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Infroduection

1. We give in this article new proofs of some Theorems of Prrron?)
on positive matrices. Our proofs are certainly not the most elementary ones,
but may be for a certain level of the mathematical background the simplest
and the most instructive.

A matrix P=(p,,) (u,v=1,2,...,n) is called positive if all p,, are
positive. We have then

(1) M = Max p,, = p,, = Minp,,=m>0.
nyv u, v

We denote further for any (n x n)-matrix 4, 4 = (a,,), by 4, the maximal
modulus of the characteristic roots of 4.

Then the Theorems we are going to prove are:

1. For a positive matriz P we have always
(2) ip>0.

I1. If we have for an (n X n)-matric 4 and the positive (n X n)-matriz P,
@l = P (v =1, ..., n), then
3) g < Ap.
(This is due to (3. FroBENIUS, Sitz.-Ber. Akad. Berlin 1909, pp. 515—516).

II1. For a positive mairiz P every characteristic root A with |A| = Ap s equal
to Ap, there is only one independent characteristic vector of A corresponding fo Ap
and this vector can be normed so that all its components are positive.

IV. For a positive matriz P, Ap is a simple voot of the fundamenial equation
of P, |AI — P}= 0.

3. The essential tool of our proof of I-—IIT will be the following

Lemma 1. If 4 is a square matriz, then necessary and sufficient for

4) lim 4*= 0,

is that 14 < 1.
This Lemma is due to R. OLpENBURGER [Duke Math. J. 6, 357361 (1940)].
We give in the sections 4—b5 a new and very simple proof of it.

* This investigation was carried out under the contract DA-91.591.EUC-2150 with
the US Army.

1) PERRON, O.: 1) Zur Theorie der Matrices. Math. Ann. 64, 248—263 (1907);
2) Grundlagen fiir eine Theorie des Jacobischen Kettenbruch-Algorithmus. Math. Ann. 64,
1—76 (1907).
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Using this Lemma we prove very easily the Theorems I-III. As to the
Theorem 1V, it is contained in the following new Theorem:

V. If P= (p,,) is a positive matrix and if the notations (1) hold, then P has
n — 1 characteristie roots 1 for which

2 o 4 2
(5) 4] < Ap G )

This Theorem is again a Corollary from another Theorem, VI, which gives,
instead of (5), an in general closer bound for |A].

Then we give, in section 19, another proof of 1V, deriving it from a general
criterion for simplicity of characteristic roots due to I. ScHUR, who used it in
the case of Integral Equations and proved it by means of the theory of Ele-
mentary Divisors®). This is the Theorem

VII. Necessary and sufficient in order that a characteristic root A, of the
matriz 4 is a simple root of the fundamental equation of A, is that A and A’
have each only one independent characteristic vector corresponding to Ay, & and 7',
and that £ and 1 are not orthogonal, & 7 == 0.

In the sections 20—21 we give a direct proof of VII independent of the

theory of Elementary Divisors.
§ 1. Theorems I—11I
4. Proof of the Lemma 1. For an (n x n)-matrix 4 put
(I —cd) = Blo,a,);
B(s, a,,) is here an {n X n)-matrix with the elements

ﬁzk(o9 a, v)
by u_o%’

where the f;; are polynomials in ¢ and the denominator is the determinant
of I —ogA.

The b, are rational functions of ¢, whose poles are reciprocals of some
characteristic roots of 4, and they are therefore certainly developpable in

1
powers of g for o < T We have thence

(I—ocdyt= 3od,

p=s

where the A, are constant (n X n)-matrices. Multiplying on both sides with
I — 0.4 we verify that 4, = 4” and obtain finally

od 1
6 I—qgd)ytl= v 4 -—1.
(6) (I —oayt= Yoar (il <)

5. If now A4 <1, (6) is convergent for ¢ = 1 and we see that 4"~ 0

2) E. Hopr, to whom I communicated this result, succeeded, by an entirely different

m? . M—-m
method, to replace the factor — in (5) by the factor M

%2 s and to prove that this
factor is the best.

%) JentzscH, R.: Uber Integralgleichungen mit positivem Kern. J. f. Math. 141,
235244 (1912).
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If, on the other hand, we have 4* — 0, denote by 4, a characteristic root
of A with the modulus A4 and by V a (non-zero) characteristic vector of 4,
belonging to 4,.

Then we have

AV =1,V ,
and, applying repeatedly 4 on both sides of this equation,
AV=xV.

But here, with » —> oc, the left hand vector tends to 0 and it follows A3 — 0,
» =0, A4 < 1. The Lemma 1 is proved.
6. Proof of I. Assume that for the matrix P = (p,,) with (1) we have
Ap = 0. Then all characteristic roots of P are = 0. The same is then true for
the matrix ¢ P for any constant ¢. We have therefore

Aep=0, (cPy—>0 (v —>o0).

Nut if we take ¢ = —:; , all elements of ¢ P are = 1, the same is then true
1
m
7. Proof of 1I. Assume that (3) is wrong and that we have, under the
conditions of I1, 1, > Ap. Choosing ¢ so that

for all( P)"(w =1,2,...)and (%; P)vcannot tend to 0.

(7) 2A>%>l}>,

we see that for the matrix ¢ P, 1,p= cAp< 1 and therefore
lim (¢cPy = 0.
But since we have c|a,,| < cp,, we have then also
lim (c4) =0,

ryr—> 0

and by the Lemma 1
Z'c A= ch A< 1
in contradiction to (7). II is proved.
8. Proof of 1II. Let 4 be a characteristic root of P with |1 = Ap and
V= (py,...,P:) a corresponding characteristic vector, normed in such a
way that one of the components, say p,, has the value 1. Put

Vo= (lpdl. - - - Ipal)"
We have, if not all p, are real and = 0,

ZPuwlPl > 2 Pusls (u=1,...,m),
and there exists a § > 0 such that?)
(8) le/lvlpvl > (1 + 6) Z,;P,;»P»‘ (/4 =1, s n)

4) Cf. for this argument G. FrRoBENIUS L.e., p. 515.
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Put
1 1
(9 'Zm}):@, lq=m<1.
Then we have from PV = AV:
(10) glpurpv{ = APIP;;E (ﬂ = 1) e 'n) ’
and thence by (8)
lepwlpvl > (1 + B)AP‘p‘ul (.u EE Ry e ey n) .
We have therefore for ¥V, the majorization
V<@V,
and iterating » times,
VoL@V,

and this is impossible since by (9), ¢ — 0.
We have therefore p,= 0 (v=1,...,n) and A is by (10) positive = 1p.
Further, if a p, were = 0, we would have from (10)

n
0= 2 P90, = 0> 0.

v=1
We see that all p, are positive. If there were now two independent positive
characteristic vectors corresponding to Ap, we could find a linear combination
of these two vectors in which not all components would be of the same sign,
in contradiction with what has been already proved. IIl is now completely
proved.

§ 2. Theorems 1V-VI

9. In our proofs of V and VI we will use the following
Lemma 2, If V= (p,,..., p,) ts a characteristic vector of P with positive
components, belonging to the characteristic value Ap, we have in notations (1)

P M
(11) ;’Vigw(y,vzl,z,...,n)ff).

This is proved, norming the p, by
(12) PrtPet ot P=1.

ki 2
Indeed, in the relation (10) the sum }; p,,p, lies by (1) and (12) between
y=1

m and M. We have therefore
m=App,= M (u=1,...,m)
and therefore
Pu_ Fepw o M
Py ey T om
5) Cf. A. M. Ostrowski: On the Eigenvector belonging to the Maximal Root of a

Non-negative Matrix. Proc. Edinb. Math. Soc. (IT) Vol. 12, Part 2, pp. 107112 (1960),
Formula (10).
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10. Further, we will need the following refinement of the triangle inequality:
Lemma 3. Assume between n real or complex numbers x, the relation
#
(13) Z Py = 0
v=1
where the p, are positive and satisfy the inequalities
(14) Y (r=1,...,1m);
then we have
(15) 2z,
11. Proof. Without loss of generality we can assume that instead of (14)
we have
(149 1< p,=9¢ (v=1,...,m).

We consider first the case that all z, are real and not all vanish. Then we can
assume, without loss of generality, that

(16) BZ 22, > 0= Ty = = > X 22 Xy,

where, if no z, vanishes, we have k = m.
Putlz =& (v=1,...,n),

m n
(17) = 3 & v= 2 £,
v 1 v=k+1
and, using (13),
m n
(18) W = vagv: 2 pva .
y=1 v=Fk+1

If u = v the left hand expression in (15) is 0. Assume that we have u > v,
then from (149%), (17) and (18) we have

= W= qu,

u
(19 —@*é q.
But then it follows
M
W -V v qg-—1
ja— g =g
u v ——:}i—l—l g-+1

and this is the assertion (15).

If w < v, we have only to interchange u and v in the above argument.
This proves (15) in the case of real z,.

12. We consider now the case where the x, are complex,

{(20) z,= a, -+ b, (»=1,2,...,m),
and put

(21) Sa,=4, }b=218,

22) z,=la|+ib) (v=12...,0), z=2.
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Then we have, since the a, and the b, satisfy separatly (13),

n
Al g0 Y a|=0RZ

Bl<o X =007,

and it follows
=|A+iBl=olZ| = UZ |z, = 02 |z,]

which proves the Lemma 3 in the general case.
13. Observe that the equality-sign in (15) is possible for any value of
g = 1. Indeed, we have the equality-sign, if we put
=1 2= g 23=""=2x,=0.
The following equivalent formulation, which contains 2n positive para-
meters, is useful:
Corollary fo the Lemma 3. Assume that we have 2n positive parameters

Uy + v oy Uy Uy, - - oy Uy, SGlIsfying the inequalities
(23) %’f~§r-~ﬂ’f§s (wv=1,...,m).

Then for n real or complex nuwmbers x, (v =1, 2, . . ., n) satisfying the relation

P 1y
(24) 3,2, =0
we have v=1
re—1

(25) vglvx <aZle[ 0= T

Indeed, putting

Y= 0,%,, Pp= Ry *

we see that the y, satisfy the conditions of the Lemma 3 if ¢ is replaced by rs.
14. We define the relative oscillation of the ,u-th row of P, o), by

(26) ) = Max 2% (v, ve=1,...,m)
A2
and call then
27) wp= Max @
]
the relative oscillation in the rows of P. Obviously, we have
M

(28) wpE -

15. We will now prove the Theorem

VL If P = (p,,) is a positive matriz and the notations (1) and (27) hold, then
P has n — 1 characteristic roots A for which
Mwp—m

_ A WpT W

(ZQLW HHHHHH M £ok, o= Mopim: )
")2A slight modification of our discussion allows to replace the value of ¢ in (29)
by »a%;—} . We do not insist however upon this improvement, since in the meantime

—1

E. Horr succeeded to replace the value of ¢ in (29) by + T
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Obviously, by (28) the inequality (5) of V follows from (29).

16. Proof of VI. Assume that A is a characteristic root of P, different from
Ap,and let X = (2, . . ., #,)" be a characteristic vector of P corresponding to A.
Take further a characteristic vector with positive components corresponding
to Ap for the transpose matrix P', (u,, ..., ,)"; then we have the relation

n
2 Uy, = 0 3

y=1

where the u, satisfy the condition (23) with r = —% .

We have therefore, by the inequality (25) and the definition (26) of w{,
for u=1,2,...,n:

Mo —m

n n
£ |0, E el = ST

p =

Indeed, the second inequality (23) is here satisfied with s = w{. As, by (27),

4] |2, =

we have, for ¢ from (29), 0, < o (u = 1, ..., n), we obtain finally
n
(30) 4] x| = o leﬂ,,lxvl (p=1,...,2).
17. Introducing the vector
T=(lay], ..., lx,])
and the matrix
A
(31) Q:I%P, Ag= aT/{[
we obtain from (30) the majorization
r<er,
and iterating,
r<e”T r=1,2,...).
Therefore, we cannot have ¢* — 0 and, by the Lemma 1, 5= 1 and by (31)
(32) V‘l = O'A'P H

which is the relation (29), now proved for any characteristic root 1 of P,
different from Ap. And the same holds, of course, for the relation (5).

18. In order to prove completely the Theorem VII, it is now sufficient to
prove that Ap is a simple root of the characteristic equation of P.

Assume that 4p is a multiple root. If we replace then the p by p,,-+ d,,,
the discriminant of the characteristic equation of the new matrix is a non
identically vanishing polynomial of the n? variables d,,.

Indeed, by an affine transformation of the d,, this discriminant becomes
the discriminant of the characteristic equation of the matrix 4 = (4,,), and
this characteristic equation can be made an arbitrarily prescribed equation of
degree n, choosing appropriately the d,,.

If we now choose in the matrix (p,,+ §,,) the increments d,, appropriately
as arbitrarily small positive quantities we obtain a sequence of matrices P,
{(»r=1,2,...) which tend to P and have no multiple roots. For the matrices P,
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the quantities corresponding to Ap, M, m have then respectively Ap, M, m as
their limits. Applying to these matrices the inequality (5), and denoting by D
a positive number with
M2 —_ m2
ZP m <D< /’{p s

we see that, from a certain » on, each P, has » — 1 of its characteristic roots
in the cirele |A] < D.

It follows then that P has n — 1 of its characteristic roots in the circle
|4] < D, so that Ap is certainly a simple characteristic root of P. The Theo-
rems IV, V and VI are now proved.

§ 3. Theorem VII

19. If follows from the Theorem III that both P and P’ have for Ap each
only one independent characteristic vector and that these vectors can be
assumed with positive components so that their inner product certainly does
not vanish. But then the conditions of Schur’s criterion VII are satisfied and
we see directly that Ap is a simple root of the characteristic equation of P.
This is another proof of the Theorem IV.

20. We have now to prove the Theorem VII. Assume that we have under
the conditions of VII,

(33) AE = At A=Ay, nE =1
where &', 3’ are the characteristic vectors of 4 and 4’ and the product can
obviously be assumed as = 1. Denote by ¢ the vector (1,0, . . ., 0) and form an

{n x n)-matrix S, such that
8]0, S&=¢.
If we replace 4 by S48 1= B and & by ¢, by #8 1= #,, the fundamental

equation of 4 is the same as that of B, and the hypotheses of VII are verified
for B, since we have

Be' = 848188 = 8AE = A, mB=n8184A8 ' =nl,, me=1.
We will therefore assume from the beginning that & = £. But then it follows
from A&’ = Ay¢’, putting A = (a,,) that ay =2y, a,,=0 (u=2,...,n),
so that 4 can be decomposed in the form

(34) A— (3" jl) :

where 4, is a square matrix of the order n — 1 and L a row vector with n — 1
components. And we have now to prove that i, cannot be a characteristic root
of 4,.

21. In this proof we will sometimes write an n-dimensional vector
o= {8, g, . - ., &,) in the form

o= ay oy, a= {8y ..., 08,),

where , is the (n — 1)-dimensional vector formed by the n — 1 last components
of «.
Math. Ann, 150 19
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Write now n = (4, ¥s, - . ., ¥,) in the form
N=y1+ M M= YY) -
Then we have from 7n&’ = 1:y; = 1, and from (33) and (34)
(35) An=mnd=Q0+n)d= g+ (L+md), demy= L+ nd;.
Suppose now that there exists a characteristic vector of dimension »n — 1,

{1 = (g, - - -, 2,) of 4, corresponding to A,, so that we have 4,) = 24{;. Then
it follows from (35) multiplying it from the right by {;:

(36) Aom8i= L&} + m A &y = LE + m ey, LE = 0.
If we form now the n-dimensional vector
=0+ =(0,2...,2,)
we have from (34) by (36)
Al = L{ + A 8 = L8+ Al = AL

so that {’ is a characteristic vector of 4 corresponding to A,. But { is obviously
independent of ¢ contrary to the hypotheses of VII. VII is proved.

( Received January 21, 1963)



