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Summary. Most of the numerical methods for the inversion of the Laplace 
Transform require the values of several incidental parameters. Generally, 
these parameters are related to the properties of the algorithm and to the 
analytical properties of the Laplace Transform function F(s). 

One of the most promising inversion methods, the Weeks methods, com- 
putes the inverse function f(t)  as a series expansion of Laguerre functions 
involving two parameters, usually denoted by a and b. In this paper we 
characterize the optimal choice bopt of b, which maximizes the rate of conver- 
gence of the series, in terms of the location of the singularities of F(s). 

Subject Classifications: AMS(MOS) 65R10, 44A10; CR G 1.9. 

1. Introduction 

The problem of the inversion of a Laplace Transform consists in expressing 
a function f( t)  in terms of its Laplace Transform F(s). The Weeks method 
[4, 6] is based on the following series representation, established first by Tricomi 

ES]: 

f(t)  =e~' L ake-bt/2 Lk( bt)' (1.1) 
k=O 

where the coefficients a k are the Taylor coefficients of 

eP(z;a'b)=-lb-z F 1 - z  +a-b~2 ak zk, ]z[<R~(a,b), (1.2) 

a>a o, b>O are parameters, and Lk(x ) is the k-th Laguerre polynomial. As 
usual, a o denotes the abscissa of convergence of the Laplace Transform F(s), 
which can be defined as the maximum of the real parts of the singularities 
of F(s). 
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In the sequel we will consider only the class A of the Laplace Transform 
functions F(s) which are regular at infinity and such that 

F(~  = F(s), 

F ( s ) = o ( l @  v>__l, as s--,oo. 

When FeA,  series (1.1) is absolutely and uniformly convergent. 
In (1.1) there are two arbitrary parameters a and b, that also characterize 

the particular M6bius mapping on which the method is based. The numerical 
performance of the method, i.e., its efficiency and accuracy, depends critically 
on the choice of these parameters [1, 3]. The choice of a is related to the range 
of t to which (1.1) is applied. Series (1.1) converges slowly when a - a  0 is small 
(for a < a o  there is no convergence) and faster when a - a  o is larger. On the 
other hand, if series (1.1) is taken as basis of a numerical method, then the 
larger a - a o ,  the smaller the range of t for which the numerical results are 
meaningful. Briefly, this is due to the factor e ~'t in (1.1) which amplifies the 
approximation error arising in the computation of the coefficients ak. In [1], 
it is shown that a sound choice of a can be made if the range [0, T] of t 
is known: in this case, setting a as a = a 0 +  i /Tlog(ar/r s  the relative 
accuracy of the numerical results degrades from e0 to ew. 

The choice of b depends on a and on analytical properties of F(s). 
The aim of this paper is the determination of bop, the value of b to which 

corresponds to fastest convergence of series (1.1), once a is fixed. In Sect. 2 
we formally define bopt and in Sect. 3 we show that bopt depends only on a 
and on the location of the singularities of F(s). The proof in Sect. 3 gives a 
geometric construction of bopt for a given Laplace Transform F(s) and requires 
that the convex hull of the singularities of F(s) be finite. In Sect. 4 we report 
the results of numerical examples which illustrate the theory. 

2. Definition of  bop t 

We use a standard measure of the convergence rate of a series, i.e., among 
various series Z a k, the one for which lim sup lak] 1/k is least converges fastest. 

k ~ o o  

It is easy to show that, for a fixed a > a 0 ,  the rate of convergence of the 
series (1.1) depends only on R~(b) in (1.2): using a well-known property of 
the Laguerre polynomials, namely 

lim sup I L k ( x )  I 1/k --- I ,  
k ~ o 9  

and the Cauchy-Hadamard formula 

[lim sup [ak[1 /k]  - 1 = R,~(b), 
k ~ o o  

it follows that the fastest convergence of (1.1) is achieved when R , (b )  is maximum. 
Thus we have 
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Property 2.1. bopt is the value of b which maximizes  Re(b), i.e., 

Re(bop,) = max  Re(b). 
b>O 

(2.1) 

In order  to get to a character izat ion of bop t that  permits  the actual  calculat ion 
of the op t imal  value of the pa rame te r  b, we need to further analyze the complex  
mapp ing  in (1.2). 

Definition 2.1. T W a n d  its inverse T W  -1 are the following M6bius  t rans forma-  
tions : 

s -  a - b/2 
z = TW(s; a, b ) -  s e C ,  

s -  a + b/2' 

b 
s= T W - l ( z ; a , b ) =  +a-b~2 ,  zeC.  

1 - z  

T W  and T W-~  m a p  the extended z-plane one- to-one  on to  the extended 
s-plane. (An extended plane contains  oo as an element.) 

Incidentally,  the interest of  the present  au thors  in these mapp ings  was derived 
also f rom a different context ,  namely  the design of a numerical  me thod  for 
comput ing  the abscissa of  convergence a o of a given Laplace t ransform [2]. 

The  following l emmas  provide  necessary tools to prove  the main  theorem 
in Sect. 3. 

In the sequel, we denote  with C[p] the circle which is the image in the 
s-plane (by T W - 1 )  of the circle ]z] = p  in the z-plane. 

L e m m a  2.1. The circle C [p]  has center 

and radius 

b l + p  2 

2 1 - - p  2 

pb 

tl-p21 

L e m m a  2.2. I f  Fe A ,  then Re(a, b) in (1.2) satisfies one of the following relations 
for all b > O :  

a>ao.e~Re(a,  b)>  t, 

a=ao,*~R~(a, b ) =  1, 

a<ao.e~Re(a,  b ) <  1. 

Proof. TW(s; a, b) m a p s  the half p lane Re(s)>__a into the circle Izl < 1. If  a = a o ,  
the relation follows f rom the previous  p rope r ty  and the fact that  q~(z) is regular  
in z = l .  Otherwise  let us consider  z = T W ( s ;  a, b) for s such that  Re  (s) _>- ao . 
If  a > a0, two possibilities can arise: a -  b/2 <= ao < a or ao < a -  b/2. The half  
plane R e ( s ) >  ao is mapped ,  in the first case, in I z -  6 [ <  r, where ~ < 0, r = I 1 -  6 I, 
and, in the second case, in I z -  6 [ > r, where 6 > 1, r = 1 6 -  i [; in bo th  the cases, 
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from the regularity of q0(z) in z =  1, we have R,(a, b)> 1. Conversely, if Ro(a, b) 
>1,  consider the image (by TW -x) of ]zl<Ro in the s-plane. By Lemma 2.1 
it follows that a > a0. 

If a < a o  then Re(s)>ao is mapped in t z -6 I<r ,  where 0 < 6 < I ,  r = [ 1 - b I ,  
which implies R,(a, b ) < l .  Conversely, if R~(a, b ) < l ,  then again from Lem- 
ma 2.1 there follows a<ao. [] 

Let us consider the circle CIR,(b)] and let r(b), c(b) be its radius and its 
center, respectively; then by Lemmas 2.1, 2.2, since a<ao, it follows that c(b) 
+r(b)<a, Vb>0. 

Moreover, since the circle ]z]>=Ro(b) is mapped by TW-1 into the region 
outside the circle C[R~,(b)], all the singularities of F(s) belong to C [Ro(b)]. 

Lemma 2.3. The tangent segment from a to C[Ro(b)] has length equal to b/2. 

The proof is almost trivial and consists in applying Pythagoras's theorem 
to the triangle which has the tangent segment from a and the radius of CIR,(b)] 
as legs. 

3. G e o m e t r i c  Character izat ion  of bop t 

The main result of this paper is the following theorem, in which we show that 
bop t is the value of b that minimizes the angle between the tangent segment 
from a to CIR,(b)] and the real axis. 

T h e o r e m  3.1. Let 2 fl(b) be the angle subtended by C[R,(b)] at a; then 

fl(bop,) = min  fl(b). 
b 

Proof. Since 0 < fl(b)< n/2, finding rain fl(b) is equivalent to finding min tan fl(b), 
b b 

where 

2 Ra~(b ) 
tan fl(b)- [Rr - 1" 

If we choose b 4: bopt, then R,(b)< R,(bop,) and, after elementary calculations, 
we have 

2R,(b) > 2R,(bopt) =tanfl(bop,) 
tan fl(b)-- [R,(b)]2 _ 1 = [R,(bopt)] 2 -- 1 

and the proof is completed. [ ]  

Moreover, there exists just one value of b that maximizes R . ,  as stated by 
the following corollary. 

Corollary 3.1. The value of bopt defined in (2.1) is unique. 
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Proof. From Theorem 3.1, bop t characterizes C [-R,~(bopt) ] as  the circle, with center 
on the real axis, including all the singularities of F(s), and with minimum angle 
subtended by its tangent at a. Since the circle having these properties is uniquely 
determined, so is the length of the tangent segment at a, i.e., bop ,. [ ]  

Thus we have shown that, once a Laplace Transform F(s) and a < a  o are 
given, the circle C[R~(bopO] is the circle, with center on the real axis and includ- 
ing all the singularities of F(s), which subtends the smallest angle at a; by 
Lemma 2.3 the numerical value of bopJ2 is simply the length of the tangent 
segment from a to C[R,a(bopO]. 

The following additional properties allow the construction of C[R.(bopO] 
once that a and the singularities sj, j=  1 . . . . .  m of F(s) are given: 

C[R.(bopt)] passes through only one singular points pair Sk, Sk if and only 
if the tangents to it at Sk and gk pass through a. 

C[R.(bovt)] passes through two pairs (Sk, Sk), (Sj, Sj), k=#j, l <k, j < m  and 
the length .{ of the tangent from a to it ( ( =  bopt/2) is such that 

I,~-s~l <=~ <-_la-sjl. 

This geometric construction of bopt is quite straightforward and can be easily 
carried out in practical applications to assign in Weeks's method, or some of 
its algorithmic versions, the best value of the parameter b. In some cases a 
good choice of the value of b is needed to get meaningful results. 

This is especially true if Weeks's method is used for the real inversion prob- 
lem, i.e., F(s) is known or can be computed only on the real axis. In this case 
the need for fast convergence of (1.1) may be critical, because the roundoff 
error affects the computation of the coefficients ak, and only the first few of 
them can be computed in a reliable way. 

In most of the practical cases, an explicit form of F(s) in the whole complex 
plane is rarely available. We emphasize that, if only the location of some of 
the singularities of F(s) is known, our characterization of bop t allows the calcula- 
tion of an approximate value and moreover, it can be seen that such an approxi- 
mation is better if the rightmost singularities of maximum imaginary part are 
known. 

4. Numerical Results 

In this section we report some results of the numerical experiments that we 
have carried out. Let)',,(t) be an approximation of f ( t )  in (1.1) given by 

jT.,(t)=e ~t ~, ake-bt/2Lk(bt) (4.1) 
k=O 

and let Era(f, t) be the corresponding relative error 

., ]ym(t)--f(t)] 

E~ I 
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F i g .  1. N u m b e r  o f  t e r m s  N in  (4.1) as  f u n c t i o n  o f  b, fo r  v a r i o u s  r e q u i r e d  a c c u r a c i e s .  T e s t  f u n c t i o n  
is (4.3), a = 2, t = 2, bop, is 5 
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Fig. 2. N u m b e r  o f  t e r m s  M in  (4.1) as  f u n c t i o n  o f  b, f o r  v a r i o u s  r e q u i r e d  a c c u r a c i e s .  T e s t  f u n c t i o n  
is  (4.3), a = 2, t = 8,  bop~ is 5 

For a given Laplace Transform function F(s) the aim of the experiment 
is to find N such that 

N = min {m ]E,,(f, t) < e}, (4.2) 

once that a, b, t, e are given. 
In the example we use the function 

1 1 1 
(4.3) F(s) = s  + s ~ - +  (s+ cr 2 + cr 2' 

which has four simple poles in 0, - 2 a ,  -a+ic~,  - c r  We set a = 2 ,  a=0.5625 
and we obtain, using Theorem 3.1, bopt = 5. The coefficients ak in (4.1) are comput- 
ed exactly by analytic differentiation of the function O(z; a, b) in (1.2). 

In Figs. 1 and 2 the behavior of N as a function of b is shown for t = 2  
and t = 8, respectively, and for three values of the required relative accuracy 
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Fig. 3. Number  of terms N in (4.1) as function of b, for various t. Test function is (4.3), a = 2, e = 10 6, 
bop t is 5 

In Fig. 3, e is fixed (~ = 10-6) and again N, as a function of b, is plotted 
for several values of t. 

Floating-point arithmetic with machine precision eM=0.17 • 10 -7 has been 
used. 

In some cases this machine precision causes a numerical cancellation that 
prevents us from achieving the required accuracy: this is shown by a vertical 
asymptote in the graph. 

The numerical results obtained confirm the theory. They also show that 
N(b) increases slowly for b >bopt while it grows faster for b <bopt; such a behavior 
becomes even more evident when t is large. 

These conclusions suggest that, if in a practical application of Weeks's meth- 
od the exact value of bop I is not known, an overestimated approximation of 
bopt will likely provide acceptable speed of convergence. 

In the example reported bere, the coefficients a, in (4.1) have been computed 
exactly, since we dealt with the rate of convergence of (1.1), i.e., we focused 
on the behavior of the truncation error of the approximation (4.1) in terms 
of b. Numerical implementations of Weeks's method primarily concern about 
computational schemes for approximating the coefficients ak. In [4, 6], the ak's 
are computed using numerical integration over a complex contour and in [4] 
it has been shown that the faster the series (1.t) converges the smaller the discreti- 
zation error of the two algorithms. Experimental results, obtained in the test 
process of the software in [1], show that tile behavior of the global approxima- 
tion error is similar to that of N(b) in the previous example. 
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