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In the following note a subgroup of the group of all isometries of an infinite
dimensional, non-singular isotropic k-vectorspace ¥ (the characteristic of the
field k is assumed to be different from 2) is investigated, viz. the group 3y of all
isometries whose restrictions to non-singular subspaces of E of finite codimen-
sions are the identities on those subspaces. The methods are those applied by
ErcuLrr?) in the case of finite dimension of Z, i.e. subgroups of the group §g
generated by special isometries of rather interesting nature are introduced.
It seems that by this approach information about the structure of the full group
of isometries of E can be obtained without the use of “analytical” methods.
For these investigations and a necessary generalization of the concept of dual
modules we have to refer to a later paper.

1. Definitions and general remarks

By E we denote an infinite dimensional vectorspace over the field k. The
characteristic of k is assumed to be different from 2. Let (x, y) denote the
value of a symmetric, non degenerate bi-linear form B from E x E into
k: () (@9)=@=z), (xx+ ﬁ:% z) = oz, 2) + 18(:% 2); « ﬁ ¢k, z, ¥, 2 CE;
(i) if (z, y) = 0 for all x € £ then y = 0. Because of condition (ii) the metric
space K is called non-singular. £ may contain isotropic vectors, i.e. vectors
x == 0 of norm {x, 2) = 0 but no vectors x == 0 orthogonal to the whole space E.

By an automorphism @ of E we mean a mapping @ of E onto itself with
Dz +y) =Dz + Py, Ple= A0z, (Px,Py)= (x,y); ACk, x,y CE. The
group of all automorphisms of £ shall be denoted by Oy or simply O if there
is no risk of confusion. For any non-isotropic vector a ¢ E we denote by 2, the
2(z,a)

e % Obviously

reflection about the hyperplane orthogonaltoa: Q2 =z —
Q @ E O B
Often the following lemma will be used in proofs:
Lemma 1. Every non-isotropic vector a € E can be completed to a rectangle
with sides a, b and non isotropic diagonals a + b, a — b. Such a rectangle exists
in every prescribed 3-dimensional, non-singular subspace of E containing the
vector a.

) M. ErcHLER, Quadratische Formen und orthogonale Gruppen, Berlin 1952 (Chapter1).
19*
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Proof: If E is a finite dimensional, non-singular subspace of E then E is
the direct sum of & and its orthogonal complement E+ : £ — E @ E+, and the
orthogonal complement E -+ of E is non-singular too (since & is of finite dimen-
sion Schmidt’s orthogonalization process can be applied). Because of the

relation (x, y) = %{(m +y,x-+y) — (@—y x—y)} and since in a non-
singular vectorspace by definition not all values (v, w) are zero, there is always
a non-isotropic vector in a non-gsingular vectorspace (this reasoning immediately
vields the theorem that every non-singular subspace of finite dimension posesses
a basis of non-isotropic, mutually orthogonal vectors). If therefore {a} denotes
the 1-dimensional, non-singular subspace spanned by the non-isotropic vector a,
we have E = {a} ® {a}! and {a}* is non-singular and contains a non-isotropic
vector u:{a}+ = {u} ® {u}-. Let v denote a non-isotropic vector of the
non-singular space {#}+. We then have the three vectors a, u, v all of them
non-isotropic and mutually orthogonal. Not all of the three vectors w, v,
u + v have therefore the same length, for suppose that (u, u) = (v, v), then
(+ v, u+v)= (u,u) + (v,v) = 2(u, 4) == 0 since % is non-isotropic and
char k= 2, thus (u + v, v + v) == (u, u). Since u, v, w + v are not all of the
same length but all orthogonal to a, not all vectors @ + u, a + v, @ + (u + v)
are of the same length; especially there is a non-isotropic vector among them.
The difference between that vector and the vector a (which is either  or v
or 4 + v) can be taken as b.

If E is isotropic, i.e. contains an isotropic vector, £ can be written as a
direct sum B =E;@ E,, E, | E, where E, has a basis ¢, ¢, with (e, ¢;)
= (ey, 69} = 0, (e;, €;) = 1. Proof: Since E is non-singular there is a vector b
to a given isotropic vector a with {(a, b) == 0 and one can solve the equation

(b — Aa, b — Aa) = 0. Put elza,ez=%-%€.

A corollary of this remark is that an isotropic space E has a basis consisting
of isotropic vectors only. For, let « be an arbitrary vector in this case. The
equation (z — Ae; — pe,, * — Ae; — pey) = 0 has always at least one solution,
which means that x is the sum of three isotropic vectors:

&= (x— hey — pieg) + Aey + pe, .

Definition: Let @ € Op. & is called an almost identical automorphism if
@ induces an orthogonal decomposition of B: E = £ © B, where E, is
& non-singular, finite dimensional subspace of £ and the restriction of @
onto B is the identical automorphism of Eg .

We want to prove that the product @ o ¥ of two almost identical auto-
morphisms @ and ¥ is almost identical again. This is mainly a consequence of
the following

Lemma 2: The space E = {E,, By} generated by finite dimensional, non-
singular subspaces B, and B of E is always contained in a finite dimensional
subspace of E which is non-singular.

Proof: All vectors a_contained in E and perpendicular to the whole space
E form a subspace of B, the “radical” of E. Since ¥ is of finite dimension,
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its radical which we denote by Ry has a finite basis, say e,, . . ., €,, # = dim Rz.
Since the whole space E is non-singular, there exists a vector a, ¢ E such that
(e1, ;) == 0. Let E, denote the finite dimensional subspace of E generated by K
and a,. Clearly EC E, and Rp C Ry, and e, ¢ By since (¢, a;) &= 0 whence
By = Rg. Since the dimension of Ry is finite, Ry C Rg and Rg = Ry entail
dim Ky < dim Ry Thus by repeating the adjunction of conveniently chosen
vectors a; € E to the space E one ends up after at most # (n = dim Ry) steps
with a non-singular vectorspace of finite dimension containing .

Let now @, ¥ be two almost identical automorphisms, £ = Eg & K, and
E = E} @ Ey the corresponding decompositions. The space E generated by
E; and Ey is contained in a finite dimensional, non-singular subspace B of B
and we have the orthogonal decomposition E = E-+ @ E. Since £ C E we have
ELCEL ={Eyu Ey}t CE4 n Eg, which shows that the restriction of the
automorphism @ o ¥ to the space F L is the identical automorphism of & *.

Further, if X ¢ Op the decomposition B = (XHgy)t- & (XE,) shows that
the antomorphism X o @ X~1 ig almost identical too for every X ¢ Oy. Hence

Theorem 1: The almost identical automorphisms of the space E form an
mvariant subgroup of Og.

This group will be denoted by 3.

Let B = Ey;® Ef be any admissible decomposition for @ ¢ 8);' and let
@1 denote the restriction of @ to Eg and {e,, . . ., e,} a basis of the subspace
Eg. To @+ then corresponds a matrix («}) : Pe, = X afe; af, € k, whose deter-
minant does not depend on the basis chosen nor on the particular decomposi-
tion. For, suppose that we have the two decomposition for @: E = E, @ Eg
and E =E,® Ef. A third decomposition is E = {Eq, E,} @ (B4 n E3).
A basis of E4 n E} can be completed to a basis of Ef and B3 which shows
the independence of the determinant of the decomposition chosen. Since
{De;, De,) = (e;, ¢,) we have det {(af) = + 1. If det{od) =1 we call ¢ a
proper automorphism of . The proper automorphisms of E obviously form
an invariant subgroup of §; of index 2. This group will be denoted by 37.

2. The irreducibility of

Theorem 2: The group (5 operates irreducibly on E, i.c. the vectors ®@a span
the whole space E for any fived vector a € E, a == 0, if @ runs through J5.

Proof: i) Suppose (a, @) = 0. By Witt’s Theorem?) the space I generated
by the vectors @a, @ ¢ §y contains all isotropic vectors and therefore also
a bagis of E. ii) Suppose {a, a) =& 0. Let b be any non-isotropic vector of E
orthogonal to @ with non-isotropic sum a + b. Since Q2,,,6=a — (;_(: ; : -?B?

X (@ + b), the subspace I contains both a and 4. Suppose now that there exist

a vector ¢ € E, ¢ ¢ I. We may also suppose that ¢ is orthogonal to a and b.

2} Let F be a finite dimensjonal, non-singular vectorspace, F; and F, two subspaces of F
of the same dimension. A necessary and sufficient condition that there exists an orthogonal
transformation of F; onto ¥, is that the restrictions of the metric form on ¥ to ¥, and F,
are equivalent. See e.g. J. DinupoN~g, Sur les groupes classiques. Paris 1958 (18).
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If ¢ is non-isotropic there is a non-isotropic vector ¢ in the two-dimensional
subspace spanned by « and b with non-isotropic sum e + ¢ (Lemma 1) and

Q,,.0=0-— -v(—e—_f—(:,% (e + ¢), whence ¢ € I, which is a contradiction. If ¢ is
isotropic then £, .a =a — %% (@ + ¢) = — a— 2¢ gives rise to the

same contradiction.

Corollary: The group 35 operates irreducibly on E.

Proof: We show that there is a Q ¢ Iz with 2 ¢ §F such that Qa = a.
Let E be any non-singular finite dimensional subspace of E containing a and
let ¢ be a non-isotropic vector orthogonal to . We have Q,a = a. If therefore
a vector b €I is an image b = Pa with @ ¢ 3} we have b= (P o 2, a and
B0 0,34

3. Eichler’s automorphisms of an isotropic vecforspace

Let E be isotropic. We then have F = E, @ E, where the basis ¢, ¢, of E,
has the properties (e, ¢;) = (e, €;) == 0, (¢, €,) = 1. To every isotropic vector
a € B we form the two antomorphisms

AD = 0 o2 o2 o2, _
@ PRSP PR et e Qe
2 2
AP =0 o2 o2 o8, ,.
@ ex"ea”!";—‘ o + eg +_§_ 2 + &5 £;—28

If ¢ € K, is non-isotropic, we define

AP=02 @ 0, AP=82 ws oL,
- 9 1 "‘—2“ 2

The image of a vector z ¢ E under AY (i = 1,2) is in both cases given by

(1) APz =z — (&,0) ¢+ (v, ) a— 5 (3, €) (a, a)

and for a,b ¢ B, the equation AD o A’ = A%, , holds. The automorphisms
AD, a ¢ By and the automorphisms AP, a € E, form therefore two abelian
groups £,, ¥, isomorphic to the additive group E,. Obviously &, C 3% (¢ = 1, 2).
We further consider the automorphisms

(2) Pe= 20 1 00,0 20,1 0,= 824 50,0 824, foreveryO=:xck.

We have P.e, = x~le,, P,ey = ney, Pa=a,aCEyand P,oP,=P,, (x, A Ck).
These automorphisms form a group R isomorphic to the multiplicative group
of the field k. Finally the automorphism ¥ = £, _, interchanges ¢, and e,
and we have ¥ € §y.

The following relations follow immediately from the above definitions by
using trivial facts such as 27100, 082, = 02, ,, 2,= £2,, which rule the
computations with reflections.

Y-10 AV o ¥ = AR, W-1oP, oW =P, P,o AP o P71 =AY,

PRLAD P= 4D, AP0 W = AV 50 04D, 00, 0P_

(a,a) 2

@)

{for non-isotropic a.)
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We next want to show that the subgroup £ of 35 generated by the groups
g, and £, is the commutator subgroup of §;. In paragraph 6 we will discuss
the structure of the factor group Jz/L.

4. The connection between Jy and Jz,

We show that by multiplication of an arbitrary automorphism @ €3g
(E = Ey® E,) by elements of the groups £ and R an automorphism can be
obtained whose restriction to E, is the identity of E,.

Let ¢ be the number 1 or 2. A vector x which is not orthogonal to ¢; is
mapped into £, by A(f_') + ascan be seen from (1). Suppose x to be an isotropic

&, e,
vector of E with (x,(ei)‘)# 0 and APz = oye; + aze, Since (APz, ADz)
= (2, %) = 20,005 = 0 and 0 = (z, ¢;) = (AP z, APe;) = (AP z, ¢;) = a; we have
o; =0 (j == ¢): An isotropic vector x not orthogonal to e, is mapped onto a
multiple of e; (j == i) by some A%, If therefore @ ¢ Jz is an automorphism with
(e,, De,)=E 0 there is a AL such that AL o Pe, = de,. Since also (ey, AP 0De))

= % (AP o Pey, AP o De)) = %— (eg, €1) = }T = 0, there is a A such that

AP(AL o De,) = pe,. Therefore, since AP e, = e; we have (AP o AP 0 B)e,
= pey, (AP o AP o @) e, = Ae,, whence Ay = 1. The restriction of the auto-
morphism P, 0 A 0 AL o P to the subspace E, therefore is the identity
on E,. If ®¢GFy is an automorphism with {e,, De,) = 0 there is a vector
¢ €E, with (e, A®, 0 ® 0 APe,)== 0. For, suppose that for every ¢ € E,

(e, A2, 0 D 0 AP¢,) = (AP e, Dey) = (c + e — % (¢, ) e, @ez) = 0, then
we conclude that @e, ¢ B, since the vectors A®e,, ¢ € B, span the whole
space E,. But if Pe,= ae, + fe, we have for every non-isotropic ¢ € E,
(a + e — % {c, ¢) ey, (Deg) =+ (—c + e — é— (—¢, —¢) e, @ez) gince char k4 2,
which is a contradiction. If we denote by 3z, the subgroup of 3z containing

all automorphisms of E = E, @ E, whose restrictions to E, are the identity
on E,, we have the result:

Theorem 3: 7o every automorphism @ ¢ Jy, there exist automorphisms
AP, AP, AP €2 P, € R, D, € Jg, such that?)

“4) D=AD 0 AL 0 AP o PyoP, 0 AP,

5. The commutator subgroup of Iz (3%)

The reflections £, generate the group 3z and % is the identity, from which
one concludes simply by group theoretical arguments that the commutator
subgroup of §z is generated by the special squares (£2, 0 2,)% = 2,04, 0
0 Q71 0 7' and that it contains all squares @2, @ €Fgz The commutator
subgroup is therefore equally generated by all squares @? @ ¢ 3y since a

) Or AP, AY, AL, Py; Xy €Gp, suchthat @ = AP 0 AP 0 AP 0 Zyo Py o AV,
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commutator always is a product of squares. The commutator subgroup of 33
is also the commutator subgroup of §;4).

Since AY = A_(;,)+1= (A(_};“’)2 the group € = {€,, £,} is contained in the

I 2
commutator subgroup of 7. To show that it is equal to that group reduces to
showing that every square @2, @ € 33 is contained in €. To this end we apply (3)
to the identity A® o AP = AL o P-10 AP o ¥ with non-isotropic a € E,),
b€ E, and obtain AP o AP = (AY 5 0AP,00,0P_ (a, n)o AP oW
@0
=AD, oAff)o‘Po.anP_z ford=(1-— a,b))a+ a,a)bEE
{a, a} @, a5

If d is non-isotropic we substitute again for AP o ¥ in the last equation and
obtain

(2) 1) .. A @)
(6) A2 o A} AP o AP 04080 P1—(a,b)+%(a,u)(b,b)

.or
(8) Q40 2,0P, =A% 0 AY, 0 AP 0 AP, x=1— (a,b)+ 4 (@,a) (b,) = EZZ;
for some vector ¢ depending on « and b. Since we can solve with respect to
b and e for prescribed non-isotropic d and a in K, all automorphisms Q; o
o £2, o P, are contained in £:

d.d
(7 Q,00Q,0P, €8 x= gaﬂ;.

From (7) we conclude as a partial result that £ contains the commutator sub-
group of the group of automorphisms @ ¢ §; which leave the two subspaces
Ey, E, invariant: (2,08, 0P 2= (2,082, 0P,:¢L for arbitrary non-
isotropic @, d € B, We also have 2, 3, = ¥ o P, for non-isotropic ue, -+ Ae,

i
ie. Ay = 0). Every product 2, o £, for non-isotropic vectors a, b € £, there-
fore is of the form £2,0 02, = P, hence (2,0 0,)2= P, a,b ¢ E,. But the
subgroup R, of R generated by all P, » € k is contained in £ as can be seen
from (5) in the special case @ = Ab;

(8) P.cuvck.

This proves our remark.

Let now @ be an arbitrary element of 3. According to (4) we have
D=A2 0 AP 0 AP oDy o P, 0o AD, for certain vectors a, b, ¢ € E, and x € k.
Since AY), P, € 3% the automorphism @, is a product of an even number of
reflections, @, = ‘Qm o+-082, . According to (7) the automorphisms
Zi=120,,,082,, 0P, with », = MQ (i=1,...,m) are elements of
L. We wnte b= /1(2) o AP 0 AP, 0{A(2)OZIOAQC)O"'O(A%OZmOAZ_C)OPR
with 1 = and have thus the

Theorem 4 An element ® of the group 3 can always be written in the form

(9) ¢=¢*OPZ,¢*€2.

4) See e.g. J. D1sUDORNE, loc. cit. (23).
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By Theorem 4 and (8) we see that for every @ € 33 the square @2 is an element
of £ (P? = P oPoP, 0P, = Dy o (Pyo Py 0Pyl oPy), whenee

Theorem b: The commulator subgroup of 33 (Jg) is generated by the auto-
morphisms AP, AP, a varying over E,.

Dreuvponng proved that for an isotropic non-singular k-vectorspace F
of finite dimension n the commutator subgroup R, of the group O has no
invariant proper subgroup besides &, N 8, where the center 8, of Op consists
of the identity 1 and the reflection — 1, except in the following three cases:
a) n =2, b) n =3 and k is the prime field of three elements, ¢) % = 4 and
E=FE,® E, (E, as defined on page 2).

Since the subgroup of §# of all automorphisms of £ whose restrictions to
the orthogonal complement £ of a finite dimensional non-singular subspace
E’ C F are the identity on E", is isomorphic to O, the above mentioned theorem
entails in an obvious manner the

Theorem 6: T'he commutator subgroup of 33 (Jz) is simple.

Note that the center of 35 consists only of the identical automorphism of
E. We thus have found all invariant subgroups of the group 3.

6. The factor group 3z /2

In the field & we define an equivalence relation by declaring % ~ v, %, v € %
if and only if %~ is & square in k. By g, we denote the multiplicative group
whose elements are the equivalence classes. The element 4 in (9) cannot be
uniquely determined by @ since P,. € £. But we shall prove that the equi-
valence class of 1 in (9) is uniquely determined by &.

In order to prove this assertion we make use of the representation of 37 in
the Clifford algebras C(B) and C, (B) associated with our metric form B.

The Clifford algebra C'(B) is the factor algebra of the tensor algebra T= 3’ ®@"E

0
modulo the two-sided ideal I generated by the elements of the form 2 ® x —

- %«B(x, x} 1 (1 stands for the neutral element of k). The image of z® ¢

under the canonical mapping will be denoted by x o y. Elements » € k and vectors
x € B will be identified with their images under the canonical mapping into
C(B). For the values of our metric form we now write more precisely Bz, ¥)
instead of (z,y). We have xoy+yox= B(z,y)1. If T, is the algebra

‘GY ®2%" E C T we denote by C, (B) the factor algebra T+/p, ~ 1.

Let & = Ey ® Ef be an admissible decomposition of B for the automor-
phism @ €3%, {e,, .. ., ¢,} an orthogonal basis of E§ and {e.},c;, where J is
ordered, a basis of K, Let further B,, B, denote the restrictions of B to the
subspaces By, B4 respectively. The elements ey = €, 008 T < Ty < Ty,
corresponding to the finite subsets K of J form a basis of C(B,). Let i, ¢,
denote the canonical mappings of C(B,), C(B,) into C(B). The bilinear
mapping (a, b) — (1,a) o (i,b) from C(B;) x C(B,) into C(B) induces a linear
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bijection p from C(B,) ® C(B,) onto C(B). If we denote the product of two
elements x, y € C(B,) ® C(B,) induced by the bijection p by « o y too, we have
{2, ® @) o (¥ ® ¥y) = &(¥; 0Y;) ® (% 0Y,) Where ¢ =1 except when both x,

oc

and y, are odd, i.e. images of elements of 7_= )’ ®2*+1F, in which case
0

g=—1.

Every @ ¢3F induces an automorphism ¢ of C(B) and C,(B) by the
definition ¢@(x, 0+ om) = (P la) o- -0 (P ta,). If @ is a non-isotropic
2 d finds g-1
Bia,ay @ @nd one finds a~lox oa

2

vector, @ has an inverse in C(B):a 1=

. 2 _ 2
= HZr——@0Xoa= Bla,a)

Bla.a) (—xoaoa—]—xoaoa-{—aoxoa)zmx
X (B(a,x)a—x@)z-(m—%@%a)z — Q,2 whence: To every

automorphism @ ¢ 3} there exists an invertible element £, ¢ C+(B) with
P l(tg) €EC(B,) such that gr, o -ox)= @ lg)o  -o(Plx) =110
ofwy 0+ 0x;) oty Let ty and tp be two elements with that property. fpofz?
then commutes with every vector a ¢ C'(B), it therefore commutes with every
element of C(B) and C, (B). p~(ts o tgl) therefore is contained in the centers
of C(B,) and C(B,) whose intersection is k& for even and odd dimensions
of Bf.

If « is the main antiautomorphism of C, (B,)®) we assign to every @ € I3
its spinor norm L(®) = «(p(ts)) © p{te). Since 4 is uniquely determined by @
up to a factor out of &, the spinor norm is a mapping from {7 into g,. We have
L@ oW)=L(®)LW); D, V.

From the definitions of A% and P, as products of reflections (see p. 288)
we immediately read off: L(A%) =1 for every a ¢ B, and L(P,) =x. All
elements of the commutator subgroup of 33 have the spinor norm 1, whence by
(9) we obtain the

Theorem 7: The factor group 8| is isomorphic to the group g,

{ Received December 12, 1962)

5) See e.g. C. C. CHEvVALLEY, The Algebraic Theory of Spinors, New York 1955 (38).



