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Summary. Stability regions of 0-methods for the linear delay differential test 
equations 

y ' ( t )=py(t)+qy(t-z) ,  t>0 ,  

y (t) = q~ (t), t e [- - ~, 03,  

where z is a positive constant, are presented. In the case that p and q are 
real constant coefficients, necessary and sufficient conditions on the stepsize 
for the stability of a 0-method are obtained. Furthermore, when p and q 
are complex coefficients, sufficient conditions for the stability of the 0-methods 
are also given. 

Subject Classifications: AMS(MOS)- 65L20; CR: G1.7. 

1. Introduction 

In recent years, there has been a growing interest in numerical methods for 
the solution of initial value problems for delay differential equations (DDE). 
This is due to the fact that these equations arise in several fields of applied 
mathematics such as biomathematics, physics and control theory (see [3, 7-9, 
llJ). 

Many numerical methods that were originally designed for solving initial 
value problems in ordinary differential equations have been adapted to solve 
DDEs of type 

y' (t)= f (t, y(t), y ( t -  z)), t>0 ,  
(1.1) 

y(t)=cp(t), t e [ - -z ,O] ,  

where z > 0  is a constant delay and ~0 is a given initial function ([15-18]). How- 
ever, several difficulties occur in the application of usual Runge-Kutta or lineal 
multistep methods to the Eq. (1.1). First of all, as these methods require at 
each step one or more evaluations of the right hand side of the differential 
equation, approximations of the solution at several values of the retarded arga- 
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ment t - - r  are needed. When t - � 9  does not coincide with a previous grid point, 
y(t-r) is usually computed by an interpolation process that uses the values 
of the solution at neighbouring grid points. In this sense, it can be proved 
([10, 19]) that if the original ODE method is consistent of order p, it is enough 
to take an interpolation process of order p -  1 to have a method of order p. 
Further effects of the interpolation and jump discontinuities on the solution 
can be seen in the papers [1, 15], and [16]. 

Secondly, the stability behaviour of a numerical method can be quite different 
for an ordinary differential equation or a DDE equation. Therefore, a stability 
analysis of the numerical methods applied to solve DDEs is necessary. To study 
the asymptotic stability of a numerical method, it is usual to consider a family 
of differential equations (the test equations), comparing the behaviour of the 
analytical and numerical solutions of this family of equations. Thus, Cryer [6] 
studies the stability using the pure delay test equation 

y'(t)=#y(t--z), t>O, 
(1.2) 

y(t)=(p(t), tEl-z, 0], 

where/t  is a real parameter and q~ a given continuous function. Further stability 
results about multistep methods for the delay test Eq. (1.2), have been obtained 
by Van der Houwen and Sommeijer [20]. Other authors including Barwell 
[2], Bickart [4], Capdeville and Seguier [5], Jackiewicz [12], Wiederholt [22] 
and Watanabe and Roth [21] have studies the stability of some numerical 
methods with respect to the more general class of test equations 

y'(t)=py(t)+qy(t--~), t>=O, 
(1.3) 

y(t)=qo(t), t~--z ,O],  

where p and q are real or complex constant coefficients. 
Let us recall that the asymptotic behaviour of the exact solutions of (1.3) 

for real or complex p and q has been considered by several authors (see [3, 
10, 18]). In the real case, the stability set S*, i.e. the set of all values (p, q) 
such that, for any given continuous function q~(t), the solution y(t) of (1.3) tends 
to zero as t tends to infinity, is an open domain in the (p, q)-plane contained 
in the halfplane p <  1/z and determined by the straight line q = - p  and the 
curve p -  q~ cot (q0~), q = - q~/sin(q~ ~), ~0 e(0, n/z). However, it is difficult to analyze 
the stability of many numerical methods for all (p,q)eS* and therefore it is 
usual to restrict this analysis to the convex cone D * =  {(p, q)eR2/[q] < --p} which 
is a subset of S*. In the complex case, also for the sake of simplicity, the stability 
studies are usually restricted to the complex set D={(p,q)~CZ/lql<--Rep}, 
which is contained in the complex stability region. 

The aim of this paper is to analyze the asymptotic stability of 0-methods 
for the test Eq. (1.3), with the delay terms computed by linear interpolation. 
A brief outline of the rest of this paper is as follows: Sect. 2 is devoted to 
introduce the definitions and notations. In Sect. 3, some sufficient conditions 
for the stability of a 0-method applied to the complex test equation are given. 
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It must be remarked that Theorem 1 of this section, for the particular case 
of p and q real, modifies partially previous results on this subject (see Jackiewicz 
[12]). Finally, in Sect. 4 we prove that for the real test equation with (p, q)eS*,  
the conditions of Sect. 3 are not only necessary but also sufficient for the asymp- 
totic stability of the 0-methods. For the complex test equation, a rigorous proof  
of the same fact has not been obtained. However, a large number  of numerical 
experiments seem to confirm that the sufficient conditions will be also necessary 
in the complex case. 

2. Definitions and Notations 

Let t . = n  h, n = 0 ,  1, ... be a uniform grid with constant stepsize h and denote 
by yn(t,) the numerical solution at the grid point t, obtained when a 0-method 
is applied to the test Eq. (1.3) with stepsize h. The values Yh(t.) satisfy the differ- 
ence equation 

yh(t,+ 1)=yh(tn)+h[O(p yh(tn+ i)-t-q yh(tn+ l --Z)) 

+ ( 1 -- 0) (p Yh (t,) + q Yh (t, -- Z))]. (2.1) 

I f t , - -Z  and t,+ ~ - - r  are not grid points, the delay terms yh(t,--Z) and yh(t.+l --z)  
will be evaluated by means of interpolation using an appropriate  number  of 
function values at grid points so that the order of the interpolation error does 
not modify the order of the discretization error of the 0-method. Since the 
0-method has order two when 0 =  1/2 (trapezoidal rule) and order one for the 
other values of 0e[0,  1], it is sufficient to compute the delay terms by linear 
interpolation between the two neighbouring points. Therefore, putting 
r = ( m - u )  h, with ur 1) and m a positive integer we have 

yh(t,--  z) =(1 --U) yh(t._m)+U yh(t,_m+ 1), 
(2.2) 

yh(t,+ , -- Z) = (1 --U) yh(t,-m+ ,) +U yh(t._,,+ 2 ). 

Substituting (2.2) into (2.1), we arrive to the difference equation 

(1 - Ox) yh(t. + ,)--(1 + (1 -- 0) x) yh(t,)-- 0 u y yh(T.- , ,  + 2) + 

- ( O + u - 2 O u ) y y h ( t , _ m + O - ( 1  - -O)(1- -u)yyh( t , -m)=O,  (2.3) 

where x = h p and y = h q. 
F rom the stability theory of difference equations, it is known [14] that the 

solutions yh(t,) of (2.3) tend to zero as t. tends to oo for any given starting 
values if and only if the characteristic polynomial W,,(z) of (2.3), 

w , . ( z )  =(1 - Ox)  z " +  ~ - ( 1  +(1 - 0) x )  z " -  O u y  z 2 + 

- ( 0 +  u - 2 0 u )  y z - ( 1 - 0 ) ( 1  - u )  y, (2.4) 

is a Schur polynomial,  i.e. if all its roots are inside the open unit disc. Consequent- 
ly, given some values of p, q and h, the 0-method is asymptotically stable if 
and only if the corresponding polynomial Win(z) is a Schur polynomial. 
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Since the coefficients and degree of W=(z) are stepsize dependent, for each 
h > 0  we have a stability set of a 0-method defined as the set of all (p, q)-values 
such that W=(z) is a Schur polynomial. However, as the coefficients of WIn(Z) 
depend on (p,q) in the form (hp, hq)=(x,y), it is convenient to introduce the 
following: 

Definition. For a fixed stepsize h > 0  and 0el0,  1] the set 

So,h = {(x, y)e C2/Wm(Z) is a Schur polynomial}, 

will be called the scaled complex stability set of the 0-method for the stepsize 
h. In addition, the set 

SO : N SO,h' 
h > O  

will be called the complex stability set of the 0-method. In the particular case 
that x and y are real variables, the corresponding sets will be denoted by S*.h 
and S~ respectively. 

3. Stability Regions for the Complex Test Equation 

In this section we find some stability regions for the &methods when they 
are applied to the complex test Eq. (1.3) with (p, q)ED = {(x, y)e C2/lYl < - Re(x)}, 
this means that x=hp, y=hq are complex variables and (x,y)eD. To simplify 
the proof  of the main result of this section, we give the following: 

Lemma 1. Let a, b, and c be real constants. Then the inequality 

a +  b o)> Ic](1 --(2)2) 1/2, (3.1) 

holds for all a)e[  1, 1], if and only if 

a > 0  and a2-b2>c  2. (3.2) 

Proof First we show that (3.1) implies (3.2). Taking t o =0  in (3.1) we get a >  Ic[ 
and clearly a > 0. 

To show that aa-bZ>c 2, let r(co)=a+boo and s(o)=]cl(1-r 1/2. The 
assumption (3.1) implies that the quadratic polynomial 

P ( fo)  = r 2 (0))  - -  s 2 (0))  = ( b  2 q-- c 2) w 2 -]- 2 a b co + ( a  2 - c2 ) ,  

satisfies P(~o)>0 for m e [ - 1 ,  1]. It can be easily verified that P(o9) attains its 
minimum when c o = c o * = - a b / ( b 2 + c  2) and takes the value P(oo*)=ci(ai-b 2 
-c2)/(b 2+c2). Hence, if [09" I< 1 the assumption (3.1) implies that P(co*)>0, 
and therefore a2-b2>c  2. For  tr 1, i.e. [abl>b2+c 2, putting in (3.1) ~0= 1 
and ~0 = - 1 ,  it follows that a > lbl, and consequently 

a2>a]bl=labl>b2 +c 2. 
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Conversely, to prove that (3.1) follows from (3.2), note that a 2 - b 2 > C 2 implies 
P(~o)> 0 for all real ~o and in particular, 

r2(o9) > s2(o~) for ~ o e [ -  1,1]. (3.3) 

Furthermore, from (3.2) we deduce a > ]cl, i.e. r(0)> s(0). This condition together 
with (3.3) and the continuity of r(~o) and s(co) imply that r(o~)>s(og) for all 
~oe[ -1 ,  1], and the proof is complete. 

Theorem 1. The asymptotic stability set So of the O-methods for the complex 
test Eq. (1.3) with linear interpolation satisfy 

Soc~D=D, for 0e[1/2, 1], 

Soc~D~Do, for 0e[0, 1/2), 

where Do, Oe[O, 1/2), is the set defined by 

Oo={(x,y)~C2/lx+l/ql+lYl<l/rl},  r/= 1 - 2 0 .  

Proof. Consider the characteristic polynomial (2.4) of (2.3). It can be written 
in the form 

w,,(z)=P,.(z)-Q(z), 

with 

and 

P,,(z)=z"(al z+ao), Q(z)=y(b2z2+bl z+bo), 

a ~ = l - O x ,  a 0 = - ( l + ( 1 - 0 ) x ) ,  (3.4) 
b2=Ou, bx = O + u -  2Ou, b o = ( 1 - 0 ) ( 1 - u ) .  

Applying Rouche's Theorem [-13], it follows that the conditions 

laol <la l l  (3.5) 

[Q(exp(iq~))[ < IP,,(exp(i~o))l, ~oe[O, 2~), ue[O, 1), (3.6) 

imply that W,, is a Schur polynomial. 
Since x is a complex variable, using (3.4) it is easy to show that (3.5) is 

equivalent to 

Ix + 1/r/I < l/r/, 0El0, 1/2), 

Re x <0, 0 = 1/2, 

Ix+l /~ l>-a/ ,7 ,  0e(1/2, 1]. 

To study the inequality (3.6) we introduce the functions 

f(q~) = [P,,(exp(i~p))] 2 = ]al exp(i ~o) + ao[ 2, 

g(tp; u) = I Q(exp(iqg))[ 2 = lyl 2 b2 exp(izq~)+ bl exp(iq~) + bo] 2, 

(3.7) 

(3.8) 
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defined for ~o~[0,21r) and u~[0, 1), and with ai, bi given by (3.4). With this 
definition, (3.6) takes the form 

f(~o)>g(~o;u), qo~[0,2n), u~[0, 1). (3.9) 

Next, let us show that if (3.9) holds for u =0, then it holds for all ue[0, 1). 
Taking into account the values (3.4) of the coefficients b j, the function g(q); u) 
can be written as 

g(q~; u)=ly[ 2 {[~/Z(cos q~- 1)24(1 --COS 2 tp)](U2-- U) 
+ [(1 _q2) cos ~o+(1 + q2)]/2}. 

Since for all ~oe(0, 2~), g(~o; u) is a second degree polynomial in u with g(~o; 0) 
=g(q~; 1) and its main coefficient is positive, we have 

sup{g(~o; u), ue [0 ,+  1)} =g(~o;0), 

for all ~o ~(0, 2 ~). Furthermore for ~0 = 0, g(0; u) = l y] 2 = g(0; 0). Hence, (3.9) is 
equivalent to 

f(q))>g(q);O)=lyl2[(1-q2)cos~o+(l+tl2)]/2, q~e[0, 2~). (3.10) 

On the other hand, putting X=Xl +i x2, from (3.8) and (3.4) we get 

f(cp)= 2 +  ]xl2(1 +q2)/2+2q x, + ( - - 2 +  Ix[2(1 --q2)/2--2q X1) COS ~o--2 x2 sen r 

Thus, (3.10) can be written as 

a+bcosqg>csenqg, q~e[-0, 27r), (3.11) 

where 
a=2+cS(l+rl2)/2+2qXl, b=  - 2 + c S ( 1 - r / z ) / 2 - 2 q  11, 

(3.12) 
c=2x2 ,  6=lxI  2-[y]2. 

In addition, putting co = cos ~o, it is clear that (3.11) is equivalent to 

a+bco>lc[(1-co2) 1/2, co~[ -1 ,1 ] .  (3.13) 

Now, we may apply Lemma 1 with a, b and c given by (3.12), and therefore 
(3.13) holds if and only if 

246(1 + ~/2)/2 + 2q xl >0,  

6(4 + 4q Xl +q2 6)>4x  2, 

and these inequalities can be written in the form 

Ix + 2 rl/(1 + qz)[2 > 1212_ 4/(1 + q2)2, (3.14) 

[qa+ 2x1[> 2]y [. (3.15) 

To analyze these inequalities, we consider separately the following three 
cases: 
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i) 7 = 0 ( 0 =  1/2). 

Now (3.14) and (3.15) take the form Ix] z > lyl 2 and ]x~[> lYl, which are equiva- 
lent to ]Xl[>[Yl. On the other hand from (3.7), xl <0 ;  therefore we conclude 
that [y[ < - x l ,  and then the theorem holds for 0 =  1/2. 

ii) 7e(0, 1], (0el0,  1/2)). 

Since 1 ~ q - I x +  1/7[ < 1 / 7 -  R e ( x +  1 /7 )=x i ,  it is clear that  if(x, y ) e C  2 satisfy 

] y l < l / q - l x + l / T [ ,  (3.16) 

then [Y[ < - x ~  and therefore D o c D. Consequently Do c So c~ D holds if and only 
if Do c So. Next, to prove this inclusion, we show that  (3.16) implies the inequali- 
ties (3.7) with 0e l0 ,  I/2), (3.14) and (3.15). 

Firstly, it follows from (3.16) that Ix + 1/71 < 1/7, which proves (3.7). Further-  
more this inequality implies that  7 6 + 2 x l  <0,  and then (3.15) can be written 
in the form 

Ix + 1/7[ 2 <(1/7 --lyl) 2. (3.17) 

But it is clear that (3.16) implies (3.17), so that (3.15) is also a consequence 
of (3.16). 

Finally, note that  for all 7e(0, 1], we have [ ( 1 - q 2 ) / ( l + 7 2 ) ] ( x ~ + I / 7 ) <  
Ix + 1/7]. Since this inequality is equivalent to 

(I/r/--Ix + 1/7l) 2 < I x + 27/(1 + 72)12 + 4/(1 + 72) 2, 

it follows that  (3.16) implies (3.14). 

iii) 7~[ - -  1,0), (0~(1/2, 1]). 

Note  that S o c ~ D = D  is equivalent to D c S o ;  therefore, it is enough to verify 
that 

]y [<- -x~ ,  x~_<0 (3.18) 

imply the inequalities (3.7) with 0e(1/2, 1], (3.14) and (3.15). 
It follows from (3.18) that  6 > 0 ;  then we have 7 6 + 2 x ~ < 2 x 1 < O ,  and the 

inequality (3.15) can be written as Ix+ 1/712>(171-1/7) 2. Using the fact that  
l y l -  1/7 > 0, this inequality is equivalent to 

Ix + 1/71 > ]Yl- 1/7. (3.19) 

Now, assuming that  (3.18) holds, we can write [ y l < - x l  < 1 / 7 + [ x +  1/7[. Thus 
(3.18) implies (3.19) and also (3.15). 

On the other hand, from (3.19) we have tx + 1/71 > - 1/7, so that  (3.18) implies 
(3.7) for 0e(1/2, 1]. 

Finally, it only remains to show that (3.14) is a consequence of (3.18). Since 
q<0 ,  it follows from (3.18) that  x 1 __< - i / q .  Hence, it can be verified that  

x 2 -- 4/(1 + 72) 2 <(x l  + 27/(1 + 72)) 2. 

Consequently,  we have x 2 -4 / (1  +/72)2 ~ ix + 27/( 1 + 72)12. 
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But from (3.18), [y]2<x~. Therefore (3.18) implies (3.14) and the proof is 
complete. 

Theorem 1 is concerned with the stability sets of the 0-methods for the 
complex test Eq. (1.3) but it may be applied also to the real test equations. 
In fact, for the real case x=hp, y=hq  are real variables and D=D*, Do=D" ~, 
where 

D~' = {(x, y)eR2/]x + 1/~1 + lyl < 1/q}. 

Therefore, we have 

Corollary 1. The stability sets St of the O-methods with linear interpolation for 
the real test Eq. (1.3) satisfy 

S*c~D*=D*, for 0el1/2 ,  1], 

S~c~D*DD~, for 0e l0 ,  1/2). 

Figure 1 shows the sets defined by the sufficient stability conditions (3.7), 
(3.14) and (3.15) for several values of 0. 
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4. N e c e s s a r y  and Suff ic ient  Condi t ions  of  the Stabi l i ty  Reg ions  
for the C o m p l e x  Test  Equat ion  

As it has been proved in Theorem 1, for 0~[1/2, 1] the complex stability sets 
satisfy So c~D=D. Therefore this result provides us a necessary and sufficient 
condition for the stability of the 0-method for 0el1/2,  1] in the convex set 
D. However, for 0e[0,  1/2), the theorem only proves that Soc~D~Do and it 
would be desirable to know whether or not the opposite inclusion is true. In 
this section, we demonstrate that in the real case, S~ ca D * c  D~'. In the complex 
case we have the evidence that this assertion also holds true as it is infered 
from extensive numerical experiments, but unfortunately an analytical proof 
of this fact has not yet been obtained. 

Theorem 2. The stability sets S'~ of the O-method, 0~[0, 1/2), for the real test 
Eq. (1.3) with linear interpolation satisfy S~ c~ D*= D*. 

Proof Let A be the se t  A=NSo* h with h = z / ( 1 - u ) ,  ue[0,  1) and let T b e  an 
appropriate set, defined below, satisfying T~S~,  h for h=T/2. Then, it will be 
seen that A ca TcaD*= D*, and taking into account that S~" c A  ca T, it follows 
that S~" c~ D* c D~'. Therefore, from Corallary 1, we have S~' ca D* = D~'. 

The characteristic polynomial (2.4) for m = 1 takes the form 

WI (Z)~-C 2 Z2-~-Cl z-I-Co, 

where 

c2=l--Ox--Ouy, ci= -[ l+(1--O)x+(O+u--2Ou)y],  

Co= --(1 --0)(1--u)y.  

Since W1 is a Schur polynomial if and only if Ic01 < Icd and [ci[< ICz +col, taking 
into account the above values of co, cl and c2, the conditions 

( 1 0 ) ( 1 - u ) l y l  <[1-Ox-Ouy t ,  (4.1) 

] l + ( 1 - O ) x + ( O + u - 2 O u ) y l < l l - O x + ( O + u - 2 O u - 1 ) y [  (4.2) 

are necessary and sufficient for W~ to be a Schur polynomial. 
The inequality (4.1) for u = 0 becomes ( 1 -  0)]y[ < [1 - 0  x l and this implies 

(1 - 0)(1 - u)lyl  < (1 - 0 ) [ y l -  OulYl <11 - Oxl- Ou ]y[ < l l  - Ox- Ouy[, 

for all ue[0,  1) and Oe[O, 1/2), therefore (4.1) for all ue[0,  1) is equivalent to 

(1 - 0)[y[ <11 - Oxl. (4.3) 
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On the o ther  hand,  (4.2) can be writ ten in the form ]a + b u l < ] a ' +  b u], where 
a = l + ( 1 - O ) x + O y ,  a ' = l - O x - ( 1 - O ) y ,  b = ( 1 - 2 0 ) y .  Then,  (4.2) will be sat- 
isfied for all u~ [0 ,1 )  if and only if [al<La'l and [a+bl<la'+bl .  This means  
that  

I i + ( 1 - O )  x + O y l < l l - O x - ( 1 - O ) y [ ,  (4.4) 

[l + ( 1 - O )  x + ( 1 - O ) y l < t l - O x - O y l .  (4.5) 

Therefore,  for all 0e[0 ,  1/2), the inequalities (4.3), (4.4) and (4.5) define a set 
A in the (x, y)-plane where  W~ is a Schur  po lynomia l  (Fig. 2). 

Next,  taking m = 2 and u = 0, the character is t ic  po lynomia l  (2.4) becames 

W2(z ) = ( 1  - Ox) z 3 - ( 1 - 1 - ( 1 - 0 )  x)  z 2 -  y O z -  y(1 - 0), 

which has the root  z = -  1 for all real values of  x and y on the straight  line 
L: 2 + q x + q y = O .  Then,  choosing as T the set T = R 2 - - L ,  it conta ins  So*h for 
h = z/2. Fur the rmore ,  it is clear from Fig. 2 that  A c~ Tc~ D * =  D~ and this implies 
S* n D* c D*, and  the p roo f  is complete.  

As it was men t iona ted  at  the beginning of  this section, an analyt ical  p roo f  
of  the fact Soc~DcDo, 0E[0, 1/2) has not been obtained.  However ,  after some 
numerical  exper iments  we have  the evidence that  this result holds true. Next,  
let us briefly describe these numerical  experiments .  Put t ing z = exp (i ~0); ~0 e [0, 2 r~) 
in the character is t ic  po lynomia l  (2.4) and  solving for x, we have 

x =  [exp( i q~(m + 1))--exp( i ~om)- O yu exp(2 i q~)- y( O + u-- 2 Ou) exp( i cp) + 

-- y(1 -- 0)(1 -- u)]/[O exp(i  ~p(m + 1)) + (1 - O) exp(i  q~ m)], (4.6) 

which defines in the x -complex  plane, for given values of  h and y, the b o u n d a r y  
locus lh of  the character is t ic  po lynomia l  (2.4), i.e. the set of  all x-poin ts  such 
tha t  (2.4) has at least one z- root  with modu lus  one. As it is well k n o w n  the 
b o u n d a r y  locus lh determines  in the (x 1 , x2)-plane a finite n u m b e r  of  c o m p o n e n t s  
such that  all points  of  each c o m p o n e n t  are ei ther stable or  unstable.  
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Figures 3 and 4 show in the (xi + I/q, x2)-plane typical lh=lm,,-curves with 
0 = 0 ( q = l ) ,  y = l / 2  and several values of m and u where h=z/(m--u). Also we 
show in these figures the two-dimensional set Don{lyl= 1/2} for 0=0 ,  which 
is given by Ix + 1[ < 1/2. 

We have plotted the curves I h for a large number of values of h and y. 
It is easy to verify that only the component R h which contains the point 
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(xl, x2)=(-1/ r / ,O)  is a stability component. (In the above figures Rh is the 
component determined by I h = tin, u that contains the origin.) For  each k e [0, l/r/), 
denoting by Hk the plane [y l=k in the ( x l ,  x2,1yl)-space, from our numerical 
experiments we have obtained that 

(-] R h ~ D = D o c ~ I I k  . 
h > O  
lY[ ~k 

Taking into account the above assertions, it is clear that 

0 R h = S o C 3 [ I k "  
h>O 
lYl =k 

Therefore as k runs through the interval [0, l/q), we conclude that So c~ D = D o, 
for all 0el-0, 1/2) which is the desired result. 
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