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In  the following note a subgroup of the group of all isometrics of an infinite 
dimensional, non-singular isotropic k-vectorspaee E (the characteristic of the 
field k is assumed to be different from 2) is investigated, viz. the group ~n of all 
isometrics whose restrictions to non-singular subspaces of E of finite eodimen- 
sions are the identities on those subspaces. The methods are those applied by  
EIC~LER 1) in the case of finite dimension of E, i.e. subgroups of the group ~E 
generated by  special isometrics of ra ther  interesting nature are introduced. 
I t  seems tha t  by  this approach information about  the structure of the full group 
of isometrics of E can be obtained without the use of "analyt ical"  methods. 
For these investigations and a necessary generalization of the concept of dual 
modules we have to refer to a later paper. 

1. Delinitions and general remarks 

By E we denote an infinite dimensional vectorspaee over the field k. The 
characteristic of k is assumed to be different from 2. Let  (x, y) denote the 
value of a symmetric,  non degenerate bi-linear form B from E × E into 
k: (i) ( x , y ) = ( y , x ) ,  ( a x + f l y ,  z )=o~(x , z )+ f l ( y , z ) ;  o:,flEk, x ,y ,  z E E ;  
(ii) if {x, y) = 0 for all x E E then y = 0. Because of condition (ii) the metric 
space E is called non-singular. E m a y  contain isotropie vectors, i.e. vectors 
x ~ 0 of norm (x, x) = 0 but  no vectors x =~ 0 orthogonat to the whole space E. 

By  an automorphism ¢ of E we mean a mapping # of E onto itself with 
# ( x  + y ) =  # x  + # y ,  O ) . x = 2 ~ ) x ,  (#x ,  ~)y) = (x, y); 2 E k ,  x, y E E .  The 
group of all automorphisms of E shall be denoted by  OE or simply O if there 
is no risk of confusion. For  any non-isotropie vector  a E E we denote b y / 2 ,  the 

reflection about  the hyperplane orthogonal to  a : ~ a  x = x - 2 (x, a) a. Obviously (a,a) 
Q ,  E On. 

Often the following lemma will be used in proofs: 
Lemma 1. Every non-isotropic vector a 6 E can be completed to a rectangle 

with aides a, b and non isotropic diagonals a + b, a - b. Such a rectangle exists 
in every prescribed 3-dimensional, non.singular subspace o/ E containing the 
vector a. 

x) M. EIOHLER, Quadratische Formen und orthogonale Gruppen, Berlin 1952 (Chapter 1). 
19" 
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Proo/: I f  E is a finite dimensional, non-singular subspace of E then E is 
the direct sum of J~ and its orthogonal complement E± : E = E $ E ±, and the 
orthogonal complement E± of E is non-singular too (since E is of finite dimen- 
sion Schmidt's orthogonalization process can be applied). Because of the 

relation ( x , Y ) = 4 { ( x + y , x + y ) -  ( x - y , x - y ) }  and since in a non- 

singular vectorspace by definition not all values (v, w) are zero, there is always 
a non-isotropic vector in a non-singular vectorspace (this reasoning immediately 
yields the theorem that  every non-singular subspace of finite dimension posesses 
a basis of non-isotropic, mutually orthogonal vectors). If  therefore {a} denotes 
the 1-dimensional, non-singular subspace spanned by the non-isotropic vector a, 
we have E = {a} ¢ {a} ± and {a} ± is non-singular and contains a non-isotropie 
vector u :  { a } ± =  { u ) ¢  {u} ±. Let v denote a non-isotropic vector of the 
non-singular space {u} ±. We then have the three vectors a, u, v all of them 
non-isotropie and mutually orthogonal. Not all of the three vectors u, v, 
u + v have therefore the same length, for suppose that  (u, u) = (v, v), then 
(u + v, u + v) = (u, u) + (v, v) = 2 (u, u) # 0 since u is non-isotropic and 
char k # 2, thus (u + v, u + v) # (u, u). Since u, v, u ÷ v are not all of the 
same length but all orthogonal to a, not all vectors a + u, a + v, a + (u + v) 
are of the same length ; especially there is a non-isotropic vector among them. 
The difference between that  vector and the vector a (which is either u or v 
or u + v) can be taken as b. 

If  E is isotropie, i.e. contains an isotropic vector, E can be written as a 
direct sum E = E 0~  E 2, E~ J_ E 0 where E 2 has a basis % ez with (% el) 
= (%, % ) =  0, (% e2) = 1. Proof: Since E is non-singular there is a vector b 
to a given isotropic vector a with (a, b) # 0 and one can solve the equation 

b---~a 
( b - 2 a ,  b - 2 a ) = 0 .  Pu t  e l = a , e ~ -  (a,b) 

A corollary of this remark is that  an isotropic space E has a basis consisting 
of isotropie vectors only. For, let x be an arbitrary vector in this case. The 
equation (x - ~e I -/xe~, x - ~e 1 -/xe~) = 0 has always at least one solution, 
which means that  x is the sum of three isotropic vectors : 

x = (x--  2e 1 -- Fte~) ÷ ~e 1 ÷ ~te~. 

Definition: Let ~ ~ O~. ~b is called an almost identical automorphism if 
~b induces an orthogonal decomposition of E : E  = E$ ~ Ev where Ev is 
a non-singular, finite dimensional subspace of E and the restriction of 
onto E~  is the identical automorphism of E~.  

We want to prove that  the product ¢ o ~ of two almost identical auto- 
morphisms ~b and ~ is almost identical again. This is mainly a consequence of 
the following 

Lemma 2: TJze space E = {EA, Er} generated by finite dimenaional, non- 
singular subspaces E A and Er  o] E is always contained in a finite dimensional 
subsioace of E which is non.singular. 

Proo/: All vectors a contained in E and perpendicular to the whole space 
form a subspace of E, the "radical" of E. Since E is of finite dimension, 
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its radical which we denote by  R~ has a finite basis, say e 1 . . . . .  en, n -~ dim R~. 
Since the whole space E is non-singular, there exists a vector c h E E such tha t  
(e l, al) ~ 0. Let  E !deno te  the finite dimensional subspace of E generated by  
and a r Clearly E C E 1 and RE, C R~, and e 1 ~ RE~ since (el, al)4= 0 whence 
RE~ 4= R~,. Since the dimension of R~ is finite, RE~ C RE and RE, 4= R~ entail 
dim RF, ~ dim R~. Thus by  repeating the adjunction of conveniently chosen 
vectors a i ~ E to the space E one ends up after a t  most  n (n ---- dimR~) steps 
with a non-singular vectorspace of finite dimension containing E. 

Let now ~b, ~ be two almost identical automorphisms, E = E~  (~ E~ and 
E = E ~  ~ E v  the corresponding decompositions. The space E generated by 
Ev and E~, is contained in a finite dimensional, non-singular subspaee ~ of E 
and we have the orthogonal decomposition E == E ±  ~ E.  Since EC J~ we have 
E ±  C E ±  = (E~ ~J E ~  ± C E ~  ~ E~ ,  which shows tha t  the restriction of the 
automorphism ¢ o T to the space J~ ± is the identical automorphism of E ±. 

Further,  if X C C)E the decomposition E = (XEo)  j- $ (XE~) shows tha t  
the automorphism X c t X  -1 is almost identical too for every X ~ OE. Hence 

Theorem 1: The almost identical automorphlsms o/ the space E ]orm an 
invariant subgroup o /OE.  

This group will be denoted by ~ .  
L 

Let  E = Ev $ E~ ± be any  admissible decomposition for ~b ~ ~ and let 
~b ± denote the restriction of ~5 to E $  and (e~ . . . . .  en} a basis of the subspaee 
E~.  To ~5± then corresponds a matr ix  (~)  : t e ~  = 2: a~e~ ~ ~ k, whose deter- 
minant  does not depend on the basis chosen nor on the particular decomposi- 
tion. For, suppose that  we have the two decomposition for ¢ :  E = Ev • E~  
and E = Ev $ E ~ .  A third decomposition is E = (E~, E¢} ~ (E~ ~ E~) .  
A basis of E~  ~ E ~  can be completed to a basis of E $  and E¢~ which shows 
the independence of the determinant  of the decomposition chosen. Since 
(~Y)ei, t e k )  = (el, %) we  have det (a~:) = ± 1. I f  det (a~) = 1 we call ~b a 
proper automorphism of E. The proper automorphisms of E obviously form 
an invariant subgroup of ~ of index 2. This group will be denoted by  ~+. 

2. The irreducibility of ~E 

Theorem 2: The group ~E operates irreducibly on E, i.e. the vectors ¢ a  span 
the whole space E / o r  any fixed vector a ~ E,  a 4= O, i / ~  runs through ~E. 

Proo/: i) Suppose (a, a) = 0. By  ~Vitt's Theorem S) the space I generated 
by  the vectors ~ba, ~b ~ ~E contains all isotropic vectors and therefore also 
a basis of E. ii) Suppose (a, a) 4= 0. Let b be any non-isotropie vector of E 

2(a-~ b,a) 
orthogonal to a with non-isotropic sum a ~- b. Since l'2a+ba = a (a + b, a -t- b) × 

X (a ~- b), the subspace I contains both a and b. Suppose now tha t  there exist 
a vector c E E, c ¢ I .  We m a y  also suppose tha t  c is orthogonal to a and b. 

2) Let F be a finite dimensional, non-singular vectorspaee, F Z and F~ two subspaces of F 
of the same dimension. A necessary and sufficient condition that there exists an orthogonal 
transformation of F1 onto F~ is that the restrictions of the metric form on F to F1 and F2 
are equivalent. See e.g.J. DISUDOZ~]t, Sur lea groupes classiques. Paris 1958 (18). 
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I f  c is non-isotropie there  is a non-isotropie vec tor  e in the two-dimensional  
subspace  spanned  b y  a and  b wi th  non-isotropie sum e + c ( L e m m a  1) and  

2 (e, a) 
~2e+ ca = a (e + c, e + c) (e + c), whence e ~ I ,  which is a contradict ion.  I f  c is 

2(a + c , a )  (a + c) = - a - 2 c  gives rise to  the  isotropic then  £2a+ ca = a (a Jr c, a q- c) 

same contradict ion.  
Corollary: T h e  group  ~+ operates  i r reduc ib ly  on E .  

P r o o / :  We show t h a t  there  is a /2 ~ ~E with  I2 ~ ~+ such t h a t  f2a = a. 
L e t / ~  be any  non-singular  finite dimensional  subspace of E containing a and  
let  c be  a non-isotropic vec tor  or thogonal  to  E.  We have  ~2ca = a. I f  therefore  
a vec tor  b C I is an  image b = ~5a with  ~b ~ ~+  we have  b = (~b o ~c)  a and  

+ ~oQc SE. 

3. Eiehler 's  automorphisms of an isotropie vectorspaee 

Le t  E be isotropic. We  then  have  E = E o ~ E 2 where the  basis el, e 2 of E 2 

has  the  proper t ies  (ca, e 0 = (%, %) = 0, (e 1, %) = 1. To every  isotropic vec tor  
a E E0 we form the  two au tomorph i sms  

A(a 1) = ~ a o £2 ~ o~2~,+~ o ~ _ ~ , ,  
el--e2-- ~ -  e~ + e~ + ,~- 

e~--e~ + ~ -  et + e2 2 

I f  a ~ E 0 is non-isotropic,  we define 

A(a l )=  "C2a-~e,° [2a' A(a2)= "Qa- ~ e ,  ° ~)a" 

The  image of a vec tor  x ~ E under  A(a 0 (i = 1, 2) is in bo th  cases given b y  

1 
(1) A(~)x = x - -  (X, a) e i Jr- (x, el) a - ~ (x, ei) (a, a) e i 

and  for  a, b E Eo the  equat ion A(~ ) o A(b i) a(O holds. The  au tomorph i sms  .,.ta + b 
A(~ ), a E E0 and  the  au tomorph i sms  A(a 2), a ~ E o fo rm therefore  two abelian 
groups  ~1, ~ isomorphic  to  the  addi t ive  group E o. Obviously  ~i ( ~ (i = 1, 2). 
We  fur ther  consider the  au tomorph i sms  

(2) Pn=~C2e,+reoff'2el+e~.~C'2ex_~eOff2el_e~ for  every  0 #  ~ E k .  

We  have  P~e 1 = ~-lex, P,,% = xe2, P ,a  = a, a ~ E o and P, o P~ = P~  (u, 2 ~ k). 
These au tomorph i sms  form a group 9~ isomorphic to  the  mul t iphea t ive  group 
of the  field k. F ina l ly  the  au tomorph i sm ~ = Oe,-e,  in terchanges e~ and  e~ 
and  we have  k~ 6 ~ .  

The  following relat ions follow immedia te ly  f rom the  above  definitions b y  
using t r ivial  facts  such as ~ - ~  o D~ o ~ = ~(~Jab, ~¢~a ~-~ ~¢~2a which rule the  
computa t ions  wi th  reflections. 

~ - X o  A~ ~) o ~ =  A (~)a , l / J - ~ °  Pn o ~ r =  p._,  , P .  o A  (1) o p~-I _- A(~),,~, 
(3) 

p~-I A(2) p.  --- --.aA(2), A(2) o ~ = A (~) e .  o A ~ ) .  o b(~a 0 P (a,a) 
(a, a) 2 

(for non-isotropic a.) 
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We n e x t  w a n t  to  show t h a t  the  subgroup  !~ of 3 + genera ted  b y  the  groups  
1~ and  ~ is the  c o m m u t a t o r  subgroup  of g ~ .  I n  pa rag raph  6 we will discuss 
the  s t ruc ture  of the  fac tor  group g + / ~ .  

4. The connection between t E  and ~s .  

We  show t h a t  b y  mul t ip l ica t ion of an a rb i t r a ry  au tomorph i sm • E ~E 
(E = E o ¢ E2) b y  elements  of the  groups ~ and  ~R an au tomorph i sm can be 
ob ta ined  whose restr ic t ion to  E 2 is the  iden t i ty  of E 2. 

L e t  i be  the  n u m b e r  1 or 2. A vec tor  x which is not  or thogonal  to  ei is 
m a p p e d  into  E2 b y  A (0 ~ as can be seen f rom (1). Suppose x to  be  an  isotropic 

(x, ed 
vec tor  of E wi th  (x, e~ )~  0 and  A ( ° x  = ~lel + ~2e2. Since (A(ai)x, A(2)x) 
= (x, x) = 20qa  2 = 0 and  0 4= (x, ei) = (A(~)x, A ( ~ ) e i )  = (A(~)x, ei) ---- a j  we have  
gi = 0 (?" # i) : An isotropic vec tor  x not  or thogonal  to  ei is m a p p e d  onto a 
mul t ip le  of ej (~ # i) b y  some A~ ). I f  therefore ~b E ~E is an au tomorph i sm with 
(e 1, ~be2) # 0 there  is a A(~ 1) such t h a t  A (1) o ~be~ = Xe 2. Since also (e2, A(al) o~bei) 

1 1 1 
= ~- (A(a 1) o ~/ie~, A(a 1) o ~ea) = -~ (% ca) ----- -~- 4= 0, there  is a A,~ m such t h a t  

A(~e)(A~ o #e~) =/~e~. Therefore,  since A~)e~ = e~ we have  (A(b m o A (1)~ o ~ )  e a 
= # %  (A(~ m o A(a l) o ~b) e 2 = ~e2, whence ~/~ = 1. The  restr ict ion of the  auto-  
morph i sm P, o A(b ~°) o A(al)o ~5 to  the  subspace  E~ therefore  is the  iden t i ty  
on E~. I f  ¢ 6 ~  is an  a u t o m o r p h i s m  wi th  (el, ¢ e ~ ) =  0 there  is a vec tor  
e 6 E0 with  (e v A(~ ) o q5 o A(~2)%)=4= O. For,  suppose t h a t  for every  c ~ E 0 

(e v A ( ~  o q~ o A(~m%) = (A~'2~q, ~e2) = e + q - ~ (e, e) %, ~e~ ~ 0, then  

we conclude t h a t  ~0e2 ~E~ since the  vectors  A~e)e~, e ~ E  o span  the  whole 
space E 0. B u t  if ~e~ = ~e~ +/Se~ we have  for  every  non-isotropic e 6E0 

1 ~e~) since char  k :# 2, 1 ~ b e ~ ) : ~ ( _ e + e  1 _ ~ ( _ e  _ e )  e2, 6 + e  1 - ~ ( e , c )  e2, 
which is a contradict ion.  I f  we denote  b y  ~ 0  the  subgroup  of g ~  containing 
all au tomorph i sms  of E = E 0 ~ E~ whose restr ict ions to  E ,  are the  iden t i ty  
on E2, we have  the  result :  

Theorem 3: To every automorphism q5 ~ ~ ,  there exist automorphisms 
A(a o, A~ 2), A~ 2) ~ ~ P~ ~ ~R, ~0 ~ ~ 0  such t h a t  a) 

(4) # A~ 2) o A~  ) o A(b ~) o ~0 o P, o a(2) 

5. The commutator subgroup of ~E ( ~ + )  

The  reflections ~ a  genera te  the  group ~ and  ~ is the  ident i ty ,  f rom which 
one concludes s imply  b y  group  theoret ical  a rgumen t s  t h a t  the  c o m m u t a t o r  
subgroup of ~E is genera ted  b y  the  special squares  ( ~  o Qb) ~ = Q~ o ~b  O 
O ~ - Z O  Q~-I and  t h a t  i t  contains  all squares  Ca, • E ~ .  The  c o m m u t a t o r  
subgroup is therefore  equal ly  genera ted  b y  all squares  ~5~, ~ E ~E since a 

• ) Or A~ ), A(. 1), AL, P.; 2:0 E 13~0 such that • = A~ ) o A~ ) o A(. 1) o L:o o P~ o A ~ . .  
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commuta to r  always is a p roduc t  of squares. The commuta to r  subgroup of 3 + 
is also the commuta to r  subgroup of ~Ea). 

Since A(a/) = A(~ ) a = (A(/)) 2 the group ~ = (~1, ~ }  is contained in the  
2 + 2  

commuta to r  subgroup of 3 + . To show t h a t  it is equal to  t h a t  group reduces to 
showing tha t  every  square ¢2, ~5 E 3 + is contained in ~. To this end we apply  (3) 
to  the  ident i ty  A(a ~) o A~ 1) = A(a 2) o kP -1 o A(b 2) o T with non-isotropic a E E0, 

A(~) o g ~ o P  (~,~))OA(b 2) o T  b ~ E  0 and  obta in  A(a u) OA~ 1 ) = ( A  (1) 2 . . . .  a 
(a, a) 2 

1 
: A(1) e o A ~  ) o T o Da o P - 2  for d = (1 - (a, b)) a + ~-(a ,  a) b E E0. 

(a, a) (a, a) 

I f  d is non-isotropic we subst i tute  again for A(d 2) o ~r/in the  last equat ion and 
obtain  
(5) A ~  ) oA(b t) = A~ 1) oA(d u) o ~ a  o~2a o Pi_(,,b)+ l(~,~)(b,b) 

, o r  

(6) f2 a o /2a  o P, = A~)d o A(~)~ o A(~ 2) o A~ x) , ~ = 1 - (a, b) + ~]- (a, a) (b, b ) = (d, d) 
- ( a , a )  

for  some vector  e depending on a and b. Since we can solve with respect to  
b and e for prescribed non-isotropic d and a in E0, all automorphisms ~2 a o 
o f2~ o P, are contained in ~ : 

(d,d) 
(7) ~ a  o ..('2 a o Pn ~ ,~, ~ - (a,a) " 

F r o m  (7) we conclude as a part ial  result  t h a t  £ contains the commuta to r  sub- 
group of the  group of au tomorphisms ~b ~ ~E which leave the two subspaces 
E0, E 2 invar ian t :  (~)a o ,.Q,~ o p~)2 = (Qa o Q~)~ o P~ E ~ for a rb i t ra ry  non- 
isotropic a, d E E0. We also have f2~e,+~e = T o P ,  for non-isotropic # e  1 ÷ 2e2 

i.e. ~/~ =~ 0). E v e r y  produc t  Q~ o Qb for non-isotropie vectors a, b ~ E 2 there- 
fore is of the  form Qa o ~b ~ P,, hence (Qa o Qb) s ~- P,~, a, b ~ E 2. Bu t  the 
subgroup 9~ 2 of 9{ generated by  all P~,, u ~ k is contained in ~ as can be seen 
f rom (5) in the special case a = ~b; 

(8) P ~ , ~ , v ~ .  
This proves our remark.  

Let  now ~ be an arb i t rary  element of 3 +. According to (4) we have 
~5 -_ A~ 'z) o A(, ~) o A(02) o @o o P,. o A(_2)~ for certain vectors a, b, e ~ E 0 and u ~ k. 
Since A(i)a, P~ ~ 3 + the  au tomorphism ~0 is a p roduc t  of an even number  of 
reflections, ~5o-~ ~2a o . . .  o~2a~ ~. According to  (7) the au tomorphisms 

• ( a ~ _ ~ ,  a ~ _ ~ )  . 
27 i = ~,~_~ o ~ , ,  o P,~ with vt = ~ (* = 1 . . . . .  m)  are elements of 

9 We write ~ - - A ( 2 )  o A(1) o A(2) o~A(2) o r' oA(2)~o ota2o ~ o A2 ~o p 

with ~ - ~ and  have thus  the  

T h e o r e m  4: A n  element q~ o / t h e  group 3 + can a lways  be wri t ten i n  t h e / o r m  

(9) ~ = ~ ,  o P,~, ¢ ,  ( ~. 

~) See e.g.J. DII~UDONN]~, loc. cir. (23). 
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By Theorem 4 and (8) we see tha t  for every ¢ E 3 + the square ~b~ is an element 
of .~ (~b ~" = ~ ,  oP~ o ~b, oP~ = ~b, o (P,~ o ~ ,  oP~ -1) o P,~,), whence 

Theorem 5: The commutator subgroup o~ 3 + (~E) is generated by the auto- 
morphis~ A(a 1), A~ 2), a varying over E o. 

DI~UDONN~ proved tha t  for an isotropie non-singular k-vectorspace F 
of finite dimension n the commutator  subgroup ~ .  of the group OF has no 
invariant  proper subgroup besides ~ ~ ~ where the center ~n of O~ consists 
of the identi ty 1 and the reflection - 1 ,  except in the follo~4ng three eases: 
a) n =: 2, b) n = 3 and k is the prime field of three elements, c) n = 4 and 
E = E~ ~ E~ (E~ as defined on page 2). 

Since the subgroup of ~ of all automorphisms of E whose restrictions to 
the orthogonal complement E "  of a finite dimensional non-singular subspace 
E '  ( E are the identi ty on E" ,  is isomorphic to O~., the above mentioned theorem 
entails in an obvious manner  the 

Theorem 6: The commutator subgroup o/3  + ( ~ )  is simple. 
Note tha t  the center of ~ consists only of the identical automorphism of 

E. We thus have found all invariant  subgroups of the group ~F,. 

6. The factor group ~+/~  

In  the field k we define an equivalence relation by  declaring n ~ ~, n, ~ E k 
if and only if nr-1  is a square in k. By  gk we denote the multiplicative group 
whose elements are the equivalence classes. The element ~ in (9) cannot be 
uniquely determined by  ~b since P~, E ~- But  we shall prove tha t  the equi- 
valence class of ~ in (9) is uniquely determined by  ¢b. 

In  order to prove this assertion we make use of the representation of 5 + in 
the Clifford algebras C(B) and C+(B) associated with our metric form B. 

T The Clifford algebra C (B) is the factor algebra of the tensor algebra = ~ @hE 
0 

modulo the two-sided ideal I generated by  the elements of the form x ® x - 

1 B(x, x) 1 (1 stands for the neutral element of k). The image of x @ y 2 
under the canonical mapping will be denoted by  x o y. Elements u ~ k and vectors 
x ~ E will be identified with their images under the canonical mapping into 
C (B). For the values of our metric form we now write more precisely B(x, y) 
instead of (x,y). We have x o y ÷ y o x = B ( x , y )  l. I f  T+ is the algebra 

~ ® 2 n  E ( T we denote by  C+ (B) the factor algebra T+/T + f~I. 
o 

Let  E --- Ev ~ E $  be an admissible decomposition of E for the automor- 
phism ~5 E 3 +, (el . . . .  , e~} an orthogonal basis of E ~  and (e,}~cl, where J is 
ordered, a basis of Ev. Let  further B1, B 2 denote the restrictions of B to the 
subspaces Ev, E ~  respectively. The elements e K -- e~ o . .  • o e~, ~1 < v~"" < v~, 
corresponding to  the finite subsets K of J form a basis of C(B1). Let is, i~ 
denote the canonical mappings of C(B1), C(B2) into C(B). The bilinear 
mapping (a, b) -~ (ila) o (i2b) from C(B1) × C(B~) into C(B) induces a linear 
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b i jec t ion  p f rom C(B1) ® C(B2) onto  C(B). I f  we denote  the  p roduc t  of two 
e lements  x, y E C(B1) ® C(B2) induced  b y  the  b i jec t ion  p b y  x o y too,  we have  
(x 1 ® x2) o (Yl ® Y2) = e (x 1 o Yl) ® (x2 o Y2) where e = 1 excep t  when bo th  x2 

and  Yl are odd,  i.e. images  of e lements  of T_ = ~ ®~'~+IE, in which case 
0 

e~-- - -1 .  
E v e r y  ~ E 8  + induces  an  au tomorph i sm  ~ of C(B) and  C+(B) b y  the  

def ini t ion ~0(x 1 o .  • • oxz) = (~b-lxl) o . .  • o (~b-lx~). I f  a is a non- isot ropic  
2 

vec tor ,  a has an  inverse  in C ( B ) : a  -1 - B(a,a) a a n d  one finds a -1 o x o a  

2 2 2 
- -  B(a,a) a o x o a =  B(a,a) ( x o a o a  + x o a o a  ÷ a o x o a )  -- B(a,a) × 

× "(B(a, x) a - x  ~ '  ' ' ~ ) =  --"(x 2B(a,x) a ) =  -- [2aX whence:  To every  
B(a,a) 

a u t o m o r p h i s m  ~5 C8  + there  exists  an inver t ib le  e lement  tv E C+(B) with 
p-l( tv)  CC(B1) such t h a t  ~ (x  1 o . . -  ox~) = (~5-1x~) o . .  • o (~b-lx~) = t$1 o 
o (x 1 o • • • o x~) o tv. Le t  t~ and  t~ be two e lements  wi th  t h a t  p rope r ty ,  t~ ot$1 
t h e n  commutes  wi th  eve ry  vec to r  a E C (B), i t  therefore  commutes  wi th  every  
e lement  of C (B) and  C+ (B). p -1  (t~ ot$1)  therefore  is conta ined  in  the  centers  
of C(B2) and  C+ (B~) whose in tersec t ion  is /c for even and  odd dimensions  
of E¢I. 

I f  ~ is the  m a i n  a n t i a u t o m o r p h i s m  of C+ (B~) 5) we assign to  eve ry  ~b ~ 8 + 
i t s  spinor  no rm L (~)  = ~ (p  (tv)) o p (re). Since t¢ is un ique ly  de t e rmined  b y  
u p  to  a fac tor  ou t  of k, the  spinor  no rm is a mapp ing  f rom 8 + in to  gk- W e  have  
L(~5 o ku) = L ( ~ )  L ( T ) ;  ~5, T C ~+ .  

F r o m  the  defini t ions of A~ ) and  P~ as p roduc t s  of reflections (see p. 288) 
we i m m e d i a t e l y  r ead  off: L(A(~ )) = 1 for eve ry  a E E  0 and  L(P~)= ~. All  
e lements  of the  c o m m u t a t o r  subgroup  of ~ have  the  spinor  no rm 1, whence b y  
(9) we ob ta in  t he  

Theorem 7: The/actor group ~/~. is isomorphic to the group gk. 
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6) See e.g.C.C. CHEVALLEY, The Algebraic Theory of Spinors, 1N~ew York 1955 (38). 


