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1. Introduction 

We introduce two families of spaces of mixed finite elements to approximate 
the solutions of second order elliptic equations in three space variables. These 
families are the reasonable analogues of the spaces recently described by Brezzi 
et al. [3, 4] for two-dimensional problems. For  the simplicial elements our 
space of index j lies between the spaces of index j - 1  and j of Nedelec [15] 
and provides approximation of the vector variable of the same order of 
accuracy as does Nedelec's space of index j. Our cubic elements of index j are 
based on polynomials of total degree j for the vector variable and total degree 
j - 1  for the scalar variable; hence, the local dimension of this space is about 
half that of the Raviar t -Thomas [18] space over cubes (i.e., rectangular par- 
allelepipeds) of equivalent accuracy for the vector variable. Nedelec [16] has 
recently considered the same tetrahedral spaces. 

In Sect. 2 we describe the simplicial elements and locally defined pro- 
jections that enable us to use the theory of Douglas and Roberts [10] to 
obtain error estimates for the Dirichlet problem in L 2 and H -~, which will be 
derived in Sect. 4. In Sect. 3 we discuss the cubic elements and the correspond- 
ing projections. In Sect. 5 a hybridization of our mixed method is introduced, 
and its properties with respect to linear algebra and seperconvergence for the 
scalar variable are studied. In Sect. 6 an Arrow-Hurwitz-type alternating-direc- 
tion iterative technique is described briefly. 
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2. Simplicial  Elements  

Denote by Pj(K) the set of restrictions of polynomials of total degree not 
greater than j to the set K;  Pj(K) is the vector analogue of P~(K) consisting of 
three copies of Pj(K). Vector functions will be indicated by bold face. 

Let j be a positive integer and let K be a simplex. Set 

(2.1 a) V(j, K) = Pj(K), 

(2.1 b) W0, K) = P~_I (K), 

(2.1 c) M(j, K) =V(j, K) x W(j, K); 

M(j, K) is the simplicial element of index j. Note that the local degree of the 
scalar space W(j, K) is one less than that of the vector space V(j, K). If N(j, K) 
denotes the simplicial element of Nedelec [15] of index j, then 

N(j-I,K)cM(j,K)=N(j,K), j > 0 .  

In fact, it is easy to see that 

( 2 . 2 )  dim{M(j,K)}=[3(j+3)O+2)(j+l)+(j+2)(j+l)j]/6 
=(4j +9) ( j+2)  ( j+  1)/6, 

while 

(2.3) dim{N(j, K)} = [3(j+ 4) (j+2) ( j+  1) +(j  + 3) (j + 2) (j + 1)]/6 

= ( 4 j +  15)(j+2) ( j+  1)/6, 

so that the dimension of N(j, K) exceeds that of M(j, K) by ( j+2 ) ( j+  1). 
Denote by (., ")K the inner product in LZ(K) or in LE(K) and by ( . , . ) e  that 

in LZ(e), where e is a face of K. We wish to define a projection from Hi(K) to 
V(j,K) that can be extended to a projection from Hi(G) to the subspace of 
H(div, G) of vector functions having restrictions to each element of a simplicial 
decomposition {K} of G. A vector function that is a piecewise-polynomial 
function over {K} lies in H(div, G) if and only if its component normal to an 
interior face is continuous across each such face; consequently, the degrees of 
freedom for the projection on K must determine these normal components. 
The remaining degrees of freedom will be chosen to ensure a convenient 
commuting diagram property. 

Let K have fiat faces and let FP=H(j, K): HI(K)~V(j ,  K) be defined by the 
following relations : 

(2.4a) ((q-llJq).n~,P)e=O, 

(2.4 b) (q - H j q, grad W)K = O, 

(2.4 C) (q-- H j q, V)x = 0, 

pePs(e), for each face e of K, 

wePj_I(K), 

v6{u~Pj(K): n . n = 0  on 0K 

and (u, gradw)=0,  wePj_l(K)}. 

Assume for the moment that the conditions (2.4a) and (2.4b) are inde- 
pendent. Then, to show existence of/-P it is sufficient to prove that a vector in 
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V(j, K) having vanishing degrees of freedom must itself vanish, since the 
number of degrees of freedom equals the dimension of V(j, K). So, let veV(j, K) 
have vanishing degrees of freedom. Since v. neePj(e), (2.4a) implies that v-ne=0. 
Then, (2.4b) and (2.4c) imply that v=0. 

To prove independence of (2.4a) and (2.4b), it suffices to treat the case of 
the reference simplex S having vertices (0, 0, 0), (1,0, 0), (0, 1,0), and (0,0, 1). 
Let e i=Sc~{xi=0 }, i=1,2,3 ,  and e 4 = S c ~ { x + y + z = l  }. The independence is a 
consequence of the next two lemmas. 

Lemma 2.1. Let piEPj(ei), i=1,2 ,3 ,4 .  Then, there exists q~Pj(S) such that q.n i 
:p~ on e~, where n~ is the normal to ei. 

Proof Fix a face, say z=0,  and take a polynomial p(x,y)~Pj. It is enough to 
prove that there exists at least one q~Pj such that q .n- -p  on z = 0  and q . n = 0  
elsewhere on 95. To do this, first find a constant c and two polynomials 
pl(x,y) and p2(x,y) in P/-t such that 

- p ( x ,  y)=c(1 - x - y) + xp~(x, y)+ yp2(x, y). 

Then the vector polynomial q=(xp l (x ,y ) , yp2(x ,y ) ,p (x ,y )+cz)  satisfies the 
prescribed requirements. 

Lemma 2.2. Let {we: ~ : 1  . . . . .  N}=Basis{w6P~_l(S): ~wdxdydz=O} ,  and let 
a ~ R  N. Then, there exists qePj(S) such that q . n = 0  on OS and 

(q, g r a d  w , )  = a , ,  ~ = 1 . . . . .  N .  

Proof Let p~Pj_I(S) be such that (p, 1)s=0 and (p, w~)= - a , .  It suffices to 
show that there exists q~Pj(S) with q.n~=0 and divq=p.  To do this, first take 
[14] u~H~(S) such that d ivu=p.  Then let q be the unique polynomial in 
P~_~(S)+xPj_I(S ) [15] for which 

( ( q - u ) ' n i ,  t)e=O, t~Pj_ l(e), e~{el, e2, e3, e4}, 

(q -u ,  V)s=0, veP~_ 2(S). 

The first set of these relations implies that q .n  vanishes on ~S, and the second 
that 

(div(q- u), W)s= - ( q - n ,  grad w) s =0, w~P~_ 1(S); 

thus, divq=p,  as was to be shown. 
Since 17 j reproduces Pj(K), it follows from the Bramble-Hilbert lemma [1l] 

that 

( 2 . 5 )  IIq-IPqNo,K<CIIqllr,K(diam(K)) r , 1 < r _ < i + l ,  

with the constant C depending only on the minimum vertex angle of K; in the 
above, ]1 blr, K indicates the standard norm in Hr(K). Note also that, for 
w~W(j,  K) = Pj_ I(K), 

(2.6)  (div(q--lIJq),w)K = --(q--IlJq, gradw)K+((q--HJq)'n,W~r=O.  
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Boundary simplices are allowed to have one curved face, that face lying in 
the boundary of G. Consequently, it is necessary to modify the definition of H ~ 
on such simplices. Let K have flat faces el, e2, and e3, with e 4 possibly being 
curved. Then, let/7~: HI(K)~V( j ,  K) be determined by the requirements that 

(2.7 a) ( ( q -  HJq)" he, p)e =0,  p~Pj(e), e~{el, e2, e3}, 

(2.7 b) (div(q - HJ q), w) r=0  , wePj_ x (K), 

(2.7c) ( q - H J q ,  v ) r=0 ,  v6{uePj(K): u . n e = 0  on e l u e 2 w e  a 

and div u = 0}. 

Again, it is easy to see that /P  is uniquely determined by (2.7) and that (2.5) 
and (2.6) hold for boundary simplices. The constant C of (2.5) now depends 
solely on the ratio of the diameter of K and that of the inscribed ball, a 
condition that generalizes the vertex angle constraint. 

Let R j-1 = R ( j -  1, K): L2(K)-~ W(j, K) be L2-projection: 

(2.8) (w--RJ- lw,  p)K=O, p6Pj_x(K). 

Since div V(j, K) = W(j, K), 

(2.9) (div q, w - R  ~-1 w)K = 0, qEV(j, K). 

We have now the local properties of our space of index j. In order to 
construct the space globally, let ~ = {K} be a decomposition of the domain G 
into nonoverlapping simplices such that 

(2.10a) the intersection of two distinct K's in ~ is either a face, an edge, a 
vertex, or void; 

if K ~ G, K has flat faces; 

if K is a boundary simplex, the boundary face can be curved; 

if diam(K)=hK, hK <h; 

if r K is the radius of the ball inscribed in K, hK/r r < constant. 

(2.lOb) 

(2.10c 

(2AOd) 
(2.10e) 

Set 

(2.11a) 

(2.11b) 

(2.11 c) 

V h =V~ =V(j,  ~hh)= {vr G): VlK~V(j, K), K+~hh}, 

W h = Wh ~ = W(j, Jhh)= {w+L2(G) : WIK~ W(j, K), K~Jhh }, 

M h = M ~ = V  ~ • WhJ. 

Extend the projections II(j, K) and R ( j - 1 ,  K) to Hi(G) and L2(G) respec- 
tively, as follows: 

(2.12a) IIh=II~: HI(G)~V~ satisfies Hhlal~K)=II(j, K); 

(2.12b) R h =R~: L2(G)~ WhJ satisfies R h =R( j  - 1, K) on L2(K). 

The following properties of H h and R h result immediately from their local 
properties: 
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(2.13a) 

(2.13b) 

i.e., 

(2.13c) 

(div(q-Hhq), w)=0, weWh, q~HI(G), 

(divq, w - R h  W)=O , w6l~(G), qeVh; 

div H h = R h div: H 1 (G) ~ W h. 

The relations (2.13) can be expressed succinctly by stating that the following 
diagram commutes: 

Hi(G)  div -----~ L2 (G) 

div  
Vh - - - - ~  % ~ 0 .  

The approximation properties of / /h  and R h also can be read out of their local 
properties: 

(2.14a) IIq-HJhqllo<=Cllqllr h~, q~Hr(G), l < r < j + l ,  

(2.14b) I[w-R~wl[_s<=Cl[wllrh r+s,  w~Hr(G), O<r,s<j .  

3. Cubic Elements 

As in the case of the two-dimensional elements of Brezzi et al. [3], our 
elements over rectangular parallelepipeds differ significantly from those of 
Raviart and Thomas [18], in that our elements are based on augmenting the 
space of vector polynomials of total degree j by 3 j+3  additional vectors in 
place of augmenting the space of vector tensor products of polynomials of 
degree j by 3 j+3  polynomials of higher degree. We also use a space of total 
degree j -  1 for the scalar variable instead of a tensor product of polynomials 
of degree j. We shall again obtain approximation of vector functions of the 
same order of accuracy as do Raviart and Thomas. 

Let K be a rectangular paraltelepiped and j a positive integer. Let 

(3.1 a) V(j, K) = P~(K) +Span[curl(0, 0, x j§ y), curl(0, x z  j+l, 0), 

curl(yJ+ 1 z, 0, 0); curl(0, 0, x f  + 1 z j -  ~), 

curl(0, x I+1 yj - i  z, 0), curl(x ~ iyzi+l, O, 0), i= 1, . . . , j] ,  

(3.1 b) W(j, K)=P~_ 1(K). 

Lemma 3.1. The dimension of V(j, K) is that of Pj(K) plus 3j+3;  i.e., 

(3.2) dim V(j, K ) = ( j +  3 ) ( j+2) ( j+  1)/2 + 3 ( j +  1) 

=(j3 +6j2 + 17j+ 12)/2. 

Proof It suffices to prove that the 3 ( j+ l )  polynomial vectors of degree j + l  
added to Pj(K) are independent. Suppose that 



242 F. Brezzi et al. 

J 
[ai((i 4- 1) xy  i z j-i, _yi+l zj-i, O) § - x  i+1 y j-i, 0, (i § 1) xiy j-i  z) 

i=1 
§ r (i § l ) xJ-i  y z i, -- xJ-i  zi+ l)] 

+d(x j+l, - ( j +  1)xJy, O ) §  1)xzJ, 0, z j+l) 

+ f ( 0 ,  y j+ l ,  _ ( j §  1 ) y J z ) = O .  

Summing on the first component shows that e=0 ,  al . . . . .  aj=0,  b 1 . . . . .  bj_t 
=0, and d=b s. Then summing on the third component implies that d = f = 0  
and cl . . . . .  c s=0,  so that all coefficients above vanish. Thus, the lemma has 
been proved. 

The space V(1, K) has dimension 18 and consists of P~(K) plus the span of 
the six vectors 

(X 2, - -  2x y, 0), (2x y, - y2, 0), ( -  2x z, 0, z2), 

(3.3) ( - x  2, 0, 2XZ), (0, y2, -2y z ) ,  (0, 2yz, -z2) ,  

while V(2, K) has dimension 39 and consists of Pz(K) and the span of the nine 
vectors 

(X 3, -- 3X 2 y, 0), (2x yz, _ yZ z, 0), (3x y 2, _ y3, 0), 

(3.4) (X3, 0, --  3xZz) ,  ( - y x 2 ,  0, 2xyz), (3xz2, 0, -z3) ,  

(0, y3, _ 3y2 z), (0, 3yz 2, -z3) ,  (0, 2xyz ,  -xz2) .  

The projection F/J: H1(K)~V(j ,  K) can be defined in the following way: 

(3.5a) ((q-FlJq) .ne,p)e=O, pePs(e), for each face of K, 

(3.5b) (q -HSq,  v)K =0,  vcP~_ E(K). 

The number of degrees of freedom is easily seen to be equal to the 
dimension of V(j, K); thus, it suffices to establish unisolvence to show existence 
of II j. Moreover, it is sufficient to treat the unit cube. The first component of q 
has the form 

J 
ql = ~ (ai(i+ 1)xy izj-i -bixi+l y J-i)+dXj+l --e(j+ 1)xzJ § 

i=1 

J 
q2 = ~ ( --alY i+l zJ-i +ci( i §  1)xJ- lY zl) -d ( j  § l)xJy§ f y j+l §  2 , 

i=1 

J 
q3 = 2 (bi(i§ 1 ) x i y j - i z  - c i x J - i z i + l ) §  - f ( J §  1)YJz§ 

i=1 

where ri6Ps(K). Assume that the degrees of freedom of q vanish. Then, (3.5a) 
applied to the face x = 0  implies that q = x s  1. Next, (3.5a) applied on x = l  
gives ai=e=O. Similarly, bi=c i=d=f=O.  Thus, qePs(K). Since then ql =0  on 
x = 0  or 1, q l = x ( 1 - x ) t l ,  tl~Pj_z(K). Hence, (3.5b) implies that ql vanishes, 
and the existence o f / P  has been determined for cubic elements with flat faces. 

Boundary elements are allowed to have at most one curved face; this 
introduces a geometric constraint on a cubic decomposition of G. The pro- 
j e c t i o n / P  can be defined in a manner analogous to (2.7): 
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(3.6a) ((q-HJq).n~,P)e=O, 

(3.6 b) (div(q - HJ q), W)K =0,  

(3.6C) (q --IU q, V)=0, 

p~Pj(e), for each flat face e of K, 

w~_,(K), 
w{ucPj(K):  d ivu=O and u . n = O  on 

all flat faces of K}. 

That H J is well defined on boundary elements is easy to see. 
Let {K} be a decomposition ~ of G into simplices and cubes satisfying 

(2.10). Construct a global projection lib: HI(G)~V~, where the restriction of an 
element v of V~ to Ke~-~h is a simplicial or cubic element as appropriate, by 
piecing together the appropriate IP=II(j,  K)'s. The commuting diagram prop- 
erties (2.13) and the approximation properties (2.14) follow clearly from the 
corresponding local ones. 

4. The  Dir ich le t  P r o b l e m  

Consider the Dirichlet problem 

(4.1 a) Lu = - div(a(x) grad u) =f, x~G, 

(4.1 b) u=  - g ,  x~?G, 

where G is a domain in R 3 having a smooth boundary ~?G and a(x) is a 
smooth, positive function on the closure of G. Let 

(4.2) q =  - a  grad u, c(x)=a(x) -1, 

and factor (4.1 a) into the first order system 

(4.3 a) c q + grad u = 0, 

(4.3 b) div q = f ,  

for xeG. The weak form of (4.3)-(4.1b) appropriate for mixed finite element 
methods is given by seeking {q, u}eH(div, G)x LZ(G) such that 

(4.4 a) (c q, v) - (div v, u) = (g, v. n),  v~ H(div, G), 

(4.4b) (div q, w)=(J~ w), weL2(G). 

Let ~ be a decomposition of G into simplices and rectangular parallel- 
epipeds, and assume that ~ satisfies (2.10). The mixed finite element approx- 
imation {qh, Un}eVhXWn=V(j,~)xW(j,~~h) is defined as the solution of the 
equations 

(4.5 a) (cqh, v)--(divv, un)=(g,v.n ) , veVn, 

(4.5 b) (div qn, w) = (j; w), w e W h. 

The existence and uniqueness of {qn, uh} follow immediately from the gener- 
al argument of Douglas and Roberts [10] in exactly the same manner as in the 
paper of Brezzi et al. [3]. Moreover, the error analysis of [3] applies without 
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modification to the spaces M~ of (2.11), whether formed from simplicial or 
cubic elements or a combination of the two kinds, since the derivation of the 
estimates of [3] depended solely on the properties of the projections H~ and 
R~. 

Let I] I1-~ denote the norm in the space HS(G) ' or [HS(G)3] '. Then, the 
errors in the scalar approximation u h, the vector approximation qh, and its 
divergence satisfy the inequalities 

(4.6 a) 

(4.6b) 

(4.6c) 

where 

(4.7) 

It also is 

(4.8) 

tlu-uhll_s~K(Hfllr_E+lg[,_l/z)h r+s, 2<_r<], O<s<j, 

Ilq-qhN_s<:K(llfN,_l +lg[r+x/2)h ~+~, l_<r_<j+l,  O<=s<=j-1, 

{Idiv(q-qh)ll_~<=Klldivqll~h~+~=Kdlflt~h "+~, O<=r<=j, O<=s<=j, 

It is the norm in Ht(t3G). In particular, 

I[ u - Uh 11 - j  + II q - q h  l]-j+ a -t- II div(q - q h ) I I  _j _-< K(ll f I]~ + I g l j+ 3/2) h2j- 

a consequence of the argument of [3] that 

1[ U h -- R h u II o <= K(II f [[j -~-Iglj+ 3/2) hmin(j + 2, 2j). 

5. Hybridization of the Mixed Method 

The solution of the algebraic equations generated by (4.5) can possibly be 
simplified by the introduction of a Lagrange multiplier to enforce the con- 
tinuity of the normal component of qh across interelement boundaries [i-3,  12, 
13]. We shall see also that this multiplier can be used in a postprocessing 
procedure to give a higher-order correct approximation of the scalar variable 
U. 

Let {e} denote the set of all faces of the elements of 4 ,  and set 

( 5 . 1 )  5r mle~Pj(e) if e~G and role=0 if ecOG}. 

Let 

(5.2) ~ h = ~ J =  {V: VlK~V(j, K), K ~ } ,  

where each K can be either a simplex or a cube. Note that v ~  belongs to V, 
if and only if 

(5.3) ~ (v .ng, re)OK =0,  m 6 ~  h. 
K 

The Fraeijs de Veubeke [12, 13] hybridization of (4.5) consists of finding 
the triple {qh,  Uh, mh}E'~hh • Wh • fffh satisfying 

(5.4a) (cqh, v)--~,(divV, Uh)K+ ~ (V.nK, mh>~K=(V'n,g>, V~3~hh , 
K K 

(5.4 b) ~ (div qh, W)K = (f' W), W E W h, 
K 
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(5.4c) Y', (qh" nK, P)oK =0,  p~L,q h. 
K 

The function qh given by (5.4) coincides with that of (4.5) as a result of (5.3), 
although the parameters defining it are different, since the dimension of ~ is 
greater than that of Vh; U h is also the same as before. 

The original object of the hybridization was to produce a system of equa- 
tions in which it is easy to eliminate the parameters defining first qh and then 
u h. The matrix N for the remaining equations for m h is positive-definite and 
has a sparsity structure essentially equivalent to that of the matrix of the 
nonconforming finite element method using piecewise polynomials of degree j 
+1 for the scalar function u. As is the case with any three-dimensional 
problem, the equations associated with ~ are not solved inexpensively by 
Gaussian elimination techniques; however, it is much easier to find effective 
preconditioners for a conjugate gradient iteration for these equations than it is 
for those coming from (4.5). 

Arnold and Brezzi [1] found in studying the hybridization of the Raviart- 
Thomas mixed method in two space variables that u h and m h can be postpro- 
cessed element-by-element to produce a new approximation u~ to u that is more 
rapidly convergent than Uh; their ideas were extended and completed in Brezzi 
et al. [3], both for the Raviart-Thomas spaces and for the spaces introduced 
there in two-space. The development of [3] can be carried over to the mixed 
elements of this paper with little difficulty and most of the details of the proofs 
can be omitted. 

Let Qh=QSh be the L2(e)-projection into Pj(e) for a face e c G .  If the proof of 
Lemma 4.l of [3] is modified by using the degrees of freedom given by (2.4), 
(2.7), (3.5), or (3.6), as appropriate for K, to define the vector v arising in that 
proof, then it follows that 

(5.5) Ilmh--QhUllo,e<= C{h~ 2 IIq--qh]]O.r+h~ x/2 ]Iuh--RhUlIo, K}. 

We would like to show that (5.5) enables us to construct a new approxima- 
tion u* of u that converges to u with a better order as, for instance, in [1] or 
[3]. We present here a general strategy for constructing u*. In each particular 
case one can then find different convenient choices. Without going into the 
details, let us, for each element K, denote by J/g(0K) the set of functions in 
L2(OK) that are polynomials of degree < j  on each face e. We assume now that 
we are given, for each element K, a space of polynomials ~ (K)  such that: 1) 
Pj+I(K)~_~(K)  and that: 2) for every ( ~ 0  in ~ ' (0K)  there exists a v#:0 in 
~ (K)  such that 

(5.6) <(, v>o r >= ch~ [(Io, OK {h~ 1 Ivl0, K + Ivll, K}. 

Note that (5.6) is a kind of local inf-sup condition related to the mesh 
dependent norms h~](10,0K and {h~l[v[o,K+[vl l , r} .  Therefore (5.6) will be 
easily satisfied if we take ~ (K)  rich enough (how rich will depend on the 
particular case). We consider now the following auxiliary problem: 

find u * e ~ ( K )  and (*eJ l l (K)  such that 

(5.7) (a grad u*, grad v)t: - ( ( * ,  v>or = ( f  v)~:, v e~ (K)  

( ( ,  u*)o K = ( ( ,  rob)oK , ( e ~ ( O K ) .  
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It is clear that u~ will be an approximation of u and that (~ will be an 
approximation of aO.u, the co-normal derivative of u with respect to OK. 
Standard arguments in the approximation of saddle points now yield 

(5.8) IIlu-u*lll+lllaO, u-~*lll 
__<c{ inf Illu-vlll+ inf Illa0ou-CIIl+ sup ((C, mh-u)oK)/[ll~l[I} 

yeN(K) ~e.lC(OK) ~edt(OK) 

where the triple bars indicate the mesh dependent norms (in K and on OK, 
respectively) appearing in (5.6). Using now (5.8), (5.5) and standard approxima- 
tion results we obtain: 

(5.9) Ilu-u*Ho<c{llfll;+lgl~+- 3/2'~ "hi+2 

for j > 1 and 

(5.10) Ilu -u 'r io  _-<c{llfll i + rgls/z} he 

for j =  1. It is worth noting that in particular cases one can often find a set of 
degrees of freedom in ~ (K)  which includes explicitly the moments (f ,  v)oK, 
~eJI(0K).  In this case one can set, for every ZeLe(0K), 

(5.ll) ~z(K)={ve~@(K), ( f ,  v - Z ) o K = 0  V ~e~'(0K)} 

and solve (5.7) in the more convenient form 

(5.12) u~e~@,,,(K) and (agradu~' ,gradv)~=(f ,  v)r, Ve~o(g ). 

We have seen that, though nominally the mixed method using the elements 
of this paper produces approximation of u only to order O(h j) the computed 
solution {qh, Uh, mh} contains information sufficient to allow determining u with 
an accuracy O(h j§ when j >  1. Since the algebraic problem associated with 
the matrix @ is of the same complexity as that of the nonconforming Galerkin 
method that would produce the same order of accuracy, this is not altogether 
surprising. 

6. Alternating-Direction Iteration 

Recently there have been several alternating-direction iterative methods in- 
troduced to treat the solution of the algebraic equations arising from mixed 
methods I-5, 7-9]. Brown [5] discussed a method for the Raviart-Thomas 
space [18] over rectangular elements in the plane; his method is an implicit, 
locally one-dimensional version of the Uzawa iterative technique for saddle- 
point problems. He extended essentially all of the known theoretical results for 
alternating-direction methods for finite difference or Galerking methods to the 
Raviart-Thomas mixed method in two variables; however, he did not cover the 
three-dimensional case. He also carried a reasonably extensive set of com- 
putational experiments that confirmed the observations that have been made 
over the past thirty years that the direct use of alternating-direction iteration 
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on problems with variable coefficients on general domains leads to efficient 
convergence. 

Douglas and Pietra [9] introduced a different alternating-direction method 
based on an implicit, locally one-dimensional Arrow-Hurwitz procedure; there 
is no finite difference or Galerkin analogue of this technique. There were two 
motivations for this procedure, the first being that it allows the taking advan- 
tage of initial information about the vector variable and the second being that 
the Uzawa iteration is not obviously applicable to the planar mixed elements 
of Brezzi et al. [3, 4] in an effective manner, while the Arrow-Hurwitz one is. 
When a better initial guess was known for the vector variable (as is quite often 
the case when the mixed method is applied to an elliptic equation arising in a 
transient problem described by a system of equations, usually nonlinear, con- 
taining one or more equations that would be elliptic if arising separately; most 
petroleum reservoir simulation models are of this character) than for the scalar 
variable, the Arrow-Hurwitz procedure significantly outperformed the Uzawa 
one when Raviart-Thomas elements were used. For the same set of test 
problems, the Arrow-Hurwitz scheme required almost exactly the same num- 
ber of iterations to achieve a prescribed error reduction for the index one space 
of Brezzi, Douglas, and Marini as it did for the zero index Raviart-Thomas 
space, so that a second order correct approximation of the vector variable 
could be obtained, in place of a first order one, in less than twice as many 
arithmetic operations for the same grid. 

Douglas et al. [7] formulated both Uzawa and Arrow-Hurwitz alternating- 
direction iterative methods for the three space variable Raviart-Thomas spaces. 
These procedures relate to an alternating-direction method of Douglas [6] for 
three space variable finite difference schemes. Again it was found that the 
Arrow-Hurwitz version outperformed the Uzawa one on problems for which 
good initial guesses were available for the vector variable. The same authors 
[8] have also considered an Arrow-Hurwitz iterative method for the spaces of 
this paper. We shall limit ourselves here to outlining a special case of this 
iterative technique applied to the space M~. 

Let 

(6.1 a) - A u = f ,  xEG = [0, 1] 3, 

(6.1 b) u = 0 ,  xec?G, 

and take ~hh to be the collection of cubes 

(6.2) gij k = X i x Yj x Z k = [xi, x i + 1] x [y~, yj + 1] x [Zk, Z k + 1]' 

where x i = i h  and h = N - 1 .  We work with the space Vh, not the hybrid space 
~h. A basis can be constructed as follows. Let K = [ - 1 ,  1] x [0, 1] x [0, 1], and 
let 

1 - [ x l ]  [2(1 - Ixl) ( y -0 . 5 ) ]  

(6.3) X l =  ~ 1' X 2 = [  Y(Y-1)oSgnx 1' 

[21l-,x,/0(z-0,) ] 
X 3 

[_ z ( z - 1 ) s g n x  ] 
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The  basis function X I represents the value of qa(0, 0.5, 0.5), while X 2 represents 
Oql/~y(O, 0.5, 0.5) and X 3 represents Oql/~z(O, 0.5, 0.5). Similarly, let y1, y2, and 
y3  represent q2(0.5, 0, 0.5), Oqz/OX(0.5, O, 0.5), and Oq2/Qz(0.5, O, 0.5) on [0, 1] • 
[ - 1 ,  1] • [0, 1] and Z I, Z 2, and Z 3 represent q3(0.5, 0.5, 0), Oq3/t~X(0.5, 0.5, 0), 
and Oq3/t~y(0.5, 0.5, 0) on [0, 1] x [0, 1] x [ - 1 ,  1]. 

The  vector  tlh can be written in the form 

1 (6.4) qh = Z {O~ijk Xijk  -~ flijk X 2 k  -~- ])ijk Xi3k 
ijk 

+ l-lijk Yiljk + Vijk Y2k  + ~lijk Yi3k 
1 2 Z~k} ,  "[- ff ijk Zi jk  "}- (Dijk Zi jk  -[- Oijk 

with Xi'~k obtained from X m by the usual affine transformations.  Note  that the 
indices {i, j ,  k} can be considered to range over all of the integers by consider- 
ing a periodic extension of the problem (6.1). The scalar u h is constant on Kij k 
and takes the value uii k there;  for convenience, let vis k = 6h-lU~Sk . Now set 

(6.5 a) 61 lJijk = Vij k -- 1)i_l,j,k, d I l)ijk = Ui+l,j, k -- Uijk, 

(6.5b) mll)ijk-.--zO.5(Vijk-~-Ui_l,j,k) , m~Uijk-.~O.B(1)ijk-~l)i+l,j,k), 

(6.5c) S 1 O~ijk =~i_  l,j,k-[-40~ijk-{-O~i+ l,j,k, 

(6.5d) T~fliSg=4flg_l,S,k + 52fl,jk +4flg+X,j,k, 

with 3 z . . . . .  T 3 defined analogously. Then, the equations for the mixed method 
for M~ take the form 

(6.6a) S 1 o~ q-m I d 2 v + m 1 d 3 (.o q'- t51 v = O ,  

(6.6b) S2# +m2dl  fl +m2d3 0 + 62 v=O, 

(6.6c) S 3 ~ + m a d 1 y + m 3 d 2 r/+ 63 v = 0, 

(6.6 d) T 2 v - 3062 m* ~ - 6 3 2  d a o9 = 0, 

(6.6e) T 3 o9 - 3 0 6 3  m* ct - 6 6 3 d  2 v =0 ,  

(6.6 f) T 1 f l -  3061 m* p - 6 6 1  d 3 0 = 0 ,  

(6.6g) T 3 0 - 3 0 6 3  m* # - 6 6 3  d 1 fl =0 ,  

(6.6 h) T17 -306x  m* ~r - 6 3 1  d 2 r / = 0 ,  

(6.6i) T 2 r / -  3062 m~ tr - 662 d 17 = 0, 

(6.6j) d l ~ + d z l ~ + d 3 a = q g ,  q ~ i j k = h - t S f d x  , Q = K i j  k. 
t2 

Equat ions  (6.6a), (6.6f), and (6.6h) have leading parts Site, Tiff, and TlV, 
respectively, which are locally one-dimensionally oriented in the x-direction. 
Similarly, (6.6b), (6.6d), and (6.6i) have leading parts locally one-dimensionally 
oriented in the y-direction and (6.6c), (6.6e), and (6.6g) in the z-direction. Each 
triple can be aligned with (6.6j) to lead to the following alternating-direction 
process: 
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x-sweep 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7d) 

y-sweep 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

z-sweep 

(6.9a) 

(6.9b) 

(6.9c) 

(6.9d) 

$1[(~ " + l - a " ) / { + o ~ " + l ] + m l d 2 v " + m l d 3 c o " + b l v * = 0 ,  

T~ [(/~. + 1- /~ . ) / (  +/~. + 1] -30,~lm~"-6ald30"=O, 
T, [(7 "+ ' -7" ) / (  + 7 " + ' ]  - 3031 m* a" - 6 6 1  d 2 q" = 0 ,  

(v* - v")/z" + d 1 (~" + x + ~")/2 + d 2 #" + d 3 a" = q~; 

82 [-(~/n+l -IXn)/~+l.ln+l]+m2dlfln+l+m2d3On+O2 v** =0,  

T2[(v "+1 -v" ) / (+v  "+1] - 3062 m~ ~ " + 1 - 6 6 2  d3 co" = 0  , 

T2[(q "+1 -q")/(+rl "+'] - 3062 m ~ a" - 6 ~ 2 d  17 "+ '  --0,  

(v** -v")/z" + [dl(ct "+1 +of)-Fd2(t l  n+l +/~")]/2 + d3 a" = ~0; 

83[(o "n+' -an)/~-Ftrn+']+mad17n+l+mad2tln+l-F63 vn+l =0 ,  

T3 [(co "+I - co")/(+ co "+1] - 3 0 6 3  rn~' o~ " + 1 - 6 6 3 d 2  v"+' = 0 ,  

T3 [(0, + 1 _ 0 , ) / ( + 0 , + 1 ]  _ 3063 m.  p,+l _663dlfl,+ ' = 0 ,  

(v "+1 -v")/z" + [dl (~"+ ' + ~") + d2(p"+ l + g") + da(a"+ l + a")]/2 =q~. 

No complete spectral analysis has been made for this iteration; however on 
the basis of experience with the two-dimensional  analogue [9] of these ele- 
ments, we conjecture that use of the same parameters  for {z"} as for the Uzawa 
alternating-direction method for the three-dimensional Raviar t -Thomas  ele- 
ments will lead to rapid convergence when combined with constant  choices for 

and (, which should be chosen such that ~>(sin0.57rh) -1 and ( ~ 1 0 ( .  The 
cycle for {~"} is given [6, 7] by 

(6.t0a) pro=p1 ,,~n2h2/6, pu=PN~2 ,  N= 1/h; 

(6.10b) zl=2fl/p,,; z "=f lT- l r  "-', n = 2  . . . . .  NC; 

(6.10c) N C = [log(pM/Pm ) + 1og(fl y -  1)] + 1 ; 

here, fl < 1 < 7 and )"(fl, 0, 0) = )"(7, 7, 7) and 

(6.11) )"(a, b, c )=  1 - 2 ( a + b + c ) ( 1  + a ) - a  (1 + b ) - '  (1 +c )  -1. 

In the Uzawa  version in three space it was found [7] that the optimal 
choice for y was about  1.71 for h=0.1 ,  and the corresponding cycle length was 
four. For  a more extensive t reatment  of the iterative procedure given above, 
see [8]. 
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