
Numer. Math. 36, 177-195 (1981) Numerische 
Mathematik 
�9 Springer-Verlag 1981 

A Divide and Conquer Method 
for the Symmetric Tridiagonal Eigenproblem 

J.J.M. Cuppen 

Universiteit van Amsterdam, Instituut voor Toepassingen van de Wiskunde, 
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands 

Summary. A method  is given for calculating the eigenvalues of  a symmetric  
tridiagonal matrix. The method is shown to be stable and for a large class of  
matrices it is, asymptotically,  faster by an order of magni tude  than the QR 
method. 

subject Classifications." A M S  (MOS):  65Ft5,  68C25; CR" 5.14, 5.25. 

1. Introduction 

Let T be a symmetr ic  tr idiagonal matrix of order n > 2. T can be written as 

T = \ 0  I T2]+~l-~[ f-] \0 IT2] +c~b (1.1) 

where T 1 and T 2 are of  order  n 1 >1 and n 2 > l  with n 1 + n x = n .  c~ is the nl-th off- 
diagonal  element of  T and the vector b is given by 

bi=l if i=n 1 or i = n l + l ,  
b i = 0 otherwise. (1.2) 

Suppose that  the solutions of the eigenvalue problems of T1 and T 2 are given by 

T t =Q1DIQrl 
T2 =(2A)~Q~' (1.3) 

where Q1 and Q2 are or thogonal  matrices and D 1 and D 2 a r e  diagonal  matrices. 
If  we denote the first row of Q2 byf f  and the last row of  Q1 by l r we have 

Q1 T = ( ~ T 2 ) + c ~ b b r = ( ~ Q 2 )  ((~D2)+2c~zzr)(Q~-~]r'\ 1(22] 
(1.4) 
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can be calculated with an algorithm for the rank-one modification of the 
symmetric eigenproblem which was proposed by Bunch, Nielsen and Sorensen 
[1], based on Golub [3]. 

A modified version of their algorithm, with an alternative derivation, will be 
given below. 

A recursive application of the strategy described above leads to a Divide and 
Conquer method (D.C. method) for the eigenvalue problem of T. At the deepest 
level of recursion we can either carry on till we arrive at trivial 1 x 1 or 2 x 2 
eigenvalue problems, or use a QR method to calculate the eigenvalues and the 
first and last rows of the eigenvector matrix of small n o x n o blocks. 

To be competitive with the QR method, any method should have an 
operation count of 6n 2 operations (multiplications and divisions) or less. An 
order k rank-one modification costs however -I-9k 2 operations. This seems to 
add up to __ 18n 2 operations for the whole problem. The experiments discussed 
in Sect. 5 show that for many matrices (though not for all) the picture is 
drastically changed by deflation effects. There the method has a c.n.logn 
behaviour, where the constant c depends on the type of matrix. For  instance 
c ~ 140 for Wilkinson's matrices W, § and I41,-, c ~220  for random tridiagonal 
matrices and c ~ 90 for random matrices where the off-diagonal elements are on 
the average 10 times smaller than the diagonal elements. 

Figure 1 gives the results obtained for random tridiagonal matrices (see also 
Sect. 5, Experiments). 



Divide and Conquer Method for Tridiagonat Eigenproblem 179 

Note: The method can be easily generalised to symmetric bandmatrices,  requir- 
ing not more than m rank-one modifications per recursion step for a bandmatr ix  
with bandwidth  2 m +  1. The first and last m rows of  the t ransformation matrix 
will then have to be updated at each rank-one modification. 

2. Rank One Modification of the Symmetric Eigenproblem 

Let D 1 and D 2 be diagonal matrices of order n I and n2, tet p be a scalar and f l ,  
l 2 and z be vectors of order n l , n  2 and n = n ~ + n 2 ,  respectively. We want to 
calculate a diagonal matrix A and vectors f and l such that there exists an 
or thogonal  matrix P with 

( D I ~  + p z z r =  p AP  r, 

(2.1 

f = p r  �9 , I = p r  I " 

Let 

D :  ( ~ D 2 ) ,  f, (fl.), l t ( f ; ) .  

Following Bunch, Nielsen and Sorensen [ l ] ,  we shall first show that deflation is 
possible if some of  the elements of  D are equal, or any of the elements of z is 
zero. 

We first permute  the elements of  D in such a way that 

dl ~d  2 ~ . - .  < d  n, 

meanwhile permuting z , f '  and 1' correspondingly.  
N o w  if k of the elements of D are equal:  

di+l=di+2 . . . .  -di+ k 

the following identity holds for any or thogonal  k x k matrix P ' :  

(,i ; t, ) P' D P' = D .  

I .  --i -k I .  --i--k 
Therefore we can choose P '  to be a Householder  t ransformation transforming 
(zi+l,zi+ 2 . . . . .  Zi+k) to (*,0 . . . . .  O) while leaving D invariant. Consequent ly  we 
may assume that if d i=d  ~ for some i a n d j  then z i=O or zj=O. 

Let us now consider the coordinate  directions i with z i =0 .  It is trivial that  
if z~=0 then d i is an eigenvalue of  D + p z z  r with eigenvector e~: 

(D + pz  zr) e i=diei  + pz  zi =d ie  i. (2.2) 

Therefore we can choose p~, the i-th column of  P, to be e i and we have ;ti=di,f i  
= f / a n d  l~=l' i in (2.1) and we may ignore all coordinate directions with z i=0 .  
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Hence, we can reduce the problem to a smaller problem when D contains 
mutually equal elements and/or some components of z are zero. So, without loss 
of generality we may assume that all elements of D are different and that all 
components of z are nonzero. Moreover we may assume that p > 0  since the case 
p = 0  is trivial and a system with p < 0  is easily transformed into one with p > 0  
by considering - D  instead of D. The following theorem now applies. 

Theorem2.1. I f  D is a diagonal matrix, D=diag(d  I . . . . .  d,), n > 2  with 
dl < d 2 < . . . < d , , z e I R "  is a vector with z ,+O for  i=1  . . . . .  n and p > 0  a scalar, 
then the eigenvalues of  the matrix D + p z z  r are equal to the n roots 21 < ... < 2 ,  of 
the rational function 

w(),) = 1 + p z r ( D - - R I ) - l z  
(2.3) n 2 Zj 

= 1 + p j ~  _ 
d j - 2 "  

The corresponding eigenvectors pl . . . .  , p" o f  D + pz  z r are given by 

i f =  (D - 2,1)- i z/]] (D - 2iI)-1 z 112 (2.4) 

and the di strictly separate the eigenvalues 2 i as follows: 

d l  <~'1 < d 2  < 2 2  < ""  < d , < 2 , < d , + P  z r z .  (2.5) 

This theorem merely restates results of Gotub [3] and results of Bunch, 
Nielsen and Sorensen [1] who added the explicit formula for the eigenvectors. 
The theorem is given here with a simple proof  because this proof  may provide 
some insight in the essence of the rank-one modification method (others may 
prefer a derivation via the characteristic equation). 

Proof  An eigenvalue-eigenvector pair (2, p) of D + pz  z r satisfies 

( D + p z z r ) p = 2 p ,  
SO 

( D - 2 1 ) p =  - - p z r p z .  

We now show that D - 2 I  is nonsingular. Indeed, assuming D - 2 I  singular, we 
have 2=d~ for some i, so O = ( ( D - - 2 I ) p ) , = - - p z T p z i ,  so z r p = 0 ,  so ( D - 2 I ) p =  
- p z r p z = O ,  so ( d j - 2 ) p j = 0  for all j, so p j = 0  for j # i ,  so O = z r p = z i p i ,  so z i=O 
which contradicts the assumptions. Therefore we have 

zrp4=O 

p =  - p z r  p ( D -  2 l) -1 z. (2.6) 

Consequently, p satisfies (2.4); multiplying both sides of (2.6) by z w yields that 2 
is a root of (2.3). 

(2.5) easily follows from the behaviour of w(2). 0 

As an example Fig. 2 gives a plot of w(2) in case n =6,  (dr)j_ 1 ..... 6 =(0, I, 2, 
2.7, 3.4, 5.4), p = 2 and 2 ( Z j ) j =  1 . . . . .  6=(0, I, 0.02, 0.4, 0.4, 0.03, 0.05). Note that for 
small z/2 either 2, or 21+ 1 is close to d,. 
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Fig. 2 

With Eq. (2.3) and (2.4) we have an algorithm for the calculation of the 
matrix A and the v e c t o r s f a n d  I in (2.1) which are needed in each recursion step 
of the D.C. method. Its stability in the presence of round-off errors and the use 
of a nonzero tolerance for neglecting elements of z and comparing close 
elements of D is far from trivial. This is readily seen from (2.4) as a serious loss 
of significant digits may occur in subtracting 2 i from di or d~+ 1. The next section 
deals with this problem. 

3. Accuracy 

The D.C. method consists of a recursive application of rank-one modification 
steps (ROM steps), each of them preceded by deflation on mutually close 
intermediate eigenvalues and on small elements of the modification vector z. 
Since each time the matrix D + p z  z r under consideration is derived from a part 
of the original matrix T by an orthogonal transformation we can apply back- 
ward error analysis on errors due to finite precision arithmetic and per- 
turbations caused by deflation on close but unequal elements of D and small but 
nonzero components of z. 

According to the theorem of Wielandt-Hoffman the errors introduced in the 
calculated eigenvalues of the original matrix are not larger than those in- 
troduced in D + p z z  r itself (Wilkinson [6], p. 104). 

This section considers the accuracy of one ROM-step, deflation inclusive. It 
extends the results of Bunch, Nielsen and Sorensen in two ways. Firstly it 
analyses the influence of round-off errors and secondly it bounds the disortho- 
gonality of the eigenvectors with a factor m i n l 2 i - 2  k] instead of minidj -~i l  in 
the denominator  ( Id j -2 i l  may become arbitrarily small, compare with [1], 
Theorem 6). 
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The  R O M  step we shall consider calculates A , f a n d  l from the data  D, p, z , f '  
and 1' (order n, cf. (2.1)). 

We may assume that [tz t12 = 1, p > 0 and that the elements of D are given in 
ascending order. 

Let the constant  L be defined by 

L = 2  [I TI]~ (3.1) 

where Tis  the original tr idiagonal matrix. Since the dj and 2 i are eigenvalues of 
matrices ult imately derived from T in the same way as T 1 and T 2 are in (1.1), 
w h i l e  II 7"1 I1 ~ --< II Z II oo a n d  II T2 II ~ < II T II ~ ,  w e  h a v e  

L>=max{ ld j -  2i[ : l <=i<n, 1 <=j<=n} 
and (3.2) 

L>=p. 

It is clear that  a lower bound for the magni tude of the derivative of w(2) at the 
zero's 2 i of  w(2): 

n 2 

w'(2~)=p y '  td z~Y 2 ~2 (3.3) 
j = l t  j - -  i! 

determines the accuracy to which the eigenvalues 2~ can be calculated. It shall be 
shown that e r rorbounds  for the eigenvectors pi depend on an upperbound  for 
w'(21). This is not unnatural  since the errors in pi are caused by cancellation in 
the quantities which appear  in denominators  of  w'(2~) (cf. (2.4)). 

Theorem 3.1. Let a > 0  and ~ > 0  such that for  all i 

]di+ 1 -d i]  > L3 
[z~] > ~, (3.4) 

then the following bounds hold for all i: 

pw'(2,) > 1, (3.5) 

~2 (3.6) 

where the dot above the relation < in (3.6) denotes a first order approximation for 
small 6 and ~. 

Proof  i) Lowerbound :  Using the inequality of Cauchy-Schwartz  we have 

z, )2 
2 > zj . PW'(2i)=P 2 Z tn ~2 Zj = (dJ-2i)  

j =  1 ~t~j- -  "~i) j =  1 -- 1 

The expression between brackets  equals w(21)- 1 so (3.5) follows from w(2 / )=0 .  
ii) Upperbound :  Rearranging the terms of w(2) [cf. (2.3)] we get that 2 i is the 

unique root  in the interval (di, d~+ 1) of the equat ion 

d i - ~  ~ di+ 1 - 2 = (p' (3.7) 
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where ~o is given by 

F rom (3.4) it follows that 

(p= - - -  
1 ~ ,  Zj 2 

P : * iL.i+ �9 " i d j - 2  i" 

1 1 1 
p L6 < ~ ~  (3.8) 

1/ 2--Z2 If we solve (3.7) for )oE(di,di+l) we get, writing (d i§  and ~tzi ~- i+1) 
=tp so f i i>8 and t )<  • z2~  

(;t~-di)=z2L6j(-�89189189 (3.9) 

Since the left-handside of (3.7) is strictly ascending between the poles d~ and di+ I 
1 1 

we get a lower bound for 2~ -d  i if we take q) equal to in (3.9). This 
yields p L~ 

2 i - d~ > z 2 L6j(2  tfl - qoL6~), 

SO 
p2z2 p2 [2th_qgLfii\2 p2 [2tp 1 1 \2 

( )~ i - -d i )  2 Zi 

< - -  " ( 3 . 1 0 )  

This also yields 
1 
- (2~-d~)> �89163  (3.1 l) 
P 

Analogously it follows that 
p2 z2+ 1 4 

< - -  (3.12) 
( d i + l - - 2 i )  2 ~2~52 

and 
1 
-(dz+ ~ - ).,)> �89 (~-2 (~. (3.1 3) 
P 

With (3.10) and (3.12) we derive (3.6) as follows 

n _2 p2 p2 z/2 
p W'(Xi)--p~ _ 2 ~ .cj < 

j=~'l (d j - ,~ i )2  = ( L 6 )  2 ( d i - 2 i )  2 

p2 z/2+ 1 1 4 4 8 

Corollary 3.1. The eigenvalues "~i can be calculated from w(2)=0  to almost full 
precision, relative to the largest eigenvalue of the matrix T. 

Proof. Trivial from (3.5) and p < L. 

We shall now consider the influence of finite precision ari thmetic on the 
calculation of the vectors f and 1. Recall that they are formed as innerproducts  
o f f '  and I' with the eigenvectors pi of D + p z z r (cf. (2.1)). These eigenvectors are 
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given by 
pi = Vi / lt vi l[ 2, 

v i = ( D - -  z~iI) -1  z. (3.14) 

Although the eigenvalues 2 i can be determined accurately, it is clear that 
problems arise when there is a loss significant digits in the calculation of D - 2 i I ,  
i.e. if 2, is close to either d i of di+ 1 or both. As we have seen in (3.9) this happens 
ifz i or z,§ I is small. It will become clear in the sequel that we will certainly meet 
small z-elements for matrices where the method is of use. 

Fortunately, however, we do not need the p~ to be accurate individually; it is 
sufficient that the matrix P of calculated eigenvectors satisfies the conditions of 
the following lemma for some small q. 

Lemma 3.1. I f  O<rl < 1 and the matrix P satisfies 

][PT p -  IIIF < rl (3.15) 
and 

H(D + p z z r ) p -  PAIIF <rlL,  

then an orthogonal matrix Q exists such that 

I lP-Ql l r<r /  
and 

II(D + p z z r) Q - Q A  1[~ < 2t/L. (3.16) 

N.B. This implies that such a P cannot introduce more than a total error 3qL in 
the eigenvalues of T. 

Proof  Consider the singular value decomposition of P: 

N o w  

so 

If we choose 

p = U Z V  r. 

pT p _ I = VZ 2 V r - I = V(Z 2 - I) V r, 

IIZ-/IIF ~ IIZ 2 --IIIFII(Z+I)  -11]2~ II Z2 --IIIF<~. 

Q = U V  r 
then Q is orthogonal and 

IIP-QIIF = III :- l l l~<~,  

I](D + p z z r ) Q - Q  AIIF < II(D + P z z r ) P -  PAIIF + I I (P-  Q)AIIF 

+ I I ( D + p z z r ) ( P - Q ) l l r < q L +  HP-QIIp(]IAII2+ I l D + p z z r l l z ) < R q L  
since 

IIAli2<llrllo~ and I ID+pzzr l l2<l lr l loo .  D 

We now proceed to bound the residual ( D + p z z r ) P - P A  and the disortho- 
gonality P r p - I  of P when P is calculated in finite precision from (3.14). Let e 
be the relative precision of the arithmetic involved. 
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Lemma  3.2. The  co lumns  pi o f  P,  as ca lcu la ted  f r o m  (3.14), sa t i s fy  

2 L e  
lpi ~pk[ ~= ~ ~ (2 + ] / p  max(w'(2i), w'(2k))), 

A i - -  Z k 

w h e r e  2 i a p p r o x i m a t e s  the  e x a c t  root  fL i o f  w(2)  in the in terval  (di, di+ 1)- 

P r o ~  The elements of a computed vector v i (cf. (3.14)) are given by 

(3.17) 

i zj for some/~u satisfying I /@<Le .  (3.18) 
v j -- d j -- .)c i - -  ,Uij 

When 2~ approximat ing ,~ is calculated as precise as possible, we have 

- +  zj = 0  with IO,jl<Le. 
t 0 j=  1 dj  -- )~i -- Oij 

Since all terms appearing in this sum are strictly increasing functions of 0 u 
between the poles we can substitute one 0~ for all Oij and have 

X i =  ~i--Oi,lOil < L e  

_2 (3.19) 
1 1 & ~j 
- w(2~ + 03 = -  + X 0, 
P P j= 1 dj - "]'i - O, 

in accordance with corollary (3.1). We now have 

~2 
�9 ~j z.j 

V'T vk = - (d r -- A , -  ]gij) (dj - X k - laik) 

2 i - ;t k d j -  2~ - # u  . d j -  -~k llkj 

- y~ z~ ~'~-  ~ j  
j (dj - 2 i -- [lij ) (dj - )~k -- ,ttkj) ) 

where 

_ 1  ( l w ( 2 i + # , i )  lW(2k4_# ,k )  [fi,k[lVil[2l[vk[]2) 
2 i -  "~k 

I# ' , l<Le ,  l # ' k [<ge  and lF,~,l<Rga 

This is in first order  approximat ion,  

vi T vk "_ 1 ( ~  ,~,- ;tk ((~',- o,) w % )  - (~'~- ok) w (,~k)) 

-u'/~ildll 2 Ll?l12), 

'ViTvk''~" 2 L ~  ( 1 ) 
= ) ~ i _ _ ~ .  k (W'('~i)-~W'(2k))-I-Ilvill2 Ilvkll2 . 
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Also, 

SO 

2 
]]ui[]2 j~ " Zj  1 W l ( , ~ i ) ~  

�9 ( d j  - "~i - -  ~ i j )  2 
(3.20) 

Ip i~ p~ l - Iv  iT vkl/(ll v i II. II v k II 2) 

= [ 2 i - 2 k l  \ \ w  (;tk)! + \w (2~)! 

Since one of the square roots in the right hand side of (3.21) is smaller than 1 
(3.5) now immediately yields (3.17). D 

Lemma 3.3. The calculated eigenvectors ff  satisfy 

]i (D + p z z r -  2i I) pill 2 < L e 1/2 + 8 p w'(2i). (3.22) 

Proof. Using (3.18-20) we get 

((D + p z z r -  2i I) pi)j 

( Z 2 z, , 
(d j -  2~) d j -  2 i - #~; 

( Zj  4- z j  d j  - -  2 i - ~ i j  

Therefore 
( z j~_ )2 

H(D+pzzT--2iI)pi[[~-- ~ Z  #,j 
w t~)  j . j _ ~  + ( ~ ' , - r  

._< 2p y ((L~)2 z 2 § 
- w'(2 i )  V (d j -  2i)  2 

- 2(Le) 2 + 8 p(Le) 2 w'(2~), 

which completes the proof. 
1 

The factor ~ in the bound (3.17) on the inner product of two calculated 

eigenvectors ff and pk can of course not be avoided. From (3.11) and (3.13) we 
have that 

1 1 

{2~-2k1 p ~2 ~,  

but this upperbound only helps us if we use very crude tolerances in the 
deflation and for neglecting a small p. Therefore I prefer to perform a (modified 
Gram-Schmidt) orthogonalisation on eigenvectors p~,ff+ 1,.. . ,ff+k if the eigen- 
values 2 i_ 1 and 2j are close to each other for j = i + 1, ..., i + k. This orthogonali- 
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sat ion disturbs, however,  the bound  (3.22) we derived for the residuals of the pi 
as shall be considered in the following lemma.  

L e m m a  3.4. Let the resulting eigenvectors be given by 

) ~J= pi--t~=l c(j~ff /flj, j = i + l  . . . .  , i+k,  

%z=pF ff , l=i .. . .  , j - l ,  

Let 
co= max 1/2+80w'(23 (3.23) 

and i ~_l<_~ 

) "~j= ]O~jl[(~Jl-~-]2j--2l[/Leco ) /flj, j = i + l , . . . , i + k ,  

7i= 1, 
then 

[](D+pzzY-2jl)~JI]2<=TjLeco , j = i + l , . . . , i + k .  (3.24) 

Proof Note  that  2co > 2 + ] / p  w'(2t) for all l. N o w  (3.24) follows f rom 

(D + p z z ~ -  )~jI) ~ ~ 

= ( D + P z z r - 2 ~ I ) P  j -  ~.. c~jt((D+Pzzr--2I)ff+(2.i--21 )if) /fir" IJ 
l=i 

N o  satisfactory theoretical  answer was found to the question how large the 
factors 7j can become. Therefore  we define 

7 = max 7z 

and moni to r  on 7 in practice. In my experiments  7 never was larger than 1.5. 
So if reor thogonal i sa t ion  is per formed between any two eigenvectors p~ and 

pk with 121--2k] <Lr  we have using (3.17), for any i and k 

]pi~: pk I < 2e (2 + ] / p  max w'(2)). (3.25) 
r j 

We now seek to bound,  in a backward  manner ,  the errors introduced and 
p ropaga ted  in one recursion step, e.g. one R O M  step, deflation included. We 
may  assume that  we are given D 1, D 2, f l ,  f2,  q and 1"2 such that  there exist 
o r thogona l  matr ices  Q1 and Q2 with 

T~=QiD~Qf+E,, f~=f~+Af~, ~=l~+Al~, i = 1 , 2 ,  (3.26) 

where f r  is the first row and I r is the last row of Q~ and the E~, Af~ and A l~ have 
a small  no rm (cf. (1.4)). 



188 J.J.M. Cuppen 

Let 

Q~ DI E1 

1(,1) 
z = ~  ) :2 '  p>0.  (3.27) 

A ROM step is applied to calculate A, f and l" with 

T=QAQT+E, f = f + A f ,  f=l+Al ,  (3.28) 

where Q is an orthogonal matrix and f T  and l T are its first and last row. 
Theorem 3.2 gives upperbounds for IlEll, IIAfll and IIAIII. 

Theorem 3.2. I f  deflation is performed to obtain (3.4)for certain (~ >0 and ~ > 0 
and reorthogonalisation is performed between any two calculated eigenvectors pi, 
pk with 12i--2kI <Lr, 0 < r <  1, then the orthogonal matrix Q in (3.28) can be chosen 
in such a way that 

liE[Iv ~ IrE t I[F+ [IE21[F+LSI~+p(I/~f[AI ~ ff + ]~[IAf2 tl +2r na(~ 
r l /2 '  

/ ' /80) nS(D 
IIAfl[~=llAfllt ~ r]//~, IIAIII2~=IIAI2112+rt/~, (3.29) 

where o J = m a x ] / 2 + 8 p  w'(21) 8 .  

Proof. We have to deal with errors introduced during a) the process of deflation 
and b) the ROM step. We will not take into account the errors due to 
Householder transformations and other stable processes which are negligible 
compared to those due to a) and b), 

Ad a): Deflation can be regarded as first perturbing D by an amount AD, 
making close elements of D exactly equal, then applying the appropriate 
Householder transformations and finally perturbing z by an amount Az', mak- 
ing small elements of z exactly zero. Taking into account that we do not have 

the exact z, but an approximation of it equal to z+~99 \Af2] (cf. 3.26-27) we see 
g,,.. 

that after deflation with the tolerances L6 and ( (cf. 3.4) we have 

T= Q3(D + p 5 5 r) O T + E3, (3.30) 

IlEal[- -< (E~E~)+IIADI'r+PilZZT-~UIlF 
--< lIE111F+ IIE2IIF + L 6  NIIIF+2pllz-ffll2 (3.31) 

< liE, l i t+ IIE2IlF+L~I/-n+p(I/2(IIAll II + I[Af211)+RffV~). 

Since in this stage on fl and I'2 only Householder transformations are applied, 
Af~ and Al 2 have changed, but not their norms. 
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Ad b): (3.25) yields that for any i and k: 

SO 

2Leco eco ipiT pk[ ~= 
Lr] f8  r l /2 '  

IIpr p - I I I r  ~ ne~~ 
rl/~' 

and with Lemmas 3.3 and 3.4 we get 

II(D+p~'r) P -PAl l v  ~=TLecol/n, 

(3.32) 

(3.33) 

where ~ is an upperbound for all ?j (cf. (3.24)). Assuming that ? l f n  < n ~ - ~  we can 

n~co 
apply Lemma 3.1 with r/= which yields that there is an orthogonal matrix 
Q4 such that 

Qr(D + p ~ ~T) Q4 = A + E 4 

n ~ co 
[IE4]I < 2 L - -  r ] / 2 '  (3.34) 

n~co 
IlP-Q411F <r ]//~ 

Combining (3.34), (3.30) and (3.31) we get 

T=Q~AQs+E, 

I[gllp ~ IIEtlIF + IIE2IIF+LOI~+Pl~(IIAIa 112 + IIAIgll 2 + ~ ] f ~ )  + 2 L n g ~  

ng,  fD 

TIAflI2~ llAft 112 + NP-Q4IIeIIfI]2<=AflII2 + rl/2, 
n g co 

[l~J/[[2-'-< 11Z1/2[[24 r ] ~ "  

Theorem 3.1 gives the upperbound for co. U 

Corollary 3.2. I f  6 and ~ are both chosen to be 2e 1/3 then the accuracy of the 
method is of the order of e w3 since co<2e 1/3. 

It should be noted, however, that this choice of ~5 and ~ is based on the 
worst case analysis given above. It guarantees a minimum accuracy but a 
sharper analysis may be possible and a smaller choice of 6 and ~ gives much 
better accuracy in practice. Therefore in the implementation of the method 5 
and ~ are chosen in accordance with a requested accuracy and then the value 
of l /2+8pw'(2i)  is monitored. ~i and ~ are readjusted if necessary and their 
final value can be used to bound the precision achieved in the results. 
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4. Time-Complexity of the DC Method 

Our goal was to compute efficiently the eigenvalues of a symmetric tridiagonal 
matrix. This was to be done in a recursive way, in each step merging two 
eigenvalue systems by means of a rank one modification. In this section we 
consider the total number of multiplications and divisions required. 

Assume that the zerofinding algorithm requires on the average m function 
evaluations per zero (m turned out to be +_5 when using zeroinrat of Bus and 
Dekker [2]). In one rank one modification step of order n this contributes m n 2 
operations (cir. (2.3)). The calculation of n eigenvectors costs 2n 2 ops (cf. (3.14)) 
and the transformation o f f  and I another 2n 2 ops (or n 2 ops plus a considerable 
bookkeeping overhead, cf. (2.1)). Since all other contributions are of a lower 
order we may estimate the cost of one rank one modification as (m + 4)n 2 ops. 
For the total system this means that (2m+4)n  2 ops are required (no vectors and 
no transformation in the last step). The QR method does the job in about 2 n sweeps 
of diminishing length, 6k ops per sweep of length k, so it needs for the total 
problem +6n  2 ops. The conclusion is that the DC method is at most about 3 
times slower than QR. 

In the experiments that were performed, see section 5, the behaviour de- 
scribed above showed up for a special class of matrices (examples 7.6 and 7.10 in 
Gregory and Karney [4]). However, for Wilkinson's matrices W, -+ and also for 
random tridiagonal symmetric matrices the DC method was faster by an order 
of magnitude than QR once the order of the testmatrix became high enough 
( ~  n log n versus ~ n2) .  

This remarkable phenomenon was caused by substantial deflation taking 
place in the R O M  steps of the DC method. It turned out that usually only a 
constant number  k ~ n of the z i in a R O M  step of order n were non negligible (cf. 
(2.2)), which reduced the number of ops in this R O M  step from (m + 2) n 2 to (m 
+ 2) k 2. 

An impression of how and why this reduction takes place can be gained from 
the following lemma's. Let T be a symmetric tridiagonal matrix of order n with 
diagonal elements d l , . . . , d  . and off-diagonal elements b 1 . . . . .  b,_ 1. For  con- 
venience, let b o = b , = 0 .  

Lemma 4.1. Let p be an eigenvector of T to the eigenvalue ,t, [[P[I = 1, and for some 
k, 1 <-k<_n 

Ib2_i[+lbjl<ldj-2l for j = l , . . . , k ,  (4.1) 

then PI (which is an element of the first row of the eigenvectormatrix of T)  
satisfies 

k [bil k fbj-11 +!bj[. 
Ipxl < 1-[ < 1-[ (4.2) 

j = ~ l d ~ - 2 l - [ b j _ l [ - j = l  ]dj -2l  

This means that we have a decay with k which is more or less exponential 
since each of the terms in the products in (4.2) is smaller than 1. 
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Proof For each j we have, since Tp=2p,  that 

bj-I Pj-1 +bjPj+l 
PJ = d~- 2 

We first prove, by induction that ]Pll--< IP21 <-.- < ]Pkl- 
Assume that for some j < k [p j_ 1[ < LPj[. Then 

]Pi] < ~ ] P i - l ]  + [bjl 
- ]d j -  21 [pJ+~ ] 

�9 lbj] ]PJ+ 1I- (4.3) 
< ~ ' p 2 1  + ] d l ~ l  ,pj+ ~1 <ldj_21_lbj_a ' 

The assumption (4.1) now yields that IPjt_-<IP2+1t whereas the induction can be 
started at j =  1 since 0=[p0 ] <1P11- 

(4.2) now easily follows from (4.3) and the fact that (4.1) implies that 

ON ]bJ-xl < Ib2.11+Ib21 for j = l , . . . , k .  S 
- Id  2 - 2 l - l b j [ =  Id 2-21 

Lemma 4 .2 . / f~2>(1  >0  and 
[bj_ ~l + ]b2[ <~1, 

(4.4) 
]d j -  d,I > ~2 Idjl + 4, Idi], 

for all i ,j= 1 . . . . .  n, then the elements fi of the first row of the eigenvectormatrix of 
T satisfy (in some ordering, of the eigenvectors) 

If/I< \~-]  , i=  1,...,n (4.5) 

Proof The Gerschgorin theorem says that each eigenvalue of T lies in one of the 
disks 

~ =  {2112-d,I <~11d,I}. 

The assumptions imply that these disks are disjunct so we have that each disk 
contains exactly one eigenvalue. If the eigenvalues are ordered in such a way 
that 2~e~ i we have 

lRi- di] < ~11dit, 
so 

[dj - ,i~[ = Idj-  (t + O) d~l, 

for some 0 with I0[<~1 and for j = l, ..., i - 1 .  
Therefore 

Ib~_lI +lbjI < G  Ibj_~l +lbjI < j = l ,  i--1. 
[dj- ).il ~21djl ~2' ""' 

Application of Lemma 4.1 yields (4.5). [5 
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An analogous property holds for the last row of the eigenvectormatrix of T. 
We can conclude that if ~1/~2 is not very close to 1 these rows cannot have 
many non-negligible elements (they decay exponentially) and since the vectors z 
(cf. (1_4)) are composed of these rows we get an enormous deflation for these 

matrices (k < 6 log(~ 1 / 3 2 ) / (  - -  log e) if we neglect [zi] < ]/~-. cf. Corollary 3.2). 
It is clear that even for matrices which do not satisfy the global condition 

(4.4) of Lemma 4.2 deflation becomes important  if the local condition (4.1) of 
Lemma 4.t is satisfied for quite a number of indices j and eigenvalues L These 
matrices probably have an eigenvectormatrix which is close to a bandmatrix. 
The effect described above is easily shown to be absent in matrices with a 
constant diagonal and a constant subdiagonal which have an eigenvectormatrix 
which is not close to a bandmatrix (Gregory and Karney [4] p. 137). 

5. Experiments 

The method was implemented in Algol 68 and tested on a CDC-Cyber  73/173 
system (e~ 10 -14) against a stable version of the square-root free QR method as 
included in the Numal  program library [5] (translated by hand into Algol 68). 
In the tests reference values were produced using a double length version of the 
same QR method in order to compute the maximum errors in the eigenvalues 
calculated by both methods. Multiplications and divisions were counted for 
both methods. Note that the actual performance of the DC method depends on 
some parameters. These were set to values which experience indicated to be 
good, but no at tempt was made to optimise them. 

The complete program and all results of the testruns are available on a 
microfiche and can be requested from the author. 

Figure 3 gives the results for Wilkinson's matrices W,- for several values of 
n, and Fig. 4 the results for W, + (Wilkinson [6], p. 308). It is clear that for these 
matrices the DC method shows an n logn  behaviour. It 's accuracy is, for W, +, 
less than that of QR, but much better than e 1/3 (compare Sect. 3). 

The next test was performed on examples 7.6 and 7.10 from Gregory and 
Karney ([4], p. 138, 140). Example 7.6 is a tridiagonal matrix with all off- 
diagonal elements equal to a constant b (here 0.3) and all diagonal elements 
equal to a constant a (here 1) except the first and the last diagonal element 
which are equal to a - b  and a+b, respectively. Since the eigenvalues of this 
matrix are given by 2k=a+2bcos((2k-1)rc/2n ) it is easily seen that the con- 
dition of Lemma 4.1 is not satisfied for any index and eigenvalue. 

Example 7.10 is a tridiagonal matrix with all diagonal elements equal to zero 

and the off-diagonal elements b~ equal to ] / ~ ,  j =  1 . . . . .  n - 1 .  The eigen- 
values of this matrix are - n ,  - n  + 2  . . . . .  n. The matrix is not at all diagonally 
dominant. 

For both these matrices the n log n behaviour did not show up as can be seen 
from the operation count of the DC method which is given in Table 1. 

Further tests were performed with random symmetric tridiagonal matrices. 
Here the diagonal elements were chosen one by one as (2 x random - 1) and the 
off-diagonal elements as f x ( 2  x r a n d o m - 1 )  where f is a factor governing the 
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ACC/EFF PLOT FOR WILKINSON'S MATRICES W- 

LEGEND 
<>= DC method -~1og (max abs err / ]IT[12) 
D =  DC m e t h o d  ops ~ n z 
0 = DC m e t h o d  ops / ~lO0.n In(n)) 
�9 = QR m e t h o d  -Wlog ( m a x  abs  e r r  / tlTIlz) 
~]= QR m e t h o d  ops ~/ n e 
�9 = QR m e t h o d  ops / (lO0.n.ln(n)) 

@---@--:._~{g-_-_U_- . . . . . . . . . . . .  o 

ORDER OF TESTMATRIX 

F i g .  3 

ACC/EFF PLOT FOR WILKINSON'S MATRICES W+ 

= DC method 
[]= DC method 
O= DC method 
* = QR method 
= QR method 

{9 = QR method 

LEGEND 
-~log {max abs err / l]TIlz) 
ops ~ n 2 
ops / ~lO0.n.ln(n)) 
-~log (m~x ~b~ err / IITU~) 
ops X n z 
op~ ! (m0.~.ln(.)) 

". . . . . . . . . .  <> . . . . . . . . . . . . . . . . . . . . . . . . .  <> 

ORDER OF TESTMATRIX 

F i g .  4 
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ACC/EFF PLOT FOR RANDOM TYPE MATRICES WITH F=.5 

LEGEND 
O= DC method -mlog (max abs err / ]]~]z) 
[3= DC method ops n" 
O= IX: method ops / ~100.n, ln(n)) 
e= QR method - log (nmzax abs err / ]]T]]z ) 
�9 = QR method ops 
e= QR method ops / (IO0.n.ln(n)) 

~1212 --" 

ORDER OF TESTMATRIX 

Fig. 5 

ACC/EFF PLOT FOR RANDOM TYPE MATRICES WITH F=.I 

LEGEND 
O = DC method -mlog (max abs err / I[T~12) 

20- [3=DC method ops Z n~ 
ops / ~lOO.n.ln(n)) 
-mlog (max abs err / IIT~Iz) 
ops Z n ~ 
op~ / O00.~.l~(n)) 

O = DC method 
= QR method 

[] = QR method 
~9 = QR method 

.... ~ ' : : ~  ......... ~:::~~"~=:::::::::j*i:::::: . . . . . . .  :::::~.L.IIIIILLLLLLL~TLTTLTTTT~ 
Io 

i ..A9 . . . . . . . . .  .~-~B 

ORDER OF TESTMATRIX 

F ~  6 
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Table 1 
Ex. 7.6 Ex. 7.10 

n ops/n 2 n ops/n z 

300 15.23 300 11,85 
500 13.37 500 1130 
700 13.03 700 11.29 

195 

" d i a g o n a l  d o m i n a n c e "  of the ma t r ix  a n d  r a n d o m  is a ( sys tems-)procedure  which 
genera tes  a p s e u d o - r a n d o m  sequence  of n u m b e r s  be tween  0 a n d  1 (un i fo rm 
d is t r ibu t ion) .  The  results  with f =  1 were a l ready  given in Fig. 1, Fig.  5 gives the 
resul ts  wi th  f = 0 . 5  (weakly d i agona l l y  d o m i n a n t ,  on  the average), and  Fig. 6 
gives the  resul ts  with f =  0.1. 

W e  see tha t  in all these cases the  DC m e t h o d  had  a very clear n l o g n  
behav iour .  Also  the  inf luence  of the  factor  f is clear:  the  m o r e  " d i a g o n a l l y  
d o m i n a n t "  a ma t r ix  is, the m o r e  efficiently the  DC m e t h o d  operates .  
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