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Introduction 

1. We give in this article new proofs of some Theorems of PE~RO~:) 
on positive matrices. Our proofs are certainly not the most elementary ones, 
but  may  be for a certain level of the mathematical  background the simplest 
and the most instructive. 

A matr ix  P =  (p,~) ( p , v =  1 , 2 , . . . , n )  is called positive if all p,~ are 
positive. We have then 

(1) M = M a x p ~ > =  p~>= M i n p ~ = m > 0 .  

We denote further for any (n × n)-matrix A, A = (a~), by hA the maximal 
modulus of the characteristic roots of A. 

Then the Theorems we are going to prove are: 
I. For a ~si t ive matrix P we have always 

(2) ~p > o.  
I I .  I /  we have /or an (n × n)-matrix A and the positive (n × n)-matrix P, 

ta~l g p ~  (#, ~ = 1 . . . . .  n), then 

(3) ha ~ ,te. 
(This is due to G. F~osE~:cs ,  Sitz.-Ber. Akad. Berlin 1909, pp. 515-516).  

I I I .  For a positive matrix P every characteristic root ~ with IX[ = ~p i8 equal 
to 2p, there is only one independent characteristic vector o/ A corresponding to 2p 
and this vector can be normed so that all its components are positive. 

IV. For a positive matrix P, 2p is a simple root o] the/undamental equation 
of P, l i I -  PI= O. 

3. The essential tool of our proof of I - - I I I  will be the following 
Lemma 1. I f  A is a square matrix, then necessary and au/ficient [or 

(4) lira A ' =  0 ,  

is that '~A < 1. 
This Lemma is due to R. OLI)E~BVR~ER [Duke Math. J.  6, 357 -36 I  (1940)]. 

We give in the sections 4 ~ 5  a new and very simple proof of it. 

* This investigation was carried out under the contract DA-91-591-EUC-2150 with 
the US Army. 

~) 1)ERI~OI~, 0.: 1) Zur Theorie der Matrices. Math. Ann. 64, 248--263 (1907); 
2) Grundlagen fiir eine Theorie des Jacobischen Kettenbruch-Algorithmus. Math. Ann. 64, 
1--76 (1907). 
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Using this Lemma we prove ve ry  easily the Theorems I - I I I .  As to  the  
Theorem IV,  i t  is contained in the  following new Theorem:  

V. I]  P = (p,~) is a positive matrix  and i/  the notations (1) hold, then P has 
n - 1 characteristic roots 2 /o r  which 

M 2  - -  m2 2) 
(5) 12[ ~ ~p M~ + m~ . 

This Theorem is again a Corollary f rom another  Theorem, VI,  which gives, 
instead of (5), an in general closer bound for I),1. 

Then we give, in section 19, another  proof of IV,  deriving it f rom a general 
criterion for simplicity of characterist ic roots  due to  I .  SCOUR, who used it  in 
the case of In tegra l  Equat ions  and proved it by  means of the theory  of Ele- 
men ta ry  Divisors3). This is the Theorem 

VII .  Necessary and sufficient in order that a characteristic root 2 o o/ the 
matrix A is a simple root o / t h e / u n d a m e n t a l  equation o/ A ,  is that A and A '  
have each only one independent characteristic vector corresponding to 2 o, ~' and ~', 
and that ~' and ~ are not orthogonal, ~' ~ :4: O. 

I n  the sections 2 0 - 2 1  we give a direct proof of V I I  independent  of the 
theory  of E lementa ry  Divisors. 

§ 1. Theorems I - I I I  

4. P r o o / o / t h e  Lemma 1. For  an (n × n)-matr ix  A put  

( I  - erA) -1 = B ( a ,  a ~ ) ;  

B(g, a~,.) is here an (n × n)-matr ix with the elements 
f?~k (~, au ,) 

b i~--  I I__aA I , 

where the fli~ arc polynomials  ]n ~ and the  denomina tor  is the de te rminant  
of I - aA .  

The b ~  are rat ional  functions of ~, whose poles are reciprocals of some 
characteristic roots  of A ,  and t h e y  are therefore cer ta inly developpable in 

1 
powers of ~ for a < ~ - .  We have thence 

( I -  a A )  - I  = ~ a ~ A ~  

where the A,  are constant  (n × n)-matriees. Multiplying on both  sides with 
I - a A  we verify t h a t  A~ = A ~ and obtain  finally 

(6) (I  - ~ A ) - I =  ~YTa"A" al < 1 

5. If  now 2A < 1, (6) is convergent  for a = 1 and we see t h a t  A"-+  0" 

~) E. HoPF, to whom I communicated this result, succeeded, by an entirely different 
M ~ -- m ~ M -- m 

method, to replace the factor M2 .~ -m- ~- in (5) by the factor ~ and to prove that this 

factor is the best. 
a) JENTZSCH, R.: ]~ber Integralgleichungen mit positivem Kern. J. f. Math. 141, 

235--244 (1912). 
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If,  on the other  hand,  we have A" -> 0, denote by  20 a characteristic root  
of A with the modulus  Jt.4 and by  V a (non-zero) characterist ic vector  of A, 
belonging to  ~t 0. 

Then  we have 
A V =  2oV,  

and, applying repeatedly A on both  sides of this equation, 

A 'V= ~ V .  

But  here, with v ~ oo, the  left hand  vector  tends to 0 and it follows ~ -+ 0, 
~ -+ 0, ~A < 1. The L e m m a  1 is proved. 

6. Proo[ o/ I. Assume tha t  for the mat r ix  P = (p~,,) with (1) we have 
~p = 0. Then all characterist ic roots  of P are = 0. The same is then t rue  for 
the  mat r ix  e P for any  constant  c. We have therefore 

~cP = O, (cP) ~ ~ 0 (v ~ ~ )  . 
1 

Nut  if we take c = ~ - ,  all elements of c P are > 1, the same is then t rue 

for all ( 1 P)~(v = 1,2 . . . .  ) a n d (  1 P)~eannot  tend toO.  

7. Proo[ o/ I I .  Assume t h a t  (3) is wrong and t h a t  we have, under  the 
conditions of I I ,  ,1A > Ap. Choosing c 

(7) 

we see t h a t  for the mat r ix  c P ,  

Bu t  since we have  c I%,1 -~ 

and by  the Lemma 1 

so tha t  

1 
2A > c >  ~p, 

2 c p =  c) tp< 1 and therefore 

lira (c P)~= 0.  
y - - ~  c o  

cpt,, we have then  also 

lira (cA)r= O, 
~---> c o  

~cA= C~A< 1 

in contradict ion to (7). I I  is proved. 
8. Proo] o/ I I I .  Let  2 be a characteristic roo t  of P with [,~[ = ~p and 

V = ( P l , - . . ,  Pn)' a corresponding characterist ic vector,  normed in such a 
way  t h a t  one of the components ,  say  p~, has the value 1. Pu t  

V o  = (IplF . . . .  , Ipn l ) ' .  

We have, if not  all p~ are real  and ~ O, 

n 

P.~]P.I > ~ l P ~ , P .  (# = 1 . . . . .  n ) ,  

and there exists a ($ > 0 such tha t  a) 

(8) P~,,IP, I > (1 + 5) p~,p~ 
Y ~ I  Y 

4) Of. for this argument G. FROBm~IUS Lc., p. 515. 

(# = 1 . . . . .  n) . 



On Positive Matrices 279 

Put  
1 

(9) (1 + 6)2p P = Q'  

Then we have from P V = ~ V: 

(lO) 

and thence by (8) 

1 
~ q -  1 + ~  < 1 .  

(# = 1 . . . . .  n ) ,  

m and M. We have therefore 

and therefore 
Pt, _ ~ep~ M 
p, -XT, p, ~- -~-" 

(# = 1 . . . . .  n) 

~) Cf. A. M. OSTI~OWSKI: On the Eigenveetor belonging to the Maximal Root of a 
Non.negative Matrix. Proc. Edinb. Math. Soc. (II) Vol. 12, Part 2, pp. 107--112 (1960), 
Formula (10). 

v = l  

We have therefore for V 0 the majorization 

Vo ~ Q Vo 
and iterating ~ times, 

Vo ~ Q~ V0, 

and this is impossible since by (9), Q~ -+ 0. 
We have therefore p ~  0 (v = 1 . . . .  , n) and ~ is by  (10) positive = ~p. 

Further, if a p~ were = 0, we would have from (10) 
~z 

0 --- ~ p~p~->_- p~,~> O. 

~Ve see that  all p~ are positive. I f  there were now two independent positive 
characteristic vectors corresponding to 2p, we could find a linear combination 
of these two vectors in which not all components would be of the same sign, 
in contradiction with what has been already proved. I I I  is now completely 
proved. 

§ 2. Theorems IV-¥I  

9. In  our proofs of V and VI we will use the following 

Lemma 2. I f  V--- (Pl . . . . .  Pn)' is a characteristic vector o / P  with positive 
components, belonging to the characteristic value 2p, we have in notations (1) 

(11) p e_ g M T~ - m  (tu' v = 1, 2 . . . . .  n) 5) . 

This is proved, norming the p~ by 

(12) P l + P 2 + ' " + P , ~ =  1. 

Indeed, in the relation (10) the sum ~ PI,,P~ lies by (1) and (12) between 
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10. Further ,  we will need the following refinement of the triangle inequal i ty:  

Lemma 3. Assume between n real or complex numbers x, the relation 

(13) ~ p,x,  = 0 
v = l  

where the p, are positive and satis[y the inequalities 

(14) P+~ < q (#, v = 1 . . . . .  n)" 

then we have 

(15) ~ X ,  g f f ~ l x ,  I, a - -  q - - 1  
q + l  " 

Withou t  loss of generali ty we can assume tha t  instead of (14) 

(17) 

and, using (13), 

(18) 

( 19 )  

But  then it  follows 

- - - - 1  u ~ v  v q - - 1  
u + v  _ U + l  - -  q + l  

and this is the assertion (15). 
I f  u < v, we have only to  interchange u and v in the above argument .  

This proves (15) in the case of real x,. 
12. We consider now the case where the x, are complex, 

W=Zp,~,= ~ p~,. 
v = l  ~ = k + l  

If  u = v the left hand  expression in (15) is 0. Assume tha t  we have u > v, 
then f rom (14°), (17) and (18) we have 

u <  W < q v ,  
~t - - < ~ q .  
V - -  

(20) 
and pu t  

(21) 

(22) 

xv---- a~5-ib,  ( v =  1 ,2  . . . . .  n) ,  

~ a ~ = A ,  ~ b , = B ,  

z , = l a ,  tS-ilb~] ( v = l ,  2 . . . . .  n), ~ z , = Z .  

11. Pro@ 
we have 

(140 ) 1 < p~<  q (v = 1 . . . . .  n ) .  

We consider first the case t h a t  all x~ are real  and no t  all vanish. Then we can 
assume, wi thout  loss of generality,  t h a t  

(16) x 1 > - - - > =  x m > 0 = x m +  1 . . . . .  x_k>xa+ l ~ ' ' ' > x n ,  

where, if no x, vanishes, we have k = m. 

P u t  Ix, l = ~ (v = 1 , . . . ,  n), 

u = Z C v = ~ v  
v = l  , = k + l  
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Then  we have,  since the a~ and the  b~ satisfy separat ly  (13), 

IAI ~ a ~ [a,t = ff ~ R Z  

IBt < a ~'Ib~l = a J Z ,  

and it follows 

(25) 

Indeed,  put t ing  

v v 

which proves the Lemma 3 in the general ease. 
13. Observe t h a t  the equality-sign in (15) is possible for any  value of 

q > 1. Indeed,  we have the equality-sign, if we pu t  

x 1 =  1, x 2 = - q , x  3 . . . . .  x . = 0 .  

The following equivalent  formulation,  which contains 2 n  positive para- 
meters,  is useful: 

C o r o l l a r y  to the Lemma 3. A s s u m e  that we  have 2 n  positive parameters 

u 1 . . . .  , un; v 1 . . . . .  %,  sat is /y ing the inequalit ies 

(23) ue ~ r, re_ ~< s (/x, v = 1 . . . .  , n) .  
~ v  - -  Vv - -  

T h e n / o r  n real or complex numbers  x,  (v = 1, 2 . . . . .  n) satis[ying th~ relation 

(24) Z '  u~x~ = o 
we have ~ = 1 

n r s - - 1  
Z Vvxv ~ ff Z vvlxvl, ( ~ :  rs +-----~i-" 

Y v =  V,X~, P ' =  vv ' 

we see t h a t  the  y,  satisfy the conditions of the  L e m m a  3 if q is replaced by  rs.  
14. We define the relative oscillation of the /~- th  row of P ,  ro~), by  

(26) ¢o (~) = Max p~" (vv v~ = 1 , . . . ,  n) 
P i ° ~  v~ 

and call then 
(27) w p =  Max w~) 

the  relative oscillation in  the rows el P .  Obviously, we have 
M 

(28) Wp g - -  
- -  m ° 

15. We will now prove the  Theorem 
V I .  I ]  P = (pv~) is a positive mat r i x  and the notations (1) and (27)/m/d, then 

P has n - 1 characteristic roots ~ for which  
Mtop -- m 

(29) ]~1 < ( ~ p ,  ( r=  M t o ~ + m "  e) 

*) A slight modification of our discussion allows to replace the value of a in  (29) 
~ - -  1 by ~o~ + 1 " We do not insist however upon this improvement, since in the meantime 

COp - -  I 
E. HOPF succeeded to replace the value of a in (29) by ~e + 1 " 
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Obviously, by  (28) the inequality (5) of V follows from (29). 
16. Proo/o/VI. Assume tha t  ~ is a characteristic root of P, different from 

2p, and let X = (x 1 . . . . .  x,)' be a characteristic vector of P corresponding to 2. 
Take further a characteristic vector with positive components corresponding 
to 2p for the transpose matrix P', (u 1 . . . . .  un)'; then we have the relation 

~ U v X  . ~ 0 , 

M 
where the u~ satisfy the condition (23) with r = - - .  

m 

We have therefore, by  the inequality (25) and the definition (26) of o)~), 
for t t =  1,2 . . . .  , n :  

v =~-JlP~VX~ n M~0~ ) -- m 

Indeed, the second inequality (23) is here satisfied with s = eo~). As, by (27), 
~ve have, for ~ from (29), at, < a (# = 1 . . . .  , n), we obtain finally 

n 

17. Introducing the vector 
X P T = (ixil . . . . .  I =]) 

and the matr ix  
a ~ p  

(31) Q = - ~  P, 2Q= a~i-, 

we obtain from (30) the majorization 

T ~ Q T ,  
and iterating, 

T~Q~T ( v =  1,2 . . . .  ) .  

Therefore, we cannot have Q' -+ 0 and, by  the Lemma 1, 2O> 1 and by  (31) 

which is the relation (29), now proved for any characteristic root X of P, 
di~erent from ~p. And the same holds, of course, for the relation (5). 

18. In  order to prove completely the Theorem VII ,  i t  is now sufficient to 
prove tha t  ~p is a simple root of the characteristic equation of P. 

Assume tha t  Xp is a multiple root. I f  we replace then the p by  pg~+ ~g,, 
the discriminant of the characteristic equation of the new matr ix  is a non 
identically vanishing polynomial of the n z variables ~g,. 

Indeed, by  an affine transformation of the ~, ,  this discriminant becomes 
the diseriminant of the characteristic equation of the matr ix  A = ( ~ ) ,  and 
this characteristic equation can be made an arbitrari ly prescribed equation of 
degree n, choosing appropriately the ~,,. 

I f  we now choose in the matr ix  (p~.+ ~ . )  the increments Og. appropriately 
as arbitrari ly small positive quantities we obtain a sequence of matrices P .  
(v = 1, 2 . . . .  ) which tend to P and have no multiple roots. For the matrices P .  
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the  quant i t i es  cor responding to  2p, M,  m have  t hen  respec t ive ly  2p, M,  m as 
the i r  l imits .  A p p l y i n g  to  these mat r ices  the  i nequa l i t y  (5), and  denot ing  b y  D 
a posi t ive  n u m b e r  wi th  

M ~ _ _  m ~ 
2p M~ + ~n~ < D < 2p , 

we see t ha t ,  f rom a cer ta in  v on, each P~ has  n - 1 of i t s  charac te r i s t i c  roo t s  
in the  circle 121 < D. 

I t  follows t hen  t h a t  P has  n -  1 of i t s  charac te r i s t i c  roo ts  in the  circle 
t21 _--< D, so t h a t  2p is ce r t a in ly  a s imple  charac te r i s t i c  r oo t  of P .  The  Theo-  
rems IV,  V and  V I  a re  now proved .  

§ 3. Theorem VII 

19. I f  follows f rom the  Theorem I I I  t h a t  bo th  P and  P '  have  for  2p each 
only  one i ndependen t  charac te r i s t i c  vec tor  and  t h a t  these  vec to rs  can  be 
assumed wi th  pos i t ive  componen t s  so t h a t  the i r  inner  p r o d u c t  ce r t a in ly  does 
no t  vanish.  B u t  then  the  condi t ions  of Schur ' s  c r i te r ion  V I I  are  satisfied and  
we see d i rec t ly  t h a t  2p is a s imple roo t  of the  charac te r i s t i c  equa t ion  of P .  
This  is ano the r  proof  of the  Theorem IV. 

20. W e  have  now to prove  the  Theorem VI I .  Assume t h a t  we have  under  
the  condi t ions  of VI I ,  

(33) A ~ '  = 20~', ~ A  = 20~, ~ '  = 1 

where ~', 7 '  a re  the  charac te r i s t i c  vec tors  of A and  A'  and  the  p r o d u c t  can 
obvious ly  be a s sumed  as = 1. Deno te  b y  e t he  vec to r  (I ,  0 . . . . .  0) a n d  form an  
(n × n ) -ma t r i x  S,  such t h a t  

Is] + 0, s ~ '  = e ' .  

I f  we replace  A b y  S A S - I =  B and  ~ b y  e, ~ b y  ~ S - 1 =  ~1, t he  f u n d a m e n t a l  
equa t ion  of A is the  same as t h a t  of B, a n d  the  hypo theses  of V I I  a re  verif ied 
for B, since we have  

Be'  = S A S - 1 S ~ ' =  S A ~ ' =  2oe',  ~]1 B = ~ S - 1 S A S  - x=  ~120, ~ l e ' =  1 . 

W e  will therefore  assume f rom the  beginning  t h a t  ~ = e. Bu t  t h e n  i t  follows 
f rom A g =  20e', pu t t i ng  A = (a,~) t h a t  a n =  20, a1,1= 0 ( # =  2 . . . . .  n), 
so t h a t  A can be decomposed  in the  form 

2t 1 ' 

where A 1 is a square  m a t r i x  of the  o rder  n - 1 a n d  L a row vec to r  wi th  n - 1 
components .  A n d  we have  now to prove  t h a t  2o canno t  be  a charac te r i s t i c  r o o t  
o f  A 1. 

21. I n  th i s  proof  we will  somet imes  wr i t e  an  n -d imens iona l  vec to r  
= (al, as . . . . .  an) in the  fo rm 

= a 1 4  a l ,  a 1 =  (a, . . . . .  an), 
where ~1 is the  (n - 1)-dimensional  vec to r  fo rmed  b y  the  n - 1 l as t  componen t s  
of ~. 

Math.  Ann.  150 19  
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Wri te  now ~ -- (Yl, Y2 . . . . .  Yn) in the form 

= Y 1 4 - 7 1 ,  7 1 =  (Y, . . . . .  Y~)- 

Then  we have f rom ~e'  = 1 : Yl = 1, and f rom (33) and (34) 

(35) ~o~ = ~A = (1 4- ~I)A = )-0 4- (L 4- ~IA1), ~0~1 = L 4- ~1A1 • 

Suppose now t h a t  there exists a characteristic vector  of dimension n - 1, 
$1 = (z~ . . . . .  zn) of A 1 corresponding to ~0, so t h a t  we have AI~ [ = ~0~. Then 
it follows from (35) mult iplying it f rom the right by  ~ : 

(36) ~o~1~i = L~i  4- ~lAl~i  = L~i  4- V120~, L~i  = 0 .  

If  we form now the n-dimensional vector  

= 0 -~ ~ 1 =  (0 ,  Z 2 . . . .  , Zn) 

we have from (34) by  (36) 

so tha t  ~' is a characterist ic vector  of A corresponding to ~o. But  ~ is obviously 
independent  of ~ cont ra ry  to the hypotheses of VI I .  V I I  is proved. 

(Received January 21, 1963) 


