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In 1979 Chr. Riedtmann introduced coverings of the Auslander-Reiten quiver
I'; of a representation-finite algebra A ([15]; see also 1.3 and 2.2 below). Our
main results are that I, admits many finite coverings in general, and that each
of these is the Auslander-Reiten quiver [, of some representation-finite M
(2.9). In order to prove the first statement we show in §1 that the finite
coverings of I, are classified by the actions of the fundamental group II (1.2)
of Iy on finite sets; in general, there are many such actions because II is a free
(non-commutative) group (4.2). We obtain our second main statement by
considering the algebra E which is defined by the mesh relations of a finite
covering 4 of I, ([16], 1.4; see 2.5 below); such an E satisfies the Auslander
conditions characterizing the algebras of the form End(®M,), where M,

ranges through chosen representatives of the indecomposable modules over some
representation-finite algebra (2.3). In case A=1I,, the relations between E and
A are studied in §5.

The theoretical notions developed in this paper give rise to concrete algo-
rithms (and computer programs) which enable us to construct the Auslander-
Reiten quivers for plenty of algebras. We enter upon these algorithms in §6
tackling the special case IT=1. The general case will be examined in a sub-
sequent publication, from which we borrow the Auslander-Reiten quivers of
the 14 “maximal” algebras listed at the end of our paper (each basic connected
representation-finite algebra with two simple modules is isomorphic to a quo-
tient of a “maximal” algebra or to its opposite). The list of these maximal
algebras has also been obtained by A.V. Nikulin and C.A. Panasiuk [14] as an
application of the methods developed in Kiev.

The present paper is intimately related to the results of Chr. Riedtmann
([15], [16]). Her unpublished collection of Auslander-Reiten quivers was a
decisive help in proving that the fundamental group is free. Unfortunately, her
own work on selfinjective algebras of class D, and the distance between Boston
and Ziirich finally prevented us from carrying through the original plan of a
common publication. We take pleasure in thanking her for encouragements
and remarks.
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The second author gave a series of lectures on this publication at the
Ukrainian Academy of Sciences (Kiev, October 1980). The results (except §6, 7)
were announced by him at the Conference on Representations of Algebras in
Puebla (August 1980). His preliminary version was finally cleaned and im-
proved by the first author.

For assistance and support we express our gratitude to R. Bautista, L.A.
Nazarova, A.V. Roijter and S. Smale. For the verification of our numerical
results by means of the computer and the preparation of the manuscript we
like to thank C. Steinemann, N.F. Gabriel and R. Wegmann.

1. The Fundamental Group of a Translation-Quiver

1.1 Consider a quiver I" together with a bijection 7, whose domain and range
are both subsets of I, (=the set of vertices of I'; see Fig. 1.1).
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Fig. 1.1 f

The pair (I',1) i1s called a translation-quiver (= Darstellungskdcher in the
sense of Riedtmann [157) if the following conditions a) and b) are satisfied:
a} I' has no loop (3 and no multiple arrow -=3.

b) Whenever 7 is defined at some point xel,, the set x~of predecessors of
x in [ coincides with the set (tx)* of successors of 7x:

i
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As usual, we often write I' instead of (I, 7). The bijection 7 is called the
translation of (I, 7). The vertices of I' where t is not defined are called
projective; those where t~! is not defined are called injective. The full sub-
quiver of I' formed by a non-projective x, by its non-injective translate 7x and
by the set (tx)* =x" is called the mesh starting at tx and stopping at x; for
each ael; (=the set of arrows of I'} with non-projective head x and tail y we
denote by oo the unique arrow with tail tx and head y.

For a geometric interpretation we refer to §4 below.
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1.2 Let I' be a translation-quiver. In order to define the fundamental group of
I' at some point, we introduce “new” arrows tx-1%»>x, one for each non-
projective vertex xel,. We represent these new arrows by broken oriented line
segments and say that they have degree 2 in contrast with the old arrows of I’
whose degree is defined as 1. The vertex-set [}, the old and the new arrows
give rise to some quiver I, which may have loops (see Fig. 1.2 which represents
I, when I is the translation-quiver of Fig. 1.1).
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Let x,yel,. A walk of I' is a path of the quiver formed by I' and the
formal inverses «~! of the arrows ael, ([7], 4.1), ie. a sequence
w=(yla,, ..., o, |x), where «,,...a, 0, is a formal composition of arrows of I or
of formal inverses of such arrows; this formal composition is supposed to start

at x, to stop at y. In the case of Fig. 1.2 for instance, the sequence

(10,66, y,, 6, 6B,(@B) ™ B~ o) el p5t vt x)

is a walk from x to y. A walk from x to y may be composed with a walk from
y to z according to the formula

(@ Bus s BV W Oy ooy 2y [X) =21 B ooy By s o 00 ).

On the set of all walks of I we define the homotopy relation as the smallest
equivalence relation H satisfying the conditions a), b) and c¢):

a) (x!a,a“Lx);(xllx);(xI,B“’,ﬁlx) for each arrow ael} with head x and
each arrow fel with tail x.

b) (x|, galrx) % (x]7,]tx) and (exl(@o)™, a7 x) » (tx]y; '|x) for each ar-
row o of degree 1 with non-projective head x.

¢) The relation v v’ implies wo x wv' and vu % v'u whenever this makes
sense.

Clearly, the composition of walks induces a {partially defined) composition
of homotopy classes: if w denotes the homotopy class of a walk w, then W7 is
defined whenever wv is, and we have wo=wv. In particular, for any given
xely, the composition is everywhere defined in the set II(I, x) of homotopy
classes of walks from x to x. For this composition [I(I,x) is a group: the
Sundamental group of ' at x.
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1.3 The universal cover I' of I' at the point xely is by definition the following
translation-quiver: the points of I’ are the homotopy classes w of walks w of I’
which start at the given fixed point x=w" and stop at some (variable) point
‘wel,. The arrows of I are the pairs (W, a) formed by a homotopy class wel;,
and an arrow ‘w—2-z of I'; tail and head of (W, «) are the classes w and
(zla|'w)w respectively. Finally, the translation of I" is defined by the formula
tw=(t'w|y;}|'w)w, which makes sense whenever "w is not projective; other-
wise, W is a projective point of I

Obviously, there is a unique translation-quiver-morphism 7: I'—I" such
that n(w)="w. This is a covering morphism in the following sense ([15]).

Definition. A translation-quiver morphism f: A— I is called a covering if for each
point ped, the induced maps p~—(fp)~ and p*™ -~ {(fp)” are bijective. Further-
more, tp and 1~ q should be defined if tfp and 1~ 1fq are respectively so (of
course, since f is a translation-quiver-morphism, we have ftp=1tfp whenever tp is
defined) (see Fig. 1.3a).

Fig. 1.3a

In Fig. 1.3b) we give a simple example of a universal covering. Only arrows
of degree 1 are represented; p and p, are projective points, whereas ta=a,
tb=>b and tc=c. The quiver I' is drawn on a cylinder (see §4), whose “universal
covering” is a serrate strip.
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Fig. 1.3b
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14 Let f:4—T be a covering and f~'(x) the fibre of xel;, in 4,. For each
walk w of I starting at x and each point yef ~!(x), there is a unique walk v of
A4, which starts at y and “lies over” w. The terminus “v of v depends only on y
and w. In particular, if ‘w=x, ‘v lies in f ~1(x). In this way we get an operation
of the fundamental group II(I} x) on f ~(x): wy="0.

Proposition. If I' is a connected translation-quiver and xel,, the functor

frf~Y(x) is an equivalence between the category of I'-coverings and the category
of II(I, x)-sets.

Clearly, the category of I'-coverings has as objects the coverings f: 4 — 1T, as
morphisms the commutative triangles

A--Hos ff
T

where f and f’ are coverings and d is a translation-quiver-morphism (this
implies in fact that d is also a covering). A II(I] x)-set is a set M together with
an action of II(I, x) on M from the left.

Proof. Let us just produce a “quasi-inverse” functor. Starting with a I1(I] x)-set
M we first construct a translation-quiver I' x M having I}, x M as set of vertices
and I} x M as set of arrows: If x—%>y is an arrow of I" and meM, the arrow
(o, mJel; x M starts at (x, m) and stops at (y, m). Furthermore, we set t(x, m)
=(tx, m) whenever x is non-projective. The translation-quiver I'x M is the
direct sum of some copies of I indexed by M. It admits II(I; x) as a group of
automorphisms: indeed, for each eII(T] x), the permutation (W, m)— (w75~ ", m)

~ ~ I
of I, x M yields an automorphism of I'x M. We denote by I' x M the quotient
of I' x M under this group-action. This is a translation-quiver having as points
the orbits of IT=I(I; x) in I, x M, as arrows the orbits of Il in I} x M. It is

. 11
related to I' by means of a covering morphism f:I' x M — I, which is deduced
from the projection I' x M — I, (W, m)—"w=7w by passing to the quotient. The
construction M+—f supplies us with the wanted quasi-inverse functor.

1.5 1In the particular case of the universal covering n: ['— I, the fibre 7 !(x)
is the fundamental group itself equipped with the action by left translations.
An automorphism of the IT-set =~ '(x) is just a right translation 6—é&% of II.
The corresponding automorphlsm of the universal covering assigns to the
homotopy class wel;, the composed class wyel. Since each IT-set is a disjoint
sum of IT-sets of the form II/P, where P is a subgroup of II, we deduce from
Proposition 1.4 that each covering of I is a “disjoint sum” of coverings of the
form k: I'/P — I, where « is deduced from n by passing to the quotient.

1.6 Of course, a translation-quiver I' is called simply connected if it is con-
nected and if II([, x)={1} for some xel,. This implies II([;y)={1} for all
yely and is equivalent to saying that each connected covering k: 4—1T is an
isomorphism.



336 K. Bongartz and P. Gabriel

Proposition. Let I' be a simply connected translation-quiver and xel. Then there
is one and only one (translation- Jquiver-morphism x from I' into the translation-
quiver Z A, of Fig. 1.6 such that x(x)=0.

_________ 5___

NNINSNTN, -
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Fig. 1.6

Proof. Define the length A(w)eZ of a walk using the following formulae:
Aﬂ'(xnl an’ et O(1 Ixo):i(xnl (1"|Xn_ 1) +.ot ;“(xl I (xl |X0), /1()’1 o |X)= 1

and AMxfa~ty)=—1 if ael}, Ax|y,|tx)=2, Mzx|y, '[x)=—2. By the de-
finition of homotopy, 4 is constant on each homotopy class. Now, since I is
simply connected, the walks from x to any given yel, are homotopic to each
other. So we may set x(y)=A(w), where w is any walk from x to y. This yields
the wanted quiver-morphism.

1.7 Following Riedtmann [15], a translation-quiver I' is called stable if its
translation is everywhere defined. The simply connected stable translation-qui-
vers can be constructed in the following way: Start with any oriented tree T
and set (ZT),=Zx Ty, (ZT),={—1,1} xZxT,; if x—%>y belongs to T,
define the tails and the heads of the arrows (—1,n,4) and (I,n,o) as in the
diagrams

(1,na) (—1,n,a)

(Vl, X) (l’l, y) and (l’l - 15 y) (}’l, x),

finally, set t(n, y)=(n—1, y). This construction yields a simply-connected stable
translation-quiver ZT. Two translation-quivers ZT and ZT" are isomorphic iff
the non-oriented trees T and 7' underlying T and T’ are isomorphic.

2. Auslander-Categories and Riedtmann-Quivers

In the sequel, k denotes a field, which we suppose to be algebraically closed for
the sake of simplicity.

2.1 A k-category A is a category whose morphism-sets A(x, y) are endowed
with k-vectorspace structures such that the composition maps are k-bilinear.

Definition. A locally finite-dimensional (resp. a locally bounded) category is a k-
category A satisfying the conditions a), b) and c) (resp. a), b) and ¢’)) below:

a) For each xe A, the endomorphism algebra A(x, x) is local.
b) Distinct objects of A are not isomorphic.
c) Vx, yed, [A(x, y): k] < co.
c)Vxed, Y [A(x,y): k]<oo and Y [A(y, x): k] <0,
yeAd yed
Locally bounded categories can be constructed in the following way: Start
with a quiver Q, which may be infinite. The path-category kQ of Q has as
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objects the vertices of Q; if x, yeQ,, the morphism-space kQ(x, y) consists of
the formal linear combinations of paths from x to y. In the k-category kQ
which we get in this way we distinguish two ideals kQ* and kQ*? whose
values at some pair of objects (x, y) are the subspaces kQ*(x, y) and kQ"?*(x, y)
of kQ(x, y) spanned by the paths of lengths =1 and =2 respectively. Given an
ideal T<kQ™2 it is easy to see, that the residue-category kQ/I is locally
bounded iff the conditions d) and e) below are satisfied:

d) Q is locally finite, i.e. the number of arrows starting or stopping at any
vertex is finite.

¢) For each vertex xeQ,, there is a natural number N, such that I contains
each path of length = N, which starts or stops at x.

Conversely, each locally bounded category is isomorphic to such a kQ/I. We
recall the argumentation: Start with any locally finite-dimensional category A.
The radical #A of A is the ideal assigning to a pair of objects (x,y) the
subspace #A(x,y) of A(x,y) formed by the non-invertible morphisms. The
radical-square #* A is defined by #?A(x, )= Y, RA(z, y) RA(x, z). The quiver

zeA
Q, of A has as vertices the objects of A; if x, y are two such objects, we join x

to y with a sequence of n arrows x— y, where n=[RA(x, y)/R>A(x, y): k].
Now, if A is locally bounded, Q, is locally finite. We get an isomorphism
kQ ,/I->» A for some ideal IckQ}? by sending the different arrows x — y onto
respresentatives in ZA(x, y) of chosen basis vectors of ZA(x, y)/#* A(x, y).

22 If A is a k-category, a A-module is a k-linear functor /: A°°— Modk,
where Modk is the category of k-vector-spaces. The A-module 7 is finitely
generated if it is a quotient of a finite direct sum of representable functors. We
denote by mod A the category of all finitely generated A-modules, by ind A
(resp. proj 4) the full subcategory formed by chosen representatives of the
indecomposable modules (resp. by the projective modules).

Let A be locally bounded: a A-module ¢ is then finitely generated iff
Y [£(x): k] <oo; it is indecomposable projective (resp. injective) iff it is iso-
xed

morphic to some A(?, x) (resp. to DA(x, ?), where DV denotes the dual of a vector
space V); the category mod A admits Auslander-Reiten sequences. In fact, the
existence-proof given in [7] extends easily to the locally bounded situation. So
does the construction of the Auslander-Reiten quiver I',; this is a translation-
quiver whose underlying quiver is obtained from Q,,, , by contracting possible
multiple arrows to simple ones.

Definition. A locally representation-finite category is a locally bounded category
A such that the number of Zeind A satisfying #(x) +0 is finite for each x.

It is easy to see that the last condition is equivalent to saying that ind A is
locally bounded.

2.3 Proposition (M. Auslander [1]). The following statements are equivalent:

(i) M is isomorphic to ind A for some locally representation-finite A.

(ii) M is locally bounded and satisfies the following conditions a), b):

a) g/ dim M £2, i.e. Ext3,(m, n)=0 for all m, nemod M.

b) For each projective pemod M, there is an exact sequence 0— p—iy—1i,,
where iy, i,emod M are both injective and projective.
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Proof. (i)=-(ii): Assume that M =ind A, where A is locally representation-finite.
As we noticed in 2.2, M is locally bounded. Obviously, the functor
/—Hom (7, ¢) yields an equivalence mod A proj M. Accordingly, a mor-
phism g:m,—-m; of projM is isomorphic to Hom,(?, f): Hom,(?, £,)
—Hom (2, /) for some morphism f:/,—¢, of modA. It follows that the
kernel of g in mod M is isomorphic to Hom ,(?, Kerf), which is projective.
This proves a).

In order to prove b) we may assume that p=Hom,(? /). Let
0—¢—j,—j, be an injective resolution of / in mod A. This yields an exact
sequence 0—p—i,—i,, where i,=Hom,(?,j,) and i, =Hom ,(?,j,) are pro-
jective by construction. Statement b) now follows from the fact that Hom ,(?, )
is injective in mod M, if j is so in mod A: indeed, for each /eM =ind A4 and
each i€, we have canonical isomorphisms

Hom,, (¢, DA(4, 7)) Hom ,(A(4,?), D£) > D£(7)-=> D Hom ,(A(, 2, £),

which show that Hom,(?,j) is identified with the injective M-module
DM(A(?, A),7) if j=DA(4,7). Accordingly, Hom,(?,j) is an indecomposable
injective M-module, if j is an indecomposable injective A-module.

(il)=>(i): Let us first recall a classical result. With each additive category [
we can associate a new additive category I which looks as follows. The objects
of I are the morphisms of I; a morphism from ioid1 to jo—2>j, is an
equivalence class of commutative squares

, ho .
ly—J)o

(ho, hy): IJ lg
hy

W],
two such squares (hg, h,) and hy, h}) being equivalent if hy —h, factors through
/- Now, the classical result is the following: if I is a full subcategory of an
abelian category C, and if I consists of injective objects of C, then the kernel-
functor Ker: [ — C, which maps i,—{— i, onto Ker f, is fully faithful.

In the situation of our proof, we choose for I the full subcategory of
mod M consisting of the modules which are projective and injective. The
conditions a) and b) mean that the kernel-functor yields an equivalence
[ —=-proj M. On the other hand, choose A to be the full subcategory of I formed
by chosen representatives of the indecomposable modules of I. The functor
j—D(,?) yields an equivalence from I onto the full subcategory of mod A
formed by the injective modules; accordingly, the induced functor [— mod 4,
which maps j,-£»j, onto KerD(g,?), is an equivalence. By composition of the
obtained equivalences projM <1 modA, we get an isomorphism
M -=sind A, since M is identified with a full subcategory of proj M by means
of the embedding pur—M (@2, 1).

2.4 Definition. A k-category M which satisfies the equivalent conditions of the
preceding proposition is called an Auslander-category.
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Assume that M =ind A, where A is locally representation-finite. In 2.3 we
used the embedding A— M, A—DA(A, ?). In fact, it is often more convenient to
use the embedding A—M, A2, A). For this sake we need an M-internal
characterization of the objects of M of the form A(?, A): let us say that an object
u of a locally finite-dimensional category M is top-torsionfree if there is a non-
zero morphism aeM (y, v) such that af=0 for each non-invertible morphism g
with range u. In case M=ind 4, an object ueM is top-torsionfree iff it is
isomorphic to some A(?, /) (the equivalence of these statements is obvious, as it
simply provides us with a characterization of the projective indecomposable A-
modules among all the indecomposable ones).

The terminology “top-torsionfree” can be justified as follows: the non-
invertible morphisms feM(x, y) are the elements of the radical ZM (x, w)
=(#M(?, @) (x); accordingly, a morphism axeM (g, v) satisfies «f=0 for each
non-invertible B iff M2, o): M(?, ) > M2, v} factors through the simple top
k,=MQ, )/#ZMQ?, 1) of M(?, 1) (notice that k,(u)=k and k,(v)=0 for v+ p). So
u is top-torsionfree iff the top k, is “torsionfree”, ie. can be embedded into some
projective M-module M (2, v).

There is another useful characterization, saying that an object u of an
Auslander-category M is top-torsionfree iff k, has projective dimension <1 in
modM: indeed, if M(?,a) factors through k,, the sequence
O0—KerM(?, o) >M(?, p)—k,— 0 is a projective resolution of k, (Ker M(?, a) is
projective, since g/ dim M £2). Conversely, if we have a projective resolution
0—p—->MQ, y)—k,—0, then either p=0 and yu is obviously top-torsionfree, or
the resolution yields a non-zero element ¢ in Ext‘(ku, p); now, if 0 —»p—i,—i,
is a minimal injective resolution, ¢ is associated with a non-zero morphism
k,—i,. Since i, is projective, k, is torsion-free.

In the sequel we need the preceding (trivial) developments in form of the
following

Proposition. Let P be the full subcategory formed by the top-torsionfree objects
of an Auslander-category M. Then P is locally representation-finite and the
Sfunctor which maps ueM onto the P-module M(?, u)| P vields an isomorphism
M-—5ind P.

2.5 Let I" be a locally finite translation-quiver. The mesh-ideal is the ideal I,
of the path-category kI' which is generated by the elements

=y afoayekl’(tx,x), x non-projective,

where a ranges over all arrows of I' heading for x. The mesh-category of I' is
the residue-category k(I')=k['/I . We say that I' is locally bounded if k(I is so.

Proposition (Riedtmann [15]). a) If I' is locally bounded, so is every full sub-
translation-quiver.

b) I is locally bounded iff the universal covers of its connected components
are so.

¢) I is locally bounded, simply connected and stable iff it is isomorphic to a
Dynkin-translation-quiver ZA,, ZD, or ZE, (p,q,neN, nz1, p24, 82q=6; see
(6], [15]).
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We recall that a full sub-translation-quiver A of I' is determined by a subset
4, of I; an arrow x—>>y of I' belongs to A iff x and y belong to A,;
furthermore, a vertex xe4, is projective in 4 if it is so in I' or if tx¢4,,.

Proof. 1f x, yed,,, the morphism-space k(4) (x, y) is identified with the quotient
of k(I')(x, y) obtained by annihilating the paths which factor through a point
of Iy~ 4,. This proves a).

If n: A—1I" is a covering of translation-quivers, it is clear that the induced
functor k(m): k(A4)— k(I') yields isomorphisms

@k (x,2) > k(I (nx,ny) and @k Y, ) > k(DY (mx, my),

where z and t range through the vertices of 4 lying over ny and nx re-
spectively. In case n,: 4,— I is surjective, I' is locally bounded iff 4 is so.
For c) we refer to [15].

2.6 Lemma. Let I' be a locally bounded translation-quiver and y,~*>x, 1<i<r,
the arrows stopping at some vertex xely. If x is projective, the o induce a
minimal projective resolution

0> @ kD)0, 7) = k() 2, ¥) >k, =50

of the simple k(I')-module k.. If x is not projective, the o; and cw; induce a
minimal projective resolution of length 2

k() (2, 0.}

k(I) (2, 7x) —DErx @1 K(T) (@

k(M) (?, x1)]

k(I Q@?,x)—k,—0.

Proof. Obviously, the «; produce bijections @ kI(t, y)—>kI'"(t,x) (21). If x 1s

projective, the induced maps @ I.(t, y;)— I:(t, x) are bijective too. Passing to
the quotients, we get the first sequence If x is not projective, we have

r

Ir(t, )= Y oIt y)+ ikl (G 1x) (25)

i=

This yields the second sequence. It is clear that both sequences are minimal.

Remarks. a) The lemma shows that we can go back from the mesh-category
k(I') to the translation-quiver (I, ). Namely, I is the quiver of k(I') (2.1). A
vertex x is projective iff the projective dimension of k,  is <1; if x is not
projective, tx is determined by the fact that k(I'}(?, x) is the component of
degree 2 in the minimal projective resolution of k, in mod k(I').

b) In general, the morphism [k(I)(?, 6&;)] of our lemma is not mono.
For instance, if I'=ZA, (1.6), the projective resolution of k, is
wP_3P_,P_1—=Ppo—ko— 0, where p,=k(ZA,) (7, ).
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¢) If x is a non-projective vertex of I', we have Ext*(k_, p)=0 for each
projective k(I')-module p. Indeed, we can compute Ext!(k,, p) by applying the
functor Hom, (2, p) to the projective resolution of k, given in the lemma. If
p=k(I')(2, z), this yields

0— Homyf(ky, p) = k(I (x, 2) - @1 k() (yi, 2) = k(1) (1, 2)

since Homy, r(k(I) (2, ), k(I') (2, 2)) =~ k(') (y, z). Applying our lemma to the
translation-quiver I"°?, we see that the preceding sequence is exact at the point

@ k), 2).

27 Lemma. If I' is a locally bounded translation-quiver, the following state-
ments are equivalent:
(i) g/ dimk(N =2
(ii) Each top-torsionfree (2.4) object of k(I') is a projective vertex of I
(ii)) Each top-torsionfree object of k(I'°?) is an injective vertex of I

Proof. Clearly, the morphism [k(I)(?,0a;)] of Lemma 2.6 is mono for each
non-projective x iff no tx is top-torsionfree in k(I'°P) (2.5). This yields the
equivalence (i)<=>(iii). Similarly, we have (i)<(1°?)<>(i1), where (i°?) is the state-
ment saying that k(I"°?)-=> k(I')°® has global dimension <2.

2.8 Proposition. If I' is a locally finite translation-quiver, the mesh-category
k(I'y is an Auslander-category iff I' satisfies the conditions a), b) and ¢) below:

a) k(I') is locally bounded.

b) If x is a non-projective vertex of I' and uek(I')(x, y) a non-zero morphism,
there is an arrow x' > x of T such that 0 paek(I) (x, y).

¢) For each projective vertex pely, there is a vertex jel, and a linear form
e: k(') (p, j) — k, such that the composition

k(L) (p, x) < k(I') (%, ) = k(T) (p, ) — k
yields a vectorspace duality between k(I') (p, x) and k(') (x, ) for any xel.

In statement b), & denotes the residue class of « modulo the mesh-ideal 1.

Proof. Assume that k(I') is an Auslander-category. Then it is locally bounded
and has global dimension =2 (2.3). So it follows from 2.7 that a non-projective
vertex has “top-torsion”. Accordingly, I" satisfies a) and b). Now identify k(I')
with ind A for some locally-representation-finite A. If pel; is projective, k, has
projective dimension =1 (2.6). By 2.4, p is identified with some A(?, 1), leA.
Now, Dk{I')(p, ?) is isomorphic to k(I')(?, j), where j=DA(4,?) (see part (i)=>(ii)
of the proof of proposition 2.3). Condition c) expresses the well-known fact that
an isomorphism k(I')(?,j)— Dk(I')(p,?) is determined by some appropriate
linear form ¢ek(I'}(p, )).

Conversely, assume that I' satisfies the conditions a), b), ¢). Then we have
g/ dimk(I')<2 by 27. Take a minimal injective resolution O0— k()
(2, ¥)=i,—i,, yel,, in modk(I). A simple k(I')-module k, occurs as a sub-

P
module of i, iff it occurs as a submodule of k(I')(?, y); if this is so, p is top-
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torsionfree (2.4). Accordingly, i, is the direct sum of the injective hulls of
simple modules of the form k,, where p is a projective vertex (2.4 and 2.6).
Now the injective hull of k, is Dk(I')(p,?), and this is isomorphic to some
k(I)(?,j) by conditionc); so i, is projective. Similarly, if k, occurs as a
submodule of i, we have

O:i:Homk(T)(kpa ll)ZEthlc(F)(kp’ k(r) (?a y))

By 2.6¢) it follows that p is a projective vertex. As we did for i,, we infer that
i, i1s projective. So k(I') is an Auslander-category by 2.3.

Remarks. a) Let j have the property required in condition ¢) above. Denote by
neDk(I') (j, j) the unique algebra-homomorphism of the local algebra k(I')(j, j)
onto k. The map Dk(I')(B, j): Dk(I') (j, j)— Dk(I') (v, j) which is induced by an
arrow ji>y of I' assigns to n the zero-form Erx(EB)=0. Now Dk(I')(2,)) is
isomorphic to k(I')(p, 7). The morphism »'ek(I)(p, j) associated with 4 is non-
zero and satisfies fn'=0 for each B. This means that j is top-torsionfree in
k(I'°?) (2.4), i.e. that j is an injective vertex of I'. In fact, this result also follows
from the first part of the proof of our proposition.

b) If I' has no oriented cycle, for instance if it is simply connected, we have
k= k(') {j, /)~ Dk(I')(p,j). In this case, condition c) just means that the com-
position k(I'){p, x) x k(') (x, j)— k(p, j) is a duality.

c) Figure 2.8 gives a simple example of a translation-quiver I satisfying a),
b) and c¢). By proposition 2.5, we have k(I')~>ind A, where A is the full
subcategory of k(I') formed by the projective vertices, i.e. the path-category of

the quiver-{:- (see §6 and [7] § 6 for other examples of this kind).

Fig. 2.8

Other examples are given by Fig. 1.3b, where k(I')—=>ind k[Q]/I, Q being
the quiver 'Qf and I the ideal generated by T# Similarly, we have
k(I-—=>ind k[Q]/I, where Q is the infinite quiver

on—2 —1 >N n+1 n+2...
Th-2 n Th-1 Tn + Tn+t +

and I the ideal generated by the elements T,, , T, T, , T, ,, neZ.
For an application of proposition 2.8 we refer to [16], where it was proved
that translation-quivers associated with Brauer-relations satisfy the conditions

a), b), ¢).

2.9 Definition. A translation-quiver I’ satisfying the conditions a), b), c) of
proposition 2.8 will be called a Riedtmann-quiver.
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Theorem. Let I' be a connected translation-quiver, I' its universal cover. The
following statements are equivalent:

(1) I is the Auslander-Reiten quiver of some locally representation-finite k-
category.
(i1} I" is a Riedtmann-quiver.
(iii) I is a Riedtmann-quiver.

We shall prove this theorem in §3 below. It yields the wanted justification
for the introduction of coverings. It will yield a construction of many repre-
sentation-finite algebras out of one, as soon as we shall know that most
Riedtmann-quivers admit plenty of finite coverings (see §4).

3. Covering Functors

3.1 Definition. Let F: M — N be a k-linear functor between two k-categories.
F is called a covering functor if the maps

[[M(x,z)—N(a,b) and []M(t, y)— N(a,b),

z/b t/a

which are induced by F, are bijective for any two objects @ and b of N. Here ¢
and z range over all objects of M such that Ft=a and Fz=b respectively; the
maps are supposed to be bijective for all x and y chosen among the ¢t and z
respectively.

Examples. a) If n: A—T is a covering of translation-quivers, we know that the
induced functor k(n): k(4)— k(I') is a covering functor (see 2.5).

b) Assume that A is locally representation-finite and connected (i.e. A is
neither empty nor the disjoint sum of two non-empty subcategories). Then the
Auslander-Reiten quiver I, is connected. Denote by n: I';— I, its universal
covering at the point m.

Under these assumptions, proposition 1.6 implies the existence of a well-
behaved functor F: k(I,)—ind A in the sense of Riedtmann ([15], 2.2; [16],
1.5), ie. of a k-linear functor which maps an object y of [, onto mny and the
morphism f associated with an arrow g of I, onto an irreducible morphism of
mod A: Indeed, choose some point x of I, lying over m and consider the
length-function x as defined in 1.6. We use a first induction in order to define
F on the arrows y—£~>z such that x(z)=1: If k(z)=1 or if z is projective, we
choose for FBeHom ,(ny, nz) any irreducible morphism; if z is not projective
and x(z)Z 2, consider the mesh stopping at z (Fig. 3.1):
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We may suppose that F ;E is already constructed. We know then that there is
an Auslander-Reiten sequence of mod A having the form

[Fo B, (]
0— e o8 ®ny, nz—0

(see for instance [7], 1.6). So we can set Ff,=¢,. A second induction, resting
on dual arguments, is used in order to define F on arrows y-ﬂ>z such that
k(y)<0.

Now proposition 2.3 of [15] extends to the present situation. Using this
proposition together with its dual, we see that F is a covering functor.

c) Let F: M— N be a covering functor and N’ a full subcategory of N. Let
M’=F~!(N') be the full subcategory of M formed by the objects mapped into
N'. Clearly, the induced functor F': M'— N’ is also a covering functor.

Furthermore, consider the ideal of N generated by the morphisms of N
which are factorized through N’. Factoring out that ideal and restricting to the
objects of N not lying in N’ we get a category which will be denoted by N/N’
(compare with [2]). The functor M/M'— N/N’ induced by F is again a cover-
ing functor.

32 Let F: M— N be a covering functor between k-categories. With each
additive functor m: M°®— Ab we associate its push-down F,m: N°° — Ab, which
is constructed as follows: For each object aeN, we set

(F,m)(a)=]] m(x),
xja
where x ranges over all objects of M such that F(x)=a; if b->—a is a
morphism of N, the map (F,m)(z): (F,m)(a)— (F,m)(b) to be defined assigns to
(u)e]Im(x) the family (3 m( ) (u,))€] [ m(y), where [« is determined by

x/a x y/b

Y Fa)=ua
Y/b . . . .
People in search of an abstract justification will prove that pushing down

m—F,m is left adjoint to “pulling up” n—no F°?. More relevant for us is the
fact that the second bijection in definition 3.1 yields a canonical isomorphism
FE, M@, y)—=> N(?, Fy), that F, is exact, and that it maps k-finite-dimensional
M-modules onto finite-dimensional N-modules.

Proposition. Let F: M— N be a covering functor between locally bounded
k-categories, and let Am denote the radical of memod M. Then we have
F, BZm-=> RF,m, and m is projective in mod M iff F,m is so in mod N.

Proof. Clearly, F, preserves dimension. So it maps one-dimensional M-modules
onto one-dimenisonal N-modules, ie. simple modules onto simple ones, and
semi-simple modules onto semi-simple ones. Since m/#m is semi-simple, we
infer that F,m/F, #m—— F,(m/#m) is semi-simple, hence that ZF,m<F,Am.
On the other hand, if p=M(?, x) is projective indecomposable, we know that
F,p—=>N(?, Fx). In this case, ZF, p and F, #p both have codimension 1 in F, p.
We infer that ZF, p=F, #p if p is projective indecomposable, and more gener-
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ally if p is projective. In the case of an arbitrary memod M, consider an
epimorphism p—>m — 0, where p is projective. In the induced square

RFE,p—— RF,m

1

Fﬂi[p—ﬂ—-» E #m

o and f are epl. Accordingly, ZF, m=F, #m.

Since F,M(?, y)—>N(?, Fy), the image of a projective module is pro-
jective. Conversely, suppose that F,m is projective, and let p “Lsmbe a pro-
jective cover of m. Then f induces an isomorphism of the tops p/Zp—>m/Zm.
As F, preserves the radical, we get

F,p/RF,p—> F,(p/#p) > F,(m/Rm)—> F, m/RF, m,

so that Fip—“—%Flm is a projective cover of F,m. Since F,m is projective, F, f
1s invertible, and so is obviously f.

3.3 Let F: M— N be a covering functor between locally bounded k-categories.
Each object xe M yields canonical isomorphisms

F,M(, x)=> N, Fx)
F, M, x)—=> RF, M (%, x)—=> AN(?, Fx)

F,R*M(?, X) > RF, AM (2, x) > Z*N(?, Fx)
and
F(AM, x)/R*M(?, x))—> F,ZM(?, x)/F, #* M (2, x)
AN, FX)/R*N(?, FX)
Le.
H RM (z, x) /REM(z, x)=> AN (b, Fx)/%#*(b, Fx), VbeN.

z/b

Accordingly, if the quiver @Q,, of M contains an arrow y—x, then Q,
contains an arrow Fy— Fx (2.9). In other words, F induces a quiver-morphism
Qr: Qu— Qn-

Definition. A locally finite-dimensional category N is called square-free if the
spaces ZN (b, a)/#> N (b, a) have dimension <1 over k for all a, b.

In the foregoing situation, M is obviously square-free if N is. Furthermore,
for each arrow b—"»a of Q, and each point x of Q,, lying over a, there is
exactly one arrow y—§>x of Q,, lying over a. Taking into account that the
definition of covering functors is self-dual, we deduce the dual statement saying
that each y over b is the starting point of a unique arrow lying over «. In
other words, we have the

Proposition. A covering functor between square-free locally bounded k-categories
induces a covering map between the associated ordinary quivers.
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3.4 Proposition. Let F: M— N be a covering functor between square-free lo-
cally bounded k-categories, and let ¥m denote the socle of memod M. Then we
have F,m-—>%F,m, and m is injective in mod M iff F,m is so in mod N.

Proof. First we prove the second part using the relation F,¥m-—=>%F,m. If
xeM, the injective hull of the simple module k, is identified with DM (x,?).
Using F,¥m-— ¥F,m we infer that F,DM(x,?) has k,, as socle; so it is
contained in the injective hull DN (Fx,?) of ky,. On the other hand, the first
bijection of definition 3.1 tells us that F,DM(x,?) and DN(Fx, ?) have the same
dimension. Hence we have F,DM(x,7)—>DN(Fx,?), and F,m is injective if m
is so. The converse is proved as in 3.2.

Now we come to the socle of F,m. Clearly, F,%m is semi-simple, and
therefore we have F,¥mc ¥ F,m. We prove the equality by induction on the
height (=Loewy length) h of m. The statement is clear if A=1. In order to
tackle the case h=2, we first consider the second socle ¥2I_ of the inde-
composable injective M-module I, =DM (x,?). The socle k_ of ¥*I_ yields an
exact sequence

e: 0>k, — S — @ k, 0,
i~

where y; ranges over the heads of the arrows of Q,, starting at x. Suppose that
the socle of F, %21, is not simple. Then there is a 2-dimensional semi-simple
N-module n and a commutative diagram with exact rows

Fe 0—k, — > F%* —— @ kg, —0

I

0— kp,— n ——t ka, —
By assumption, the k;, are pairwise non-isomorphic. Therefore, ¢ has the form
r

e=F,¢, where ¢: k, > @ k,. Now the pullback of e under ¢ does not split,
i=1

nor does its image under F,, since F, preserves the radical. This contradicts the
semi-simplicity of n.

We infer that F,#/=%F,/ if /=%, and more generally if ¢ is the
second socle of an injective M-module. For an arbitrary M-module m of height
2 there is a socle-preserving embedding of m into such an /. We infer that
SFmcSF,(=F,¥¢=F,¥m, hence that F,m=F, ¥ m.

Finally, consider the case of height £>2 and let (u)e(¥F,m)(a). If
(1) €(F, £*m) (a), we are reduced to the case h=2. Otherwise, the image (f,) of
(u) in F,(m/¥m)(a) lies in the socle of F,(m/¥m) without lying in
F(S?*m/Sm)—>F, & (m/S¥m), a contradiction by induction on h!

Remark. The propositions 3.2 and 3.4 are by no way dual, since the “dual” of
the left adjoint functor F, is a right adjoint functor. In fact, elementary
examples show that proposition 3.4 gets wrong if we drop the assumption that
N is square-free.
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3.5 Proposition. Let F: M — N be a covering functor between connected square-
Sree locally finite dimensional categories. Then M is an Auslander-category iff N
is so.

Proof. Clearly, M is locally bounded iff N is so. Suppose that M is an
Auslander-category. Then each simple M-module k, admits a projective resolu-
tion of the form 0—P,—P,—M(?,x)—>k —0. The push down of this is a
projective resolution of k. in modN (3.2). This shows that g/dim N £2.
Similarly, let 0— M (?, x)—i,—1i,... be a minimal injective resolution of the
projective M(?,x) in mod M. Then i, and i, are also projective. The push
down O0—-F, M x)->F,i,—F,i;... is a minimal injective resolution of
N, Fx) by 34. As F, i, and F,i, are projective, we deduce from 2.3 that N is
an Auslander-category.
Conversely, let N be an Auslander-category. The push down
W F P F P N Fx) >k — 0

of the minimal projective resolution of k., xeM, is a minimal projective
resolution by 3.2. Since g/dimN <2, F,f is a monomorphism, and so is f.
Hence g/ dim M <2. Similarly, the push-down of a minimal injective resolution
0—-M(@? x)—i,—i,... is a minimal injective resolution of N(?, Fx) by 3.4.
Therefore F, i, and F, i, are projective, and so are i and i; by 3.2.

3.6 Proof of Theorem 2.9. (i)=>(iii): Suppose that I'=1I,, where A is locally
representation-finite. Consider a well-behaved functor F:k(I,)—ind A4 (3.1b).
Since ind A satisfies the conditions a) and c) of 2.1, so does k([,) (F is a
covering functor!). Hence k() is locally finite-dimensional (condition b) of 2.1
follows from the definition of the mesh category). On the other hand, ind A is
square-free by a result of Bautista ([3], [15] 3.5, [17] 2.5). By proposition 3.5
k(I)) is an Auslander-category.

(iiiy=(ii): Let n: '~ I be the canonical projection and k(n): k(I')— k(I)
the induced covering functor. By Proposition 2.5b) k(I') is locally bounded. By
construction k(I') is square-free. As k(I') is an Auslander-category, k(I') is one
by 3.5.

(i)=>(1): Let P be the full subcategory of k(I") whose objects are the
projective points of I Then k(I')-= ind P and I is identified with I,.

4. The Fundamental Group of a Riedtmann-Quiver is Free

The result stated in the title can be proved by a combinatorial version of van
Kampen’s theorem. However, since our intuition is geometric, we shall side
with topology, accepting to struggle with technical details beside the com-
binatorial point in order to borrow from topological attainments.

4.1 The Geometric Realization of a Translation-Quiver. Let Q be a quiver with
vertex-set Q, and arrow-set Q,. Associate with each arrow x—2-y a copy I,
of the unit interval I=[0,1]. Denote by I,={0,1} its “boundary”, by
d,: I,— Q, the map such that 8,(0)=x, d,(1)=y. The geometric realization |Q|



348 K. Bongartz and P. Gabriel

of Q is the amalgamated sum attached to be following diagram of topological

spaces
QO ! H ja : U Ia’

aeQy aeQy

where i is the inclusion and @, carries the discrete topology. The canonical
mapj,: I,— |Q] yields a homeomorphism of I, onto its image I,=j,(I,) if x+y;
otherwise, I is a circle. The topology of |Q| is the weak Kelley-topology: a
subset F is closed iff Fn1I, is closed for each a.

If G is a (non-oriented) graph, its geometric realization |G| is by definition
the geometric realization of the quiver G obtained from G by orienting each
edge in some chosen direction. The choice made is of no consequence for us,
since different orientations lead to canonically isomorphic geometric realiz-
ations.

Let us now turn to a translation-quiver I'. The geometric realization of the
associated quiver I' (1.2) is the one dimensional skeleton of the space to be
defined. In fact, the geometric realization |I'| of I' is obtained by attaching
triangles to |I’|, one along each IAI,l where f§ ranges over all arrows of grade 1
with non-projective head and 4, denotes the subquiver of I illustrated in

Fig. 4.1.

Y b g

X — —~ — — — — — X (iﬁ _,\\
b e I
case TX# X case Txz= X
Fig. 4.1
More precisely, denote by 4; a copy of the triangle A—{xe]R3 0=x,,

0=x,, 0=x,, x +x2+x3—1} by A its “boundary”, by g,: 4 —>|F| the map
such that g4(0, 1 t,0)=j,(t), gs(1— tO 1)=j, (1) and gz(1—1¢, t 0)=j,4(1). B
definition, the geometric realization |I'| of the translation-quiver I' is the
topological amalgamated sum of the diagram

[r|£‘LHAﬁ$]E[Aﬁ,

where j is the inclusion-map. We identify || with is canonical image in |I'| and
denote by A the canonical image of 4,. All these canonical images are closed
in |I'|. Furthermore a subset F of |I'| 1s closed iff all the intersections || F,
A NF are closed.

Proposition. Let x be a vertex of the translation-quiver I'. The fundamental
groups II(I', x) and T1(|T'|, x) are naturally isomorphic.

Proof. Denote by KI' the simplicial set of dimension =2 which has the vertices
of I' as O-Simplices the arrows of I' as non-degenerated 1-simplices, the

diagrams / \ of I' as non-degenerated 2-simplices ([8], [15]). The
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groups II(I", x) and II(KI', x) are naturally isomorphic, since they admit the
same description ([8], 11, 7.1). The groups IT(KI, x) and II(|I'|, x) are naturally
isomorphic by [8], Ap.1, §3 (notice that |I'| coincides with the geometric
realization of KI" by [8], I11, §1).

4.2 Suppose from now on that the translation-quiver I' is locally finite. Our
objective is to compare the fundamental group of I' with that of a graph.

Let x be a vertex of I'. The set of all neZ, such that t"x is defined, is
clearly an interval D of Z. We call the set x*={t"x: neD} the t-orbit of x. The
vertex x is stable if D=7 ([15]), it is periodic if it is stable and has finite -
orbit; the cardinality of x* is then called the period of x. In a similar way, if
x—%»>y is an arrow of I', we shall consider its o-orbit «°, which is the set of all
arrows of I' of the form ¢™a.

Whenever an arrow x—%>y of I' connects a periodic vertex x with a stable
vertex y, then y is also periodic: otherwise, there would be infinitely many
arrows starting at x. Accordingly, the 7-orbits of a connected component E of
the stable part J° ([15], 1.4) of I' are either all infinite or all finite. In the
second case we call E a periodic component of I'.

By Riedtmann’s result ([15], 1.5) a periodic component E has the form
ZT/II, where T is an oriented tree and II an admissible automorphism group
of ZT. We call E tree-finite if the graph T underlying T is finite (notice that T
is uniquely determined by E). The translation-quiver I itself will be called tree-
finite if it is locally finite and all its periodic components are tree-finite.

The graph G, associated with I’ has as vertices the periodic components
and the non-periodic t-orbits of I'. To each periodic component, considered as
a vertex of G,, we attach a loop of G,. The remaining edges of G, are
associated with the non-periodic o-orbits of I. More precisely, let o” be a o-
orbit connecting the t-orbits x* and y* of I'. If both x and y are non-periodic,
we associate with »° an edge of G, connecting the vertices x* and y*. If y is
not periodic and x belongs to the periodic component E, we associate with a’
an edge of G, connecting E and y°. For examples we refer to the lists at the
end of the present paper.

Theorem. If I' is a tree-finite translation-quiver, the geometric realizations of I’
and Gy are homotopy-equivalent.

Corollary. If T is a Riedtmann-quiver and x a vertex of I', the fundamental group
(T, x) is free.

By Riedtmann’s result (see 2.5) we know that a Riedtmann-quiver I' is tree-
finite. On the other hand it is well-known that the fundamental group of a
graph is free. Accordingly, the corollary follows easily from the foregoing
theorem which will be proved in 4.3

4.3 Proof of Theorem 4.2. Consider an arrow x %>y of I' and denote by I,
the sub-translation-quiver of I' formed by x7, y* and «°. This I, has only one o-
orbit; from the classification of the translation-quivers with one g-orbit (a
good exercise!) we deduce the following: Suppose that « is not periodic, ie.
that x and y are not both periodic. Denote by I the subquiver of I formed by
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Fig. 4.3

% and all arrows of grade 2. Then |} is identified with a strong deformation
retract of [I] ([20], Chap. 1 Sect. 4).

Now we choose a representative a of each non-periodic g-orbit. This yields
a family of subspaces |I| of |I'|. We denote by X the union of these subspaces
and of the geometric realizations of the periodic components. Matching to-
gether strong deformation retractions f,: [I;| x I —|I| of |I]| onto |[|, we get a
strong deformation retraction of |I'| onto X. Now X contains the geometric
realization |x¥| of each t-orbit x°, considered as a sub-translation-quiver of |I].
If x is not periodic, |x*} is homeomorphic to R, [0, 1] or [0, I[. Therefore, the
space Y obtained from X by contracting each “non-periodic” |x| to one point
is easily seen to be homotopy equivalent to X (see Fig. 4.3).

The space Y is already quite near to |G,|. But it still contains sub-spaces
identified with the geometric realizations |E| of the periodic components E of
I'. It remains for us to shrink each such |E| to a loop. By [15], 4.2, E is
identified with some ZB/p%, where B is an oriented tree and p an admissible
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automorphism of ZB. Choose a vertex b in B and denote by k: ZB—ZA, the
quiver-morphism such that x(0, b)=0 (see 1.6). We identify |ZB| with R x |B|
by means of the “natural” homeomorphism which maps a vertex (n, ¢) onto
(x(n, ¢), ¢) and is “affine” on the “triangles”.

The automorphism p of the graph B underlying B, which is induced by p,
either has a fixed point, or it exchanges two neighbours of B. In any case, the
induced automorphism |5| of |B|=|B| has a fixed point w. Moreover, there is a
strong deformation retraction h: |B|xI—|B| of |B| onto w, which is com-
patible with |p| (ie. h(|p|x, H)=(h(x, 1), Yx€|B|, Vtel). The induced strong
deformation retraction R xh: IR x|B|xI—R x|B| is compatible with the
action of |p| on R x |B|=|ZB|. So it induces a strong deformation retraction of
the residue space |ZB|/|p|=|E| onto a circle S. Under this retraction all the
vertices fo E are mapped into some contractible closed arc of S. Shrinking this
arc to one point, we get by composition a homotopy equivalence f of |E| onto
some circle S, which maps all vertices of E onto one single point.

The preceding construction is done for each periodic component E. The
topological amalgamated sum of the resulting diagram

18— [[IE|-——>Y
E E

may then be identified with |G, |. A simple classical homotopy extension

argument shows that the induced map f: Y— |G| is a homotopy equivalence:

Indeed, for each E there is a homotopy h;: |E| xI—|E| such that hy(x, 0)=x,

he(x, D=hg(y, 1) and fp(hg(x, 1)=fp(h(y, t)) for all ¢, whenever f;(x)=fg()).

Construct a continuous extension h: Y xI—Y of [ [ hg, using intuition or the
E

general homotopy extension property ([20]). Then h(?, 1) factors through |G|,
i.e. we have h(y, )=s(f(y)) for some continuous s: |G |—Y and all yeY.
Moreover, h is a homotopy between 1, and sf. The map h: |G| x I |G|, such
that A(f(y), t)=f(h(y, 1)) for all (v, 1), is a homotopy between 1, and fs.

5. Standard Representation-Finite Algebras

5.1 Definition. A locally representation-finite k-category A is said to be stan-
dard if ind A is isomorphic to a mesh-category k(I') (2.2). A Riedtmann-quiver
I is called standard if each locally representation-finite k-category whose Aus-
lander-Reiten quiver is a cover of I' is standard.

Clearly, if A is standard, there is an isomorphism k(I)—»ind A which is
the identity on the objects. Most of the known examples are standard. The first
known non-standard example is due to Chr. Riedtmann: see number 14 bis) in
our list of the maximal representation-finite k-categories with 2 objects.

Our purpose in this paragraph is to relate non-standard algebras to stan-
dard ones. In order to do so, we first consider a locally finite-dimensional k-
category M with radical #M (2.1). The powers #"M are the ideals of M which
are defined inductively by the formulae: 2°M (x, y)=M(x, y) and

AT IM(x, y)=). RM(z, y) B"M (X, z).
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The associated graded category GrM has the same objects as M ; its morphism-
spaces are the direct sums

(GrM)(x,y)=]] "M (x, y)/R"* ' M(x, y);

nelN
the composition of GrM is induced in the usual way by that of M.

Proposition. If A is a locally representation-finite category, there is an isomor-
phism k(I'))—> Gr(ind A) which is the identity on the objects.

Proof. Set I=indA. First we associate an irreducible morphism
BeR1(y, x)~ #*1(y, x) with each arrow y—£>x of I'. Then we choose an

Auslander-Reiten sequence of the form

181
OHTX*)G') l,—ﬁ>x->0

for each non-projective x; here y,,——»x ranges over all arrows of I', heading for
x. Since #*I(tx, yp) has cod1mens10n1 in Z1(tx, y) ([3], [15] 35 [177 2.5),
we have f—z;0f ofeR*I(tx, yp) for some zgek*=k~{0}. Together with the
equation Z BB=0 this yields Z zy PpopeR*1(1x, X).

Now, by the lemma stated below we can attach a scalar b ek* to each
arrow y of I, (41) in such a way that zp=byb, . b Hence we get
Y (b BY(b,s0)=b, Y z,fo R I(1x, 7). In other words, the map ar— b, o, where
] ]

o ranges through the arrow-set of I, induces a k-linear functor F: k(I)— Grl
which is the identity on the objects and is surjective on the morphisms (F hits
the generating morphisms of Gr I). We infer that F is bijective on the morphisms,
since we have

dim(Gr I) (x, y)=dim I[(x, y)= ) dim k(L) (Z, ) =dim()) (x, y).

2/x

Here I, is the universal cover of I, which we may assume connected; § is a
point of I, over y, and % ranges over all points of I, over x. Of course, we use
the existence of covering functors k(I,)—1I and k(I)— k(L ).

Lemma. Let I' be a tree-finite translation-quiver and (z;) a family of non-zero
scalars indexed by the arrows B of I' with non-projective head. There is a family
(b,) of non-zero scalars indexed by the arrows of I (1.2) such that zp=b, by‘x1 b,g.
V.

Vg

ap ]
X - 52 > X
We shall produce the proof of this lemma in 5.4 below.

52 Corollary. Let A be a representation-finite algebra. The standard
representation-finite algebra A with Auslander-Reiten quiver I, is a degeneration
of A.
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Proof. Set M=indA. Choose a supplementary subspace S"(x,y) of
A" IM(x,y) in #"M(x,y) for all x,yeM and each neN. This yields finite
direct sum decompositions M(x, y)=S8%x, y)@S'(x, DS*(x, )®.... De-
note by ¢, M(x,y)—> M(x,y) the vector-space automorphism such that
O (fo i+t )=fo+tfi+2f,+... if f,eS"(x,y)(tek, t+0). Using these
automorphisms we construct a new category M, having the same objects
and the same morphism spaces as M. The composition ge S of two mor-

phisms of M, is expressed in terms of the composition go f of M by means of
the formula g?fzd),(q&t‘l(g)o (). Clearly, gctvf is a polynomial in ¢,

whose value for =0 is the composition of g and f in GrM (identify
R" M (x, y)/R"* ' M(x, y) with $"(x, y)). Accordingly, the algebraic family (M,),.,
yields a degeneration of M into Gr M, or equivalently a deformation of Gr M
into M.

The algebra A, which we may suppose to be basic, is identified with
@ M (p, q), where p and g range through the projective points of I',. Similarly,

p.q

A is identified with @ (GrM)(p,q). We infer that the algebraic family
@M p, q) yields a degeneratlon of 4 into A.

5.3 Corollary. Every finite Riedtmann-quiver has a finite covering which is
standard.

Proof. Let I' be a finite connected Riedtmann-quiver, IT its fundamental group,
n: ['— I its universal covering. For each vertex x of I' we choose a vertex % of
I' such that n(%)=x, and we denote by R_ the set of vertices y of I such that
k(F) (%, y)#0. The elements yell such that y+1 and y(R,)nR_ %+ for some x
form a finite subset S of I1. As II is free, it has an invariant subgroup P of
finite index such that P~ S={. The finite cover 4 =f/P of I' is our candidate.

Indeed, let 4 be a representation-finite algebra with Auslander-Reiten
quiver 4, and let F: k(I')—> M =ind A be a well-behaved functor. For any two
s, teM such that M (s, t)#0 and for each §el, lying over s, there is exactly one
tel} lying over t and such that k(I) (3, £)%0: In fact, we have y§=3% for some
xel; and some yell; hence yteR,; the relation k( () (3, 5t)%0, 1+6eP, would
imply y&teR, and ydy~ €S, a contradiction to our assumption PnS=4§.

Being a covering functor, F induces an isomorphism k(I') (3, £}~ M(s, t),
where s,t... are as above. On the other hand, we clearly have k(I')(, 1)
c#"k(I) (5, 1) and #** k() (5, £)=0, where n=(f)—x(3) is determined by the
grading morphism « introduced in 1.6. Applying proposition 3.2 we infer that
M(s,t)c A" M (s,t) and #"* ' M(s,t)=0. In other words, only one grade really
occurs in (GrM)(s, 7). So we can deduce M=GrM from k(I')=Grk(l) and
apply proposition 5.1.

A similar argument applies to any cover of 4.

54 Proof of Lemma5.1. Let us assume that I' is a connected translation-
quiver, or equivalently that I' is a connnected quiver. Consider the following
differential complex

S,(N)—255,(N) 25 S,(I),
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where S,(I), S,(I') and S,(I') are the free abelian groups generated by the
vertices of I', the arrows of I" and the arrows of I" with non-projective heads
respectively. For basis elements a 2>z and yi+x of S,(I') and S,(I') we set
S,a=z—a and 6,f=p—y,.+0p respectively. Clearly, Coker §, is identified
with Z.

We claim that Kerd,=0 if I' is simply connected: indeed, assume that
nzz n, feKerd,. In order to show that ny=0 for each B, consider the sub-

]

translation-quiver I of I', which is formed by the g-orbit of § and the z-orbits

of its extremities (4.3). Let z-"%,t be a o-translate of p and m, the coordinate
of &, n with respect to the basis-element ¢"§ of S,(I'): if ¢ is projective, we have
m,=n,.-,; if z Is injective, m,=n,,;; in all other cases m,=n,,.,+n,.,. Now,
since I' is simply connected, it has no periodic component (7.2), so that I is
neither periodic nor semi-periodic. A glance at the list of the translation-
quivers with one g-orbit tells us that, either z is injective for some r, or the
arrows ¢’ f§ are all defined and distinct for small values of reZ. On the other
hand, we have m,=0 for each r and n,,;,=0 if r is small enough. We infer that
n,-,=0 by induction on r.

If I is simply-connected, we also have Im §,=Kerd,. Indeed, we can show
that each homomorphism of abelian groups f: S,(I")— M such that f5,=0 has
the form f=gd,: Indeed, given f, we set

(W)=t fla,)+... &+ flay)

for any walk w=(y|a,, ..., o;|x) (1.2), where f(o,) is endowed with the sign +
or — according as g; Is oriented from x to y or not. The relation fJ,=0 means
that 7 is constant on the homotopy classes. If I' is simply connected, we
construct g: So(I'> M by setting g(y)=7(w), where w is an arbitrary walk
from a chosen fixed vertex x to the vertex y. The result is independent of w
and provides us with a g such that f=gJ,.

If I' is not simply connected, denote by n: I'— I' is universal covering, by IT
its fundamental group. The sequence

0 8,(F) 2 8,(F) -5 8o (F) —>Z—0

is exact and provides us with a free resolution of the trivial IT-module Z.
Applying to this resolution the functor Homp(?, k*), where k*=k~ {0} is
endowed with the trivial IT-structure, we obtain the differential complex

Hom,(So(I), k*)— Hom,(S,(I), k*) > Homy(S,(I'), k*) —0

whose second cohomology group is identified with H?(II, k*). Since IT is free,
we have H*(IT, k*)={1}. So the second cohomology group is trivial. This is the
statement of our lemma.

Remark. The preceding proof can be interpreted as follows: the differential
complex S.(I) is a subcomplex of the singular complex of the simplical set KI"
associated with I' (4.1). It is the subcomplex generated by the non-degenerated
singular simplices. It is well-known that this subcomplex S.(I') is homotopy-
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equivalent to the singular complex. Therefore, the n-th cohomology group of
Hom,(5.(I), k*) is identified with the singular cohomology group H™(|I'|, k*) of
the topological space |I'l. Now, the universal cover || is acyclic by theo-
rem 4.2. It follows that H"(|['], k*)—> H*(I1, k*) by [12], IV 7.3.

6. Simply Connected Algebras

Up to the end of this paragraph we denote by A an algebra over k which is
simply connected, i.e. representation-finite, connected, basic, finite-dimensional
and having a simply connected Auslander-Reiten quiver I';. We denote by G, the
associated graph, which is a tree by theorem 4.2. Like G, all trees considered
here are supposed to be finite.

6.1 Among the known classes of representation-finite algebras the following
ones turn out simply-connected: the algebras (with commutativity relations)
associated with connected partially ordered sets ([11], [19]); the tree-algebras
of Bongartz-Ringel [5]; the tilted algebras of Happel-Ringel produced by a
hereditary tree-algebra ([4], [9]). We shall revert to these examples in a
subsequent publication.

Since the simply-connected algebra 4 admits a well-behaved isomorphism
k(I)) =»ind 4 (3.1b)), it is standard and isomorphic to @ k(I)) (p, q), where p, g

range over all projective vertices of I,. Accordingly, Itllfe classification of the
simply connected algebras is equivalent to the classification of the simply
connected finite Riedtmann-quivers. In this paragraph we try for a first ap-
proach to this problem by demonstrating the existence of an inductive con-
struction of the involved Riedtmann-quivers. Among other things our con-
struction will yield the

Theorem. For each tree T, the number n, of isomorphism classes of simply
connected algebras A such that G ,— T is finite.

6.2 Since I, is simply connected and finite, there is a unique quiver-mor-
phism x:I, »ZA, such that 0=Min«(x), where the minimum is taken over

all vertices x of I;; we denote this quiver-morphism by «,. Since G, has no
loop, each t-orbit ¢ of I, contains exactly one projective vertex p,. We set g,(1)
= 4(p,)eN. The function g, thus defined is a grading of G, in the following
sense.

Definition. A grading of a tree T is a function g: T,— N satisfying the con-
ditions a) and b) below. A graded tree is a pair (T, g) formed by a tree T and a
grading g.

a) g(x)—g(y)el+2Z, whenever x and y are neighbours in T.

b) g7 1(0)*0.

At the end of this paper we include the list of the gradings of some chosen
small trees which arise from simply connected algebras.

Our purpose is to show that A is completely determined by (G,, g,). In
order to do so, we first attach a translation-quiver Q, to each graded tree
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T =(T, g): the vertices of Q, are the pairs (n,t)eN x T, such that n—g(t)e2N;
two such vertices (m,s) and (n,t) are joined by an arrow (m,s)—(n,t) if s,1 are
neighbours in T and n=m+ 1, the projective vertices are the pairs (g(t), t); the
translate of a non-projective vertex is defined by t(n, t)=(n—2, t) (see Fig. 6.2).

6.3 Let us examine the case of the graded tree (G4, g,) attached to the simply
connected algebra A. The map x — (x4(x), x7), where x* denotes the t-orbit of x
(4.2), identifies I'i with a full sub-translation-quiver of Q. , .., and yields a
dimension mapd,: by definition, this map associates with each vertex x of
Q6.4 g0 @ function d,(x): (G ), — N, which is 0 if x lies outside I'; and equals
t—[k(,) (p,, x): k] if x lies in I,.

The support of d, is by construction the set of vertices of I',. The point
now is that we can describe d, in a purely combinatorial way in terms of g,.
More precisely, for each graded tree T=(T g), there is a unique map
d: (Q;),— NT° satisfying the conditions a), b) and ¢) below. This d equals d, if
T=(G,,8,).

a) We have d(g(r),=6,+) d(g(t)—1,5), whenever t is such that d(g(r)

—1, 5)>0 for each neighbour s of t in T satisfying g(s)<g(t). In the preceding
sum s ranges over the neighbours s of ¢ such that g(s) <g(?); the Kronecker
function 4, takes at r the value 1 or 0 according as r=t or r=¢; a function is
>0 if all its values are =0 and one of them at least is >0.

b) We have d(n, f)=) d(n—1,s)—d(n—2, t), whenever (n,t) is a non-

projective vertex of Q, for which the functions d(n—2,¢t) and ) d(n—1,5)

—d(n—2,1t) are both >0. Here s ranges over the neighbours of t in T such
that g(s)<n.
¢) For any other vertex (n, t) of @, we have d(n, t)=0.

4 o 4 )
. ” 40 2 ® ;
0 0 0 1
1
0 oi 4§\ /’%\ /' /'\ /\ I\
T 4/ 0\42/0\3/0\\4}/\0}/\,05/\, |
W N NN E/ij :
0 0 Q; 4 4 |
1
6 43 8 .
1
0 4 2 3 i 5 3 7 ] 3 10 -

Fig. 6.2. The grading g takes the values 0, 1, 2 (twice) and 6. A vertex x of @, such that d(x)>0, is
represented by the values of the map d(x): Ty—N
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The preceding conditions allow us to compute the functions d(n,t) by
induction on n, starting with n=g(t). On the analogy of case T=G, we call d
the dimension map of Q,. We denote by R, the full sub-translation-quiver of
Q. formed by the vertices {n,t) such that d(n, t)>0. The grading g is called
admissible, if R, contains all the projective vertices (g(¢), £} of Q,; it is called
representation-finite if it is admissible and R, is finite. Accordingly, (T, g) is
called an admissible or a representation-finite graded tree. For instance, (G4, g,,)
Is representation-finite and R¢, is identified with TI,.

6.4 Let T be an admissible graded tree. Our next step is to examine the finite-
dimensional algebra AT=@k(R;)(q, p), where k(R;) is the mesh category of
p.q

R} and p, g range over all ﬁrojective vertices of Ry:
a) Each vertex x of R, is associated with an A4"-module M(x)
=P k(R;)(p, x), where p ranges over all projective vertices of R;. The map x

p
M (x) yields a functor M: k(R;)— mod A7, whose restriction to the projective
vertices is fully faithful by construction. Accordingly, the algebra of endomor-
phisms of M{p) has dimension 1 if p is projective. The formula AT=@F M(p)

further shows that the M(p) furnish a complete list of indecomposabfe pro-
jective AT-modules.

b) Let x—%»p range over the arrows of R, heading for some projective
vertex p=(g(t), t). Denote by & the morphism of k(R;) associated with o. It
follows from Lemma 2.6 that the induced morphisms M (&) yield an isomor-
phism @ M (x) = ZM (p) (=radical of M(p)).

c) Let neZ. We want to show that the following statements hold:

) For each vertex (n, ) of Ry, the AT-module M(n, 1) is indecomposable and
its dimension-vector is d(n, t) (6.3). In other words, the value of d(n, t) at seT, is
the multiplicity of the top of M(g(s), s) as a Jordan-Holder factor of M(n, 1);
equivalently, it is the dimension of k(R;){M(g(s), 5), M(n, ©)).

f) For each non-projective vertex (n, t) of Ry, the sequence

M (G M@

Mn—2,1) EMn—1,s)—— M(n, 1),
which is induced by the arrows of Ry of the form (n—1, s)—2>(n, ), is Auslan-
der-Reiten.

y) For each injective vertex of Ry of the form (n—2,s), M(n—2,s) is in-
jective; moreover, in the quotient of M(n—2,s) by its socle each direct sum-
mand occurs with multiplicity 1 and is isomorphic to M(n—1,r) for some
arrow (n—2, s)—Ls(n—1,r) of R.

Our proof proceeds as follows: Let m be a natural number and denote by
H,, the hypothesis claiming that the statements «), ), y) hold for each n<m.
We shall prove that H,, is true by induction on m and on the cardinality |7|
of T,.

H_ is obviously true if |T,|=1. So we shall suppose that |[Ty|>1 and that

m

H, is true for each m and each tree having cardinality strictly less than T. The
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hypothesis H,, is also trivially satisfied for m=0. So we shall suppose that
m>0 and that H,,_; holds.

The proof of the induction step is given in d) and e) below. It uses the
following trivial implication of H, _: if n<m, M(n,t) is isomorphic to the
Auslander-Reiten translatesd =" M(g(1), 1), r=%(n—g(0)), of the projective module
M (g(1), t). Accordingly, we have M(n, t)—t> M(£,s) if (n, t)%(¢, s) and £, n<m.

d) Let (m—2,1) be a vertex of Ry and N=M(m—2,1). Denoting by # the
radical of the category mod A7, we first show that [#(N, L)/#*(N, L): k]£1
for any Leind A™. Moreover, in the case [#(N, L)/#*(N, L): k]=1, L is isomor-
phic to M(m—1, 5) for some arrow (m—2,1)—>>(m—1,s) of R,.

Indeed, let u: N— L be an irreducible map, Leind A. If L is not projective,
its Auslander-Reiten translate o/ is the domain of an irreducible map
vie/L— N.If (m—2,1) is not projective, part ) of H,, | gives us the structure
of the Auslander-Reiten sequence stopping at N (statement f) of Sect. ¢)). We
infer that #(s/ L, N)/#*(/ L, N) has dimension 1, and that .&/L-=5> M(m-3, s)
for some arrow (m—3,5)—(m—2,1) of R;. The same conclusion holds if
(m—2,1) is projective by section b) above. Since /L is not injective, (m—3, s)
is not an injective vertex of Ry by part y) of H,, ,. Hence (m—1, s) belongs
to R, and L is isomorphic to o/~ ! M(m—3, s)-~ M(m—1, s) by part f) of
H,_,. Our claim follows for é=0"'e since [#(N, L)/#*(N, L): k]
=[R(A L, N)/R*(/ L, N): k].

Suppose now that L=M/(g(s), s) is projective. By section b) we have M(m
—2,1)=N-">M(g(s)— 1, r) for some arrow (g(s)—1, )2 (g(s), s) of R;. Now,
if g(s)—1<m, the last assertion of section c) tells us that (m—2,t)=(g(s)—1, r).
Accordingly, our claim follows from section b), if we can exclude the possi-
bility g(s)— 1 =m: in fact, if g(s)>m, we consider the full subgraph of T formed
by the vertices v such that g(v) <g(s). This subgraph is a disjoint union of trees
T', which we grade with g,=g| T¢ —u;, where y,=Min {g(x): xe T}}. Clearly, we
have (g(s)—1—pu,;, r)eRp and (m—2—p;, 1)eR,, for some i,j. As M(g(s)—1,7)
and M(m—2,t) are isomorphic, they must have the same “support”, ie. the
same Jordan-Holder factors. Hence i=j. Since T’ has less vertices than T, we
already know that M(m—2—pu,, t)-=> M(g(s)— 1 —p;, r) implies t=r and m—2
—p;=g(s)— 1 —pu;, a contradiction to g(s)>m.

e) Proof of H,: Let (m—2,1) be a vertex of R,. Each arrow (m—2, 1)—%
(m—1,s) induces an irreducible map M(5). This follows from section b) if
{(m—1, s) is projective, from part ) of H,, | otherwise. We infer that the induced
map M(m-—2, t)ﬂ $ M (m—1, s), where ¢ ranges over all the arrows of R,

J
with tail (m—2, t), is irreducible. It is maximal irreducible by section d).

If (m—2, ¢) is an injective vertex of Ry, we have d(m—2, z)gz d(m—1, s) by
]

6.3b), ¢). Since d(m—2,t) and d(m—1,s) are the dimension-vectors of M(m
—2,t) and M(m—1,s) by part o) of H M(m—21) is injective. This and
section d) prove part y) of H,,,.
If (m—2,t) is not an injective vertex of R,, the dimension-vector of M(m
—2,1) is strictly smaller than that of @ M(m—1,s). Accordingly, M(m—2,1) is
J

m—1»
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not injective. The maximal irreducible map [ M (d)] yields an Auslander-Reiten
sequence

M@)]

0->Mm—2,1)—— @M m—1, s)— Coker [M(6)]— 0.

Now, Coker [M(d)] is identified with M (m, 1) by Lemma 2.6. This proves part
B) of H,, and implies that M(m, ) is indecomposable. The exactness of the
Auslander-Reiten sequence and part «) of H,_, imply that M(m, ) has the
dimension-vector Zd(m—l s)—d{m—2, ty=d(m,t) (6.3b)). This proves part )
of H,.

We summarize our findings in the following proposition.

Proposition. If (T, g) is an admissible graded tree, the functor
M: k(Ry)—>mod AT yields an equivalence between k(R;) and a full subcategory
of ind AT, it induces a translation-quiver-isomorphism of R, onto a connected
component of the Auslander-Reiten-quiver I'jz.

Proof. The proof that a well-behaved functor is a covering functor ([15], 2.3)
extends to the present non-representation-finite case. It yields that M is fully
faithful. The rest of the proposition has already been proved.

6.5 Corollary. The map (T, g)— A" yields a bijection between the isomorphism
classes of representation-finite graded trees and the isomorphism-classes of simply
connected algebras.

Proof. Consider the map A—(G 4, g,) in the reverse direction. By 6.1 and 6.3 we
know that 4> A%, By 6.4 we know that (G ;r, g ) = (T, g).

6.6 At last we give the promised inductive recipe to construct all repre-
sentation-finite graded trees.

Let T=(T, g) be a graded tree and x a vertex of R,. The starting function s,
=sT:(R;)o—N at x is defined by sl(y)=[k(Ry)(x,y):k]. Its support
s7 (N~ {0}) is denoted by ST. The full subquiver of R, formed by ST is the
Hasse-diagram of a partial order, with which we endow S

In the sequel we denote by m a vertex of T with maximal grade (g(m)=g(t)
for all teT,). We denote by t,, ..., t, the neighbouring vertices of m in T, by
T', ..., T" the corresponding connected components of T~ {m}, by pu, the
minimum of g on T, by g, the grading g| T — p; of T".

Proposition. With the above notations the following statements are true:

a) (T, g) is admissible iff each (T', g) is admissible and each R, contains x,
=(gm—1—pu,t), 1Sisr.

b) (T, g) is representation-finite iff the conditions o) and f) below are
satisfied:

o) Each (T' g) is representation ~finite, each R,. contains x;=(g(m)—1

—u;, t,), the values of each st are <1.

B) The partially ordered set STIH HST is representation-finite in the sense
of Nazarova-Roiter ([13]).
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Let S be a partially ordered set. A S-space is by definition a vector-space M
together with a family of subspaces M, seS, such that M =M, if s<t. The S-
space M is the direct sum of two S-spaces M’ and M"” if M=M'®M" and M,
=M;® M, for all seS. The partially ordered set S is called representation-finite
in the sense of Nazarova-Roiter if there are only finitely many finite-dimen-
sional S-spaces admitting no proper direct sum decomposition. It has been
shown by Kleiner, Nazarova and Roiter that this is equivalent to saying that S
is finite and contains no subset whose Hasse-diagram for the induced order
has one of the 5 forms given in Fig. 6.6 [13].

:
o
R

Fig. 6.6.
We postpone the proof of the proposition to Sect. 6.10.

6.7 Corollary. Each tree T admits only a finite number of representation-finite
gradings.

Proof. Suppose that the statement is already proved for the graded trees §
having strictly less vertices than T. Then there is a natural number N such that

(Rg)og={(n, s): seS,,n<N}

for each such S. As a consequence, each representation-finite grading g of T
satisfies the relation g(t)SN +1, VteT,. This proves our statement.

6.8 We will use the following well-known facts in 6.10: Let A be a basic-
finite-dimensional algebra and 4,=P, ®...@®F, a decomposition of 4, into
indecomposable projectives such that Hom,(E,, B,)=k and Hom ,(P,, P)=0 for
all im. The decomposition yields an isomorphism

B 0
A=End A4, =
" A_’[R k]’

m— 1 m—1
where B=End, (@ Pi> and R=Hom, ( @ P, E,,). Accordingly, each A-mo-
i=1

i=1
dule can be interpreted as a triple (M, M,, ¢), where M, is a B-module, M, a
k-vectorspace and ¢ an element of Homz(M,®, R, M)~ Hom,
(MZ’ HomB (R’ Ml))

Let S be the support of the functor Homg(R,?) in indB and UeS. If
f1,f,eHomg(R, U) are linearly independent over k and Endgz U=k, we have a
one-parameter family (U, k, f, + Af,) of non-isomorphic indecomposable triples,
and A is representation-infinite.

If [Homg(R, U): k]=1 for all UeS, we endow S with the partial order such
that U 2V iff Homg(R, f)+0 for some feHomgy(U, V). With this definition, the
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second component M, of each triple (M,, M,, ) carries a natural S-space
structure (6.6): set M, =¢~'(H,), where Hy, is the image of the composition-
map

Homy(R, U)®, Hom,z(U, M ,)— Homgy(R, M ,).

The functor (M, M,, ¢)—M, thus defined induces a bijection between the
isomorphism classes of indecomposable triples (M, M ,, ¢) such that ¢ 0 and
the isomorphism classes of indecomposable S-spaces M such that M + M for
some seS.

For details see for instance [18].

6.9 Lemma. Assume that (T,g) is admissible and that y,zeS_=s;*(1) (6.6).
Then we have y=z iff k(R,) (x, f)#0 for some fek(R;)(y, 2).

Proof. Let u,v be two vertices of S,. u—%>v an arrow of R; and ¥ a path
from x to u inducing a non-zero-morphism Y ek(R;)(x, u). It is clearly enough
to show that @y +0. We proceed by induction on «x(v), where « is the first pro-
jection: k(n, t)=n.

If v is projective, k(R,)(x, &) is injective; so &y +0. If v is not projective,
consider the mesh stopping at v (Fig. 6.9) and the associated exact squence

0— k(Rp)(x, tv)— @k R;) (x,v)—= k(R ) (x,v) (2.6).

Suppose that a=f, and %y =0; then Y =(af,)f for some fek(R,)(x, tv) such
that (¢ §,)f=0 for i+ 1. We infer that tveS, and that f=4y’ for some path '
and some A=0. This implies (¢f,) /' = l‘l (6B)f=0 for i+1, hence v,¢S, by
our induction hypothesis (x(v;) <x(n)). On the other hand, veS,; so there is a

path y from x to some v; such that §;+0. Accordingly, we have j=1, 7=uy

for some pek, and §, = uf, =0, a contradiction.
/\
X \_/3 / \

Fig. 6.9

6.10 Proof of Proposition 6.6. a) The inductive definition of R implies that

{(n, De(Ry)g: ng(m), tm}

H (n+p;, 0): (1, )R 7)o, 1+ 2 gm)}.

Furthermore (g(m), m) belongs to (Ry), Ul x;€(Ry.), for all i. This proves a).
b) Suppose (T, g) representation-finite. Then all (T, g;) are so, since the
corresponding algebras 4™ are residue- algebras of AT, Applying 6.8 to the case

A=A" and P, =M (g(m), m), we have B= H AT and R= ]_[ M(x). Since all 4™

are simply connected each 1ndec0mposable B- module has k as ring of en-
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domorphisms. According to 6.8, this implies «). Moreover, the partially or-
dered set S considered in 6.8 is identified with ST'T[...[[SI" by 69. It is
representation-finite, because A7 is so (6.8). This proves that the conditions )
and p) are necessary. The sufficiency proof is similar.

7. The Representation-Finite Gradings of 4,

Our purpose in this section is to describe the representation-finite gradings of
the tree A, illustrated below. They coincide with the admissible ones. We skip
the proofs.

A —2—3—...—n—1—n.

n

7.1 With each grading g of A, we associate a bounden quiver K, which is
defined as follows. The vertices of K, are the projective vertices s=(g(s), s) of
04, » (6.2). Two such vertices s, t are connected by an arrow s>t if one of
the two following conditions holds: either s<t, g(s) —s=g(t)—t and g(x)—x <g(t)
—t whenever s<x<t; or s>t, g{s)+s=g(t)+t and g(x)+x<g(t)+t whenever
t<x<s. We call ¢ an a-arrow in the first case, a f-arrow in the second (see
Fig. 7.1). We require that the composition of any a-arrow with any f-arrow be
zero (symbolically: af=0=fa).

#

Fig. 7.1

Proposition. A grading g of A, is representation-finite iff K, is connected and
contains no subquiver of the form a) or b) below. If these conditions hold, the

algebra A~ # (6.4) is defined by the quiver K, and the relations af=0= fo.

i S

o(P‘/} <\P*"
< >
a) pir 4i >4 b)
f/J\} * 20 <\ ph
7 P
<” 3

Bt WA A

7.2 The quiver K=K, attached to a representation-finite grading g of 4,
satisfies the following conditions:
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A) K is a tree.

B) The arrows of K can be divided into an a-class and a f-class which
satisfy B, B, and B;:

B,) The composition of two arrows belonging to different classes is zero,
whereas any composition of arrows of the same class is not.

B,) Each vertex x of K is the head of one o-arrow and one f-arrow at
most; similarly, at most one a-arrow and one S-arrow start at x.

B,) K contains no subquiver of the form a) or b) (7.1).

Conversely, let A be the algebra of a bounden quiver K which has n vertices
and satisfies the conditions A) and B). Then A is simply connected, and the
associated tree G, (4.2) is isomorphic to A,. In order to describe the grading g,
and an isomorphism G -~ A,, we divide the arrows of K into two classes «,
and consider the map K,— Z* whose value (g(x), /(x)) at xeK, is constructed
as follows by induction on the distance from x to a chosen origin geK,: at the
origin we set (g(0), £(0))=(0, 1); if c—d is an a-arrow of K, we require that
(g(d), £{d))=(g(c)+w, £(c)+w), where w—1 1s the number of vertices x such
that the shortest walk from ¢ to x has the form illustrated in Fig. 7.2(%);
similarly, if ¢—d is a f-arrow, we require that (g(d),Z(d)=(g(c)+w,£(c)
—g(w)), where w—1 is the number of vertices x such that the shortest walk
from ¢ to x has the form illustrated in Fig. 7.2(xx). The construction of the
injection K,— Z?* is illustrated in the Figs. 7.1, 7.3.2, 7.3.3 and 7.4.1.

Now set A=Min/(x) and y=Min g(x). Denote by P_.emod 4 the projective

xeKo xeKo
cover of the simple A-module with support x, by x*eG, the t-orbit of P,.

Then: the map{: x+—{(x)—/i+1 induces a bijection Ko—>{1,...,n}; the 1-
orbits x* and y* are neighbours in G , iff |/ (y)—£(x)|={{(x)—£(y)|=1; the grade
g.4(x") of x*eG , equals g(x)—7.

(% %)

N\

P 0 ™ 20
Fig. 7.2
7.3 Definition. We call A-quiver a bounden oriented tree whose arrows are

divided into an a-~class and a f-class such that the conditions B, B, and B, of
7.2 are satisfied.

_ Figure 7.3.1 proposes two examples (compare with Happel-Ringel [23]). In
S¥ the vertices are words formed with the letters @ and b~'. We order them
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lexicographically writing them from the right to the left and setting b~ <a;
this yields for instance 1<b~'<b ?<ab '<a<b la<a®. We call atom of
class o« any connected full bounden subquiver S of S¥ which has I as smallest
and a as biggest vertex (see Fig. 7.3.2). The number ¢, of atoms of class « with
p=N arrows is given by the formula

0= 3 er=3-3yTdi=y | ()0

pz1 pglp p_—l
=t4+12 42834504 11465 + 4240 .

If 1 is chosen as origin and (g, /): S,— Z* is the injection constructed in
7.2, £(x) coincides with the ordinal of x in the lexicographic ordering of S; so
/(1) is 1, and /(a) is the number of vertices of S. On the other hand, 1(¢(x)
—g{x)—1) is the number of letters equal to b~! in the word x. A word x is a
tip of S if x belongs to S, whereas b~'x and ax do not. By construction a is
the biggest tip. If / denotes the smallest tip, the interval {xeS,: 1<x</} is
called the left lineage of S.

Similarly, the vertices of S¥ are words in b and a~*. We endow them with
the opposite of the lexicographic order such that a~!'<b; so we have
1>a " '>a"?>ba"'>b>a""b>b? We call atom of class § any connected full
bounden subquiver § of some S which has 1 as biggest and b as smallest
vertex (see Fig. 7.3.2). A word x is a tip of § if it belongs to S, whereas a~!x
and bx do not. If 7 is the biggest tip of S, the interval {xeS,: 1=x=7} is
called the left lineage of S.

Now suppose that m belongs to the left lineage of some § and m~! to the
left lineage of some S (for instance, set m=ab~'ab~? and m~'=bh%a ' bha~!
in Fig. 7.3.2). In case 1<m<a and 1>m~'>b we match S and S together
along the intervalls {xeS,: I<x<m} and {yeS,: 1=y=m~'} by identifying y
with x=ym. The resulting A-quiver § will be called an atom of class «ff (see
Fig. 7.3.3). We endow it with the total order which extends the orders of § and
S; for this order b is minimal and ¢ maximal. The number b, of atoms of class
aff with p arrows is given by the formula

b(ty= ) b, tP=—L1+r+3Y1—4r+
() pzl r 2 2 ]/m;

2p—
=3 ( P )tpzz“+6t5+28z"+

p=4

74 Let 8, ...,8™ be a sequence of atoms of class «, § or 2. Then we can
amalgamate S', ..., S" by identifying the biggest vertex of S* with the smallest
vertex of S*', 1 <i<m. The resulting amalgamation S™...S* is an A-quiver (see
Fig. 7.4). In case m=0 we agree that the amalgamation consists of one vertex
only. With this convention, each A-quiver can be written in a unique way as an
amalgamation.

It follows that the number g, of representation-finite gradings of A, , is
given by the formula
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1 1
glt)y= ) g,t'= +
,,;o" 1=2t+)1—-41r —14+2c+3)/1—4¢
=142t 4624203+ 714426265 +992¢°
+382417 4+ 1493418 +58892¢° + 233974110+ ...

Accordingly, the number a, of isomorphism classes of simply connected algebras
A such that G > A, is given by

1212
a)=§ a,r=tg0+4 (14 =) g0

pz0 |/1—4[2
=14+t+4>+ 1063 +391* 4+ 131745091
+ 191267+ 751718 +29446¢° + 117183110+ ...

We infer that
$6V2+2/g,—~1 and 5GV2+27a,— 1

when p tends to oc.

Fig. 7.3.3

7.5 Let g be a representation-finite grading of 4,, K=K, the associated A-
quiver (7.1, R=R, , the associated Riedtmann-quiver (6.3). For each
se{l, ..., n} we denote by u, (resp. by Z,) the number of vertices x=+s of K such
that the shortest walk from s to x in K has the form illustrated in Fig. 7.5.1
(resp. 7.5.2). With these notations, the vertices y of R satisfying k(R)(s, y) =0 are
the pairs (p, q)eINx{1, ..., n} such that (p—q)—(g(s)—s)€{0,2.4,...,2¢} and
P+a)—(g(s)+5)€{0,2,4, ..., 2u}. The set of these pairs is called the rectangle
starting at s (see Fig. 7.5.3). It “stops” at the injective vertex §=(g(s)+u,+¢,,
s+u,—¢) (compare with Prop. 2.8c). For each point y of the rectangle starting
at s we have [k(R)(s, y): k]=1. The vertex-set of R is the union of the rectangles
starting at the different projective vertices (see Fig. 7.4).

As a corollary we infer that the simply connected algebras A such that
G, A, coincide with the tilted algebras produced by hereditary algebras of
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class A, (it follows from 7.4 and 7.5 that the Auslander-Reiten quiver of 4 has
a section [4]; see Fig. 7.4).

7.6 Remarks. a) After the completion of our results we received an article by
I. Assem and D.Happel on Generalized Tilted Algebras of Type 4, [21]
They prove that the algebras of the bounden quivers satisfying condition 4
and part B,, B, of condition B (7.2) coincide with the algebras obtained from
hereditary algebras of class A, by a finite sequence of tilts.

1
b) The numbers R

binatorics as Catalan numbers. Three different combinatorial interpretations of
them can be found in L.Comtet [22]. In our case we use a fourth in-
terpretation of ¢,,, as the number of subtrees S of S" which have n vertices
and contain 1. In the terminology of Happel-Ringel [23], there is a natural
bijection between these S and the isomorphism classes of multiplicity-free
tilting modules over the algebra 4 of the Dynkin-quiver n—n—1—...—>2— 1,

c) The numbers a, and g, of 74 can be computed by means of the
following induction-formulae:

2
( n) occuring in 7.3 are well-known in com-
n

Prl Di—4\ i?4+3i—6
=2 2 4 e ;
8p+1 g, t28, 1 1T48, »+ ;4 ( )(i—Z)(i—3) 8pri-i

Poj—1 2i—2
2a,,=¢,,+8,+ Z — (i—l ) g,

Maximal Algebras with 2 Simple Modules

Each representation-finite basic connected finite-dimensional aigebra over k
(=algebraically closed) whose radical has codimension 2 is isomorphic or anti-
isomorphic to a quotient of an algebra of the following list. The listed algebras
are defined by quivers and relations. With each algebra 4 we produce its
Auslander-Reiten quiver I, and the associated graph G, (4.2). In I, we have
omitted the tips of the arrows, which are directed from the left to the right. We
have to identitify two vertices denoted by the same letter, as well as the arrows
connecting such vertices. Although the dimension-vector of an indecomposable
module is completely determined by its position in I, we indicate it in some
cases: for instance, the notation e32 means that [32] is the dimension-vector
of the module represented by the vertex e; similarly, 13p (resp. j22) denotes a
projective (resp. injective) indecomposable with dimension-vector [13] (resp.
[22]) and top-dimension-vector [01] (resp. socle-dimension-vector [10]); the
letters A, B, C ... stand for the numbers 10, 11, 12.... Using the given dimen-
sion-vectors and the additivity of the dimension occuring in a mesh, 1t is e¢asy
to compute all dimension-vectors. With the exception of algebra 14 bis, which
is not isomorphic to algebra 14 in characteristic 2, all listed algebras are
standard.
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Representation-Finite Gradings of Small Trees

The vertices of a tree are labelled from 1 to n according to the pictures given
adhead of each list. In the symbol

18283
a,a,a,...,

g; is the grade of the vertex p; with label i, a; the number of vertices in the t-
orbit of p;; as a consequence, a, +4a,+a,... is the number of indecomposable
representations of the associated algebra. The gradings are ordered lexico-
graphically. We only list the first grading in each orbit under the automorphism
group of the considered tree. The letters A and B stand for the numbers 10 and
11 respectively.

3

l

2 1—4

0111t 0113 0133 0135 1000 1002 1004 1022 1024
3333 4331 3122 4111 3333 3333 3221 3333 3411

3

2—1—4

|

5

01115 01135 01137 01333 01335 01355 01357
65551 54413 53311 41333 51331 41122 51111

10006 10026 10044 10046 10226 10244 10246
43331 43341 32222 42211 53441 44133 45111

4

yd
2_..
s

N

01115B 011359 011377 011379 013337 013357
755511 644141 533122 633111 715551 614413

013359 013555 013557 013577 013579 100066
613311 511333 611331 511122 611111 433322

100068 100266 100268 100444 100446 100466
533311 533433 533511 422333 522331 422122

100468 102268 10226A 102448 102466 102468
522111 635513 634411 641441 551133 561111
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5

1—2—3—4

01011 01013 01015 01033 01035 01211 01213
44444 44533 32421 23433 24411 44444 44453

01215 01233 01235 10100 10102 10104 10122
34321 44444 54311 44444 44453 24441 44444

10124 10144 10146 10322 10324 10326 10344
45431 22322 22411 14333 14333 13321 14333

10346 12100 12102 12104 12106 21011 21013
15311 44444 44453 23443 22431 44444 44533

21015 21033 21035 21055 21057 23011 23013
22441 14433 14531 12422 12511 23544 32412

23015 30100 30102 30104 30106 30122 30124
23411 25444 25453 14322 13421 25444 34312

30126 32100 32102 32104 32106 34100 34102
23411 44444 44453 14443 12451 22322 22441

41011 41013 43011 43013 43015 43017 45013
23544 24441 14544 22413 13412 12511 22411

50100 50102 50122 50124 52100 52102 54100
14433 14434 14544 24411 23433 23434 12422

54102 61011 61013 63013 65013 70124 72100
12451 14333 14531 13312 12511 15311 14333

72102
14333

6

|

[—2—3—4—5
010101 010103 010105 010121 010123 010125
666666 667664 345431 766656 767654 555421

010141 010143 010145 010147 010161 010163
657646 666525 324412 325311 456425 456614

010181 010321 010323 010325 010327 010341
444514 567556 255443 245323 235221 577546

010343 010345 010347 010361 010363 010381
255443 245413 255211 455423 235324 446413

010383 010541 010543 010561 010563 012101
234413 324222 245221 325212 255211 666666

012103 012105 012107 012121 012123 012125
666666 344433 334331 766656 766656 555423
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012127 012141 012143 012145 012147 012161
434321 676646 676646 344513 354311 455625

012163 012181 012183 O0121A3 012321 012323
455644 445514 445523 444613 776556 776556

012325 012327 012341 012343 012345 012347
555523 454221 876546 876546 555514 654211

012361 012363 012381 012383 O0123A3 012541
465525 465544 445416 445425 444514 344222

012543 012561 012563 101010 101012 101014
554221 354212 654211 666666 0666666 466644

101016 101030 101032 101034 101036 101050
334331 576656 576656 245543 254321 566625

101052 101054 101070 101072 101074 101092
566744 254521 445514 445523 245511 444613

101210 101212 101214 101216 101230 101232
676566 676566 466664 354231 776556 T76556

101234 101236 101250 101252 101254 101270
476654 554221 666525 666644 555421 445416

101272 101274 101292 101430 101432 101434
445425 465411 444514 255325 566425 224232

101436 101450 101452 101454 101456 101458
224321 255415 566416 224223 224312 225211

101474 101654 101674 103012 103014 103016
223312 224221 225211 143413 143413 133311

103212 103214 103216 103232 103234 103236
154444 164443 133431 154444 164443 154421

103252 103254 103256 103258 103272 103274
154524 164523 133412 134311 144413 144414

103432 103434 103436 103438 103452 103454
154444 164443 154323 144221 154444 164443

103456 103458 103472 103474 103492 103494
154413 164211 144323 144324 143413 143413

103652 103654 103672 103674 121030 121032
133222 154221 134212 164211 566756 566756

121034 121036 121050 121052 121054 121056
255543 245521 556627 557746 255623 224512

121058 121070 121072 121074 121092 121210
225411 455514 455523 235514 444613 666666

121230 121250 121270 121430 121450 1214790
766656 656527 456416 245445 245445 235324
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121490 121650 121670 210121 210123 210125
234414 224223 225213 666666 667664 456541

210141 210143 210145 210147 210161 210163
557656 566625 224432 225321 566425 567614

210165 210181 210185 210321 210323 210325
225421 444514 224511 467566 155444 146443

210327 210341 210343 210345 210347 210361
135231 477556 155444 146443 155221 555423

210363 210365 210381 210383 210385 210541
156324 155421 446413 144413 146411 225224

210543 210545 210547 210561 210563 210565
156324 125232 125321 225215 156414 125223

210567 210569 210585 210765 210785 230141
125312 126211 124312 125221 126211 246545

230161 230181 230321 230341 230361 230541
246625 236514 334331 434321 325311 235221

230561 301030 301032 301034 301036 301050
245211 476746 476746 154513 155511 255626

301052 301070 301072 301092 301230 301232
255645 265514 265523 254613 676646 676646

301234 301236 301250 301252 301270 301272
455514 465411 265526 265545 266416 266425

301292 301430 301432 301450 301452 301470
254614 144232 354231 154222 454221 143312

301472 301650 301652 301670 301672 321050
343311 134222 234221 135212 235211 456727

321052 321054 321056 321058 321070 321072
457756 155624 124532 125421 555514 555523

321074 321076 321092 321096 321230 321250
156514 125521 444613 124611 666666 556627

321270 321430 321450 321470 321490 321650
566416 145446 145446 155324 144414 125225

321670 341052 341072 410141 410143 410161
125216 234521 225511 466644 345431 235525

410163 410181 410183 410341 430161 430181
255421 236514 244511 456416 146626 156514

430341 430361 430381 430541 430561 430581
334331 225321 224411 135231 145221 134311

430761 430781 501050 501052 501250 501252
125221 126211 154513 165614 154433 166544
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501270 501272 501290 501292 501452 521250
145423 145525 144513 146514 354311 344433

521270 521290 541072 541092 610161 610163
235423 234513 125521 124611 143413 155511

630361 721270
133311 143413
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