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Summary. Given an iterative method Mo, characterized by x (k+l) 
=Go(x(k))(k>=O) (x (~ prescribed), for the solution of the operator equation 
F(x)=0,  where F : X - ~ X  is a given operator and X is a Banach space, it is 
shown how to obtain a family of methods Mp characterized by x tk§ 
= Gp (x (k)) (k__> 0) (x ~~ prescribed), with order of convergence higher than that 
of M o. The infinite dimensional multipoint methods of Bosarge and Falb [2] 
are a special case, in which M o is Newton's method. 

Analogues of Theorems 2.3 and 2.36 of [2] are proved for the methods 
Mp, which are referred to as extensions of M o. A number of methods with 
order of convergence greater than two are discussed and existence-con- 
vergence theorems for some of them are proved. 

Finally some computational results are presented which illustrate the 
behaviour of the methods and their extensions when used to solve systems of 
nonlinear algebraic equations, and some applications currently being in- 
vestigated are mentioned. 

Subject Classifications: AMS(MOS): 65J05. 

1. Introduction 

Let X be a Banach space, and let F : D r c X - - . X  be given. Suppose that 
P : D v c X ~ X  is defined by 

F ( x ) = x - P ( x )  (x~DF). (1.1) 

In this paper we consider the equivalent problems of finding a zero x* of F or a 
fixed point x* of P. 

Suppose that Go:X  ~ X and ~o: X ~ X are given operators. We consider an 
iterative procedure Mp defined by 

x(k + 1) = Gp (x (k)) (k _-> 0) (1.2) 
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with x ~~ prescribed, where Gp:X ~ X is defined recursively by 

i 

Gi(x)=Go(x ) -  ~, F'(co(x))-~F(Gj_l(x)) (l=<i<p) (1.3) 
j = l  

in which F':X  ~ L(X) is the Fr6chet derivative of F. Bosarge and Falb [2] have 
studied methods of the form Mp for the special case in which 

Go(x ) = x - F'(x)- 1 F(x) (1.4) 

and 

co(x)=x. (1.5) 

The method M s defined by (1.2), (1.3) with p =  1 and G O and co defined by (1.4), 
(1.5) respectively, has been discussed by Bosarge and Falb in I-1]. 

Brent [3] has studied methods of the form Mp for the special case in which 
X = R " ,  co(x)=x, and G O corresponds to a class of secant methods, or to a class 
of methods related to Brown's methods for solving systems of nonlinear equa- 
tions. 

The method Mp defined by (1.2), (1.3) will be referred to as an extension of 
method M 0. Thus, for example, the infinite dimensional multipoint method Mp 
of Bosarge and Falb, with G O and o9 defined by (1.4), (1.5) respectively, is an 
extension of Newton's method. In this paper we consider some methods having 
a higher order of convergence than that of Newton's method, and we consider 
also their extensions. 

2. Notation 

In this section we introduce some notation which will be used subsequently. The 
symbol X will always denote an arbitrary Banach space. Let I: X ~ X  be the 
identity operator in X. Then we write (1.1) as 

F(x)=(I-P)(x). (2.1) 

If P: X--, X is Fr6chet differentiable then we say that P is F-differentiable. If P is 
F-differentiable at xeD r then by (2.1), 

F'(x )=I-P ' (x ) .  (2.2) 

It is easily shown by induction that if {I-P'(co(x))}-1 exists, then 

G~(x) = [{I - P'(co(x))}- 1 { p _  p,(og(x))}],(Go(x) ) (1 < i <p) (2.3) 

where Gi is defined by (1.3). Suppose that {I-P'(co(x))} -1 exists (Vx~D), and 
that P(y) is defined (Vy~E). Define Q: D • E-~ X by 

Q(x, y)=  [{I - P'(co(x))} -1 {e-e ' (og(x))}]  (y). (2.4) 
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Then by (2.3), 

G,+ 1 (x) = Q(x, Gi(x)) (Vx~D) (2.5) 

and method Mp corresponding to (1.2), (1.3) is equivalent to 

xtk + 1) = O (x(k~, G p_ 1 (x(k))) �9 (2.6) 

If ~2cX is a given set then by FeCk(~2) we mean that F is k times 
continuously F-differentiable in ~. We denote the open and closed balls with 
centre x and radius r by B(x, r) and B [x, r] respectively. The Banach space of all 
bounded linear operators from the Banach space X to the Banach space Y is 
denoted by L(X,  Y), and by L(X)  if X = Y. 

3. Order of Convergence 

In this section, a theorem about the order of convergence of Mp will be proved. 
The following definition is required. 

Definition 3.1. Let G : X ~ X  be given and suppose that the sequence {x tk)} 
generated from x tk + 1~ = G(X tk~) (k > 0), (x t~ prescribed) converges to x* ~ X such 
that F(x*)=0 ,  where F: X ~ X is given. Then the algorithm which the sequence 
{x tk~} is generated has order of convergence q >__ 1 if 

Ii G(x ~k~) - x* IJ 
lim k ~  IIG(x~- l~)- x*ll q=c' 

where c > 0  is a constant. [] 

The following theorem corresponds to Theorem 2.3 of [2] and to Theorem 1 
and Theorem 2 of [3]. 

Theorem3.2. Suppose that (i) P : X ~ X  is given; (ii) x*=P(x* ) ;  (iii) p~C2(S) 
where S = B [x*, r]; (iv) ( I -  P'(x))-1 exists (V x~S), with 

sup I1(I =P ' (x)) -  111 __<B; (3.1) 
x e S  

(v) P " : X - * L ( X , L ( X ) )  is such that 

sup dlP"(x)ll < K; (3.2) 
x~S 

(vi) x~~ (vii) ~o: X ~ X  is such that 

II~o(x)-x*ll <allx-x*ll  ~ (Vx~S) (3.3) 

for  some constant a > 0 and some ~ > 1; (viii) G o : X  ~ X is such that 

Ilao(x)-x*ll<bllx-x*ll ~ (Vx~S) (3.4) 
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for some constant b > 0 and some v >/ t ;  (ix) BK r <9;  (x) a r ~-1< 1; (xi) b r ~-1< 1. 
Then the sequence {x (k)} generated from (1.2) with Gp defined by (1.3) lies in S and 
converges to x* with order of convergence at least v+ p #. Moreover, the rate of 
convergence is given by 

I I x ( ~ §  <=cpllx~k~-x*ll ~§ (Vk__>0) (3.5) 

where % is defined recursively by 

e 0 : b ,  

c i=BKci_l (a+3ci_ l  rv+(i-2)• ) (i=> 1). (3.6) 

Proof. The theorem is proved by induction on p. By hypotheses (vi), (vii), (viii), 
(x), (xi), x(~ co(x(~ and Go(x(~ Therefore by hypotheses (iv), (ii), (viii), 
(iii), (v), 

II x* - G 1 (x(~ II --< �89 BK b 2 ]l x(~ - x* tl 2 v "-I;- BK b I I x(~ - x* ]I v II G o (x(~ - co (x (~ II. 
(3.7) 

Now by hypotheses (vii), (viii), 

tlao(xt~176 I <(a + br~-') llx(~ x*llU. (3.8) 

By (3.6)--(3.8) therefore, 

II x*  - a 1 (x~~ ) II --< c 1 II x ~~ - x*  II ~ § ~. (3.9) 

Furthermore, by hypotheses (ix)-(xi), c 1 r ~§ 1< 1, whence by (3.9), Gx(x(~ 
Suppose that  x(k)=GI(x(k-I))~S for some k > l .  By a similar argument to 

that used in going from k = 0  to k =  1, we deduce that x tk+ 1)~S, and that  

I I x ~ §  II _-<c1 IIx~k)-x*ll  ~§ (3.10) 

Therefore by induction on k, x(k)~s (Vk>0) and (3.10) holds (Vk>0). Therefore 
the theorem holds for p = 1. 

Suppose that  for some p=>l, the theorem holds for each m<p. Since x (~ 
Gv(x(~ and co(x t~ are in S, then by (1.3), 

Ix(O)) 1 2 (0) * Hx*-Gp+lt , ]<iBKcp[]x --X ]12(~+w) 

+ B K  cp 11 x (~ - x *  ]l ~ § ~ I1Gp(x(O))  - c o  (x(O)) l]. ( 3 . 1 1 )  

But by (3.3) and (3.5), 

II a p ( x  (~ - co (xt~ --< (a + % r ~ § tP - "~ )  II x (~ - x*ll ~. (3.12) 

Therefore by (3.11), (3.12), and (3.6), 

I l x * - a p +  x(x~~ < % §  111x t ~  ~§247 " "  (3.13) 

Suppose that 

cs r ,+r , , -  1 < 1 (m = 1 . . . . .  p). (3.14) 
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This is certainly true for p = l .  Then by (3.6) and hypotheses (ix)-(xi), (3.14) is 
true for p +  1, whence by (3.13), Gp+I(xt~ Now suppose that for some k>0 ,  
xt~ ( i=0 ,  . . . ,  k). Then by a similar argument to that which was used in going 
from k = 0  to k = l  with p = l ,  Gp+l(xtk))~S and 

IIx* - Gp+ x(x (k)) II < % +  x II x(k) - x *  II v§ (~+ a)~. 

Therefore xtk+I)=Gp+a(xtk))eS. Therefore by induction on k, Gp+l(Xtk))~S 
(Vk>0).  Clearly by (3.14), x~k)~x * ( k ~ ) .  Therefore the theorem holds for p 
+1  if it holds for p. Therefore by induction on p, the theorem holds 
(Vp> 1). [ ]  

4. A Convergence Theorem 

In this section a convergence theorem for the extended methods defined by 
(1.2), (1.3) is given. In order to prove this theorem, three lemmas similar to 
Lemmas 2.16, 2.19, and 2.32 of [2] are required. 

Lemma4.1 .  Suppose that (i) P : X ~ X ,  o~: X ~ X ,  and Go: X ~ X  are given 
operators; (ii) x*=e(x*) ;  (iii) x*=Go(x*); (iv) { I - P ' ( o ~ ( x * ) ) }  - 1  exists; (v) 
Gp: X---, X ( p > l )  is defined by (1.3). Then x*=Gp(X*) (Vp> 1). 

Proof. The proof  is similar to that of Lemma 2.16 in [2] and is therefore 
omitted. [ ]  

Lemma4.2 .  Suppose that (i) P : X ~ X  is such that PeCZ(So), where S O 
=B[x~~ (ii) co: X - ~ X  is such that a~CI(So);  (iii) {I-P'(og(x))} -1 exists 
(VxeSo) and 

sup II {I - P'(o9 (x))} -111 < D; (4.1) 
xeSo 

(iv) P":  X--*L(X, L(X)) is such that 

sup IIP'(x)ll < M ;  (4.2) 
x~So 

(v) o9': X ~ L ( X )  is such that 

sup  II~o'(x)ll _-< ~. (4.3) 
x~S 0 

Then the mapping Q: X •  defined by (2.4) has partial F-derivatives 
Ql(x, y)(.),  Q2(x, y) ( . )  with respect to x and y respectively, and these are given, 
(Vx, y~So) , by 

Q x (x, y) ( . )  = {I - P'(co(x))} - 1 P"(co(x)) r (.) {I - P'(tn(x))} - 1 (p _ I) (y), 
(4.4) 

and 

Q2 (x, y) ( . )  = {I - P'(to(x))} - 1 {p,(y) _ P'(co(x))} (.). (4.5) 
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Proof. The proof  is similar to that of Lemma 2.19 in [2] and is therefore 
omitted. [ ]  

Corollary 4.3. Suppose that (i) hypotheses (i)-(v) of Lemma 4.2 are valid; (ii) x~S  o 
is such that Gp_l( .  ) is F-differentiable at x and Gp_I(x)ES O. Then Gp(.) is F- 
differentiable at x and 

G'p(x) ( . )  = Ql(x, Gp_ l(x)) ( . )  + QE(X, Gp_ l(x)) G'p_ l(x) (.). (4.6) 

Proof. The proof  follows immediately from (2.4) and Lemma 4.2. []  

Lemma4.4 .  Suppose that (i) V : X ~ X  is such that V~CI(So) where S O 
= B Ix (~ r] ; (ii) V': X ~ L(X)  is such that 

sup 1[ V'(x)1[ < 5 < 1 ; (4.7) 
x c S o  

(iii) 3 i /> 0, 

I1 V ( x ~ ~ - x (~ II --< r/," (4.8) 

(iv) rl, 6, and r are such that 

r//(1 - 6) < r. (4.9) 

Then the sequence {x (k)} generated from x(k+l)= V(x (k)) (k>0)  converges to the 
unique f ixed point x* of  V in S O and 

6 k 
lix(k)--x*[[ ~(1 --8) I[x(X)--xt~ (Vk> 1). (4.10) 

Proof. This lemma is just  Lemma 2.32 of [2]. For  a proof  see [7] or [10]. []  

The following theorem holds for algorithms defined by (1.2), (1.3), and 
contains Theorem 2.3 of [2] as a special case. 

T h e o r e m  4.5. Suppose that (i) P: X - - * X  and o9: X ~ X  are such that pEC2(So), 
~ e  CI(So) where S O = B  Ix t~ r]; (ii) { I -  P'(e~(x))}-1 exists (Vx~S0) , and 

sup II {I - P'(e~(x))} - 111 < B; (4.11) 
xr 

(iii) P":  X ~ L(X,  L(X)) is such that 

sup IIe"(co(x))ll < K  ; (4.12) 
x e S o  

(iv) co': X ~ L ( X )  is such that 

sup Ilco'(x)ll <~'; 
xeSo 

(v) Go: X - - * X  is such that GoeCt(So)  and 

t ~ . sup IlGo(x)]l = h  o, 
xeSo 

(4.-13) 

(4.14) 
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(vi) Go(x)eS o whenever xeSo;  (vii) ( P - I )  is uniformly bounded on S o with 

sup ]I(P-I)(x)ll <=m, (4.15) 
xeSo 

(viii) G O -co  is uniformly bounded on S O with 

sup IIGo(x)-e)(x)l [ < E: (4.16) 
2r o 

(ix) 3 r/p > 0 (p = O, ..., v) such that 

II Gp(x ~~ - x ~~ II < ~/p, (4.17) 

(x) hp (p = 1 . . . .  , v) is defined recursively by 

h p = B K [ B T M + { ( p - 1 ) B M + E I h p _ I ]  (1 <p<v) ,  (4.18) 

and 

~/p <(1 -hp)  r (p=0  . . . .  , v); (4.19) 

(xi) h p < l  (p=0, .... v). Then for  p = 0  . . . .  , v, the sequence {Gp(xtk))} converges to 
the unique f ixed point x* o f  P in So, and 

hk+ 1 
I]Gp(x(kJ)-x*l] ~-~(1 P-hp) I l x t l ) -  x~~ (Vk>0) .  

Proof. By (2.5), 

G l(x) = Q(x, Go(x)). (4.20) 

By Corollary 4.3, Gj is F-differentiable on S o and 

sup IlG](x)l[ <sup  I[Ql(x, Go(x))ll + sup  ]lQ=(x, Go(x))[I sup IlGb(x)ll, 
x~S o x~So X~So x~So 

so by (4.4), (4.5), (4A1)-(4.16), and ix), 

sup IIG'I(x)LI < B K ( n ~  M + E  ho) 
xeSo 

=h  r (4.21) 

Then (VxeSo),  by (4.21), (4.17), (4.19), 

II a 1 (x) - x t~ 1[ < 1[ G 1 ix )  - a ~ (x  t~ ) II + II G 1 (x~~ - xt~ 

< h i r + ( 1 - h O r  

~ r .  

Therefore G~(x)ES o (Vx~So). Suppose that for some p >  1, G~ is F-differentiable 
on So, that G~(x)eS o (VxeSo),  and that 

supl[G'~(x)l]<=h~ (i=1, . . . , p<v) .  (4.22) 
x~So 
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Then by Corollary 4.3, Gp+ ~ is F-differentiable on S o and, as for (4.21), 

sup I[ G'p + a (x) ll <-_ n ~ K ? M + B K  sup II Gp(x) - o) (x)It hp. 
xeSo XeSo 

Now 

(4.23) 

IlG gx)-~o(x)l[ ~ II@(x)-Gp_ l(x)ll + "-" + Ilao(x)-o~(x)ll, 

and for i=1,  . . . ,p,  by (vi), (4.15), and (4.11), 

sup II at(x) - ai_ ,(x)II = sup II {I - P'(co(x))} - 1 (p  _ I) ( a  i_ l(x))II 
x~So xeSo 

< B M .  

Therefore by (4.23)-(4.25), 

sup  liar,+ a(x)ll <=BeK~M+BK(pBM+E) h~ 
X~So 

: h p + l .  

Therefore by (4.26), (4.17), and (4.19), (VxeSo), 

I[Gp+ a(x)-x(~ < II@+ x ( x ) - G p +  l(x(~ + IIGp+ l (x~~ x~~ 

<rhp+l  + ( 1 - h p + l )  r 

~ r .  

(4.24) 

(4.25) 

(4.26) 

Therefore Gp+l (x ) eS  o (VxeSo). Therefore by induction on p, (4.22) holds for 
p = 0  . . . . .  v and Gp(X)eS o (VxsSo) for p=0 ,  ..., v. Therefore by Lemma4.4, 

* of Gp in So, for pe0, ..., v. {Gp(x(k))} converges to the unique fixed point xp 
Now by Lemma 4.1, the unique fixed point x~ of G o in S O is also a fixed 

* is the unique fixed point of Gp in S O (Vp>0). Therefore since for p=0 ,  ..., v xp 
point of Gp in So, then x* =x*  (p= 1, ..., v). Therefore with x* =x*,  the theorem 
is proved. [] 

5. Some Third Order Methods 

In this section a number of iterative methods for the solution of F ( x ) =  0 or 
equivalently, of x = P(x),  where F = ! -  P, are discussed. We consider firstly some 
third order methods. The method corresponding to 

ytk) = x(k) _ F,(x(k))- 1 F(x(k)), (5.1) 

xtk + 1) = ytk) _ F,(xtk))- a F(ytk)) (5.2) 

has been discussed by several authors, and in particular by Bosarge and Falb 
[1], who gave a convergence theorem for it which shows essentially that if x t~ is 
chosen suitably, then the sequence {x tk)} generated from (5.1), (5.2) converges to 
a solution x* of F ( x ) =  0 with order at least three. The procedure corresponding 
to (5.1), (5.2) requires one evaluation and one inversion of F' and two eval- 



Extended Iterative Methods for the Solution of Operator Equations 161 

uations of F per iteration. This makes the procedure very attractive for solving, 
in particular, systems of nonlinear algebraic equations, nonlinear integral equa- 
tions, and nonlinear two-point  boundary  value problems, as discussed by 
Bosarge and Falb in [2]. Henceforth, the method corresponding to (5.1), (5.2) 
will be referred to as the Bosarge-Falb method (BF), for convenience. The 
extension of the method BF will be denoted by EBF. The following lemmas will 
be required. 

Lemma 5.1. Suppose that (i) F: D e c X  ~ X  is given and 3x*eDr, F(x*)=O; (ii) 
FE C2(S) where S = B [ x * ,  r] C DF; (iii) F'(x)-1 exists (Vx~S), with 

sup IIF'(x)-lll <B; (5.3) 
x~S 

(iv) F": X ~ L ( X ,  L(X)) is such that 

sup IIF'(x)lt <K;  (5.4) 
xES 

(v) B, K, and r satisfy 

BK r < 1 ; (5.5) 

(vi) xtm~S. Then the sequences {y~k~}, {xtk~} generated from (5.1), (5.2) respectively 
remain in S and converge to x*. Furthermore, 

llytk~--x*l[ <�89 2 (Vk>0),  (5.6) 

and 

Hx~k§ <5(nK)211x~*~-x*ll3 (Vk>O). (5.7) 

Proof. By (5.1), (i), (ii), (5.3), (5.4), and (vi), 

II y(O) _ x* II --< �89 BKll x ~~ - x* II 2. (5.8) 

Therefore by (5.5), yt~ Therefore by (5.2), (5.8), 

Ilx m - x * l l  <�89 Ily t~ + K [Ix (~ Ily C~ 

< 5 ( n g ) 2  IIx ~~ (5.9) 

Therefore by (5.5), xmeS.  Suppose that for some k > l ,  x(k)es. Then by an 
argument similar to that used in going from k = 0  to k =  1, it follows that ytk)~s, 
X (k+ 1)~S ' 

Ilyr x* II ----< �89 BK IIx ~k)- x* [I 2, 

and 

II x tk + 1~ _ x* II < ~ (BK) 2 II x ~k) - x* II 3 

Therefore by induction on k, the lemma is proved. []  
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Lemma 5.2. Suppose that (i) the hypotheses of Lemma 5.1 are valid; (ii) to: X--*X 
is defined by 

to(x)=x (xeS); (5.10) 

(iii) Go: X ~ X  is defined by 

Go(x)=to(x)-F' (x)- l  to(x) (xeS). (5.11) 

Then 

Ilto(x)-x*ll <allx-x*[I ~ (Vx~S), (5.12) 

and 

IlGo(x)-x*ll <bllx-x*l] v (Vx~S), (5.13) 

where a = l ,  # = 1 ,  b=-}(BK) 2, and v=3. 

Proof. The proof is immediate from the proof of Lemma 5.1. [] 

The following theorem holds. 

TheoremS.3. Suppose that (i) F: X--*X is given and 3x*eX,  F(x*)=O; (ii) 
F e C2(S) where S =B[x*, r'l; (iii) F'(x)-1 exists (VxeS) and (5.3) holds; (iv) (5.4) 
holds; (v) xt~ (vi) to: X ~ X  is defined by (5.10) and (5.12) holds; (vii) Go: 
X --* X is defined by (5.11) and (5.13) holds; (viii) BK r < 2. Then the sequence {x ~k)} 
generated from (1.2), (1.3) lies in S and converges to x*, with order of convergence 
at least 3 + p. Moreover, 

IIx~k+XJ-x*ll <%[Ix~k)-x*ll 3+p (Vk>O) 

where 

Co =~ (BK) 2, 

and 

c i=�89  i+1) ( l < i < p ) .  

Proof. The theorem is an immediate consequence of Theorem 3.2 with P = I  
- F .  []  

The preceding theorem is equivalent to Theorem 2.3 of [2], and shows that 
the method EBF has order of convergence at least 3 +p, (p > 1). 

The method corresponding to 

ytk) = x(k) _ �89 F,(xtk))- 1 F(xtk)), (5.14) 

xtk + 1) = Xtk) _ F'(y(k))- 1 F(xtk)) (5.15) 

attributed by Collatz [4] to Pasquali and henceforth referred to as method P, 
also has order of convergence at least three as is shown by the following lemma. 
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Lemma 5.4. Suppose that (i) F: D r c X - - * X  is given and 3x*~D r, F(x*)=O; (ii) 
FEC3(S) where S=B[x* ,  r] c D r ;  (iii) F'(x) -1 exists (Vx~S) and (5.3) holds; (iv) 
(5.4) holds; (v) F':  X--*L(X) is such that 

sup IlF'(x)ll <O; (5.16) 
x~S 

(vi) F'": X--*L(X, L(X, L(X))) is such that 

sup [IF'"(x)H <L;  (5.17) 
x~S 

(vii) B, K, r, D, and L satisfy 

B K r < I ,  (5.18) 

� 8 9  (5.19) 

and 

b r 2 < 1, (5.20) 

where 

B 
b = ( 8 _ 4 K B 2 D r )  [~ L + 2 BK 2 + B3 D3 L]; (5.21) 

(viii) x(~ Then the sequence {x try} generated from (5.14), (5.15) remains in S and 
converges to x*. Furthermore, 

Ilytk~-x*ll <311x~k~--X*II (Vk>0),  (5.22) 

and 

IIx~k+X~--x*ll <bl[xtk)-x*ll 3 (Vk>0). (5.23) 

Proof. The first Newton  iterate ,,(1) is defined by x~)=x(~176 ~~ ~ N  

Therefore by (5.8), 

Ily(~ I] <�89176 + I Ix~)-x* II) 

<311x(~ 

Therefore yt~ and F'(yt~ - 1 exists. Let h (~ = x ~  ~-  x ~~ Then 

11�89 t~ h(~ [It'(xt~ - 111 < � 8 9  IIx t~ - x* II. (5.24) 

Let Ht~176189176 t~ Then by (5.24), (5.19), and the Banach per- 
turbat ion lemrna, H t~ t exists and 

2 B  
II H ~~ 111 < (2 - KB 2 D r)" (5.25) 
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Therefore 

IIx m - x* II < IIH ~~ - 111 II n~~ ~~ - x*) - F(x ~~ + F(x*)II 

+ II Hem- 1 _ F'  (y(O~) - 111 II F(x~~ - F(x*)II. (5.26) 

Now by definition of H ~~ 

II n~~ ( xt~ - x*) - F(x ~~ + F(x*)II < (-~ L + �88 B K  2 ) II x ~~ - x* II 3. (5.27) 

Also by (5.25), the definition of H t~ and (5.17), 

B4D2L 
iin(O~- 1 _F,(y(O))- 111 < Ilx (~ = 4 (2 - K B  2 D r) II 2. (5.28) 

Therefore by (5.26)-(5.28), we have [ Ixm-x*/[  <=blfx(~ 3, and so by (5.20), 
xO)~S. 

Suppose that for some k_>_ 1, x~*~S. Then by a similar argument to that which 
was used in going from k - -0  to k =  1, it follows that  y~*~eS, x(*§ and (5.22), 
(5.23) hold for k. Therefore by induction on k, the lemma is proved. [ ]  

Lemma 5.5. Suppose that (i) the hypotheses of Lemma 5.4 are valid; (ii) co: X--*X 
is defined by 

o g ( x ) = x - � 8 9  F(x) (xeS); (5.29) 

(iii) Go: X--* X is defined by 

Go(x) = x - F'(to(x))- 1F(x) (xeS). (5.30) 

Then (5.12) and (5.13) hold, with a= 3, p=  1, b defined by (5.21), and v=3.  

Proof. The proof  is immediate from Lemma 5.4. [ ]  

Theorem 5.6. Suppose that (i) the hypotheses of Lemma 5.4 are valid; (ii) B K  r < ~. 
Then the sequence {x tk~} generated from (1.2), (1.3) lies in S and converges to x* 
with order of convergence at least 3 + p. Moreover 

IIx~k§ <cpllx~k~-x*l] 3§ (Vk>0)  

where 

co~b 

and 

c i = � 8 8  i+1 ) (1 < i < p ) .  

Proof. The theorem is an immediate  consequence of Theorem 3.2. [ ]  

The preceding theorem shows that the extended Pasquali  method  (EP) has, 
like EBF, an order  of convergence at least 3 + p  (p>  1). 

Bosarge and Falb [1] have proved a theorem giving sufficient conditions for 
the existence of a solution x* of F ( x ) = 0  to which the sequence generated from 
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BF will converge, and in [2] they prove a similar theorem for EBF. It is difficult 
to prove an existence-convergence theorem for the general class of methods 
defined by (1.2), (1.3) because the special nature of G O must be exploited, as was 
done by Bosarge and Falb for EBF. It is however, easy to prove a theorem for 
the method P by using the following result which is due to Rheinboldt [-11]. 

Theorem 5.7. Suppose that (i) F: D r ~ X ~ X is F-differentiable on an open convex 
set D o c D r ,  and 

I IF' (x)- f ' (y) l l  <TIIx-Yll (Vx, y~Oo); (5.31) 

(ii) A: D o c X  ~ L ( X  ) has a bounded inverse A(x)  -1 and 

sup IIa(x)- 111 _-</L" (5.32) 
xeDo 

(iii) A is such that 

sup IIF'(x) - A(x)I[ < fi; (5.33) 
xEDo 

(iv) x~~ is such that 

llA(xtO~)- 1 F(x~O~)l I < ~; (5.34) 

(v) ~, fl, 7, ~ are such that 

h=�89 fl Tc~ + fltS < l ; (5.35) 

(vi) B[-x ~~ r] c D o ,  where 

r = ~/(1 - h). (5.36) 

Then the sequence {x tk~} defined by 

x~k + 1~ = xtk~ _ A (x tk~) - 1 F(xtk~) (k > O) 

lies in B [ x  ~~ r] and converges to a solution x* of  F(x)=0.  [] 

The following theorem gives sufficient conditions for the existence of a 
solution of F(x )=  0 to which a sequence of iterates generated from method P 
converges. 

Theorem 5.8. Suppose that (i) F: D r ~ X - ~  X is a given mapping and 3 x (~ ~D e and 
R > 0  such that D = B ( x  ~~ R ) c D F ;  (ii) F is F-differentiable in D and 

IIF'(x)- F'(Y)II ~Tllx-Yll  (Vx, yeO);  (5.37) 

(iii) F'(x) -1  exists (Vx~D) and 

sup II F' (x)-  11t < fl ; (5.38) 
xED 

(iv) F is uniformly bounded in D with 

sup IlF(x)]l <v;  (5.39) 
xED 
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(V) f127v<l; (vi) O<r <R- �89  where 

r = fl v/(1 - f12 7 v ). (5.40) 

Then the sequence {x (k)} defined by (5.14), (5.15) lies in B[x ~~ r], and converges to 
a solution x* of F(x)=0. 

Proof. Let p = R - � 8 9  and let Do=B(x(~ Also let y = x - � 8 9  
(xeDo). Then by (5.38), (5.39) and (vii), Ily-x(~ <R (Vx~Do). Therefore y~D 
whenever x~D o and so by (iii), F'(y)- 1 exists and [[F'(y)- 1 II _-</~, whenever x~D o. 
Also, by (5.37), IlF'(y)-F'(x)l[<~,lly-xl[<�89 (Vx~Do) , and [[F'(yr176 -1 
F(x ~~ < flv. The theorem now follows from Theorem 5.7. [] 

The method corresponding to 

ytk) = xtk)_ F,(xtk))- 1 F(xtk)), (5.41) 

x~k + l~ = x(k~_ 2 (F'(x <k)) + F'(y~k))) - 1 F(x<k~) (5.42) 

discussed by Traub [12] and henceforth referred to as method T, has, like 
method P, an order of convergence at least three, as shown by the following 
lemma. 

Lemma 5.9. Suppose that (i) F: DrcX-- - ,X  is given and 3x*eDF, F(x*)=O; (ii) 
FeC3(S) where S=B[x*,  r] cDF; (iii) F'(x) -1 exists (u and (5.3) holds; (iv) 
(5.4) holds; (v) (5.16) holds; (vi) (5.17) holds; (vii) (5.18) and (5.19) hold; (viii) 
b r 2 < 1 where 

b -  B I-1 1BK 2 BaLD 3 ] .  
- ( 2 _ B 2 K r D  ) [ ~ L + ~  § ( 2 _ B 2 K r D ) j ,  (5.43) 

(ix) x~~ Then the sequence {x tk~} defined by (5.41), (5.42) lies in S and converges 
to x*. Moreover, 

Ily~k~-x*ll ~�89 2 (Vk____0), (5.44) 

and 

IIx~k+l~-x*[I <bllxr 3 (Vk_>_0). (5.45) 

Proof. The proof is similar to that of Lemma 5.4 and is therefore omitted. [] 

Lemma 5.10. Suppose that (i) the hypotheses of Lemma 5.9 are valid; (ii) co: 
X ~ X is defined by 

og(x )=x-F ' (x ) - l  F(x) (xeS); (5.46) 

(iii) Go: X ~ X is defined by 

Go(x) = x - 2 (F'(x) + F'(og(x)))- 1 F(x) (x eS). (5.47) 

Then (5.12) and (5.13) hold, with a=�89 kt=2, b defined by (5.43), and v=3. 
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Proof The proof is immediate from Lemma 5.9. [] 

Theorem 5.11. Suppose that (i) the hypotheses of Lemma 5.9 are valid; (ii) 
BKr < 2. Then the sequence {x tk)} generated from (1.2), (1.3) with co and G O defined 
by (5.46) and (5.47) respectively, lies in S and converges to x* with order of 
convergence at least 3 +2 p. Moreover. 

Ilxtk+ l~--x*ll <cpllxtk~-x*ll a§ 2p (Vk >O), 

where 

c o = b, 

and 

ci=�89 2i-1) ( l< i<p) .  

Proof The theorem is an immediate consequence of Theorem 3.2. [] 

The following theorem gives sufficient conditions for the existence of a 
solution of F(x)=0 to which a sequence of iterates generated from method T 
converges. 

Theorem 5.12. Suppose that (i) hypotheses (i), (ii), (iv) of Theorem 5.8 are valid; (ii) 
F'(x) -1 exists (VxeD) and 

sup IIf'(x)- l iI <B; (5.48) 
x ~ D  

(iii) B2?v<�89 (iv) O<r < R - B v ,  where r=~/ (1-h) ,  in which ~=Bv/(1-�89 
and 

1 h= B23:v [1-+ v)]" 
(2-B27v) (2-B2~ 

Then the sequence {x tk)} generated from (5.41), (5.42) lies in B[xt~ and 
converges to a solution x* of F(x)=0. 

Proof In Theorem5.7 set Do=B(xt~ where p = R - B v ,  and define A: 
D o c X ~ X  by A(x)=�89 where y = x - F ' ( x ) - l F ( x )  (xeDo). [] 

By Hypothesis (iii) of Theorem 5.12, h<  7, so r<6Bv.  Therefore since p=R 
- B v, the condition R > 7 B v ensures that r < p whence B [x t~ r] c D o. Therefore 
if v is sufficiently small, then Hypothesis (iv) is automatically valid. 

6. S o m e  Methods of  Higher Order 

Iterative methods of order higher than three for the solution of F(x)= 0 can be 
constructed in a number of well known ways, many of which are described by 
Ortega and Rheinboldt [9]. Many high order methods are computationally 
expensive, requiring several evaluations of F or F', or even F" per iteration. The 
methods BF and EBF described in Section 5 are of interest because only one 
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evaluation and inversion of F'  per iteration is required for either method. The 
methods P and T require two evaluations and inversions of F'  per iteration and 
have the same order  of  convergence as BF, and should therefore be more 
computat ional ly expensive than BF. 

Suppose that  a method could be found which has order of convergence 
greater than three, which requires not  more  than two evaluations and inversions 
of F'  and not  more  than two evaluations of F, and which is such that for each 
iteration k, one of the points at which F is evaluated and inverted is Og(x(k~). 
Then Theorem 3.2 indicates that  if /~>1, then the corresponding extended 
method should be efficient. Computat ional  experience suggests that the follow- 
ing method is attractive. Generate  {X (k)} from 

y(k) = xtk)_ F,(Xtk))- , F(xtk)), 

ztk) = y(k) __ �89 F,(xtk))- i F(y(k)), 

x(k +, ) = ytk) __ F' (z (k)) - ' F(ytk)), 

(6.1) 

(6.2) 

(6.3) 

with x (~ prescribed. This method  requires two evaluations and inversions of F', 
and two evaluations of F and so requires the same computat ional  labour  per 
i teration as two Newton iterations. Whereas, however, the method obtained by 
combining two Newton iterations has order of convergence four, the method 
corresponding to (6.1)-(6.3) has order  of convergence at least five, as is shown by 
the following lemma. 

Lemma 6.1. Suppose that (i) F:  D r c X  ~ X  is given and 3x*eDe,  F(x*)=O; (ii) 
FeC3(S) where S=B[x* ,  r] cDv;  (iii) F'(x)-x exists (Vx~S), with 

sup IlF'(x)-x [I <=B; (6.4) 
xES 

(iv) F ' :  X-~ L(X) is such that 

sup IIF'(x)l[ ~ O ,  (6.5) 
x e S  

(v) F":  X ~ L ( X ,  L(X)) is such that 

sup IIF"(x)l[ < K ;  (6.6) 
xES 

(vi) F '":  X ~ L ( X ,  L(X, L(X))) is such that 

sup [IF'"(x)ll < L  ; (6.7) 
x~S 

(vii) B K r < I "  (viii) 2 1 289 2 r 2 , -~(-~BL+~-B LD) < 1 ;  (ix) x(~ Then the sequences 
{xtk)}, {ytk)}, and {z tk~} generated from (6.1)-(6.3) respectively lie in S and converge 
to x*. Furthermore, (V k >_- 0), 

1[ ytk) _ x* II =< �89 BK l[ xr -- X* 1] 2, (6.8) 

11 z (k) - x* 11 < 9 BK II x (k) - x* 112, (6.9) 
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and 

IIx <k + 1~_ x* II --< b II x <k) - x* II 5, (6.10) 

where 

1 3 2 1 b = v B  K [ ~ L + ~ B K 2 + ~ B L D ] .  (6.11) 

Proof The proof is similar to that of Lemma 5.9 although rather mote tedious, 
and is therefore omitted. [] 

The coefficients in hypotheses (vii) and (viii) are not optimal but are chosen for 
convenience. 

Lemma 6.2. Suppose that (i) the hypotheses of Lemma 6.1 are valid; (ii) co: 
X---} X is defined by 

~o(x) = y - �89 F'(x)- ' V(y), (6.12) 

where 

y = x -  F'(x)- 1F(x); (6.13) 

(iii) Go: X ~ X  is defined by 

Go(x ) = y -  F'(o)(x))- ' F(y). (6.14) 

Then (5.12) and (5.13) hold, with a=x3gBK, # = 2 ,  b defined by (6.11), and v=5.  
Furthermore, a r"- 1 < 1 and b r ~- a < 1. 

Proof The proof is immediate from Lemma 6.1. [] 

Theorem 6.3. Suppose that (i) F: X--*X is given and 3x*eX ,  F(x*)=O; (ii) 
F~C3(S) where S=B[x* ,  r]; (iii) F'(x) -1 exists (VxeS) and (6.4) holds; (iv) (6.5) 
holds; (v) (6.6) holds; (vi) (6.7) holds; (vii) BKr< ~;  (viii) 2 1 g(sBL 
+ ~ B 2 L D )  rE< 1; (ix) x~~ eS ; (x) oJ : X ~ X is defined by (6.12) and (5.12) holds; 
(xi) Go: X ~ X  is defined by (6.14) and (5.13) holds. Then the sequence {x ~k)} 
generated from (1.2), (1.3) lies in S and converges to x* with order of convergence 
at least 5 + 2 p. Moreover, 

Ilx(k+l)-x*ll <cpltx~k)--x*ll s§ (Vk>O), 

where co=b is defined by (6.11) and 

- l(ig BK +~cl-1 r (1 <i<p).  c i = n K c  i 9 3 21+1)  

Proof The proof is immediate from Theorem 3.2 and Lemmas 6.1 and 6.2. [] 

The method corresponding to (6.1)-(6.3) will be denoted by W1, and its 
extension by EW1. It is possible to construct several other methods of high 
order. For  example, the method corresponding to 

y(k)  = x(k)  __ F , ( x ( k ) ) -  1 F ( x ( k ) ) ,  (6.15) 
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z (k) = x tk) - 2 (F ' (x  ~k') + F'(y~kj)) - 1F(xtk)), (6.16) 

x(k  + 1) = z(k ) - -  F' ( y(k )) - 1 F ( z(k )) (6.17) 

with x t~ prescribed, may be shown to have order of convergence at least five 
under appropriate conditions. Indeed, it is equivalent to ET with p = 1. Further- 
more, if o9: X ~ X  is defined by og(x)= x -  F ' ( x ) - 1  F(x )  and Go: X ~ X  is defined 
by Go(x  ) = y - F'(og(x))-  1 F(y)  where y = x - 2 (F'(x)  + F'(og(x)))- 1F(x) ,  then the 
extension Mp of the method Mo, defined by (1.2), (1.3) can be shown to have 
order of convergence at least 5+2p .  The method corresponding to (6.15)-(6.17) 
will be denoted by W2 and its extension by EW2. 

7. Computational Results 

In this section some computational results for the methods N (Newton's 
method), BF, P, T, WI,  W2, EBF, EP, ET, EW1, and EW2 are given. The 
relative computational efficiencies of these methods clearly depend, to some 
extent, on the kind of equation which is being solved. If the evaluation and 
inversion of F' is computationally very expensive compared with the evaluation 
of F, then it may be better to use a method such as EBF which requires one 
evaluation and inversion of F' per iteration, than it would be to use a method 
such as ET or EW1 which require two evaluations and inversions of F' per 
iteration, x This is especially true when the initial iterate is so close to the 
required solution that the convergence criterion is likely to be satisfied after only 
one iteration of EBF. If, however, the computational labour of evaluating and 
inverting F' is not much greater than that of evaluating F, then ET, EW1, and 
EW2 may be preferable to EBF. 

If F ( x ) =  0 is a system of nonlinear algebraic equations for which Jacobian is 
sparse, then F' may not be much more computationally expensive to evaluate 
than is F. Furthermore, tri-diagonal or five-diagonal matrices may, in general, be 
inverted with less computational labour than may full matrices. Systems of 
nonlinear algebraic equations with tri-diagonal or five-diagonal Jacobians are of 
particular importance in connection with the numerical solution of two-point 
boundary value problems. 

The problem of finding a local minimizer of a given nonlinear function f :  
p , , ~ l  with or without constraints involves the solution of a system of 
nonlinear algebraic equations. Work currently in progress on this problem 
indicates that extended iterative methods may be used with advantage in a 
manner similar to that in which Gill and Murray [5] have used Newton's 
method. 

If f :  R " ~  R1 is a sum of squares of nonlinear functions then several special 
methods exist for finding local minimizers of f ;  these methods are usually 
modifications of Newton's method. An example is the modified damped least 
squares (MDLS) method of Meyer and Roth [8]. Wolfe [13] has shown how BF 
may be used to improve the efficiency of MDLS. Gill and Murray [6] have 

x Method ET actually requires three inversions of F' 
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Table 1 
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i p 

0 1 2 3 4 5 6 

1 W2 EBF EBF EBF EBF EBF EBF 
EW2 

2 BF EW1 EWl EW1 EW1 EW1 EW1 
W2 EBF 

3 BF EW1 EBF EBF EBF EBF EBF 
EW2 

4 W2 ET EW1 EWl EWl EW1 EW1 
EW1 W2 

5 BF EW1 EW1 EW1 EW1 EW1 EW1 
EW2 EW2 EW2 EW2 EW2 EW2 

ET ET, EBF ET, EBF ET, EBF ET, EBF 

6 N EW2 ET ET / / / 
T 

7 W1 W1 W1 EW1 EW1 EWl EW1 
EBF EBF EW2 EW2 EW2 EW2 

ET ET ET 

8 W1 EBF EW1 EW1 EW1 EW1 EBF 
EW2 EW2 EW2 EW2 

ET ET ET 

9 Wl EBF EW1 EW1 EW1 EW1 EW1 
EW2 EW2 EW2 EW2 EW2 

ET ET ET ET 

10 BF BF EBF BF BF BF BF 
EBF 

described a modification of the Gauss-Newton  method for minimizing a sum of 
squares of nonl inear  functions. Work  currently in progress indicates that certain 
extended iterative methods used in conjunct ion with the algori thm of Gill  and 
Murray  give promising results. 

In  order to illustrate the relative computa t ional  efficiencies of various 
iterative methods and their extensions, the ten systems of nonl inear  algebraic 
equat ions given in the appendix to this paper were solved by using methods N, 
BF, P, T, W1, W2, EBF, EP, ET, EW1, and EW2. For  each method, con- 
vergence was considered to have been attained when IlF(x)(k))ll<lO-5 and 
Ilu-vll <10-511vii where u, v e ~ "  are two consecutive estimates of a solution 
x*. For  method N, u = x  ~k~, and v = x  tk+l~, while for method W1, possible values 

vtk) V = y~k), o fu  and v are u = ~  , or u.-~-y (k), v = z  (k), or u = z  (k), l ) = x  (k+l). Similar possi- 

bilities exist for the other methods. All calculations were performed in double 
precision F O R T R A N  on the IBM 360/44 computer  at St. Andrews. Two indices 
of computa t ional  labour  were used, namely n 1 and n2, where n 1 = n r + n n  o in 
which nr  is the number  of evaluations of F and n D is the number  of evaluations 
of F '  required for convergence, and  where n 2 = n n r + m n  o in which m is the 
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i p 

0 1 2 3 4 5 6 

1 W2 W2 W2 W2 W2 W2 W2 
EW2 EW2 EW2 EW2 EW2 EW2 
ET ET ET ET ET ET 

2 W2 EW1 EW1 EWl EW1 EWl EW1 
BF EBF 

3 BF EW1 EBF EBF EBF EBF EBF 
EW2 

4 W2 EWl EW1 EW1 EW1 EWl EWl 
W2 W2 
ET 

5 BF EW1 EW1 EWl EWl EW1 EWl 
EW2 EW2 EW2 EW2 EW2 EW2 

ET ET, EBF ET, EBF ET, EBF ET, EBF 

6 N EW2 ET ET / / / 
T 

7 Wl  Wl Wl  EW1 EWl EW1 EWl 
EBF EBF EW2 EW2 EW2 EW2 

ET ET ET 

8 W1 EBF EW1 EW1 EW1 EW1 EWl 
EW2 EW2 EW2 EW2 EW2 

ET ET ET ET 

9 W1 EBF EW1 EW1 EWl EW1 EW1 
EW2 EW2 EW2 EW2 EW2 

ET ET ET 

10 BF BF BF BF BF BF BF 

number of elements of  the Jacobian F' which require at least one arithmetical 
operation for their evaluation. If the n x n matrix F' is tri-diagonal, then m = 3 n 
- 2 .  The index n 1 is adequate when F' is a full matrix, but n 2 is a more 
informative index when F' is sparse. 

Table 1 shows which methods are the most  efficient for p = 0  . . . . .  6 when n 1 is 
used as an index of computational labour. Table 2 gives the same information 
when n 2 is used. 

In both Table 1 and Table 2, the index i denotes the relevant system of 
equations in the order given in the appendix. When, in Tables 1 and 2, several 
methods are listed under one value of  i and one value of  p, this means that they 
require the same amount  of  computational labour. 

Let 
10 

Nj = ~ n j, (j = 1, 2), 
i=1 
i . 6  

where n~i is the value of  nj corresponding to system i. Then NI and N 2 are 
indices of  total computational labour for the nine systems i =  1, . . . ,  10 (i4:6). 
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Table 3 Table 4 

p 0 3 p 0 3 

N 1 179 122 N l 176 111 
N z 475 358 N 2 447 302 
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The results for System 6 are omi t ted  because nei ther  EBF  nor  EW 1 converge for 
this system when p > 3 .  Tables 3 and 4 show the results for BF  and W1 
respectively. 

F o r  Me thod  N, N 1 =166  and N2=494.  Therefore  the percentage saving in 
compu ta t iona l  l abour  for EBF relat ive to N is 16 % and that  for EW1 is 29 %, 
when p = 3. If  only systems with a t r i -d iagonal  Jacob ian  are considered,  then 
EW1 is even more  favourable  relat ive to EBF in many  cases. F o r  systems 8 and 
9, for example,  which have t r i -d iagonal  Jacobians,  the savings are 15 % for EBF 
and 35 % for EW1,  relat ive to N, when p = 3. The preceding figures are based on 
N2. 

F o r  systems of  nonl inear  equat ions  in up to ten variables,  a value of  p = 3 
appears  to be sat isfactory for all extended methods  which have been described.  
F o r  systems of  nonl inear  a lgebraic  equat ions  in a larger  number  of  variables,  
with band- type  Jacobians ,  such as would  be encountered  when solving nonl inear  
two po in t  bounda ry  value problems,  op t imum efficiency may  be ob ta ined  with 
larger  values of  p. I t  would  p robab ly  then be desirable  to devise a technique for 
es t imat ing op t imal  values of  p s imilar  to that  suggested in [3]. I t  is not, 
however,  the in tent ion in this section to describe efficient a lgor i thms for solving 
specific types of problems,  but  to i l lustrate the saving in compu ta t iona l  l abour  
which can be obtained,  for at  least one kind of  ope ra to r  equat ion,  when certain 
extended methods  replace Newton ' s  me thod  or the Bosarge-Fa lb  methods.  

Appendix 

1. Fl(x)=x~--x 2 
Fa(x) = 1 - x ,  
xW)=( - 1.2, 1.0) r. 

2. Fl(x)=xl-O.7sinxl-O.2cosx2 

F 2 (x) = x= - 0.7 cos xl + 0.2 sin x 2 
x~~ =(0, 0) r. 

3. f l ( x ) = x , - x ~ - x ~  
f2(x) =x2-x~  + x~ 
x ~~ = (0.8, 0.4) r. 

4. Fl(x)=xl +131ogxl-x  2 
F2(x)=2x 2 - x l x  2 - 5 x ,  + 1 
x ~m = (4.0, 4.0) r. 

5. Ft(x)=4x~-27xtx2+25 

Fz(x ) = 4 x 2 - 3 x~ - 1 
xm)=(1.0, 1.0) r. 
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6. Fl(x)=3xl+x2+2x2-3 
F 2 ( x ) = - 3 x l + 5 x ~ + 2 x l x 3 - 1  

F3(x ) = 25 x I x 2 + 20 x 3 + 12 
x ~~ =(0, 0, 0) r. 

7. Fl(x)=�89 xff2 
F2(x) = (1 - 1/4r 0 {exp (2 x l ) - e  } + (e/n) x 2 - 2 e x  1 
x ~~ = (0.6, 3.0)L 

8. Fl(x)=-xl(3-xff lO)+2x2-1 
Fi(x)=xi_l--xi(3--xfflO)+2xi+i--1 (i=2, ..., 4) 

Fs(x)=x4-xs(3- x f f l 0 ) -  1 
x (~ ( - 1 . . . . .  - 1) r. 

9. Fl(x)=-xl(3-xf f2)+2xz-1 
Fi(x)=xi_l-xi(3-xff2)+2Xi+l-1 (i=2, . . . ,9) 

F10(x ) =X 9-x10(3 -Xao/2) - 1 
x r176 ( - 1 . . . . .  - 1) r. 

10. FI(x)=16x~+16x~+x~-16 
F2(x)= x~ + x~ + x~- 3 
F3(x)= x~- x~ 
x(~ 1, 1) r. 
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