Prolog approaches, e.g., Aurora (7) and PEPSysC2)), Or-parallelism
in a Prolog search tree is explored by a number of workers (processes or
processors). [In this paper we try to be consistent with the Aurora ter-
minology/ 7)] This paper describes the basic mechanisms used for exploring
branches of a Prolog search tree by the Muse workers. It also describes
mechanisms for maintaining the sequential semantics of cut, findat and
side-effect constructs.

The Muse approach is based on having several sequential Prolog
engines, each with its local address space, and some shared memory space.
It is currently implemented on a bus-based shared memory machine
TP881V, from Tadpole Technology, with 4 (88100) processors, a bus-based
machine with local/shared memory with 7 (68020) processors constructed
at SICS, a bus-based shared memory S81, Sequent Symmetry, with t6
0386) processors, and switch-based shared memory machines, BBN
Butterfly I (GP1000) and II (TC2000), with 96 (68020) and 45 (88100)
processors respectively. The sequential SICStus Protog, (16) a fast, portable
system, has been adapted to Or-paralM implementation. The extra
overhead associated with this adaptation is very low in comparison with
the other approaches. It is around 3% for TP881V, and 5% for the
constructed prototype and Sequent Symmetry. The performance results of
Muse on the BBN Butterfly machines will be reported by Shyam Mudambi
at Brandeis University who has ported the Muse system into the BBN
Butterfly machines. Mudambi preliminary results are very promisingJ 17)
The Muse execution model and its performance results on the constructed
prototype and Sequent Symmetry machines for a parallel version of
Protog, named Commit Prolog, have been presented in previous
papers. ~a'18) Commit Prolog is a Prolog language with cavalier commit 2
instead of cut, asynchronous (parallel) side-effects and internal database
predicates instead of the synchronous (sequential) counterparts, and
sequential and parallel annotations. Cut and sequential side-effect seman-
tics could be obtained on Commit Protog by annotating Protog programs
according to some rules. (I~ In this paper, we discuss supporting the full
Prolog language without such annotation. Some parts of this paper has
been presented in Ref. 20.

The paper is organized as follows. Section 2 briefly describes the Muse
execution model. This helps for understanding the principles for scheduling
work in Muse. Section 3 discusses principles for scheduling work in Muse.

2 Cavalier commit prunes branches both to the left and right of the committing branch, and
is not guaranteed to prevent side-effects from occurring on the pruned branchesJ 19)

Full Prolog and Scheduling Or-Parallelism in Muse 447

Section 4 discusses principles for scheduling work in related approaches.
Section 5 presents and discusses the basic mechanisms for supporting
scheduling work in Muse. Section 6 discusses implementation of cut,
findall, and sequential side-effect constructs. Section 7 presents some
performance results of the Muse system. Section 8 discusses our plans for
the continued development of Muse. Section 9 concludes the paper.

2. M U S E E X E C U T I O N M O D E L - - A N O V E R V I E W

This section briefly describes the Muse execution model presented in
Refs. 1 and 18. We assume herein that the reader is familiar with Warren's
Abstract Machine (WAM)/21)

A node on a Prolog search tree corresponds to a Prolog choicepoint.
Nodes are either shared or nonshared(private). These nodes divide the
search tree into two regions: shared and private. Each shared node is
accessible only to workers within the subtree rooted by the node. Private
nodes are only accessible to the worker that created them. Another distinc-
tion is that a node can be either parallel or sequential. Alternatives from a
parallel node could be executed in parallel whereas alternatives from a
sequential node can only be executed one at time, from left to right. A node
is either live (having unexplored alternatives) or dead (no alternative to
explore).

A major problem introduced by Or-parallelism is that some variables
may be simultaneously bound by workers exploring different branches of a
Prolog search tree. The Muse execution model is based on having a num-
ber of sequential Prolog engines, each with its own local address space, and
some global address space shared by all engines. Each sequential Prolog
engine is a worker with its own stacks. [The assumed worker's stacks are:
a choicepoint stack, an environment stack, a term stack, and a trail The first
two correspond to the WAM local stack and the second two correspond to
the WAM heap and trail respectively/21)] The stacks are not shared
between workers. Thus, each worker has bindings associated with its
current branch in its own copy of the stacks.

This simple solution allows the existing sequential Prolog technology
to be used without loss of efficiency. But it requires copying data (stacks)
from one worker to another when a worker runs out of work. In Muse,
workers incrementally copy parts of the (WAM) stacks and also share
nodes with each other when a worker runs out of work. The two workers
involved in copying will only copy the differing parts between the two
workers states. This reduces copying overhead. Nodes are shared between
workers to allow dynamic load balancing which reduces the frequency of
copying.

448 Ali and Karlsson

To illustrate how workers share nodes in Muse, let us take a simple
system having two workers P and Q. A worker Q runs out of work on its
branch and a worker P has excess load (i.e., live nodes). Assume also that
Q is positioned at a node, N, which is common to P and Q (see Fig. la).
P allows Q to share its nodes by creating a data structure called shared
frame in a shared-memory space for each private node, pointing to each
shared frame from the corresponding choicepoint frame, and then copy to
Q all choicepoint frames corresponding to nodes younger than N. [In the
standard implementation of Prolog, a choicepoint frame is created in a
choicepoint stack when a nondeterministic predicate is invoked.] Each
shared frame basically contains information describing unexplored work at
the node, workers which are at and below the node, and the node lock. At
this moment, the choicepoint stacks of P and Q are identical and each
node is associated with a shared frame which is referenced from the
corresponding choicepoint frames.

In order to allow Q to execute alternatives from these shared nodes,
Q has to get a copy of P's current state. Q gets only parts of the WAM
stack that correspond to nodes younger than N along with P's modifica-
tions in the uncopied parts. These modifications are bindings made by P
after creating the node N to variables created before N. These modifications
are known from P's trail part created after N. Notice that after copying
and sharing, P and Q have identical states and both share all P's nodes
(see Fig. lb). Now, they can work together exploring alternatives in the
shared nodes by using the normal backtracking mechanism of Prolog.
Reducing sharing and copying overheads in Muse model are described in
Ref. 1.

@: Dead Node

Shared
Region

N

Private
Region

P

(a) Before Sharing

Live Node

Shared N i
Region /

/ P, Q
(b) After Sharing

Fig. 1. Sharing Nodes.

Full Prolog and Scheduling Or-Paral le l ism in Muse 449

3. PRINCIPLES FOR SCHEDULING WORK IN MUSE

Each worker can be in either engine mode or in scheduler mode. The
worker enters the scheduler mode when it enters the shared part of the tree,
or when it executes side-effects or findall. In the scheduler mode, the
worker establishes the necessary coordination with other workers. The
worker enters the engine mode when it leaves the scheduler mode. In the
engine mode, the worker works exactly as a sequential Prolog engine on
private nodes, but is also able to respond to interrupt signals from other
workers.

The two main functions of the scheduler are to maintain the sequential
semantics of Prolog and to match idle workers with the available work
with minimal overhead. The main sources of overhead in the Muse model
are (1) copying a part of worker state, (2) making local nodes shareable,
and (3) grabbing a piece of work from a shared node. Our scheduling work
strategies, that attempt to minimize the overhead, are as follows.

�9 The scheduler attempts to share a chunk of nodes between
workers on every sharing. This maximizes the number of shared
work between the workers and allow each worker to release work
from the bottom-most node on its branch (dispatching on the bot-
tom-most) by using backtracking with almost no extra overhead.
Dispatching on the bottom-most allows also less speculative work
than dispatching on the topmost- -work is taken from the topmost
live node on a branch (see Ref. 22). (Speculative work is defined as
work which is within the scope of a cut and therefore may never
be done by the sequential implementation.)

�9 When a worker runs out of work from its branch it will try to
share work with the nearest worker which has maximum load. The
load is measured by the number of local unexplored alternatives,
and nearness is determined from positions of workers on the
search tree. This strategy attempts to maximize the shared work
and minimize sharing overhead.

�9 Workers which cannot find any work in the system will try to
distribute themselves over the tree and stay at positions where
sharing of new work is expected to be with low overhead.

�9 An idle worker is responsible for selecting the best busy worker for
sharing and positions itself at the right position on the tree before
interrupting the busy worker for requesting sharing. This allows a
busy worker to concentrate on its task [A task is a continuous
piece of work executed by a worker.] and to respond only to inter-
rupts that have to be handled by it.

450 All and Karlsson

4. S C H E D U L I N G W O R K IN RELATED A P P R O A C H E S

In this section we discuss scheduling work strategies developed for the
related Or-parallel Prolog approaches that are based on several sequential
engines with constant access time of variables and nonconstant task-
switching time./23) Kabu Wake, (6~ Aurora, (7) and ORBIT, (8) are examples
of these approaches.

Four separate schedulers are being developed for Aurora: the Argonne
scheduler, (19) the Manchester scheduler, (24) the Wavefront scheduler,/25~
and the Bristol scheduler. (26) The basic strategy of the first three schedulers
is that dispatching on topmost and sharing one parallel node on each
branch at a time. That is, all the three schedulers attempt to maintain at
most one, live, shareable node on their current branch. The advantage of
this strategy is that the size of shared region is minimized and the size of
tasks is kept as large as possible. One disadvantage is that finding a task
always involves a general search in the tree, leading to relatively high task
switching costs for fine (and medium) granularity programs. ~27) Another
disadvantage is more speculative work.

The Argonne scheduler uses local information that is maintained in
each node to indicate whether there is work available below the node.
Workers use this local information to migrate towards parts of the tree
where work is available. The advantage of this scheduler is its simplicity of
the design. It gives better performance for coarse granularity programs.

The Manchester scheduler tries to match workers with the nearest
available task, where n e a r n e s s is measured by the number of bindings to be
updated between the worker's current position and the available work. By
using this strategy it is hoped to keep the task switching overheads to a
minimum. The Manchester scheduler tries also to distribute idle workers
evenly over the tree. The performance results of this scheduler shows
improvements over the Argonne scheduler for fine and medium granularity
programs.

The Wavefront scheduler maintains a data structure known as the
wavefront which links all topmost live nodes together. Workers traverse
and extend the wavefront when they are looking for work. The available
experimental results indicate a small performance improvements for fine
granularity programs over the Manchester scheduler, and a little worse
performance for coarse granularity programs in comparison with the first
two schedulers.

The Bristol scheduler is based on the Muse (or BC-machine (28))
principles; dispatching on bottom-most and sharing several nodes on each
branch at a time. Bristol scheduler shows some performance improvements
over the other three schedulers for the fine and medium granularity

Full Prolog and Scheduling Or-Parallelism in Muse 451

programs. The overall performance results of the Bristol scheduler is
similar to that of the Manchester scheduler.

In spite of the fact that the scheduling work principles of the Bristol
scheduler is based on the Muse principles, there exist differences between
the Muse scheduler and the Bristol scheduler. In the Bristol scheduler, a
busy worker with maximum load will be matched to any idle worker and
not to the nearest idle worker as that in Muse. Another difference is that
idle workers in the Bristol scheduler stay at the bottom-most detected dead
node of their branches, whereas in Muse idle workers distribute themselves
over the tree (on the current branches) and stay at positions that are
expected to be better ones. A third difference is the measure used for
estimating a worker's load. In Bristol scheduler, a worker load is measured
by the number of live parallel nodes on its branch. It is impractical, for
efficiency reasons, to keep this load exact. The estimated load by the Bristol
scheduler is an overestimate of the real load. This leads to busy workers
that do not have excess load to be asked for sharing exactly as in Muse
(see Section 5.3.2). The estimate of a worker's load used in Mure is the
number of unexplored alternatives of private live parallel nodes. The Muse
measure of load gives better estimate than the one used by the Bristol
scheduler, because the number of alternatives of each live node is not
always equal for most programs. We believe that better estimate of the load
allows better decisions to be made. Finally, all mechanisms presented in
this paper are completely different from those used by the Bristol scheduler.

In Kabu-Wake approach ~6) and in ORBIT approach, (8) nodes cannot
be shared among workers (i.e., processors), because these approaches are
intended for nonshared-memory multiprocessors. Work at the topmost
node is split into two parts and each of the two workers involved in
copying takes a part of the work. This strategy does not allow dynamic
load balancing between workers. Good results have been obtained only for
coarse granularity programs.

Although Muse strategies seem more complex and more difficult to
implement than those used in the above schedulers, we believe that they
should lead to a more efficient way of matching work with workers.

5. S C H E D U L I N G W O R K A L G O R I T H M

The basic algorithm of the Muse scheduler for matching idle workers
with available work is as follows. (1) When a worker f inishes a task, it
at tempts to get the nearest piece o f available work on the current branch. (2)
I f none exists, it at tempts to select a busy worker with excess work fo r
sharing. (3) I f none exists, it becomes idle and stays at a suitable position
on the current branch.

452 Ali and Karlsson

In the next three subsections, we are going to present and discuss
supporting efficiently the above three parts of the basic algorithm. Data
structure used for supporting this algorithm will be presented in the context
of using them. In order to simplify the presentation, locking is not covered
in detail.

5.1. Nearest Ava i l ab le Task

The nearest piece of available work is found in the bot tom-most live
node on the current branch. In order to support this operation efficiently,
an efficient mechanism for checking whether the nodes in the current
branch contain a live node and determining such a node is required. In the
current Muse implementation, we have a simple representation of the tree
(see Section 6.1) which allows a worker to access only nodes on its branch
from its current position to the root of the tree. That is, a worker can only
move on this part of the tree. Thus a worker should leave its position on
the tree (i.e., backtrack) only when the new position is better than the old
one, i.e., closer to a live node or to a busy worker with excess load.

Our mechanism assumes an extra field, nearest-livenode, on each
shared node (i.e., in each shared frame associated with each shared node).
This field contains either a reference to the nearest upper live node in the
current branch or a dummy value. The latter means all upper nodes are
dead.

When a worker finishes a task, it first checks the bot tom-most shared
node on the current branch. If the node is live, it just takes work from that
node. If the node is dead, the worker checks the nearest-livenode field of the
node. If nearest-livenode is not the dummy value, the worker checks a chain
of shared nodes referred from nearest-livenode of the current node to deter-
mine the location of the nearest live node, keeping its position on the tree.
(No locking is used in this operation.) If there is no such node, all nodes
on the current branch get the dummy value in their nearest-livenode field.
Then the worker backtracks to the nearest node with other workers and
tries to select a busy worker with excess load as described in Section 5.2.

If work is found at node N, all shared nodes below N will get a
reference to N, and the worker will at tempt to position itself at N, as fast
as possible, in order to take a piece of that work. The worker stops back-
tracking to N in one of the following situations:

1. The available work at node N is taken by the other workers. In
this case, the worker repeats the procedure of determining the
nearest live node described above by looking for nodes higher up
than N on the current branch.

Full Prolog and Scheduling Or-Parallelism in Muse 453

2. The worker is alone in a sequential node with available work. In
this case, it takes a piece of work from the sequential node.

3. There is a pending cut that should be performed by that worker
(see Section 6.3).

5.2. M a t c h i n g W o r k e r s

The second part of the scheduling work algorithm is matching idle
workers with busy workers having excess load. Matching each idle worker
with the nearest busy worker with maximum load is expected to be a good
heuristic. Such matching minimizes copying overhead by allowing less data
to be copied and less frequency of copying. Supporting efficiently this
heuristic is not an easy task, but we now present a mechanism that
attempts to support a version of this heuristic.

The goal here is to match idle workers with busy workers having
excess load in such a way that a worker with maximum load within a
subtree will be assigned to the closest idle worker. The basic idea of the
matching mechanism is as follows. When a worker Q becomes idle, it first
determines a set of busy workers, within its subtree, which are not closer
to any other idle worker. [When we say a worker subtree, we mean the
subtree rooted by the current node of that worker.] Then, Q selects for
sharing the worker P which has maximum load in this set.

If Q cannot find any worker with excess load in its subtree, it will
determine a set of busy workers, outside its subtree, that are not closer to
any idle worker. Then, Q backtracks to the nearest common node on the
tree with workers in this set. After backtracking to the node, Q will have
busy workers in its new subtree, and the same idea described above for
selecting P within Q's subtree could be used.

If Q cannot find any busy worker with excess load in the system, it will
try to position itself at a suitable node in its branch as will be described in
Section 5.3.

We divide the matching mechanism based in the idea described earlier
into two parts. The first part is described in Section 5.2.1, and it concerns
selecting P within Q's subtree. The second part is described in Section 5.2.2,
and it concerns selecting P outside Q's subtree. The matching mechanisms
described here use the following global information:

. A counter, load, is associated with each worker containing the
current load of the corresponding worker. The measure of load
used in Muse is the number of private unexplored alternatives.

454 Ali and Karlsson

2. A register, currentnode, is associated with each worker containing
a reference to its current position (shared node) on the tree.

3. A bitmap, idlemap, contains the current idle workers in the system.

As mentioned in Section 2, each shared node is associated with a
shared frame which contains a bitmap, workersbitmap, representing
workers within the subtree rooted by the node.

5.2. 1. Matching Workers within

The idle worker Q selects P
whether there are busy workers in
a set of those busy workers which
Then it will select for sharing the
this set.

the Current Subtree

within its subtree as follows. Q checks
its subtree. If there are, it will determine
are not closer to any other idle worker.
worker P which has maximum load in

The worker Q can determine which workers are busy (busy-set) and
which are idle (idle-set), in its subtree, from workersbitmap of its current
node and from the idlemap. (busy-set and idle-set are two local bitmaps.)
Q can determine a subset of busy workers, in its subtree, which are not
closer to any other idle worker, as follows. Q removes from its busy-set
busy workers that are in the idle-set subtrees. Positions of idle-set workers
are known from their currentnode registers. Finally, Q determines the one
with maximum load in the remaining subset of those busy workers by
investigating their load counters.

The mechanism allows Q to request sharing from P in situations
shown in Figs. 2 (a) and (b), but not in (c). (Here, we always refer to the
current idle worker by Q and the other idle workers by Q 1, Q2, etc.) In
Fig. 2a, P is not in Q l's subtree. We allow Q to request sharing work from
P, because Q l 'could take long time to backtrack to a common node with
P. Q1 could, for instance, reach a sequential node that should be

(a) Q will request
sharing from P.

~ I
q qs

P

(b) Q will request
sharing from P.

(c) 0 w i l l not r e q u e s t

s h a r i n g from P.

Fig. 2. Matching Workers within Q's Subtree.

Full Prolog and Scheduling Or-Parallelism in Muse 455

processed. In Fig. 2b, there is also no other idle workers between P and Q.
In Fig. 2c, there is an idle worker (Q3) between P and Q, i.e., Q3 is the
nearest idle worker to P.

5.2.2. Matching Workers outside the Current Subtree

When (2 cannot find any busy worker with excess load in its subtree,
it will try to find one outisde its subtree as follows. It first determines a set
of busy workers outside its subtree that are not closer to any other idle
worker. Then, it determines the nearest node N that has any P with excess
load of those busy workers by investigating nodes in its branch. After that,
Q performs fast backtracking to the node N as long as none of the
following situations occurs:

1. reaching a sequential node that should be processed, or

2. P's private work is exhausted, or

3. P is requested by another idle worker.

After backtracking to the node N, P will be in Q's subtree. Then (2 uses
the mechanism described in Section 5.2.1 to select a new P that currently
has maximum load within its new subtree.

In order to allow other idle workers, in the same situation as Q, to
select other busy workers simultaneously, we make P and (2 invisible to
those idle workers. The mechanism used for supporting invisible workers is
as follows. There is an additional global bitmap, invisibleworkersmap, that
contains workers similar to Q and P. When an idle worker Q wants to
reserve a busy worker P while backtracking, Q sets the two bits
corresponding to Q and P in the invisibleworkersmap. When Q either
requests sharing from P or will do something else, Q resets these two bits.
This invisibleworkersmap will be considered only by backtracking idle
workers to determine the visible workers in the system.

Notice that P could be requested for sharing by an idle worker that
has P in its subtree as described in Section 5.2.1. When Q stops back-
tracking for any of these reasons, it will make itself and P visible again.

The idle worker Q determines busy workers, that are outside its
current subtree and are not closer to any other idle worker as follows. It
first determines which workers are visible and busy (visible-busy-set), and
which are visible and idle (visible-idle-set) outside its subtree. It determines
those workers from workersbitmap of its current node, the invisible-
workersmap, and the idlemap. Then, Q removes from its visible-busy-set
workers that are in visible-idle-set subtrees. Positions of those idle workers
are known from their currentnode registers. Notice that if Q itself is in any
idle worker subtree, Q should not backtrack because that idle worker is in

456 Ali and Karlsson

a better position on the tree for requesting sharing. Therefore, before Q
backtracks it has to check whether it is in a subtree of any idle worker of
the visible-idle-set. One possible way to perform this check efficiently is that
Q adds itself to the visible-busy-set before removing any worker, and Q
checks if it is removed from this set when some workers are removed. If
removing workers from the visible-busy-set terminates and Q is still in this
set, Q could backtrack and not otherwise.

The mechanisms described in this section allow Q to stop back-
tracking in situations shown in Fig. 3 (a) and (b), but not in (c). In Fig. 3
(a), P is in Ql 's subtree. In Fig. 3b, Q is in Q2's subtree, i.e. Q2 is closer
to P. In Fig. 3c, P is not in Q 3's subtree, and Q finds P visible before Q 3
does.

5.3. Id le W o r k e r s

The third part of the basic algorithm is the role of idle workers when
there is neither any accessible live nodes nor busy workers with excess
private load. In this case, idle workers will stay at nodes that allow newly
generated work to be shared with low overhead. In Section5.3.1, we
discuss heuristics that attempt to achieve that.

The measure of excess load used in Muse is the number of private
unexplored alternatives. According to this measure, there can be a situation
in which there is work at some shared nodes which is not visible to idle
workers and this work is only visible to busy workers that will not generate
any new work. In this situation, idle workers will be idle forever, although
there is excess work in the system. In Section 5.3.2, we will discuss a
mechanism that detects this situation and allows the idle workers to share
that work.

ql

(a) Q does not backtrack.

Fig. 3.

5.3.1. Distributing Idle Workers

The following heuristics attempt to distribute idle workers over the
tree in such a way that when a busy worker generates work, an idle worker

P

(b) (~ does not backtrack. (c) Q backtracks.

Matching Workers outside Q's Subtree.

Full Protog and Scheduling Or-Parallelism in Muse 457

will share this work with low overhead. An idle worker, Q, leaves (back-
tracks from) its current node only if one of the following two situations
occurs:

1. there are busy workers outside Q's subtree and Q is not in the
subtree of any other idle worker, or

2. all workers in the current subtree are idle.

In the first situation, each idle worker will block all other idle workers
in its subtree from backtracking. Only topmost idle workers in nonoverlap-
ping subtrees will backtrack until one of them reaches a node common to
all workers in the system. Moving some idle workers to nodes common to
many busy workers allows sharing of work to be started earlier when a
worker generates work. If the new position of an idle worker becomes
closer to a worker that generates work, sharing overhead decreases. But if
the old position was closer to the worker that generates work, sharing
overhead increases. Blocking idle workers from backtracking when they are
in any idle worker's subtree allows none of those idle workers to lose its
position. Experimental results have indicated performance improvements
for this heuristic in comparison to different other heuristics for distributing
idle workers over the tree.

In the second situation, we allow idle workers to do fast backtracking
to either the nearest sequential node or a node with a busy worker below.
This is the right position for an idle worker to stay at for the following
reasons. The last worker backtracking to a sequential node will take a
branch from that node for processing and it might generate work. Also, for
a node that has busy workers below, any of those workers might generate
work.

5.3.2. Finding Invisible Work

The mechanism that finds invisible work for idle workers and allows
sharing of that work is based on the following idea. When an idle worker,
Q, cannot find work in the system and there are busy workers in its sub-
tree, Q asks each of them to check if it has work in its branch. Q will try
to ask workers, that have been busy for a long time and never asked before
by any worker in the system. If any of them finds work, such work will be
shared with Q.

To support this idea, there is a global bitmap, mayaccessworkmap,
which contains workers that may access shared work. It is initially empty
(all bits are reset). On every sharing the two bits corresponding to the two
workers involved on sharing will be set. When a busy worker is asked for

828/t9/6-3

458 Ali and Karlsson

sharing and it turns out that the worker does not access shared work, the
worker bit is reset.

There is also a local bitmap for every worker, stablebusy, which
contains workers that were busy for a certain amount of time within the
current subtree. When a worker becomes idle, it sets its own stablebusy
bitmap to the busy workers within its subtree. While there are busy
workers within its current subtree, it updates its stablebusy bitmap by
resetting bits corresponding to workers that become idle. After k iterations
of investigating the busy workers within its current subtree, it determines
workers that were busy during the k iterations and never asked for sharing
after their last sharing by investigating its stablebusy bitmap and the
mayaccessworkmap. (The selected value of k for the Muse implementation
on bus-based machines is 10.) Bits that are set in both bitmaps correspond
to these workers. The idle worker could ask these workers for sharing, but
it asks only those that are not closer to any other idle worker as described
in Section 5.2. If any of these workers accesses shared work, that work will
be shared by the idle worker. Otherwise, the busy worker will refuse the
sharing request, reset its bit in the mayaccessworkmap, and mark shared
nodes that are not marked as dead nodes by setting their nearest-livenode
field to dummy value (see Section 5.1).

This mechanism allows a busy worker, that does not generate new
work after sharing and does not access a live node, to be asked for sharing
at most once. It also allows that worker to mark shared nodes as dead to
avoid doing that later on. That is, this mechanism incurs almost no extra
overhead for busy workers.

6. C U T A N D S E Q U E N T I A L S I D E - E F F E C T S

The current implementation of Muse supports full Prolog language
with its standard semantics. It also supports asynchronous (parallel) side-
effects and internal database predicates. In this implementation we have
simple mechanisms for supporting cut and all standard Prolog side-effects
predicates (e.g., read, write, assert, retract, etc.).

A simple way to guarantee the correct semantics of sequential side-
effects is to allow execution of such side-effects only on the leftmost branch
of the whole search tree. The current Muse implementation does not
support suspension of branches. That is a worker that executes a sequential
side-effect predicate on a branch, which is not leftmost of the whole tree,
will wait until that branch is leftmost of the tree. Similarly, for supporting
findall predicate a worker that generates a findall solution will wait until
its branch is leftmost of a proper subtree.

The effect of cut N on a branch is to prune all branches to the right

Full Prolog and Scheduling Or-Parallelism in Muse 459

of the branch in a subtree rooted by the node N. In the current implemen-
tation of cut, when a worker executing cut is not leftmost in the relevant
subtree, it will prune as much as it can and leave the pruning of the
remaining branches to a worker to its left and then proceed with executing
operations following the cut. When a worker detects that all left branches
have failed, it will try to prune as much as it can until all branches within
the scope of the cut are pruned. An idea of this cut algorithm has been
proposed in Ref. 24.

In general, supporting cut, findall, and side effects requires efficient
mechanisms for checking whether or not the current branch is leftmost in
a tree. Also, efficient mechanisms for identifying workers working on
branches to the right are required for supporting cut. In this section we
discuss such mechanisms.

In the current Muse implementation, we have a very simple represen-
tation of a Prolog search tree. A worker can move only on its branch; i.e.,
there are no extra pointers in the nodes to the sibling nodes. The advantage
of this simple representation is that adding and removing nodes are very
efficient operations--neither locking overheads nor extra overheads for
maintaining the topology of the tree are needed. The disadvantage is that
a worker cannot traverse nodes on the other branches. This complicates
the task of the Muse scheduler to perform a leftmost check, and to identify
workers on branches to the right. To illustrate how the Muse scheduler
carries out these operations, we first describe the representation of a Prolog
search tree in the current Muse implementation.

6.1. Tree Representation

A Prolog search tree is represented in the current implementation of
Muse as follows. Each shared node is associated with a shared frame
containing a workersbitmap identifying workers accessing the node (and
other information see Section2). Each worker sharing a node has a
choicepoint frame pointing to the shared frame associated with the node.
Each alternative of a node is associated with its number. Each worker
exploring an alternative of a node keeps the alternative number, alt-
number, in its choicepoint frame associated with the node (or in a separate
stack). Figure 4 shows the representation of a tree of two nodes a and b,
and three workers X, Y, and Z. Each worker keeps two choicepoint frames
in its choicepoint stack corresponding to the nodes a and b. The alt-number
field in each choicepoint frame contains the corresponding alternative
number of the node. For worker X, alt-number is 1 in each of its
choicepoint frames.

460 All and Karlsson

a(

I

X
Z

Choicepoint

/

alt-number : 2

/I Cho~nt
I i I ~=eo o~

node a

9 1
~ ;hoicepoiat

3 [~ frames of
! node b

X Y Z

Shared

f r a m e
f o r
node

Shared

frame

for
node b

Fig. 4. Representation of a Tree.

6.2. L e f t m o s t C h e c k

Let us suppose that the worker Y in Fig. 4 wants to check if its branch
is leftmost. It starts from the bottom-most shared node, b, determines the
other workers accessing b (from the shared frame associated with b), and
then investigates alt-number in choicepoint frames of these workers to
determine if any of them has alt-number less than 2. It finds X with alt-
number 1. So, Y is not leftmost. But if X wants to perform the same check,
it will not find any other that has alt-number less than its alt-number in
choicepoint frames associated with the nodes b and a. Thus, X is leftmost.

A leftmost algorithm based on this idea is as follows. When a worker
P wants to check wether it is leftmost on a tree rooted by a shared node
N, it starts from the bottom-most shared node on its branch, reads
workersbitmap associated with the node to determine other workers sharing
the node, investigates alt-number corresponding to that node for the other
workers in the workersbitmap. The worker P finds alt-number field of each
other worker by calculating the remote address from the offset of its alt-
number field in its choicepoint stack and the base address of each
choicepoint stack of the other workers. If P finds any of these aIt-number
less than its alt-number, P is not leftmost. But if P does not find any alt-
number less than its alt-number and the current node is not N, P will repeat
the same operation at the next upper node and so on until reaching N.

According to this algorithm, the worker X in Fig. 4 investigates four
remote choicepoint frames (two at the node b, and then two at the node
a). For a branch with n shared parallel nodes and a system of W workers,
the number of remote choicepoint frames to be investigated will be
O(n * W). Also, all the n nodes will be investigated. This means that using

Full Prolog and Scheduling Or-Parallelism in Muse 461

this algorithm without substantial improvements is impractical for
efficiency reasons.

We present improvements to this algorithm that make it practical and
reasonably efficient. The first improvement reduces the number of nodes in
a branch to be investigated. The second improvement reduces the number
of remote choicepoint frames to be investigated from O(n, W) to only
W - 1. The third improvement reduces the number of remote choicepoint
frames to be investigated to zero.

6.2. 1. Reducing Investigated Nodes

The first improvement reduces the number of nodes to be investigated
by a worker checking if its branch is leftmost. It is based on associating
with each shared node a pointer, nearest-leftnode, pointing to the nearest
upper node with a branch to its left. That node will be investigated next
when a worker is leftmost at the current node. A worker updates nearest-
leftnode field of nodes on its branch while performing its leftmost check and
sharing its private nodes. When a worker performs a leftmost check and
detects a node N in its branch with a branch to its left, it updates all shared
nodes below N to point to N. When a worker completes a leftmost check,
all nodes in its branch will point to the root of the tree. A next leftmost
check in the same branch reaches the root from any node on the branch
indicating determination of a leftmost check on the whole tree.

Each Muse worker shares several private nodes at a time. The nearest
upper node that could have a branch to its left is the bottom-most shared
node. So, when a worker makes its private nodes shareable, it sets nearest-
leftnode field in each private node to the bottom-most shared node. An
optimization is to allow a leftmost worker at a bottom-most shared node
to set nearest-leftnode field of its private nodes to the nearest upper node
with a branch to its .left. This improvement is also useful to all the Aurora
schedulers, specially the Bristol scheduler.

6.2.2. Reducing Remote Access

The idea of the second improvement is that when a worker in an
alternative L at node N performs a leftmost check, it will investigate only
workers in the other alternatives at N. It determines these workers from the
difference between workersbitmaps at N and its child node in the alternative
L. (Each choicepoint frame associated with a shared node contains a child
field that refers to choicepoint frame associated with its child node.) If N
is the bottom-most shared node in a branch, all other workers in N will
be investigated. For instance in Fig. 4, the worker X will investigate

462 Ali and Karlsson

choicepoint frames Of Y and Z at the node b, but none at the node a; there
are no new workers at a.

By this improvement only one choicepoint frame of each of the other
workers will be investigated in a complete leftmost check on the whole tree.

6.2.3. Avoiding Remote Access

The third improvement reduces the number of remote choicepoint
frames to be investigated to zero on performing a leftmost check. It is
based on associating with each shared node a bitmap, active-
alternativesmap, for indicating active alternatives at the node. When an
alternative is taken from a shared node the corresponding bit is set, and
when an alternative fails (i.e., when all workers on the alternative are
backtracked) the corresponding bit is reset. (The size of the active-
alternativesmap is equal to the maximum number of alternatives in a
parallel node; i.e., number of clauses in a parallel predicate.) A worker on
an alternative L of a shared node is leftmost at that node only when all bits
less than L are reset.

This improvement reduces the number of remote choicepoint frames
to be investigated on each leftmost check to zero. Efficient implementation
of this improvement requires limiting the maximum number of clauses in
each parallel predicate to the size of one machine word. (For instance, 32
clauses can be represented by a 32-bits word). This can be done by
program transformation. This improvement has not been implemented yet.

6.3. Cut

The effect of cut N on a branch is to prune all branches to the right
of the branch in a subtree rooted by the node N. It is implemented in Muse
as follows. N can be either a private node or a shared node. In the former
case, cut is processed by a worker which executes it exactly as in the
sequential Prolog implementation. In the latter case, we have two different
situations: (1) cutting branch is leftmost, or (2) cutting branch is not
leftmost. In situation (1), the worker executing cut signals all other workers
in the node N to backtrack to parent of N, it removes itself from N and all
shared nodes below N in its branch, deallocates its choicepoint frames
associated with those nodes, and then proceeds with processing the opera-
tions following the cut. (Deallocation of a shared frame is done by the last
worker backtracking from the corresponding node.)

In situation (2), the worker executing cut finds a shared node M below
N that has a branch to its left. It removes unexplored alternatives at M,
saves at M information describing alternative number in the current

Full Prolog and Scheduling Or-Parallelism in Muse 463

branch at M, say L, and scope of cut (i.e., N) only if there exist upper
branches to be pruned, and signals all workers on branches to its right to
backtrack to parent of M. A simple way of identifying these workers is to
investigate choicepoint frames of all the other workers at M and signal
each worker that has its alt-number equal to or greater than L. Another
efficient way for identifying these workers (based on the idea presented in
Section 6.2.2) is to first find all the other workers on the child node of M
in the alternative L, and then investigate only choicepoint frames of the
new workers at M. The new workers at M are obtained from the difference
between workersbitrnaps of M and its child node in the alternative L.

In order to avoid extra overhead by every worker backtracking to M
for performing a leftmost check, we save also at M the name of one of the
workers that are on branches to the left of L. Only that worker will per-
form a leftmost check for the alternative L at M. If while performinig a
leftmost check there is another worker Q, that has its alt-number less than
L and there exist upper branches to its right to be pruned, Q will be saved
on the node M and the backtracking worker tries to find work on the tree.
Otherwise, the backtracking worker will restart pruning upper branches by
examining every node in its branch starting from M's parent until reaching
the node N. The worker will perform the following at each node: (1) it
determines the alternative number, L 1, of the node in the current branch
from its choicepoint frame associated with that node, (2) finds the
difference between workersbitmaps associated with the node and its child
node in the current branch, (3) signals workers on alternatives greater than
L 1, (4) removes the remaining unexplored branches, and (5) checks if there
is any worker on alternatives less than L 1. If there exists such worker, the
name of that worker and L 1 will be saved at the node. But if there is no
such a worker and N is not reached, the same procedure will be performed
on the next upper node in the current branch.

7. P E R F O R M A N C E RESULTS

In this section we discuss the extra overhead for maintaining informa-
tion that support cut, findall, and sequential side-effect constructs. We also
show the performance of the Muse scheduler for different class of
benchmarks. The timing results of Muse will be compared with the corre-
sponding results for Aurora (7) with the Manchester scheduler. ~24) This gives
some ideas about how the Mure scheduler performs in comparison with
another good scheduler for a similar system. Both Aurora and Muse are
based on the same sequential Prolog, SICStus version 0.6. Neither Muse
nor Aurora with the Manchester scheduler handles speculative work

464 All and Karlsson

properly. [A new Aurora scheduler which handles speculative work
properly is under development at the University of Bristol.] The main
difference between Muse and Aurora on implementation of cut, findall, and
sequential side-effect constructs is that Aurora supports suspension
of branches whereas Muse does not. For instance, an Aurora worker
executing cut in a nonleftmost branch of the cut node will suspend the
branch and try to find work outside the cut subtree. In Muse, the pruning
operation suspends while the worker proceeds with the next operation
following the cut as described in Section 6.3. Other differences between
Aurora and Muse are that: Aurora uses a more general representation of
a Prolog search tree than the one used in Muse, and Aurora is based on
another model for Or-parallel execution of Prolog.(291 Finally, both run on
the same Sequent Symmetry $81, with 16 processors and 32 Mbytes of
memory, which is available to us at SICS. The total scheduling overhead
in Muse will also be discussed.

7.1. Benchmarks

The group of benchmarks used in this paper can be divided into two
sets: the first set (8-queensl, 8-queens2, tina, salt-mustard, parse2, parse4,

parseS, db4, db5, house, parsel, parse3, farmer) has relatively well under-
stood granularity, and has been used by several researchers in previous
studies. (1'2~24'27~ 8-queensl and 8-queens2 are two different N queens
programs from ECRC. tina is a holiday planning program from ECRC.
salt-mustard is the "salt and mustard" puzzle from Argonne.
parset-parse5 are queries to the natural language parsing parts of
Chat-80 by F. C. N. Pereira and D. H. D. Warren. db4 and db5 are the data
base searching parts of the fourth and fifth Chat-80 queries, house is the
"who owns the zebra" puzzle from ECRC. Jarmer is the "farmer, wolf,
goat/goose, cabbage/grain" puzzle from ECRC. This set contains
benchmarks with coarse grain parallelism (8-queensI, 8-queens2, tina, salt-
mustard), with medium grain parallelism (parse2, parse4, parse5, db4, db5,
house), and with fine grain parallelism (parsel, parse3, .farmer). It is
divided into tree groups known in the following sections by High, Medium,
and Low respectively. This set of benchmarks does not contain major cuts.
All the benchmarks of the first set took for all solutions of the problem.

The second set of benchmarks (mml, mm2, ram3, mm4, numl, hum2,
num3, num4) contains major cuts and has been used for studying different
cut schemes. (zz) mm is a mastermind program with four different secret
codes, numbers program generates the two largest numbers consisting of
given digits and fulfilling specified requirements. The num was run four

Full Prolog and Scheduling Or-Parallelism in Muse 465

different queries. This set is divided into two groups known in the following
sections by m m and n u m . All the benchmarks of the second set look for the
first solution of the problem.

7.2 . R e s u l t s o f B e n c h m a r k s w i t h no M a j o r C u t s

To evaluate the extra overhead for maintaining information that sup-
port cut, findall, and sequential side-effect constructs, we compare runtimes
of the first set of the benchmarks on a version of Muse supporting full
Prolog with another version that supports a parallel version of Prolog,
named Commit Prolog. (1) Commit Prolog is a Prolog language with
cavalier commit (3) instead of cut, asynchronous (parallel) side-effects and
internal database predicates instead of the synchronous (sequential) coun-
terparts, and sequential and parallel annotations. The standard Prolog
semantics of cut and sequential side-effects was obtained on Commit
Prolog by following a few rules that restrict the degree of Or-parallelism. (1~

Table I presents the runtimes (in seconds) from the execution of the

Table I. Runtimes (in Seconds) on Muse Version of Commit Proiog
for the First Set of the Benchmarks

Workers
Benchmarks 1 4 8 12 15 SICStus

8-queensl 6.83(0.92) 1.72(3.65) 0.87(7.22) 0.59(10.6) 0.48(13.1) 6.28
8-queens2 t7.38(0.95) 4.36(3.77) 2.21(7.43) t.49(11.0) 1.20(13.7) t6.43
tina 14.44(0.95) 3.67(3.74) 1.90(7.22) t.31(10.5) 1.08(12.7) 13.71
salt-mustard 2.10(0.96) 0.54(3.74) 0.28(7.21) 0.19(10.6) 0.16(12.6) 2.02

�9 High)Z 40.75(0.94) 10.29(3.74) 5.26(7.31) 3.59(10.7) 2.93(13.1) 38.44

parse2,20 5.99(0.95) 1.78(3.20) 1.28(4.45) 1.10(5.17) 1.11(5.13) 5.69
parse4,5 5.53(0.95) 1.50(3.51) 0.93(5.66) 0.76(6.92) 0.73(7.21) 5.26
parse5 3.92(0.95) 1.02(3.66) 0.57(6.54) 0.46(8.11) 0.45(8.29) 3.73
db4,10 2.39(0.95) 0.65(3.49) 0.39(5.82) 0.30(7.57) 0.28(8.11) 2.27
db5,10 2.91(0.95) 0.80(3.45) 0.47(5.87) 0.36(7.67) 0.33(8.36) 2.76
house,20 4.41(0.96) 1.33(3.18) 0.83(5.10) 0.66(6.41) 0.62(6.82) 4.23

Med Z 25.15(0.95) 7.14(3.35) 4.53(5.28) 3.69(6.49) 3.58(6.69) 23.94

parsel,20 1.59(0.94) 0.60(2.50) 0.56(2.68) 0.59(2.54) 0.63(2.38) 1.50
parse3,20 1.36(0.96) 0.56(2.32) 0.50(2.60) 0.52(2.50) 0.54(2.41) 1.30
farmer,100 3.19(0.96) t.38(2.22) 1.39(2.21) 1.38(2.22) 1.40(2.19) 3.07

�9 Low ~ 6.14(0.96) 2.54(2.31) 2.46(2.39) 2.49(2.36) 2.57(2.28) 5.87

72.04(0.95) 19.98(3.42) 12.25(5.57) 9.79(6.97) 9.11(7.49) 68.25

466 Ali and Karlsson

first set of the benchmarks on the Muse version of Commit Prolog. The
runtimes given are the shortest obtained from eight runs. Times are shown
for 1, 4, 8, 12, 15 workers with speedups given in parentheses. These
speedups are relative to running times of SICStus0.6 on one Sequent
processor shown in the last column. For benchmarks with small runtimes
the timings shown refer to repeated runs, the repetition factor being shown
in the first column. ~ in the last row corresponds to the goal: (8-queensl,
8-queens2, tina, salt-mustard, parse2*20, parse4,5, parse5, db4.10, db5,10,
house,20, parsel,20, parse3*20, farmer, lO0). That is, the timings shown in
the last row correspond to running the whole first set of the benchmarks
as one benchmark. In the following tables, the last row for each group of
a set of benchmarks represents the whole group as one benchmark.

For all programs in Table I, except parsel-parse3 and farmer,
increasing the number of workers results in shorter runtimes. For
parsel- parse3 and farmer, increasing the number of workers beyond a
certain limit results in slightly longer runtimes. This degradation is due to
the extra runtime scheduling overhead for programs with fine granularity.
The scheduling overhead will be discussed in Section 7.4.

Table II presents the runtimes (in seconds) from the execution of the
first set of the benchmarks on Aurora and the Muse version of full Prolog.
The runtimes given are for each group of the first set of the benchmarks
and for the whole first set of the benchmarks. If we compare the runtimes
for Muse in Tables I and II, we find that Muse of full Prolog is slower than
Muse of Commit Prolog by around 0 % for the 1 worker case, 2 % for the

Table II. Runtimes (in Seconds) on Aurora and Muse Version of Full Prolog,
and the Ratio Between Them for the First Set of the Benchmarks

lll,,lll,,ll,,ll,,

Workers
Benchmarks 1 4 8 12 15 SICStus

�9 High Aurora 51.97(0.74) 13.28(2.89) 6.76(5.69) 4.58(8.39) 3.74(10.3) 38.44
<) Med Aurora 30.20(0.79) 9.09(2.63) 6.25(3.83) 5.37(4~46) 5.09(4.70) 23.94
o Low Aurora 7,31(0.80) 3.76(156) 3,70(1.59) 3.94(1.49) 4.14(1.42) 5.87

89.48(0.76) 26.16(2.61) 16.75(4.07) 13.94(4.90) 13,00(5.25) 68.25

�9 High Muse 41.00(0.94) 10.61(3.62) 5.32(7.23) 3.64(10.6) 2.98(12.9) 38,44
-k Med Muse 25.24(0,95) 7.23(3.31) 4.64(5,16) 3.85(6.22) 3.70(6,47) 23.94
�9 Low Muse 6.16(0.95) 2,59(2.27) 2.52(2,33) Z58(2,28) 2.63(2.23) 5.87

72.40(0.94) 20.46(3.34) 12.50(5.46) 10.09(6.76) 9.31(7.33) 68.25

Aurora/Muse t.24 1.28 t.34 1.38 1.40 - -
I I I I I I I I I I III I I I I I I II I

Full Prolog and Scheduling Or-Parallelism in Muse 467

Speed-up

1~ I
13
12

t l
10

9

8
7
6
5
4

3
2

/
I 8-

Auror~
o t l igh
~ Medium
0 Low

Muse
�9 tti,gh
* Medium
* Low O0

0

�9 0
�9 0 0

0

�9 0

oOO

0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Workers

Fig. 5. Speedups of Muse and Aurora for the Fi rs t Set

of the Benchmarks .

4 workers, 2 % for 8 workers, 3 % for t2 workers, and 2 % for 15 workers.
This means that the extra overhead for maintaining information that
support cut, findalt, and sequential side-effect constructs in Muse is very
low. Table II shows in the last row the ratio of the running times on
Aurora to the running times on Muse for the first set of the benchmarks.
Aurora timings are longer than Muse timings by 24 % to 40 % between i
to 15 workers.

Figure 5 shows the speedup curves of Muse and Aurora for the three
groups of the first set the benchmarks: High, Medium, and Low. Notice
that all spedups in this paper are relative to SICStus0.6. The results shown
in Table II and Fig. 5 illustrate how the Muse scheduler performs welt on
each group of the first set of the benchmarks,

7.3. Results of Benchmarks with Major Cuts

Here we show timing results for programs with major cuts. Table III
presents the runtimes (in seconds) from the execution of the second set of
the benchmarks on the Muse version of full Prolog. The runtimes given are
the mean values obtained from eight runs. For programs with (major) cuts,
mean values are more reliable than best values because scheduling of
speculative work changes from one run to another causing larger variations
of timing results.

468

Tablelll.

, , , , , , , , , , , , , , , , , , , , , ,

Benchmarks

Ali and Karlsson

Runtimes (in Seconds) on Muse for the Second Set
of the Benchmarks

l l lnllmltHllUlltl l l l l , , I , I

Workers
4 8 12 15 SICStus

ram1 4.10(0.96) 2.05(L93) 1,16(3.41) 0.99(3.99) 0.93(4.25) 3.95
ram2 3,23(0,98) 1,09(2.90) 0,8t(3,90) 0.59(5,36) 0.51(6.20) 3.t6
ram3 9,26(0.97) 3,t7(2.83) 2.12(4.24) t.55(5,79) t,39(6.46) 8,98
ram4 t5.80(0.96) 5.06(3,00) 2.75(5.52) 1.79(8,47) 1.56(9,72) 15.t7

�9 m m Y ~ 32.39(0.97) 11.37(2.75) 6.84(4,57) 4.93(6.34) 4.39(7,12) 31.26

numl 1.63(0.99) 0.94(1.72) 0~52(3,12) 0.31(5.23) 0.28(5.79) 1.62
num2 2.67(0.99) 0.91(2.91) 0.47(5,64) 0.34(7.79) 0.27(9.81) 2,65
hum3 2.86(0.99) 0.83(3.41) 0,44(6,43) 0.31(9.13) 0.27(10.5) 2.83
hum4 3.69(0.99) 0.95(3.84) 0,50(7,30) 0.33(11,1) 0.28(13,0) 3.65

num ~ 10.85(0.99) 3.63(2.96) 1.93(5.57) 1.29(8~33) 1.10(9.77) 10.75

2 43.24(0.97) 15.t30(2.80) 8.77(4.79) 6.22(6.75) 5.49(7.65) 42.01

Table IV presents the runtimes (in seconds) from the execution of the
second set of the benchmarks on Aurora, The runtimes given are for each
group of the second set of the benchmarks and for the whole second set of
the benchmarks. It also shows in the last row the ratio of the running times
on Aurora to the running times on Muse for the second set of the
benchmarks as one benchmark, Aurora timings are longer than Muse
timings by 19 % to t01% between 1 to 15 workers. There are two possible
explanations for this difference of performance results between Muse and
Aurora for this set of benchmarks, The first one is that dispatching on the
bottom-most used in Muse allows less speculative work than dispatching

Table IV. Runtimes (in Seconds) on Aurora and the Ratio Between
Aurora and Muse Timing for the Second Set of the Benchmarks

Workers
Benchmarks 1 4 8 12 15 SICStus

(3 mmAurora 39.39(0.79) 22.73(1.38) 13,28(2.35) 10.75(2.91) 9.38(3,33)
�9 numAurora 12.09(0.89) 4.54(2,37) 2.56(4.20) 1.95(5.5t) 1.65(6.52)

51.48(0.82) 27.27(1.54) 15.84(2.65) 12.70(3.31) tl,03(3,81)

Aurora/Muse t.19 1.82 1.81 2.04 2.0t
i i

31.26
10.75

42,01

Full Prolog and Scheduling Or-Parallelism in Muse 469

Speed-up

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

o m m

�9 m m *

�9 c o o
�9 o � 9

�9 l e o 0
�9 � 9 b

. ; ~ g ~
�9 0 o o o

~ O ^ o o O O ~
~ o o O ~

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
Workers

Fig. 6. S p e e d u p s of M u s e a n d A u r o r a for the Second

Set o f the B e n c h m a r k s .

on the topmost used in Aurora (by the Manchester scheduler). The second
reason is that for those programs suspension of branches as used in Autora
is not the best. In general, better handling of speculative work for cut
programs is the best.

Figure 6 shows the speedup curves of Muse and Aurora for the two
groups of the second set of the benchmarks: mm and num. These curves
correspond to speedups obtained from Tables III and IV.

7.4. Scheduling Overheads

In this section, we present and discuss briefly the time spent in the
scheduling activity in the Muse version of full Prolog. A Muse worker time
is distributed over the following three basic activities:

1. Prolog: time spent in executing Prolog, checking arrival of inter-
rupt signals, and maintaining value of the local load.

2. Idle: time spents in looking for a worker with excess local work
and distributing idle workers on the tree when there is no
available work in the system.

470 AIM and Karlsson

3. Scheduling: time spent in scheduling activity. It includes time spent
in sharing nodes, grabbing work from shared nodes, selecting busy
workers for sharing nodes, copying data, synchronization, moving
up within the shared region, spin lock, signalling, etc.

Table V shows the total time spent in each activity, with the percent
of that time relative to the total time, for the first set of the benchmarks.
Times shown in Table V have been obtained from an instrumented system
of Muse on Sequent Symmetry. Those times include the time spent in the
measurements. The times obtained from an instrumented system are longer
than those obtained from an uninstrumented system by around 10%. We
believe that the percentage of time spent in each activity obtained from the
instrumented system reflects what is happening in the uninstrumented
system.

As mentioned in Section 7.1, this set of benchmarks contains four
benchmarks with coarse grain parallelism, six with medium grain
parallelism, and three with fine grain parallelism. This set also represents
benchmarks with lack of parallelism. Lack of parallelism explains the
reasons of decreasing the percentage of the Prolog time and increasing the
percentage of the Idle time when increasing the number of workers in
Table V. The summation of these two percentages is almost constant (only
4.1% difference) from 8 workers to 15 workers. The Scheduling, overhead
increases from the 4 workers case to the 8 workers case by 5.7 %, from the
8 workers to the 12 workers by 2.3, and from the 12 workers to the 15
workers by 1.8 %.

A possible explanation for the increase of overhead when increasing
the number of workers is shown in Table VI, which shows the effect of
increasing the number of workers on the number of tasks and task size
(expressed as a number of Prolog calls per task) for the first set of the
benchmarks. In Table VI granularity of parallelism is decreased from the 4

Table V. Total Times (in Mill iseconds) Spent in Basic Activities
of a Muse Worker for the First Set of the Benchmarks

Muse Workers
Activity 4 8 12 15

Prolog 80885(90 .0) 83158(85.7) 84829(63.8) 86424(56.2)
Idle 2893(3.2) 13010(11 .8) 28488(21.4) 41765(27.2)

Scheduling 6 0 6 9 (6 . 8) 13684(12 .5) 19731(14.8) 25576(16.6)

Total 89847(100.0) 109853(100.0) 133048(100.0) 153765(100.0)

Full Prolog and Scheduling Or-Parallelism in Muse

Table VI. Average Number of Tasks and Task Sizes for the First Set
of the Benchmarks

471

Muse Workers
4 8 12 15

Total Number of Tasks 13807 28145 34530 39537
Prolog Calls per Task 64 31 26 22

Table VII. Scheduling Overhead per Task for the First Set of the Benchmarks

Muse Workers
4 8 12 15

Scheduling Overhead per Task in Prolog calls 4.80 5.10 6.05 6.51

workers case to the 8 workers case by a factor around 2 whereas from the
8 workers to the 12 workers by a factor 1.2, and from the 12 workers to
the 15 workers by a factor 1.2.

Tables V and VI illustrate that the scheduling overhead increases
when reducing the granularity of parallelism.

The number of Prolog calls that are equivalent to scheduling overhead
per task are shown in Table VII. Figures in Table VII are calculated from
Tables V and VI. Table VII illustrates that the scheduling overhead is
equivalent to around 5-7 Prolog calls per task, where the time of a Prolog
procedure call is between 83 to 100 microseconds. Similar figures for
scheduling overhead in terms of Prolog calls per task are reported for
Aurora with the Manchester scheduler327) The time of a Prolog procedure
call for Aurora is longer than the corresponding time for Muse by a factor
around 1.20-1.25, the relative speed of the Muse engine to the Aurora
engine. That is, the time of scheduling overhead of Muse is less than the
time of scheduling overhead of Aurora with the Manchester scheduler by
a factor around 1.20-1.25.

Both Muse and Aurora with the Manchester scheduler attempt to
minimize continuous increase of runtime scheduling overhead as the
number of workers is increased. They achieve that by supporting
mechanisms that avoid a continuous decrease in task sizes as the number
of workers grows. The idea used by the Muse system is that when a busy
worker reaches a situation at which it has only one private parallel node,
it will make its private load visible to the other workers only when that
node is still alive after a certain number, n, of Prolog procedure calls. The

472 Ali and Karlsson

value of n is a constant value selected in the order of the number of Prolog
procedure calls equivalent to the scheduling overhead per task. It is 5 on
Sequent Symmetry.

The idea used by the Manchester scheduler to avoid a continuous
decrease in task sizes with increasing workers is that each busy worker
checks for arrival of signals from other workers on every N Prolog proce-
dure calls. The value of N is also 5 on Sequent Symmetry.

The Muse solution costs extra runtime overhead only when a worker
has only one private parallel node. It also limits the parallelism at this
situation only, which in turn avoid a continuous decrease in task size. The
Manchester scheduler solution costs extra runtime overhead on every
Prolog procedure call for updating a counter. The private work will be
released on every N Prolog procedure calls.

8. FUTURE W O R K

Our future work on the current Muse system is to support free findall
construct as it is defined in Ref. 19, and to use more advanced implementa-
tion schemes for cut, commit, findall, and sequential side-effects. Note, in
the current Muse implementation, commit is translated into cut.

In the current implementation of cut, we do not maintain information
describing alternatives with cut. Cut schemes based on maintaining such
information reduces speculative work. An advanced cut scheme based on
one of the scheme presented in Ref. 22 will be implemented.

In the current implementation of assert when a worker is going to
assert a rule, it waits until its branch is leftmost on the whole tree. An idea
is to allow the worker to perform most of the work needed for assert and
delays insertion of the rule until the branch is leftmost on the whole tree,
and the worker proceeds with operations following assert. Information
describing the uncompleted assert will be saved in the nearest upper node,
M, in the branch with a branch to its left. The last worker, which back-
tracts to M from left branches that have caused delay of completing assert,
will take care of that uncompleted assert, if it is not already removed by a
cut. That worker either moves the information describing the uncompleted
assert to another upper node with a branch to its left, or completes it if
current branch is leftmost on the whole tree.

Similarly, adding a generated solution of findall requires the current
branch to be leftmost on a proper subtree. This idea could be used also
here to perform most of the work needed for generating a solution and
delay insertion of the solution until its branch is leftmost on the subtree,
and the worker proceeds with the next operation.

Regarding calling dynamic predicates and the other side effects, like

Full Prolog and Scheduling Or-Parallelism in Muse 473

retract and input/out, a mechanism for suspending branches is needed. An
idea of suspension is to save in the shared-memory space the difference
between the current state of a worker, which is going to suspend its branch,
and the state corresponding to the nearest upper node, M, with a branch
to its left. Information describing the suspended branch and the location of
saved part of state will be stored in M. As described earlier, the last
worker, which backtracks to M from left branches that have caused
suspension of a branch, will take care of the suspended branch, if it is
not already removed by a cut. That worker either moves information
describing the suspended branch(es) to another upper node, N, with a
branch to its left along with the difference between the computation state
at M and N, or restarts the suspended branch if it is leftmost on the whole
tree. When a worker is going to restart a suspended branch, it first gets the
state corresponding to that branch from the shared-memory space by using
information stored in the node M.

Now how to determine the difference of states between two nodes. It
is known in the Muse model by incremental copying (see Ref. 1 for details).

9. C O N C L U S I O N S

The principles and implementation of scheduling work and supporting
full Prolog in Muse have been presented. Many of the presented algorithms
are also applicable to other OR-parallel Prolog approaches. The perfor-
mance results are very encouraging and the extra overhead for maintaining
information that support cut, findall, and sequential side-effect constructs
in Muse on Sequent Symmetry is very low (around 0 % for one worker,
and 2%-3 % for 15 workers). The total scheduling overhead per task on
Sequent Symmetry for the set of benchmarks used in Ref. 27, is equivalent
to around 5-7 Prolog calls per task. For programs with cuts, dispatching
on the bottom-most gave much better performance results than dispatching
on the topmost. The suggestions for improvements and new constructs
mentioned in the paper will be implemented. The implementation of
efficient and simple form of suspension of branches and speculative work
will be examined. Using bitmaps in the presented algorithms limit the use
of these algorithms for systems with too many workers. Mechanisms for
large systems (like larger configuration of the Butterfly machine) will also
be examined.

A C K N O W L E D G M E N T S

We would like to thank Mats Carlsson and Andrzej Ciepielewski for
helpful comments on an earlier draft of this paper.

828/19/6-4

474 Ali and Karlsson

REFERENCES

1. Khayri A. M. Ali and Roland Karlsson, The Muse Approach to OR-Parallel Prolog, Int'l.
J. of Parallel Programming, 19(2):129 162 (April 1990).

2. Uri Baron, Jacques Chassin de Kergommeaux, Max Hailperin, Michael Ratcliffe, Philippe
Ropert, Jean-Claude Syre, and Harald Westphal, The Parallel ECRC Prolog System
PEPSys: An Overview and Evaluation Results, Proc. of the Int 7. Conf. on Fifth Generation
Computer Systems, ICOT, pp. 841-850 (November 1988).

3. Ralph Butler, Ewing Lusk, Robert Olson, and Ross Overbeek, ANLWAM--A Parallel
Implementation of the Warren Abstract Machine, Internal Report, Argonne National
Laboratory (1986).

4. William Clocksin, Principles of the DelPhi Parallel Inference Machine, Computer Journal
30(5):386-392 (1987).

5. Laxmikant V. Kal6, The Reduce-OR Process Model for Parallel Evaluation of Logic
Programs, Proc. of the Fourth Int'l. Conf. on Logic Programming, MIT Press, pp. 616-632
(May 1987).

6. K. Kumon, H. Masuzawa, A. Itashiki, K. Satoh, and Y. Sohma, KABU-WAKE: A New
Parallel Inference Method and Its Evaluation, IEEE, COMPCON Spring 86 (1986).

7. Ewing Lusk, David H. D. Warren, Seif Haridi, et al., The Aurora OR-Parallel Prolog
System, New Generation Computing 7(2, 3):243-271 (1990).

8. H. Yasuhara and K. Nitadori, ORBIT: A Parallel Computing Model of Prolog, New
Generation Computing 2:277-288 (1984).

9. Doug DeGroot, Restricted And-parallelism, Proe. of the Int'L Conf. on Fifth Generation
Computer Systems, Tokyo, pp. 471~478 (November 1984).

10. Manuel Hermenegildo, An Abstract Machine for Restricted AND-Parallel Execution of
Logic Programs, Third Int'l. Conf. on Logic Programming (Ed. Ehud Shapiro), Springer-
Verlag, London, pp. 25-39 (1986).

11. Yow-Jian Lin and Vipin Kumar, AND-Parallel Execution of Logic Programs on a Shared
Memory Multiprocessor: A Summary of Results, Pror of the Fifth Int'l. Conf. and Symp.
on Logic Programming, pp. 1123-1141 (1988).

12. Prasenjit Biswas, Shyh-Chang Su, and David Y. Y. Yun, A Scalable Abstract Machine
Model to Support Limited-OR (LOR)/Restricted-AND parallelism (RAP) in Logic
Programs, Pror of the Fifth Int'l. Conf. and Symp. on Logic Programming, MIT Press,
pp. 1160-1179 (August 1988).

13. John S. Cohere, Binding Environments for Parallel Logic Programs in Noshared Memory
Multiprocessors, Int'l. J. of Parallel Programming 17(2):125-152 (April 1988).

14. Laxmikant V. Kal6, B. Ramkumar, and W. Shu, A Memory Organization Independent
Binding Environment for, AND- and OR-Parallel Execution of Logic Programs, Proe. of
the Fifth Int'l. Conf. and Symp. on Logic Programming, pp. 1223-1240 (1988).

15. Harald Westphal, Philippe Ropert, Jacques Chassin de Kergommeaux, and Jean-Claude
Syre, The PEPSys Model: Combining Backtracking, AND- and OR-Parallelism, Proc. of
the Symp. on Logic Programming, pp. 436-448 (1987).

16. Mats Carlsson and Johan Wid+n, SICStus Prolog User's Manual, SICS Research Report
R88007B (October 1988).

17. Shyam Mudambi, Personal communication (September 1990).
18. Khayri A. M. Ali and Roland Karlsson, The Muse OR-Parallel Prolog Model and its

Performance, P, roc. of the No~'th American Conf. on Logic Programming, pp. 757-776, MIT
Press (October 1990).

19. Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens,
Scheduling OR-Parallelism: an Argonne perspective, Proc. of the Fifth Int'l. Conf. and
Symp. on Logic Programming, MIT Press, pp. 1590-1605 (August 1988).

Full Prolog and Scheduling Or-Parallelism in Muse 475

20. Khayri A. M. Ali and Roland Karlsson, Scheduling OR-Parallelism in Muse, Proc. of the
Int'l. Conf. on Logic Programming, Paris, pp. 807-821 (June 1991).

21. David H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI Inter-
national (1983).

22. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel Prolog, PhD thesis,
Swedish Institute of Computer Science, SICS Dissertation Series 01 (SICS/D-90-9901)
(March 1990).

23. Gopal Gupta and Bharat Jayaraman, On Criteria for OR-Parallel Execution Models of
Logic Programs, Proc. of the North American Conf. on Logic Programming, MIT Press,
pp. 737-756 (October 1990).

24. Alan Calderwood and P6ter Szeredi, Scheduling OR-Parallelism in Aurora--the
Manchester scheduler, Proc. of the Sixth lnt'l. Conf. on Logic Programming, MIT Press,
pp. 419435 (June 1989).

25. Per Brand, Wavefront Scheduling, Internal Report, Gigalips Project (1988).
26. Anthony Beaumont, Muthuraman, and P6ter Szeredi, Scheduling OR-parallelism in

Aurora with the Bristol Scheduler, Report TR-90-04, University of Bristol (March 1990).
27. P6ter Szeredi, Performance analysis of the Aurora OR-Parallel Prolog System, Proc. of

the North American Conf. on Logic Programming, MIT Press, pp. 713-732 (March 1989).
28. Khayri A. M. Ali, OR-Parallel Execution of Prolog on BC-machine, Proc. of the Fifth

Int7 Conf. and Symp. on Logic Programming, pp. 1531-1545 (1988).
29. David H. D. Warren, The SRI Model for OR-Parallel Execution of Prolog--Abstract

Design and Implementation Issues, Proc. of the Symp. on Logic Programming, pp. 92-102
(1987).

