
Numer. Math. 34, 285-314 (1980) Numerische 
Mathematik 
�9 by Springer-Verlag 1980 

The Method of Fractional Steps for Conservation Laws 

Michael Crandall *.1 and Andrew Majda* 2 

1 University of Wisconsin Madison, WI, USA 
2 University of California at Berkeley, CA 94720, USA 

Summary. The stability, accuracy, and convergence of the basic fractional 
step algorithms are analyzed when these algorithms are used to compute 
discontinuous solutions of scalar conservation laws. In particular, it is 
proved that both first order splitting and Strang splitting algorithms always 
converge to the unique weak solution satisfying the entropy condition. 
Examples of discontinuous solutions are presented where both Strang-type 
splitting algorithms are only first order accurate but one of the standard 
first order algorithms is infinite order accurate. Various aspects of the 
accuracy, convergence, and correct entropy production are also studied 
when each split step is discretized via monotone schemes, Lax-Wendroff  
schemes, and the Glimm scheme. 
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Introduction 

Most of the popular algorithms for the numerical computat ion of discon- 
tinuous solutions of the conservation laws, 

u, + (fl  (u))x + (f2 (u))y = 0 (o.~) 
u(x, y, 0)=u  o 

involve the method of fractional steps either as introduced into gas dynamics 
by Godunov [ i0]  or as modified by Strang [23]. These methods can be 
summarized as follows: Let u(x, y, t ) = S ( t ) u  o denote the unique weak solution 
to (0.1) which satisfies the entropy conditions (see Sect. 2 for precise statements 
when u is a scalar function and [15] generally) and let v(x ,y , t )=-SX(t)Vo,  
w ( x , y , t ) - S ~ ' ( t ) W o  denote the analogous weak solutions satisfying the one- 
dimensional conservation laws, 

v, + ( f  l (V))x = O, w, + ( f  2 (W))x = 0 (o2) 
v(x, y, 0)= v0 (x, y) w(x, y, 0)= W o (x, y) 
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(where y is viewed as a parameter in SX(t)v0, etc.) Godunov's fractional step 
method is based on either of the approximations, 

S(T)uo~-(SX(At)SY(At))"Uo, nAt= T 
or (0.3) 

S(T)uo_~(SY(At)S~(At))"Uo, nAt= T 

while Strang's method instead uses the approximation 

o r  

=-(S"(~)SX(At)Sr  (A~))"Uo, n A t = T  
(o.4) 

In practical computer calculations, next, one introduces one-dimensional 
nonlinear difference approximations, 

6x(A t)_~ SX(A t) (0.5) 
G*'(A t)~-SY(A t) 

into either of the splitting algorithms in (0.3), (0.4) to define a fully discrete 
splitting method. When Godunov introduced the algorithm in (0.3), he used 
the (monotone) Godunov scheme for G x and G y (see [22]). Recently, Chorin 
[3, 4] has implemented (0.3) in gas dynamics and combustion calculations by 
using the Glimm scheme for G x and GY; this algorithm has also been applied 
(see [-6]) to the flow of immiscible fluids in porous media (the Buckley-Leavritt 
equation) with u in (0.1) a scalar function, f l  (u)-af2(u), and J2(u) a nonconvex 
flux function. The method of Strang defined in (0.4) has been implemented 
extensively in gas dynamics with Lax-Wendroff difference methods (see [17], 
for example) and other schemes. 

Here we rigorously study the accuracy, stability, and convergence of the 
basic fractional step algorithms in (0.3) and (0.4) when discontinuous solutions 
are computed. We also study various aspects of the accuracy, stability, and 
entropy production of the fully discrete splitting schemes when G x, G y are 
given by monotone schemes, the Glimm scheme, and the Lax-Wendroff 
scheme. All of our rigorous results are necessarily restricted to the model 
problems where the function u in (0.1) is a scalar and fl(u),f2(u) are smooth 
scalar functions. In a single space variable, the strictly convex or strictly 
concave conservation laws with J fi'(u)] >~  > 0  have solutions with a discon- 
tinuous wave structure which yields a simplified model for the shock structure 
in one dimensional gas dynamics - f l (u)- �89 2 corresponds to the inviscid 
Burger's equation. On the other hand, in a single space variable, when f1(u) 
has inflection points, the wave structure of the solutions of (0.1) (with fz(U)-0) 
is radically different from that of the convex case [17]. The equations of gas 
dynamics are rotationally invariant and the structure of shock solutions is 
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essentially independent of direction. Thus, the multidimensional scalar equa- 
tions which provide a simplified model for the shock structure occurring in 
polytropic gas dynamics are those so that given any unit direction f i=(nl ,  n2), 
the function, n 1 f l  (u)+ n2f2(u) is strictly convex, strictly concave, or constant. 
One verifies easily that this ' isotropic '  condition is satisfied only when (with 
constants a, b, c and 6 > 0) 

l f l"(u)]>6,  f z ( u ) - a f l ( u ) + b u + c .  (0.6) 

The analogous models in two space variables of solutions of the one-dimen- 
sional inviscid Burger's equation are given by 

Ou _ _  2 0 � 8 9  
~t ~- Cx + (?y - ' a > 0  (0.7) 

u(x, y, 0)= Uo(X, y). 

Obviously, there are two sources of error in the fully discrete fractional step 
algorithms - the intrinsic error involved in using (0.3) or (0.4) and the spatial 
discretization errors involved in the particular difference methods used in (0.5). 
In general these two sources of error interact in a complex fashion. Strang 
introduced the method in (0.4) because, even for systems, it is second-order 
accurate in time, i.e., 

when S(t )u  o is a sufficiently smooth function 

S ( T ) u o - ( S  ~ ( ~ )  S~'(At)S ~ ( ~ - ) ) " U o  <=C(At) 2 (0.8) 

whereas the method in (0.3) is only first order accurate, when S( t )u  o is smooth 

]b S ( T )  u o - ( S~'(A t) S x (A t))" u o 11 < C (A t) (0 .9)  

with similar estimates when the roles of x and y are reversed. In Sect. 1, in 
contrast to the results valid when S( t )u  o is smooth, we construct a family of 
simple examples of discontinuous solutions of the model equations in (0.7) with 
2 > a >  1 so that both Strang-type splitting algorithms are at most first order 
accurate when computing these solutions but 

( S X ( A t ) S Y ( A t ) ) " u o - S ( T ) u o ,  n A t =  T (0.10) 

i.e., one of the algorithms in (0.3) is infinite order accurate. In a single space 
dimension, the Glimm scheme keeps simple shock fronts perfectly sharp (see 
[2, 11]). A basic question is the following one. When the Glimm scheme is 
used in multi-dimensions in conjunction with splitting algorithms, are shock 
fronts smeared substantially? The example mentioned in (0.10) provides a good 
analytic test case and in Sect. 1 we explicitly compute the effect of the Glimm 
scheme on this solution. 

In Sect. 2 we summarize some known properties of weak solutions of (0.t) 
satisfying the entropy conditions (see [13]) and list some simple estimates and 
notations useful in the subsequent sections. In Sect. 3, we prove the following 
result. 
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Theorem 1. Assume u o ~ L 1 (R2)~ L~ 2) and let S(t)u o denote the unique weak 
solution of (0.1) satisfying the entropy conditions, then both of the fractional 
step algorithms in (0.3) and (0.4) always converge to S(t)u o. More precisely, if 
n A t = T ,  then as n--,oo, 

m a x  HS(T) Uo--(SY(At)SX(At))nuoItLI(R2)--~O 
O<_T<To 

o<max S ~ SY(At) S ~ -o0. 
- -  - -  T o  

Similar results are valid with the roles of x and y reversed. 

The results in Theorem 1 are also interesting from another point of view 
since they provide proofs in a singular case for the Trotter-Kato product 
formulas of functional analysis. The nonlinear semigroups studied here act on 
non-reflexive Banach spaces with a priori set-valued generators [7]; none of 
the abstract theorems in the current literature handle this generality (see [1, 5]). 

Section4 contains some brief remarks where we use the main result in [8] 
to prove that discrete splitting algorithms always converge to S(t)u o provided 
that G ~ and G ~' are monotone with conservation form. In particular, these 
results apply to the splitting algorithms using the Lax-Friedrichs, Godunov, 
and upwind schemes in any combination. 

In Sect. 5 we study the discrete fractional step algorithms when G ~ and G y 
are given by the Lax-Wendroff scheme. As in [19], assuming this algorithm 
converges, we study when the limit function obeys the entropy condition. The 
same examples as constructed in a single space dimension (see [12, 20]) provide 
rigorous proof that the standard split Lax-Wendroff scheme can converge to 
weak solutions which violate the entropy condition even when f l - : f 2  and 
[f~"(u)]>0. Nevertheless, when the Lax-Wendroff scheme is modified with a 
systematic nonlinear artificial viscosity as used by Osher and Majda in [18, 
19], we prove that this limit function satisfies a discrete entropy inequality 
provided that Ifl"(u)], If~'(u)[ >_6 >0.  This entropy inequality is strong enough 
to prove that the limit solution is the unique physical solution provided that 
(0.6) is satisfied - in particular, this theorem applies to the models in (0.7). 
Perhaps surprisingly, we conjecture that this conclusion is false when (0.6) is 
violated even though f l  (u), f2(u) are both convex and give examples to support 
this reasoning. In the appendix, we give the proof of a convergence theorem for 
generadimensional splitting algorithms. Similar results hold 'mutatis mu- 
tandi' for general additive fractional step methods. 

Section 1( The Accuracy of Splitting Algorithms 
when Discontinuous Solutions are Computed 

A. Strang Splitting and First Order Splitting 

We consider the solution, u, of the model equation 

u, + (a ~ u~)~ + (�89 u~),,= O, 
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with initial data 
1, y > x  

u(x' y' O)=u~ -1 ,  y<=x (1.1) 

for a fixed constant a, 1 _< a -< 2. One computes directly either by using the well- 
known entropy condition for the inviscid Burger's equation or by using the 
conditions in Sect. 2 that 

u(x, y, t)= S (t) Uo=U o. (1.2) 

For  1 < a ,  the exact solution is an oblique steady planar shock, while for a -  1 
the exact solution is an oblique steady contact discontinuity. We observe that 
SX(t) u o - u  o is a shock wave but St(t)u 0 is a rarefaction wave. Using these facts 
we calculate explicitly that for t>aA t, 

1, x<= - t + a A t + y  
(x-y) 

S~(At)SY(t)u~ a A t - t '  a A t - t + y < - x < t - a A t + y  

for t<=aAt, 
- 1 ,  x > t - a A t + y  

(1.3) 

S x(A t) S y(t) Uo-Uo. 

By applying the semigroup property and (1.3) we compute that 

- S ' ( 2 )  uo, for any l=<a. (1.4) 

In the same fashion, we consider the other Strang-type iterate and deduce that 

If  we restrict a to 1 __< a < 2 and compute the L x error over the ball of radius one 
centered at the origin, it follows from (1.3), (1.4), and (1.5) that both of the 
iterates from Strang-type splitting have the explicit first order errors, 

S (T)uo-  (S' (-~-) SX(At)S' (~-))nUo L,~ >= CAt (1.6) 
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for any a > 1 and 

S(T)uo- (SX (~-) Sr(At)SX (~-) )nUo LI(B1)>= CAt 

for l < a < 2 ,  with C>O, nAt=T. 

On the other hand, we use (1.3) and compute that the splitting algorithm from 
(0.3) satisfies 

(SX(At)Sr(At))"Uo=Uo=S(T)uo, nAt= T (1.7) 

for a >  1, thus this algorithm is infinite order accurate for the above discon- 
tinuous solution as asserted in the introduction! We remark that the other 
algorithm using (0.3) with the roles of x and y reversed has a first order error 
since by (1.3) 

(SY(At) SX(At))nuo=SY(At)(SX(At)SY(At))n-luo=SY(At)uo . (1.8) 

The examples in (1.6) and (1.7) indicate that under appropriate circum- 
stances the second-order accurate Strang-type splittings can generate more 
dispersion near discontinuities than the first-order accurate algorithms from 
(0.3). How typical are the above examples in gas dynamics? The crucial facts 
needed to generate dispersion in splitting algorithms in the above examples 
were the following: (1) The exact solution to be computed contains an oblique 
sharp discontinuity (shock or contact); (2) S*(t)Uo contains sharp discon- 
tinuities; (3) SY(t)Uo contains only (dispersive) rarefaction fronts. One com- 
putational situation in gas dynamics where conditions (q)-(3) are satisfied in- 
volves the numerical computation of an oblique shear flow. Such shear flows can 
be produced when shock waves collide. To fix our ideas we consider a solution 
of the equations of isentropic gas dynamics 

C3(PU)63 t F ~--~ (P U2) -'bLOy(pu v)=~x(P(P)), 

Ot Ox --~y(P(P))' 

at b (pu)+ (pv)=O 

with initial data, 

C~ 
t=O = poVO ----" 

,>=x 

Po 

Po 

(1.9) 

We claim that the same conditions as (1)-(3) above are satisfied for the y- 
component, v, of velocity. The exact solution is the steady oblique contact 
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discontinuity, t(Uo, v 0, Po); under the x-sweep in splitting, v o is transported as a 
sharp contact discontinuity; under the y sweep applied to the initial data, since 
a>b,  v(x,y,  t) has two dispersive rarefaction fronts. Of course, this is only a 
plausibility argument since in this case exact closed-form solutions are essen- 
tially impossimble to compute for the splitting algorithms. 

Next, we compute a family of discontinuous solutions where all the 
fractional step algorithms in (0.3) and (0.4) are infinite order accurate. These 
examples provide other good test problems to compute the amount  of numeri- 
cal dissipation and dispersion at discontinuities due to the choice of the 
difference operators G x and G y. We consider the equations in (0.7) with a >0  
and initial data 

UL, q<O 
Uo(X,y)=~(x+y ) where ~(q)= UR, q > 0  (1.10) 

UL>U R 

The exact solution of (0.7) with a > 0 is an oblique shock wave, 

(1.10)(a) 

Furthermore,  because of the special choice of initial data, both the x and y 
sweeps are also shock waves, 

o(x+,  )At) (1.10)(b) 

It follows easily from the above computations that 

(s'(at)SX(At)"Uo=- (SX (~) S"(At)SX (~-))"uo-S(T)uo (1.11) 

with n A t = T  and similarly with the roles of x and y reversed so that all 
splitting algorithms in (0.3) and (0.4) are infinite order accurate. 

The above examples of solutions of (0.1) with planar discontinuities belie 
the complicated singular structure that can be present in solutions of (0.1). See 
[23] where examples with initial data given by three constant states forming a 
vertex are constructed. 

B. Does Splitting With Glimm's Method Smear Discontinuities? 

Here we present some closed form examples which (hopefully) give some 
insight into the above question. For  simplicity in exposition, we only study 
initial data u o with [Uo[ < 1. First, we recall the definition of the deterministic 
Glimm scheme ([1]) in a single space variable when used to compute solutions 
of 
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Ot 4-~x u 2 = 0  

u(x, O)=uo, lUo[<l. 

Given a grid function, u~.~-u(jAx, nAt), piecewise constant for (j-�89 
<_<_x<(j+�89 the Glimm scheme, G'~., is a staggered-grid method which 
computes the values of the grid function, ,,,+i piecewise constant on ~ j + ~ ,  

(jAx)<=x<=(j+ 1)Ax, by finding the exact solution of the Riemann problem, 

Ous + ~  1 2 
(?t (~x a ( 3 u j ) = 0  

us(x, O)=~u!, x<O 
(uj+l, x > 0  

and defining uj+~ = , " + l  _ (G x~.,(u.~s.j+�89 via the recipe 

us+~n +1 =- ui(a n A x, A t) = (G~, (uy)) i + ~ (1.12) 

where a n is a number with a n e [  1 1 - 3 ,  3]. Since lu0[ < 1, this scheme is expected 
to be consistent provided that nearby Riemann problems do not interact during 

At 1 
the time At, i.e. a~x-x<~. Liu has remarked that the above algorithm 

can be expected to converge only if the sequence, {as}, is equidistributed in 
[ - �89189 i.e., i f I  is any subinterval in [ _ 1  1 3, 3-], 

lim # {asel' I < j < N }  =re(I)  (1.13) 
N ~ o o  N 

where m(I) is the length of I. 
We use the above preliminary information to define the discrete Glimm 

splitting algorithm for solutions of the two dimensional inviscid Burger's 
equation in (0.7) with 1 < a < 2 by 

n - -  I ] "r Y US+~,k+�89 .1 (Ga. GJ(uo,j,k), n odd 
r = l  

n - -  ~ X y us, k -  ~ (G~rGo, r)(Uo,S,k), n even 
r = l  

where (for simplicity) 

(1.14) 

Here {ej}, {/3i} are two equidistributed sequences. 
Next, we compute an iterate of the split Glimm scheme for the special 

initial data 

1, k>j  (1.16) 
Uo'j'k=-- --1, k<j  

At-Axy=-Ay;~ with ,/ fixed, 0<a7__<�89 (1.15) 
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which is a discretization of the initial data in (1.1). As we calculated in (1.7), 
the splitting algorithm in (0.3) is infinite order accurate on this data even 
though y sweeps are dispersive - thus, all smearing of shocks is caused by 
the method of discretizing S~(At) and SY(At). A tedious calculation yields that 

(G~, G , ( U o ) b  +-~,k + ~ = 

- - 1 ,  

O~ 1 

7 
1, 
1, 

O~ 1 

7 
- - 1 ,  

- - 1 ,  

k > j + l  

k = j + l ,  c q < - 7 ,  f ix>0 

k = j + l , - 7 < c q < 7 ,  f l l > a 2 ( l + ~ )  

k = j  + 1, otherwise 

k=j,  ?,<c~1, i l l < 0  

k=j, -7<c~1<=7, fll<=a~ - 1 +  

k =j ,  otherwise 

k<j.  

(1.17) 

From (1.17) it follows that for fixed 7 the probability is 2 7 ( 1 - a 7 )  that the 
shock is smeared over one band around k=j after a single iteration. This 
smearing is a new source of error due solely to the discretization via the split 
Glimm method with a structure different than that encountered in one- 
dimensional shock calculations with Glimm's method. For  the remaining 
choices of e l ,  ill, as in a single space dimension, the shock front is kept 
perfectly sharp and only errors in location occur. One can observe that after N 
iterations there is a non-zero probability (quite small) that the shock is 
smeared over N bands around K - - j  and a fairly large probability that it is 
smeared over at least one band. In fact, for simplicity set a = l  and let PN 
denote the probability that the shock front is smeared over at least one band 
around K = J  after N iterations (ignoring errors due solely to location). It 
follows from an explicit argument (which we omit) and the fact, P I = 2 7 ( 1 - 7 ) ,  
that 

PN+ 1 > 2 7 ( 1 - 7 ) ( 1  - PN)+ 27 PN+(1 --27)(1 --7) PN 

thus, 
1 - ( 2 7 + ( 1 - 4 7 ) ( 1 - 7 ) )  N 

PN>27(1--7)  1 _ ( 2 7 + ( 1 _ 4 y ) ( 1 _ 7 ) )  , 0 < ~ < � 8 9  

In particular, when 7=�89 PN=I--(�89 N SO that for At~O, N A t = T  o fixed, 
numerical smearing over at least one band almost surely occurs. (Sharper 
quantitative estimates are interesting here but we have not attempted to derive 
any.) 

In the above, general strategies with {flj}, {e~} chosen independently were 
analyzed and with probability always greater than 27 (1 -aT) ,  some numerical 
dispersion occurs. Next, we verify that for a =  1 numerical smearing is com- 
pletely eliminated by using the special strategy, c~j= fl~. From (1.17) we calcu- 
late in this case that 

x y -- �9 1 ((G#, G =)(uo)l~+ ~,k + 4=Uo((j + ~) Ax, (k + �89 A Y) (1.18) 
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so that 
N 

1-[ (G~rG~r)(Uo)=-uo=S(T)uo (1.19) 
r = l  

and the split Glimm algorithm for this special strategy and initial data (with 
probability one) is infinite order accurate. Of course, there will be errors using 
this special strategy when the roles of x and y are reversed and the result in 
(1.19) is an accident. 

The above examples in (1.17) and (1.19) indicate different behavior for the 
accuracy of the split Glimm scheme near discontinuities than that encountered 
for the Glimm scheme in a single space variable. When both the x and y 
sweeps are shock waves, the accuracy of the Glimm scheme near discon- 
tinuities is less sensitive to special strategies relating {c@, {fij} and the struc- 
ture of the error behaves as in a single space dimension [4, 15]. To illustrate 
this point, we compute the effect of the split Glimm scheme with the initial 
data in (1.10) and 0<a__<l, I~ l<l  so that the condition in (1.15) on the time 
steps, A t, is satisfied - as computed in (1.11) all errors are due to discretization. 
For N even, it follows that 

where 

+ k A y- -  J7 A y -  (1.20) 

J~= 4~ { arl l <-r <= N[~r < y (uL + ug~) 2 
(1.21) 

Thus, the front is kept perfectly sharp and all errors are due to location. As 
Lax [15] has observed in a single space dimension, the error in location can be 
made quite small by choosing special sequences {aj}, {flj} which are particu- 
larly well-distributed, i.e.,such that 

4~{c~,~I,Nl<-r<-N}=m(i)+O ~ )  
(1.22) 

{fl, e I,Ni <_r<_ N} =m(i)+ O l~ " 

With sequences of this type, it follows from (1.20)-(1.22) that, with N A t = T, 

- ogN 
(,~1 (G~rG:r)(u~ ( jAx+kAy-T  ( l + a  (UL~UR)) + TO ~ ) ) ( 1 . 2 3 )  

Thus, not only is the front kept sharp but there is an L ~ error of only 
O (log ((A t)- z) A t) when compared with the exact solution in (1.10)(a). 
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Section 2. Preliminaries and Background 

We begin by summarizing some of the well-known properties of solutions of 
scalar conservation laws in several variables (see [13, 24, 8] for example). First, 
a bounded measurable function, u, is a weak solution of (0.1) if for all 
q~ e C ~ (~--~- x R2), 

~ ( r 1 6 2  ~ Uo(adxdy=O. (2.1) 
t = O  

Weak solutions are not uniquely determined by their initial data and 
additional principles, entropy conditions, are needed to select the appropriate 

S 
physical solution. Set sgn(s)=~i-, s:t:0 and sgn(0)=0. For the equation in 

(0.1), these entropy conditions take the following form: Choose k to be any 
constant and consider the 3-component vector, 

([ u - k[, sgn (u - k) (fl (u) -  f l  (k)), sgn (u - k) (f2 (u) -  f2 (k))). 

A weak solution, u, of (0.1) is any entropy solution if for all q~ e C~(R + x R 2) 
with r >__ 0 and any k, 

~ ~ ~b, ]u - k] + qS= sgn (u - k) (fl  (u) -  f l  (k)) 
R + x R 2  

+ 4~y sgn (u - k) (fz (u) -  f2 (k)) > O. (2.2) 

Kruzkov has proved that the weak solution obeying the inequalities in (2.2) is 
the limit with vanishing viscosity of corresponding solutions of the viscous 
equation. For piecewise smooth solutions, the inequalities in (2.2) imply that 
Oleinik's Condition E is satisfied across discontinuities (see [14]). 

Next, we list some function spaces, useful in our proof. The space BV(R2), 
denotes the locally integrable functions with distribution derivatives that are 
finite Borel measures under the semi-norm, 

[ULBv(R2)= max - - j j lu (x+h 'y ) -u (x 'Y) ]dxdy  
o<lhl<~ [hi 

+ max ~ [ u ( x , y + h ) - u ( x , Y ) ] d y d x .  (2.3) 
o<l~ l<~ [hi 

Below, we use functions in BVc~L~c~L 1 with the natural norm,  ]NIBvc~L~ 
=[U[Bv+lU[L,+IU[L~ and denote by C([O,T],B), the space of continuous 
functions on [0, T] with values in the Banach space, B. The following pro- 
position summarizes several important properties of entropy solutions. 

Proposition 2.1. Suppose UoeI2(R2)c~L~176 then there exists a unique weak 
solution, u (x, y, t) =- S(t) Uo, belonging to C([0, T], L 1 (R2)) c~ L ~ ([0, T] x R 2) and 
satisfying the entropy conditions in (2.2). The function S(t)u o has the following 
properties: 

(1)  s(t)Uo= Uo. 
(2) Uo <V o a.e. =~ S( t )uo~S( t )v  o a.e. 
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(3) ess supS(t) Uo<eSs sup u0, ess infu0<ess  infS(t) u o 
(4) [[S(t)Uo--S(t)VoIIL,<= [IUo--VOtlL~. 
(5) IS(t)uolBv <__luolBv, 
(6) for uoeBV ~ L ~176 IIS(tOuo--S(t2)uoltL, < C Itx -t21 luol~v~,L~- 

( ((~fl ~ 2 (Of2 ~2 ~ 
(7) Consider c 2= max + the values of S(t)u o on 

lul<=lluollL ~ \ \ C ~ u  I \ O u  I l '  

I (x -xo ,  y-yo)l<=R are uniquely determined by the values of u o on I (x -x0 ,  
y - y o ) l < R  +ct. 

Of course, the same facts apply to SX(t) and St(t). The important unique- 
ness theorem and many of the facts in the above proposit ion are due to 
Kruzkov [13]; the properties in (1)-(7) are all explicitly and constructively 
proved, for example - via finite difference techniques in [8] or by the viscosity 
method [13, 24]. 

We also define one-dimensional averaging operators which are useful for 
various discrete approximations. 

Definition. Given feLl(R2) ,  the averages IaXf, I~Yf a r e  well defined a.e. with 
respect to y and x respectively by 

Ia~f =- ~ Sj(Y)Z~(x), IAYf = -- ~ fk(X)Xk(Y) 
j =  -- oo k= -- oo 

where 
1 (j+4~)dx 1 (k+�89 

f j ( Y ) = T -  I f(s,  Ylds, f k ( X ) = ~ -  ~ f (x ,s )  ds 
ZI X (j_ -~)Ax ZI y ( k -  �89 

and Zj, Xk are the characteristic functions of ( j - � 8 9 1 8 9  
(k - �89 A y < y < (k + �89 A y, respectively. 

In the following three sections, we study and use various discret-splitting 
algorithms when SX(A t), SY(A t) are approximated by conservation form differ- 
ence schemes. Given a spatial lattice, {(jA x, kA y)}, the capital letter, U, will 
denote a function defined on this lattice with Uj, R, the values at respective 
lattice points (V, W denote corresponding one-dimensional functions defined 
on x and y lattices). Given a lattice function, U, we associate a function defined 
in all of R 2 via the piecewise constant interpolation formula, 

J(U)= ~ Uj, kZ~(X)Xk(y ) 
j,k=-oo 

where )~i(x), )~k(Y) are the characteristic functions defined previously. Discrete 
analogues of the norms in (2.3) are defined by using IlUllz,= []d(u)llL,, ]UIBv 
=ld(U)lBv, etc. - these norms yield the same discrete function spaces used 
in [8]. We frequently abuse notation below by omitting d. Given grid- 

points { ( j A x ,  kAy,  ~=l~At~)} ' we use the standard n~176 UT'k 

I e t c  ~-u A = At  t ,2~[=A~, 2T=Ayy' 
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We will consider various conservation-form, one dimensional difference 
operators, V "+1 -(~x(V"), W "+1 --(~Y(W")defined at grid points by 

x n n _ _  n x x n n Vj n+ I=G (Vj_p . . . . .  Vj+q+ l ) -  Vj --)tn A+ gl(Vj_p . . . . .  Vj+q) (2.4) 

w 2  +1 = G ~ ( w L  . . . . . .  wT, +s + 1) = ~ " -  ~. A~+ g~(W?,_,, . . . . .  W?, + 9  

and consistent with the respective operators in (0.2), i.e. 

gl(v . . . . .  v)=fl(v), gz(W .. . .  ,w)=fz(W). (2.5) 

The functions g~ and g2 are called the numerical flux functions. The discrete 
splitting algorithm associated with the first approximation in (0.3) and the 
discretizations, G~S~(A  t), G)' ~SY(A t) is defined by 

u j n  + �89 n y n 
,k = Uj,k- 2, AY+ g2(U~k . . . . . . .  Uj, k +~) (2.6) 

v ; , ;  ~ = v ; , ; ~ -  ~ A~+ g l ( V ; - + ~  . . . .  , V;2~,~). 

It is an elementary general remark of Lax 1-2] that when the component 
schemes have the structure in (2.4), the scheme defined in (2.6) has con- 
servation form and is consistent with (0.1). Similar formulae and remarks apply 
to the other discrete splitting algorithms defined when the schemes in (2.4) are 
used in conjunction with the approximations in (0.3) and (0.4). 

Section 3. Proof of Theorem 1 

Here we give a simple proof of Theorem 1. In the appendix, as a by-product of 
this method of proof, we obtain convergence results for general dimensional 
splitting algorithms. 

We begin by recording two facts needed in the proof. First (see Pro- 
position 2.2 of [-8]), it is well-known that if {f,} is a sequence of functions in 
R N with 

I[f, IIL,~L~nBv < C, f ,  vanishing for [x l>Ro  (3.1) 

then there is a function foeL 1 ~ L  ~ c~BV and a subsequence (still denoted by 
f,)  so that 

f ,  converges boundedly a.e. to f0 as n~oo .  (3.2) 

Next, assume voeLl c~L~176 c~BV, woEL 1 c~L~ ~BV and let v(x, y,t)= SX(t)(Vo(', y)), 
w(x,y,t)-Sr(t)(Wo(X, ",t)), denote the corresponding entropy solutions for 
the one-dimensional conservation laws in (0.2). Under the above assumption, 
we have the following lemma: 

Lemma 3.1. I f  dpeC~(R + xR2),  ~ 0  and t 2s>O, then 

i ~S[v-kl (~t+sgn(v-k)( f l (v)- f~(k))r  dt 
S R 2 

> S~ [v-k l  O(x, y , t )dxd  y - ~  l v -k l  O(x,y,s)dxd y (1) 
R 2 R 2 
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i ~ I w - k l q~, + sgn (w - k)(f  2 (w)-f2 (k)) 4,  d x d y d t 
s R 2 

> ~S I w - k l  c~(x, y, t) d x d y -  ~ [ w - k t  (a(x, y, s) dx  dy. (2) 
R 2 R2 

We remark that 'mutatis mutandi '  the analogous result is valid in R N. We 
use that fact in the appendix. Next, using the above two facts we complete the 
proof of Theorem 1. We postpone the proof of Lemma 3.1 until the end of this 
section. 

We begin with our proof of convergence for the first splitting algorithm in 
(0.2). By the L 1 contraction estimates for S(t), SX(t), SY(t) from (4) in Pro- 
position 2.1, it is sufficient to prove the convergence for initial data, Uo(X, y), of 
the form u o ~ L l n L ~ n B V  with the support of u 0 contained in [x l<R  o. With 
such initial data, define u~t-Sdt( t )  Uo by the formula, 

U a'=_sAt(t)uo 

[SY(2(t-nAt))(SX(At)SY(dt))"Uo, ndt<=t<(n+�89 (3.3) 
-(SX(2(t-nAt))SY(At)(SX(At)SY(At))"Uo, ( n + l ) A t < t < ( n + l ) A t .  

From the properties in (3), (4), and (5) of Proposition 2.1, it follows that 

HSAt( t )  UO[tBV nL,c~L ~ < t[blOIIBV c~LIc~L~ ( 3 . 4 )  

and for any fixed T, by (7) of Proposition 2.1, 

suppS~*(t) Uo ~ {x] Ix] <=Ro + c T} (3.5) 
for any 0_<t_< T. 

Furthermore, from (6) of Proposition 2.1, we deduce that 

I S~'( t l ) Uo-- S ~t (t2) uo ]L , < C It 1 --t2l [ Uo IBV. (3.6) 

Thus, by the compactness property in (3.1), (3.2) and the estimates in (3.4), 
(3.5), and (3.6), we repeat the proof of the Arzela-Aseoli theorem (see Sect. 4 of 
[8] for similar details) to conclude the following: for every sequence {At;} 
tending to zero, there is a subsequence (still denoted by A t;) and a function 
~tE C([O, ~) ,LI  (R2)) with lUlLoO <=lUO[L~ , ~(x, y, O)=uo(x, y), and 

Sa*'(t) u o converging boundedly a.e. to fi(x, y, t) as l-o ~ .  (3.7) 

Once we deduce that ~ ( x , y ) - S ( t ) u  o, the proof of the convergence of the first 
splitting algorithm in (0.3) is complete. (We apply the elementary fact that if 
every subsequence has a sub-subsequence converging to a unique limit - the 
original sequence must converge to the same limit.) 

We claim that ~(x, y, t) satisfies 

~ ( ~ ,  [fi - k[ + 4)x sgn(0  - k)(f~ ( f i ) - A  (k)) 

+ q~), sgn (t] - k)( f2  (u) - f2  (k))) d x d y d t > 0 

for all c~ECI(R + x R  2) with q~>_0. (3.8) 
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Assuming this for the moment,  we choose k=++_21tUo[IL~ and use u(x,y,O) 
=uo(x,y ) to deduce that u 0 is a weak solution of (0.1) and furthermore from 
(3.8) we see that u satisfies all the entropy inequalities in (2.2) - since 
fieC([O, ov),L1)c~L ~176 by Kruzkov's uniqueness theorem [13] mentioned in 
Sect. 2, ~(x, y, t) - S(t) u o. 

To establish the inequality in (3.8), we consider the new test function 
(oe C~(R + x R e) defined by ~(x, y, t)=4,(x, y, 20  and apply parts (1) and (2) of 
Lemma3.1 respectively to Vn(t)=-SY(t)(SX(At)SY(At))nUo, wn(t)=-S~(t)SY(At) 
�9 (S~(At) SY(At))nu to obtain 

(n+ ~)at 
~ (�89 dPt IuAt- -k l  + O y s g n ( u ~ ' - - k ) ( f 2 ( u a ' ) - - f  2(k)) 

n A t  R 2 

A t  
--1 =~ ~ ~ (~ t ( r  +2n( l t l ) ) Ivn( t ) -k l  

O R 2 

+ ~,,(z + 2 n (A t)) sgn (vn (t) - k)( f2 (vn (t) - f 2  (k))) d x d y d z 

>=�89189 t)lua'((n+�89 t ) -k[  dxd  y 
R 2 

- �89 ~ qb(nA t)]uAt(nA t)--K] dx d y (3.9) 
R 2 

and similarly, 

( n +  l ) A t  

~(�89 ]u~'-k[+4L, sgn(u~'-k)(fl(u~')-f~(k)) 
( n + � 8 9  R 2 

>_�89247 1)A t) lu~'((n§ 1)A t ) -k l  d x d y  
R 2 

-�89 ~ (o((n+�89 t)lu~'((n+�89 t ) -k l  dxd  y. (3.10) 
R2 

We add the inequalities in (3.9) and (3.10) and sum over n - we observe that 
the right hand side of the resulting inequality is a telescoping sum and 
collapses to zero. Let )G denote the characteristic function of 
{(x, y, t)l n A t <_ t-<(n +�89 t}, then this resulting inequality has the form, 

oo 

~ �89 lu~ ' -k l+ ~ ~Z,  4~rsgn(ua'-k)(f2(u)-f2(k)) 
0 R 2 0 R 2 

+ ~ fJ" (1 - z,,) 4~ sgn (u ~ ' -  k)(A ( u ) - A  (k)) 
0 R 2 

>0. 

It is a simple exercise (see the appendix) to check that 

w e a k l y  1 

Zn ) 
in L2oc([0, 00) x R2). 

w e a k l y  1 
1 - -  Zn  - - - - - - - *  7 

(3.11) 

(3.121 
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From (3.7) it follows that as l ~  oe 

q~, sgn( u~t ' -  k)(fl (u'tt') - fx  (k)) 

q~y sgn (u ~ ' ' -  k)(f2 ( ud t , ) - f l  (k)) 

M. Crandall and A. Majda 

strongly 

strongly 

, q5 x sgn(~-  k)(f, (~)-fl (k)) 

, q~y sgn (~ -  k) ( f  2 (~)-f2 (k)) 

(3.13) 

where the strong convergence takes place in g2comp(R+ x R2). Thus, by using 
(3.12) and (3.13) in (3.11) and passing to the limit, we obtain the required 
inequality in (3.8). Thus, we have proved that with n A t = T 

max ft(SX(A t)SY(A t))" u o -S(r )  U011L:-*0 (3.14) 
O<=T<=To 

as d t~O. 
It is a simple matter to deduce from (3.14) that with nA t= T 

oma: o (. 
as A t-*0. (See the appendix for a direct proof.) From the semigroup property, 

(SX (~-)SY(At)SX ( ~ ) f  Uo-(SX(At)SY(At))nUo 

= [SX (~-) Sr(A t)(SX(A t) S'(A t))n- l SX ( ~ )  Uo 

-SX (~-) Sr(A t)(SX(A t)SY(A t))"- l Uo] 

= [S~ (~-) SY(A t)(SX(A t)SY(A t))n- l sx (~-) Uo 

- SX (~-) SY(A t)(SX(A t) SY(A t))"- l uo] 

For wsBVc~L ~, it follows from (6) in Proposition 2.1 that 

S ( ~ - ) w - w  L <CAtlwl~v. (3.16) 

By combining (3.15), (3.16), and the BV stability estimates in (5) of Pro- 
position 2.1, we obtain for uoeL ~176 c~BV, 

(S x (~-)SY(At)S x (-A~-))"Uo-(SX(At)SY(At))"u o L <=2CdtlUolnv (3.17) 

and this estimate with (3.14) implies the convergence of the Strang iterates of 
(0.4). Since analogous arguments hold with the roles of x and y reversed, the 
proof of Theorem 1 is complete. 
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Proof of Lemma 3.1. Our proof is based on the main convergence result of [8] 
on general monotone schemes - this lemma could also be proved by the 
techniques of [13] by using the viscosity method and approximating ]u-k] by 
smooth convex functions. To fix our ideas, to prove (i) we consider the 
solution of the one-dimensional Lax-Friedrich's scheme, given by 

vL,?~ = v7 ~- ;~ ~2 g~ (v;,, v?_~,~) (3~ 8) 

with discrete initial data given by Ia~laYvo. Here we assume that A x ~ d y, 

07~f: < I  (3.19) 2~max 
- [{volle~<u<= Iluoll/.~ U U  

and g~ is the explicit numerical flux function, 

g,(V~,Vj_O_f(V)+f(V;_O 1 
2 2 U  (V~- Vj- 0. (3.20) 

Under the conditions in (3.19) and (3.20), the scheme in (3.18) is monotone (see 
Sect. 4 for definitions) when applied to the discrete initial data InXlarv o and 
since I]VOIILanL~c~BV~ C, it follows from the main theorem of [8] that as A t ~ 0  
with 2x fixed and A x-= A y, 

V" converges boundedly a.e. to 
(3.21) 

v(x,y,t)=S~(t)Vo(',y,t), nAt=t.  

Set v v w=max(v,  w) and v A w=min(v,  w). Define gk(V D V2) by 

g k ( V 1 ,  V2) ~---gi (V1 v k, V 2 v k ) - g l  (Vt/% k, V 2 A k). 

It follows from an explicit calculation using (3.19) (3.20) (and more generally 
from Proposition 4.1 of [8]) that 

(a) A'+ 172 , -k l+ ,V4  ~" k 'v" +~g ~ I.,, V;_ ~d))__<0 (3.22) 
(b) g~(V, V)=sgn(V-k)( f i (V)- , f , (k)):  

We set ck~l=c~(jA x, IA y, nA t)i multiply (3.22)(a) by ~b~,,, and sum (3.22) over j, 
t, and n w i t h m o < n < n o - 1  where noAt<t<(no+l)At ,  moAt<s<(mo+l)At  
to arrive at 

no-- 1 
A x  - k l r n  AtZAxAy47,(A'+IVj" , t -kI+2~+g t j.,,Vf-~.3)<O- (3.23) 

n=mo j , l  

We sum by parts in x and t on the left hand side of the identity in (3.23) to 
obtain 

E ,fi nO -- 1 rio ~ trto mo ~.j,, IVj, z k l a x A y - ~ c k ~ , , t V ~ , , - k l A x A y  
j , l  j . l  

< ~.o~1, A ; . ) 
n=mo+l - j , l  o t  

(no- 1) t ?ix ,fin \ 
| ~ '  + ' t ' J ' l , " k I v "  V n l A x A y l  + .=Z.o At ~-US-~,. j,,, j - l . , ,  I" (3.24) 
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By using the bounded a.e. convergence of V" to SX(t)Vo from (3.21), the fact 
that SX(t)Vo ~ C([0, oo), L 1 (RE))c~ L~176 + x R2), the estimate in (3.24), and finally 
(3.22)(b), we obtain (1) of Lemma 3.1 by applying the dominated convergence 
theorem to (3.24). The proof of (2) is similar. 

Section 4. Fractional Steps for Monotone Schemes 

A difference scheme, U~+I=G(U~_, .. . .  ,U~+q+l) is locally monotone on the 
interval, [a,b], if G is an increasing (i.e., non-decreasing) function of all 
arguments as they vary over [a,b]. In this section, we assume that the 
difference schemes, V"+~=dx(V'),  W'+~=d~'(W"), defined in (2.4), not only 
have conservation form and are consistent but also are monotone on [a,b] 
with respective numerical flux functions, gl, g2, continuous functions of all 
arguments. The upwind scheme (differenced through stagnation points), 
Godunov's  scheme, and the Lax-Friedrich's scheme are all familiar examples 
of one-dimensional monotone schemes [8]. First, we make the elementary 
remark: 

A consistent one-dimensional conservation-form monotone scheme 
with an a priori continuous numerical flux, gl(v_v, ...,Vq), automati- (4.1) 
cally has a Lipschitz continuous flux, gl (v p .... , Vq). 

As proved in [81, when gl is only continuous, such schemes define L 1- 
contractions; thus for a _-< vj, gj < b j = - p, ..., q + 1, 

q + l  

IG(v p . . . .  ,Vq+l) -a(v  p,...,Vq+~)[<= ~ [vt-vz] (4.2) 
l=-p 

so that G is a Lipschitz function of all p + q +  1 arguments. Therefore, A § gl is 
a Lipschitz function of all arguments, in particular, of the q + 1st argument; i.e. 
g~ is Lipschitz in vq and a trivial induction completes the proof. Next, we make 
the observation that if the schemes V "+~ =(~x(v"), wn+I=Gy(W ") a r e  both 
monotone on [a, b], then the scheme defined in (2.6) is the composition of two 
increasing maps and therefore is monotone when all arguments vary over 
[a, b]. From this fact, (4.1), and the remark below (2.6), we conclude that the 
difference scheme in (2.6), formed from dx, dy via the discrete splitting 
algorithm, has the following properties: 

(1) Conservation-form and consistent with with (0.1). 
(2) Lipschitz continuous numerical fluxes, g~, g2. (4.3) 
(3) Monotone  on [a, b]. 

The basic result proved in [81 was that difference schemes with the 
structure in (4.3) always converge to the unique weak solution of (0.1) satisfy- 
ing the entropy inequalities in (2.2). As a corollary to this fact, we immediately 
obtain the following: 

Theorem 2 (Fractional steps for Monotone  schemes). Given Uo~U (R 2) c'~ L ~ (R 2) 
with ess s u p u o < ' b ,  ess i n f u o > ' a ,  we define discrete initial data, U ~ by 
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U~ . Compute U "+1 iteratively from U ~ via the discrete splitting 
algorithm in (2.6) where it is assumed that the component schemes, G~, GY are 
monotone on [-a,b], have conservation-form, are consistent with the one- 
dimensional operators in (0.2), and have continuous numerical fluxes. Then as 
A t ~ 0  with 2 ~, 2 y fixed, U" converges to S(T)u  o. More precisely, if nA t= T and 
T O is any given number, 

max ]lU"--S(T)uoIIL~(g2)~O as At--*O O<-_T~To 
The same results are valid for the other discrete splitting algorithms in (0.3), 
(O.4). 

Remark 1. The above theorem is false if the assumption of monotonicity is 
dropped (see [,12] and Section 5). 

Remark 2. Weaker hypotheses than the differentiability of the numerical fluxes 
are of more than purely mathematical interest - Godunov's  scheme has a non- 
differentiable numerical flux (see [-8]). 

Remark 3. From a practical point of view, it is a moot point that Theorem 1 
applies to the discrete Strang splittings in (0.4) since monotone schemes are 
only first order accurate on smooth solutions (see [,12]). 

Finally, we conclude this section by mentioning that it is possible to give 
another proof of Theorem 1 by approximating the x and y sweeps by mono- 
tone difference schemes and applying Theorem 2. For this purpose we need 
to introduce a monotone, conservation-form, 2 m +  1 point generalization of 
Godunov's  method to approximate the x and y sweeps and prove certain 
uniform estimates on these approximations as m--.o~ which guarantee the 
convergence in Theorem 1. In fact, this argument was the first proof of 
Theorem 1 discovered by the authors. 

Section 5. Entropy Production for Fractional Step Algorithms 
Using the Lax-Wendroff Scheme 

In a single space dimension, the standard Lax-Wendroff [16] difference 
schemes approximating the equations in (0.2) are three-point, conservation- 
form, second-order difference methods with the specific numerical flux func- 
tions from (2.4) given by 

gl (vj_ 1, v ~ ) - L  (vJ)+ fl(V~ - I )  ;t.~ (.Vj+VJ 1 ) 
2 +~-a~  - (fl(V~)- f~ (Vj_ 1)) 

g2 (Wk_,, Wk)- f2 (Wk)+ f2 (Wk_ 0 2: (WR +~Vk ~ ) 
2 t - 2  az - (f2 (Wk)-- fz (WR- 1)) 

(5.1) 

where a l ( u ) = - ~ -  ~ , a2 (u )= -~ ,  ~. We denote the corresponding standard Lax- 

Wendroff schemes by L~t., L~t,. When Strang introduced the algorithm in (0.4) 
into inviscid computational dynamics, he proposed using S~(At")~-L~t,, 
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SY(A tn)~ L~z, to construct the discrete Lax-Wendroff splitting algorithms via 

f i  L~r L~,rL~,r U ~ or f l  LSt~ L~,~L~,~ U ~ (5.2) 
r = l  2 2 r = l  2 2 

We note that one needs a priori varying time steps because the linearized 
A t r 

stability conditions, ~ la 1 (U~,k)[ --<% ~ 1, which dictate the time step size, d t r, 

vary from time level to time level. 
Here, we analyze the question, when are limits of the discrete Lax- 

Wendroff splitting algorithm (and appropriate modifications) the unique weak 
solution of (0.1) obeying the entropy inequalities in (2.2)? We begin with the 
following simple remark: 

Example 5.1. Entropy violating solutions can be computed by (5.2). 

Let U ~ have discrete initial data of the form 

~ul, j_<O (5.3) 
(U~ (u2, j > 0  

where the data on the right hand side define initial data for a one-dimensional 
steady entropy violating shock for the standard Lax-Wendroff scheme. Such 
data always exist even when fl  is convex as long as fl(ul)=fl(u2) (see [12, 20], 
for many examples). 

A trivial calculation establishes that the initial datum in (5.3) is a steady 
entropy violating shock computed by the split Lax-Wendroff algorithm de- 
fined in (5.2). The same remarks apply for systems of conservation laws [20] 
and for splitting algorithms when G y is any conservation-form difference 
method. Furthermore, the examples in [18] also can be generalized to prove 
that the algorithms in (5.2) can be nonlinearly unstable. The Lax-Wendroff 
scheme is not a monotone scheme and the above example indicates that 
Theorem 2 in Sect. 4 can be false when one of the steps is not monotone. 

In [19], Majda and Osher studied a modified Lax-Wen&off difference 
scheme in a single space dimension with numerical flux functions from (2.6) 
given by 

~,~(Vj_~, Vj) - f ' (V j )+  f~(vj-O 
2 

+ 2. (f,  (V~)-f, (Vj_ ,))2 ~- C lax (Vj)-a 1 (Vi_ ,)[ (Vj- Vj_ ~) 
2 Vj- Vj_ 1 (5.4) 

f2(Wk)+ fdG_ O 
g2(Wk- l, Wk)= 2 

2,, (fz(Wk)- f2(Wk_ l)) 2 t_C laz(Wk)_az(Wk_ l)l (W k Wk_ l). -t- 
2 Wk-W,_ l 

These schemes, denoted by L~t., L~t. below, retain the desirable computational 
features of the standard Lax-Wendroff schemes. They are three-point, con- 
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servation-form, and second-order accurate - in fact, ~I(Vj_ I, Vj)=gl(Vj-1, Vj) 
+ O(] Vj_ ~-Vjlz), etc. Furthermore,  it was proved in [15] that under appropri- 
ate technical restrictions on C and on the C.F.L. condition, when f~ is strictly 
convex so that ]f['(u)l>6>O, the undesirable computational features of the 
standard Lax-Wendroff  scheme alluded to in Example 5.1 are eliminated for 
the one dimensional modified Lax-Wendroff scheme, L~At .. 

Here, we study correct entropy production for the modified Lax-Wendroff 
splitting algorithm analogous to (5.2) and defined by 

U " -  UAt. L%~ L~,. U ~ 
r = l  2 2 

or (5.5) 

U " - ~  L5,r "~ - u ~ 
v = l  2 2 

and use the notation, U"++=L~,r U", U"+~=L~,r U "++ when studying the first 
2 

algorithm in (5.5) (symmetric arguments apply to the second algorithm in 
(5.5)). 

We assume that the space steps satisfy A y = ~ A x for ~ a fixed constant and 
also that the time steps A t" and the constant, C, in (5.5) are chosen so that the 
linearized C.F.L conditions, A t" < A t o and 

A t n 

max [al(U}" k)] < t  o 2 A x  j.k 

A t" 
max laz (U~-~ ~)] <to 

y A X  j , k  

A t" 
max lal (U2~e)l <e  o 

2 A x  j , k  ' - -  

(5.6) 

IL ' (u ) l~  >0, If~'(u)t~6>o. (5.7) 

We remark that such strategies for the time steps, At", as given in (5.6) are 
always possible for the modified Lax-Wendroff splitting algorithms in (5.5) 
under the mild growth restrictions, 

lal(u)l•C(1-4-[uf) , for some p>O 

[az(u ) ~ c(1 -t-lul~ 
(5.8) 

provided e o > . 1 4  is sufficiently small. We omit the proof since it is a simple 
generalization of the argument in Proposition 4.1 of [18] but only state the 
conclusion of that argument. Such a strategy meeting the conditions in (5.6) is 

are obeyed. Here t 0 and C are chosen to satisfy the technical restrictions 
guaranteeing stability and correct entropy production for the corresponding 
one-dimensional difference operators, L~,r , LYAtr as listed in the main Theorem 
of [19] provided that additionally, z 
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always possible under the restrictions in (5.7), (5.8) with the time steps, A t ~, 
satisfying 

~oAx v 
A t o > A t" > - -  ( 1 + ~- ~- (l[ Uo iI 2) p (A x) - P)- t (5.9) 

- -  ~ C ~  

with Cr a fixed positive constant. 
The entropy inequality which we verify below for limits of (5.5) (see 1-14, 19] 

for the motivation) has the form 

1 U2 (~p ~p F2(U)) SSS (~t 2 +~-~x Fl(u)+~y _ dxdydt>O_ (5.10) 

for all p>O, p~C~(R + x R  z) u 
where F~(u)= S sai(s)ds, j=  1, 2, 

0 
Given a grid function, U", computed by (5.5), we define the interpolant of 

U ~ by 
un, 

UAX(t)= U"+i, 

U~+~, 

We have the following result: 

n-1 n-1  

/=0 l=0 
n-1  n-1  
E At'+�88 At~<=t< 2 Att+�88 Atn 

1=0 1=0 

n--1 i Att+�88 At 2. 
/=0 /=0 

(5.11) 

Theorem 3. Assume that I[ uOJIL2(R2) <= C and that U n is computed from U ~ via the 
modified Lax-Wendroff splitting algorithm in (5.5) with a strategy satisfying the 
restrictions in (5.6) and that f~,fa satisfy the nondegeneracy conditions in (5.7). 
Also assume that UaX(t) converges boundedly a.e. to u(x, y, t) as Ax-~O. Then, 

(1) u(x, y, t) is a weak solution of (0.1) which satisfies the entropy inequality 
in (5.10). 

(2) If additionally, u(x, y, t )~BV(R 2 • R +) and f2(u)-af l (u)+b(u)+c,  then 
u (x, y, t) is the unique weak solution which satisfies the entropy inequalities in 
(2.2). In particular, correct entropy production is valid for the two dimensional 
inviscid Burger's equations in (0.7). 

For the moment, we assume the conclusion of (1) in Theorem 3 and 
indicate, via examples, that we expect this result to be sharp. Assuming (1), we 
also indicate how the conclusion in (2) follows. 

Our first example indicates that the modified split Lax-Wendroff scheme 
can still compute entropy violating solutions when the nondegeneracy con- 
ditions in (5.7) are not assumed. 

Example 5.2. Consider discrete initial data, U ~ with 

0 ~Ul, j~-~O 
(U) j .k=  u2, j > 0  

where f l  is any smooth function satisfying f l(uO=fl(u2),  ax(ul)=al(u2). Also 
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assume that there exists u* ,u .  belonging to the interval (Ul,U2) with 
f l  (u*) > f l  (u 1), f l  (u.) < f l  (u 1). The function, f2 (u), can be arbitrary. Then, 

(I L t. v~ v ~ 
r = l  2 2 

and the limit of U ~ as A x ~ O  is a steady weak solution which violates some of 
the entropy inequalities in (2.2). 

Next, we discuss the implications of (1) when the nondegeneracy conditions 
in (5.7) are enforced so that the entropy inequality from (5.10) is satisfied by 
the limit. Also suppose, as in (2) above, that the limit u(x, y, t), has the mild 
regularity u ~ B V ( R 2 x R + ) ~ L ~ ( R 2 x R  +) (we get the L ~ bound from the 
assumed bounded a.e. convergence). Because of this regularity, it follows from 
the work of Volpert ([24]) that u can be treated formally as if this solution 
were piecewise smooth. Thus, as in [14], across shock surfaces, the inequalities, 

S~(u~- u~)--(nl(FI(UL)--FI(uR))+n2(V2(UL)--F2(uR)))__<0, 
S = nl ( f l  (uL) - f l  (uR)) + nz(fz(UL)--fz(UR)) (5.12) 

UL--U R 

are implied by the entropy condition in (5.10). 
For general, f l  (u), f2 (u) satisfying the conditions in (5.7), the inequalities in 

(5.12) are not powerful enough to characterize the unique weak solution 
satisfying the entropy inequalities in (2.2). We present the following example 
which illustrates this fact: 

Example 5.3. Consider solutions of  (0.1) with f l  (u)=-u2 + cos (u), fz  (u ) -u  2, then 
f l " (u )> l ,  fz'(U)=2 so that the conditions in (5.7) are satisfied. A steady weak 
solution of  (0.1) violating the entropy conditions in (2.2) is given by the data, 

~'(2p+�89 x > y  
u = ~ ( 2 q + l ) n ,  x < y  

where p and q are integers with p <q. On the other hand, the inequalities in 
(5.12) are satisfied since for the above data, they are 

S = 0 ,  

S 2 1 1 
( N L - - U 2 ) - - ~  ((F 1 (UL)--F 1 (UR)--(F2(u2)--F2(UR)))~-~ ~ (2q-- 2p)<0.  5 

Thus, the entropy inequality in (5.10) is obeyed by this weak solution but 
(some of) those in (2.2) are violated. In fact to rule out such entropy violating 
solutions, one needs at least 2 (p -q )  of the entropy inequalities in (2.2) 
satisfied. It is unlikely that limits of the split (modified) Lax-Wendroff scheme 
conserve more than a few additional functionals and, of course, ( p -q )  can be 
arbitrarly large. This example is 'evidence' to support the claim that we expect 
Theorem 3, although restrictive, to be sharp in general. 
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Next, assuming (1) and the additional regularity that u belongs to BV(R 2 
x R+), we claim that the conclusion in (2) of Theorem 3 is valid. It is a special 

case of results of Mock [21] that the entropy inequality in (5.12) implies the 
infinite number of inequalities in (2.2) provided that, for fixed h, nlf l(u ) 
q-n2 f2 (u) is either genuinely non-linear or identically linear. But as mentioned 
in the introduction, these conditions are equivalent to (5.7) and f2(u)-afl(u) 
+ b u + c. Once the inequalities in (2.2) are satisfied, it follows from Kruzkov's 
uniqueness theorem that u is the unique 'physical '  weak solution. 

Proof of (1) in Theorem 3. Below, the constant K denotes a number satisfying 
[ U~X(r < K - the existence of such a K follows from the assumed bounded a.e. 
convergence of U ~x. 

Under the restrictions in (5.6) on the time steps, At", it follows from 
Lemma2.1 in [19] (with the switch, 0 - 1 )  by utilizing the choice, p - 1  and a 
trivial summation over the other variable that the following inequalities are 
valid: for a fixed constant fl > 0, 

[IU,++ 2 +fl ]A+U"]2IA+al(U")[ L,~RZ)<I l L2(R2) A x = U n 2 

U "+~" ~2(R2)+3 IAr+U"+~'I2IAY+az(U"++)I--- =<tlU"++II 2L~R2> (5.13) 
II A y [IL,r 

IA+ U"+~IE [A+ al(U"+e)t L~r II u "+~ [ 1 ~ ) +  3 Ax _-< I[ U"+~II~<R~. 

Similarly, by using p>O, pe C~ in Lemma 2.1 from [15], we obtain 

Ax Ay |~'j,k ej, k 1 j,k I_- ~ 2 ((U")s'k)2 + FI ((U")s,k) 

2 

-->-- --K ~ Ax Ay (~o ]A+ P~+v'kI [A+ Ax 

i - ~ n + ~  r~n+�88 y n -I 
n+�88 ] y~xAy/rJ.~__-~'J,~ 1 ((U.+~)j,k)Z+doPj, k F2(( U )j,k) 

j,k L At" 2 ~ (5.14) 

n+�88 > - - K 2  AxAy  [Ar+PJ'k+vl lAY+( U )j,k[ , 
- j,k Ay 

r,~" + 1 _ ,~.+ �88 A x -n  ] 
~ Ax Ay ] ~%k---vj'k 1 
j,k I_ A t" 2 ((U"+'~)J'k)2 + Vl ((U"+~')i'k) 

d 

2 

_>--K j,k ~ Ax Ay (~-~o [A+ AxP~+~ [A+ (U")j,k ]) 

where V o is a fixed integer. We assume that suppp~R2x[O,  To-1]; by 
summing the first and third inequalities in (5.13) over At" with 
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N 

T 0> ~ A t " > T  o - l ,  we obtain 
n = 0  

l l 

N A t" y, IA+ sn+412 IA+ al(U"+i)[  < T  O (5.15) 
t l=0 5 2  e I =~- II U~ 

l = 0 , 3  

As in [19], it follows from this estimate, the genuine nonlinearity condition in 
(5.7), and HOlder's inequality (with 3+5=~ 2 1) in time that 

N ' CTo(Ax)~ 

n=O 
l=O, 3 

(5.15a) 

and similarly, that 

N CYo~(Ax)+ 
at" iI IAr+ u"+~l IIL~<R~ tl U~162 (5.16) 

n=O 7 

where C is a fixed constant depending only on 7- 
We define g~x(t) to be the characteristic function of the set, 

Following a remark in Sect. 3, we observe that since (5.6) is satisfied for the 
time steps, 

Zjx(t) weakly , 1 in L]oc(R 2 x R +) 

(5.17) 
1 - Z~x(t) weakly , �89 in L]oc(R 2 x R +) 

as Ax~O.  Given q=O, 1, 2, 3, we define lq b y / o = 0 ,  11 = 1 , /2=3,  13=4. Next we 
sum the inequalities in (5.14) over time using the weights At "'q where At "'~ 

A t" A t" A t" 
- At " ' 1 -  At" '2= and apply the estimates in (5.15), (5.16) to 

4 '  2 '  4 
obtain 

lq+l n+q 
1 N ( p n +  4 - - D  4 ]  .T~n+/q 2 
-~ E A t " ' q E A x A y  ~- ~ s  ] �89  4)j,k 

n = 0  j,k 
q = 0 , 1 , 2  

At" ~Pj, k q- OYj, k + Y, ~ -  Ax ,~y (1-z~x(t))f~(U?,~(t)) 
n=O j,k 4 Ax  

A t n / , t y  ~ n + X , \  
[ zJOIJj'k ~ F2(Uj, k(t)) + ~ ~ - -  A x A y (Z A~ (t)) a~ 

> -- K C Iptc~(A x) + (5.18) 

where C is a fixed constant. In the above, we have symmetrized the contri- 
butions from the first and third terms of (5.14) by using 
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~ " (_A " "+~) A~177 ~PJ'k+A~pJ'k +O(At') 
Ax - -2  A X  

which results in errors of the same form as implied by (5.15), (5.16). 
By assumption, UdX(t) converges boundedly a.e. to u(x, y, t); thus, by the 

dominated convergence theorem, the first term in (5.18) converges to 

�89189 as Ax--*O. 

By the same assumption, we obtain (using the obvious piecewise constant 
interpolation for r "+~- A0 Pj, k ) that 

A~ "+'l- 
P~,R Fz(Uf.~(t) ) stro.g,y 8 p  F2(u) (5.19) 

2Ay Oy 

where the strong convergence takes place in L2omp(R2 • R+). From (5.17) and 
(5.19) it follows that the third term in (5.18) which is a discrete L 2 inner 
product of the term on the left in (5.19) and Z~x(t) converges to 

�89 e2(u)dxdydt 
cy 

as A x-~O. 
Since a similar argument applies to the second term in (5.18), as Ax--*O, 

these estimates imply the required entropy inequality from (5.10). The fact that 
u is a weak solution follows directly from the remark below (2.6) and a 
standard result of Lax and Wendroff  [16]. 

The entropy inequality in (5.10) can characterize physical weak solutions 
with sufficiently weak shock strengths (in contrast to Example 5.3) under 
appropriate additional assumptions but this matter is too special and unin- 
teresting to discuss here. 

Appendix 

A General Theorem on Dimensional Splitting for Conservation Laws 

Consider the initial value problem 

N 

(i) u,+ ~ f~(u)x = 0  for t>O, x e l R  N 
i=1  

(ii) u(x,O)=uo(X ) for x E N  N 
(A.1) 

where (f l  . . . .  ,fn):  IR-~IR N is locally Lipschitz continuous and uoeL~(~N). It 
is known [13] that then there is a unique function u(x,t), called the entropy 
solution of (A.1), which satisfies: 

u~L~(~.N x (0, ~)), t~u(',t)~C([O, ~) :  L ~ ( ~ ) ) ,  

u (-, 0)= u o, and the entropy condition 
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F o r  each qSe C~(IR + x IRN), qS>0, and k ~ t R  

I (tu( x, t)-k[ 49t 
0 Nr~ 

N 

+ ~ sign (u(x, t)-k)(f~(u(x,  t)-f~(k))4)x~(X, t)dx dt>O. (A.2) 
i = 1  

D eno te  the en t ropy  solut ion of (A.1) by S CI ...... frc)(t)Uo. Tha t  is, 

S Cf ...... YN)(t)Uo=U(Xl, ..., XN, t) 

when u is the solution of (A.1). Set S I ' ( t ) = S  (st'~ ..... ~ SI2(t)=S (~176 ..... ~ 
etc. We  wish to recover S from the Si"(t). The  semigroup  associated with 
the one space variable p rob lem 

ut+h(u)~=O, 

u(z, O) = Uo(Z) 

will also be wri t ten sh(t). This is consis tent  with the above  no ta t ion  in that,  for 
example ,  if we solve 

~tu(x l  .... ,XN, t)+ o@l fX (u(xl,x2, ...,xN, t)=O 

u(xl ,x2 .. . .  ,xN, O)=uo(xl . . . . .  xN) 

by regarding (x 2 . . . .  ,xu) as pa ramet r i z ing  the initial da ta  in a one space  
var iable  p rob l em we obta in  the en t ropy  solut ion of  the N space var iable  
p rob lem.  One just  checks the en t ropy  condi t ion  to see tha t  this is so. 

We define general  d imens iona l  spli t t ing me thods  in te rms of finite se- 
quences % . . . .  , ct M of numbers  satisfying 

cti>0 for i = 1  . . . . .  M and % + . . . + C ~ M = I  (A.3) 

and funct ions {h: 1 . . . .  , M}-- '{ f l  . . . . .  fN}, that  is: 

for each ie{1, . . . ,M} ,  h( i )e{ f  1 .... ,fN}. (A.4) 

Given  ( A t ) > 0 ,  a candida te  a p p r o x i m a t i o n  S a'  to S (-r ...... I,~) is defined as 
follows: Set 

(i) S~t(t)uo=Sh(l)(t)Uo for 0 _ < t < %  A t, 
(ii) Sa~(t) Uo=ShU+U(t)Sat((Cq + . . .+e j )A t )u  o for j +  1 =<M and 

(% + ... +~j)A t<=t<=(% + ... +ej+ 1)A t, (A.5) 
(iii) Sat(nAt+~)uo=S~'(~)Sat(At)"Uo for n = l , 2  . . . .  and 

O~<=At .  

Together ,  (A.5)(i) and (A.5)(ii) define S~(t) for 0__<t__<(~ + ... + % t ) A  t=A  t (by 
(A,3)) and then (iii) extends this definit ion to all t > 0. The  a p p r o x i m a t i o n  $ ~  is 
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consistent with S ( f l  . . . . .  fN) if 

h( i )  = f j 

is independent of j. In this case we have: 

Theorem A. Let  f l=fl l  =fl~- . . . . .  fiN" Then for every u o e L ~ ( N  N) 

(A.6) 

lim S~' (~ ) uo= S(I,,I ...... I~)(t) u o 
A t ~ O  

where the convergence takes place in C([0, oo): Lkoc(IRN)). 

By repeating the argument in (3.4)-(3.7) of Sect. 3, we establish Theorem A 
as a consequence of 

Proposition A. Let  A t I > 0 and A t 1--~0 as 1 ~ oo. Let  lim S ~" (t) u o = v (x 1 . . . .  , XN, t) 
l ~ o o  

a.e. Then for every ?=-[u-k[  and ~b~ CI(~N • (0, c~)) with (a>=O. 

N 
j (?(v)~b,+ ~ fl, Fi(v)c~x,)dxdt>=O (A.7) 

0 ~"~ i=1 

where flj is given by (A.8) and Fi= sgn(v-k) ( f i (v ) - f , . (k ) ) .  

One finds from (A.3) that v satisfies the entropy condition associated with 
N 

v,+ ~ f l i f i ( v ) x = O  and, if f l=f l l  . . . . .  fiN, then v(x,t/f l)  satisfies the entropy 
i=1 

condition for (A.1). 
It remains to prove Proposit ion A. 

Proof  of  Proposition A. Let t , , j  = n A t + ( ~  +. . .  + aj) A t for n = 0, 1,2 . . . .  and j 
= 1 . . . .  ,M. By the definition of S~t(t), ud'=S~'(t)Uo satisfies (using the remark 
below Lemma 3.1 for S h(j+l) and setting ~ ( j ) = i  if h(j)=f~) 

t n , j +  1 

I ~(7(uat)c/),+Fje(j+ uAt' d x d t  1)( ) ( ~ x g ( j +  1)) 
t n , j  ~ N  

>= j ?(uat (x , t , , j+l ) )4(x , t , , j+l )  d x  

-- I 7(uat(x,t.,j) Cp(x,t.,2) d x  
~ N  

(A.8) 

given by sgn(ua t -k ) ( f i (ua t ) - f i ( k ) )  provided that h( j )=f / .  

where 

T (  N ) , dx >0, I Y(un')cP, + Z)~ ' ( t )Fi (ua ' ) ( )x  �9 d t  
0 ~N i=1 

Z~t(t)=l i f t , , j < t < t , , j +  1 for some n , j  with h ( j+  1)=fl ,  

and Z~'(t)=0 otherwise. 

(A.9) 

(A.IO) 

where Fg(j+l) is 
Summing the relations (A.8) over j = 0 ,  ..., M - 1  and then n = 1, 2, ..., noticing 
that t~.,M=t,+l, o and using the collapsing nature of the sum on the right 
together with the definition of ~,'F(j) yields 
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Now we use the elementary facts that 

oo 

lim ~ ~Zr  S 50(x , t )dxd t  
d t ~ O  0 N N  0 rg N 

(A.11) 

for each ~gELI(IRNx(0, oo)) (see below), IXr and Fi(ua")Ox~Fi(v)(~x, in 
LI(IRN x (0, oo)) to pass to the limit in (A.9) as A t=A h-~O and find (A.7). A 
remark about (A.11) may be in order. If Xi(t)=l for % + . . . + % < = t < % + . . .  
+c~j+ 1 and h ( j + l ) = f l ,  Zi(t)=0 for other t in [0,1] and )~i is 1-periodic, then 
Xr = Z,(t(A t)). Now 

SO 

1 

o h(i) = f~  

( n +  1 ) A t  

X]t(s)ds= A t [3i. 
n a t  

If Oe C~((0, ~ ) x  IR N) and O(x, t )=0  for t >  T we thus have 

[ T / A t ] + I  ( n + l ) A t  

T ~Zr dr= ~ ~ ~ Xr d tdx  
0 IR N TR N n ~ O  n a t  

where Jr] is the greatest integer in r. Now ~9(x,t)=~(xlnAt)+O(At ) for 
nA t<_t<(n+ 1)A t so the right-hand side above is 

[ T / A t ] + I  (n+ 1}tit 

~ ~ X~t(t)(~(x, nAt)+O(At)) dxd t  
~.N n =  0 n a t  

[ T / d t ] +  1 (n+ 1)dr 

= ~ fliAt ~ O(x, nAt)dx+O(At)  
n - - O  n a t  

oo 

=fl,~ ~ t~(x,t)dxdt+O(At). 
0 ~d  v 

The general result (A.15) follows from approximation by elements of C~(IR N 
• (0, oo)). (This result is, by the way, well known.) 

We remark that the structure of the arguments in this appendix allows one 
to apply them to the notion of 'integral solution' in nonlinear semigroup 
theory. 

A c k n o w l e d g e m e n t . "  The authors thank BfiSrn Engquist for suggesting examples of smearing for the 
split Glimm scheme in a private conversation. 
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