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In 1979 Chr. Riedtmann introduced coverings of the Auslander-Reiten quiver 
F A of a representation-finite algebra A ([15]; see also 1.3 and 2.2 below). Our 
main results are that F A admits many finite coverings in general, and that each 
of these is the Auslander-Reiten quiver F M of some representation-finite M 
(2.9). In order to prove the first statement we show in w that the finite 
coverings of F A are classified by the actions of the fundamental group H (1.2) 
of F a on finite sets; in general, there are many such actions because H is a free 
(non-commutative) group (4.2). We obtain our second main statement by 
considering the algebra E which is defined by the mesh relations of a finite 
covering A of F A ([16], 1.4; see 2.5 below); such an E satisfies the Auslander 
conditions characterizing the algebras of the form End(@. M/), where M i 

ranges through chosen representatives of the indecomposable modules over some 
representation-finite algebra (2.3). In case A =Fa, the relations between E and 
A are studied in w 5. 

The theoretical notions developed in this paper give rise to concrete algo- 
rithms (and computer programs) which enable us to construct the Auslander- 
Reiten quivers for plenty of algebras. We enter upon these algorithms in w 
tackling the special case H =  1. The general case will be examined in a sub- 
sequent publication, from which we borrow the Auslander-Reiten quivers of 
the 14 "maximal"  algebras listed at the end of our paper (each basic connected 
representation-finite algebra with two simple modules is isomorphic to a quo- 
tient of a "maximal"  algebra or to its opposite). The list of these maximal 
algebras has also been obtained by A.V. Nikulin and C.A. Panasiuk [14] as an 
application of the methods developed in Kiev. 

The present paper is intimately related to the results of Chr. Riedtmann 
([15], [16]). Her unpublished collection of Auslander-Reiten quivers was a 
decisive help in proving that the fundamental group is free. Unfortunately, her 
own work on selfinjective algebras of class D, and the distance between Boston 
and Ziirich finally prevented us from carrying through the original plan of a 
common publication. We take pleasure in thanking her for encouragements 
and remarks. 
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The second author gave a series of lectures on this publication at the 
Ukrainian Academy of Sciences (Kiev, October 1980). The results (except w 6, 7) 
were announced by him at the Conference on Representations of Algebras in 
Puebla (August 1980). His preliminary version was finally cleaned and im- 
proved by the first author. 

For assistance and support we express our gratitude to R. Bautista, L.A. 
Nazarova, A.V. Roijter and S. Smalo. For the verification of our numerical 
results by means of the computer and the preparation of the manuscript we 
like to thank C. Steinemann, N.F. Gabriel and R. Wegmann. 

1. The Fundamental Group of a Translation-Quiver 

1.1 Consider a quiver F together with a bijection z, whose domain and range 
are both subsets of F o (= the  set of vertices of F; see Fig. 1.1). 

"~x 

q::: Z =  Z 

a 

\./ 
. / \ . /  

~ y ~y " ~ , /  Y 

f Fig. 1.1 

The pair (F, z) is called a translation-quiver (=Darstel lungsk6cher in the 
sense of Riedtmann [15]) if the following conditions a) and b) are satisfied: 

a) F has no loop ~. and no multiple arrow . ~ .  
b) Whenever z is defined at some point x ~ F  o, the set x - o f  predecessors of 

x in F o coincides with the set (vx) + of successors of zx: 

Yl 

J 
T X -  > Y 2 - - ~ "  X 

Yr 

As usual, we often write F instead of (F, z). The bijection r is called the 
translation of (F,z). The vertices of F where z is not defined are called 
projective; those where r -1 is not defined are called injective. The full sub- 
quiver of F formed by a non-projective x, by its non-injective translate rx  and 
by the set (zx) § = x -  is called the mesh starting at zx and stopping at x; for 
each eeF~ (= the  set of arrows of F) with non-projective head x and tail y we 
denote by ae  the unique arrow with tail z x  and head y. 

For a geometric interpretation we refer to w below. 
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1.2 Let F be a translation-quiver.  In order to define the fundamenta l  group of 
F at some point, we introduce "new"  arrows rx-2~-*x, one for each non- 
projective vertex x ~ F  o. We represent  these new arrows by broken  oriented line 
segments  and say that  they have degree 2 in contrast  with the old arrows of F 
whose degree is defined as 1. The vertex-set F0, the old and the new arrows 
give rise to some quiver /~  which may  have loops (see Fig. 1.2 which represents 
F, when F is the t ranslat ion-quiver  of  Fig. 1.1). 

f 

Fig. 1.2 

Let x,y~Po.  A walk of P is a path  of the quiver formed by /~ and the 
formal  inverses ~ - i  of the arrows ~ / ~  (I-7], 4.1), i.e. a sequence 
w=(y l  c~ . . . . . .  c~1 Ix), where % ... c~ 2 cq is a formal  composi t ion of  arrows of /~  or 
of  formal inverses of  such arrows;  this formal composi t ion  is supposed to start  
at x, to stop at y. In the case of Fig. 1.2 for instance, the sequence 

(yl6, ~6, ?~y, e, o'/~, (o'B) - 1 , / ~ -  1, (o-00 -1,  n -1,  7 ~  1, 7x  1 Ix) 

is a walk from x to y. A walk from x to y may  be composed  with a walk f rom 
y to z according to the formula  

(zl f t , , . . . ,  fll Jy)(yl ~, ,  . . . ,  51 I X) =(ZI/~n,  " ' '  , /~1, O[m, " ' ' ,  0~1 IX) �9 

On the set of  all walks of F we define the homotopy relat ion as the smallest 
equivalence relation H satisfying the condit ions a), b) and c): 

a) (xrT, c~-'fx)~ff(xllx)~ff(xlfl- ' , f l lx) for each arrow c~e/~ with head x and 
each a r row/~e /~  with tail x. 

b) (x[ ~, ac~ Irx) ~ (xl 7~ [rx) and (zx[ (a~) -  t, ~ -  ' Ix)  ~ (rx[ 72 ' Ix)  for each ar- 
row c~ of degree 1 with non-project ive head x. 

c) The relat ion v ~ v' implies wv ~ff wv' and vu~ff v'u whenever this makes  
sense. 

Clearly, the composi t ion  of walks induces a (partially defined) composi t ion  
of h o m o t o p y  classes: if ~ denotes the h o m o t o p y  class of  a walk w, then # g  is 
defined whenever wv is, and we have wv=wv .  In particular,  for any given 
xeFo, the composi t ion  is everywhere defined in the set H(F, x) of h o m o t o p y  
classes of  walks f rom x to x. For  this composi t ion  H(F ,x)  is a group:  the 
fundamental group of F at x. 
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1.3 The universal cover f of F at the point x ~ F  o is by definition the following 
translation-quiver: the points of/~ are the homotopy classes ~ of walks w of F 
which start at the given fixed point x=w"  and stop at some (variable) point 
"w~F o. The arrows of/~ are the pairs (~, ~) formed by a homotopy class ~/~0 
and an arrow "w ~ ,z of F; tail and head of (~,~) are the classes ~ and 

(zl~]'w)w respectively. Finally, the translation of /~ is defined by the formula 

v~,=(~'w] 7~l]'w)w, which makes sense whenever "w is not projective; other- 
wise, ~ is a projective point of F. 

Obviously, there is a unique translation-quiver-morphism ~ : / ~ F  such 
that g(~)= 'w.  This is a covering morphism in the following sense ([15]). 

Definition. A translation-quiver morphism f:  A ~ F is called a covering if for each 
point p~A o the induced maps p - - ~ ( f p ) -  and p+--~(fp)+ are bijective. Further- 
more, ~p and z - l  q should be defined if ~fp and ~ - l f q  are respectively so (of 
course, since f is a translation-quiver-morphism, we have f v p  = vfp whenever vp is 

A 

f '  

defined) (see Fig. 1.3a). 

Fig. 1.3a 

In Fig. 1.3b) we give a simple example of a universal covering. Only arrows 
of degree 1 are represented; p and p, are projective points, whereas ~a=a, 
~b = b and zc = c. The quiver F is drawn on a cylinder (see w 4), whose "universal 
covering" is a serrate strip. 

< 
i b ~-, 

P-~ " P~t " Po 

____%/ %/ J 

. . . . . _ _ ~ \ .  , , ~ \  T ~ _ _ _ _ _  I 

" \ J  " \ = .  , 

ao a 4 a x 

Fig. 1.3b 
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1.4 Let f :  A--~F be a covering and f - l ( x )  the fibre of x e F  o in A 0. For each 
walk w of F starting at x and each point y c f -  l(x), there is a unique walk v of 
A, which starts at y and "lies over" w. The terminus "v of v depends only on y 
and ~. In particular, if "w = x, "v lies in f - 1  (x). In this way we get an operation 
of the fundamental group/ / (F ,  x) on f -  l(x): # y =  "v. 

Proposition. I f  F is a connected translation-quiver and xeFo, the functor 
f~--~f - l(x) is an equivalence between the category of F-coverings and the category 
of H(F,, x)-sets. 

Clearly, the category of E-coverings has as objects the coverings f :  A -~ F, as 
morphisms the commutative triangles 

A ---~-- �9 A' 

\ /  
F 

where f and f '  are coverings and d is a translation-quiver-morphism (this 
implies in fact that d is also a covering). A //(F, x)-set is a set M together with 
an action of / / (F ,  x) on M from the left. 

Proof. Let us just produce a "quasi-inverse" functor. Starting with a//(F,, x)-set 
M we first construct a translation-quiver P x M having/~0 x M as set of vertices 
a n d / ~ l x M a s  set of arrows: I f x  " , y i s a n a r r o w o f f a n d m ~ M ,  thea r row 
(~, m)~/~l x M starts at (x, m) and stops at (y, m). Furthermore, we set ~(x, m) 
=(vx, m) whenever x is non-projective. The translation-quiver / ~ x M  is the 
direct sum of some copies of P indexed by M. It admits H(F, x) as a group of 
automorphisms: indeed, for each ~ / / ( F ,  x), the permutation (~, m)~--,(~- l, ~m) 

~ / /  

of/~o x M yields an automorphism of / "  x M. We denote by F • M the quotient 
of/~ x M under this group-action. This is a translation-quiver having as points 
the orbits o f / / = / / ( F ,  x) in /~o x M, as arrows the orbits o f / 7  in /~1 x M. It is 

~ / /  

related to F by means of a covering morphism f :  F x M-~F,  which is deduced 
from the projection/~ x M-~F,  (~, m)~--~'w=~ by passing to the quotient. The 
construction Mr--~f supplies us with the wanted quasi-inverse functor. 

1.5 In the particular case of the universal covering ~:/~--, F, the fibre re-l(x) 
is the fundamental group itself equipped with the action by left translations. 
An automorphism of the //-set ~-~(x) is just a right translation ~--,6~ o f / / .  
The corresponding automorphism of the universal covering assigns to the 
homotopy class #e/~0 the composed class #Te/~0- Since each/ / - se t  is a disjoint 
sum of H-sets of the form / / /P, where P is a subgroup o f / / ,  we deduce from 
Proposition 1.4 that each covering of F is a "disjoint sum" of coverings of the 

jbrm ~c: ~P/P--,F,, where ~c is deduced from ~ by passing to the quotient. 

1.6 Of course, a translation-quiver F is called simply connected if it is con- 
nected and if //(F, x )=  {1} for some xEF o. This implies //(F, y )=  {1} for all 
y~F o and is equivalent to saying that each connected covering ~: A - * F  is an 
isomorphism. 



336 K. Bongartz and P. Gabriel 

Proposition. Let F be a simply connected translation-quiver and xcF o. Then there 
is one and only one (translation-)quiver-morphism ~ from F into the translation- 
quiver 7IA 2 of Fig. 1.6 such that K(x)=0. 

- 3 - -  - ~ - I  - -  - - - - > I  - -  - 

. . . . . . . . .  -> l,' ZAz 

Fig. 1.6 

Proof Define the length 2(w)67/of a walk using the following formulae: 

2(x,I c~ . . . . .  ,~xlXo)=2(x,l%lx,_O+...+2(Xal~tlxo), 2(yt~lx)= 1 

and 2 ( x [ ~ - l l y ) = - I  if 76F1, 2(xlTxlzx)=2, 2(ZXlT~-l}x)=-2. By the de- 
finition of homotopy, 2 is constant on each homotopy class. Now, since F is 
simply connected, the walks from x to any given ycF o are homotopic to each 
other. So we may set K(y)=2(w), where w is any walk from x to y. This yields 
the wanted quiver-morphism. 

1.7 Following Riedtmann [15], a translation-quiver F is called stable if its 
translation is everywhere defined. The simply connected stable translation-qui- 
vers can be constructed in the following way: Start with any oriented tree T 
and set ( 7 / T ) 0 = 7 l x T  o, ( 7 / T ) l = { - 1 , 1 } x T / x T 1 ;  if x ~ , y  belongs to T1, 
define the tails and the heads of the arrows ( - 1 ,  n, 7) and (1, n,~) as in the 
diagrams 

(n,x) (1 . . . .  ) , (n,y) and ( n - l , y )  (-1 . . . .  ) ,(n,x);  

finally, set z(n, y ) = ( n - 1 ,  y). This construction yields a simply-connected stable 
translation-quiver 7/T. Two translation-quivers 7/T and ZT '  are isomorphic iff 
the non-oriented trees T and T' underlying T and T' are isomorphic. 

2. Auslander-Categories and Riedtmann-Quivers 

In the sequel, k denotes a field, which we suppose to be algebraically closed for 
the sake of simplicity. 

2.1 A k-category A is a category whose morphism-sets A(x,y) are endowed 
with k-vectorspace structures such that the composition maps are k-bilinear. 

Definition. A locally finite-dimensional (resp. a locally bounded) category is a k- 
category A satisfying the conditions a), b) and c) (resp. a), b) and c')) below: 

a) For  each x~A, the endomorphism algebra A(x, x) is local. 
b) Distinct objects of A are not isomorphic. 
c) Vx, yeA, [A(x, y): k] < oo. 
c') VxeA, ~ [A(x, y): k] < oo and ~ [A(y, x): k] < oc. 

yeA yeA 

Locally bounded categories can be constructed in the following way: Start 
with a quiver Q, which may be infinite. The path-category kQ of Q has as 
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objects the vertices of Q; if x, y~Qo, the morphism-space kQ(x, y) consists of 
the formal linear combinations of paths from x to y. In the k-category kQ 
which we get in this way we distinguish two ideals kQ + and kQ +2, whose 
values at some pair of objects (x, y) are the subspaces kQ+(x, y) and kQ+Z(x, y) 
of kQ(x, y) spanned by the paths of lengths > 1 and >2  respectively. Given an 
ideal l ~ k Q  +2, it is easy to see, that the residue-category kQ/1 is locally 
bounded iff the conditions d) and e) below are satisfied: 

d) Q is locally finite, i.e. the number of arrows starting or stopping at any 
vertex is finite. 

e) For each vertex x~Qo, there is a natural number N~ such that I contains 
each path of length > N x which starts or stops at x. 

Conversely, each locally bounded category is isomorphic to such a kQ/I. We 
recall the argumentation: Start with any locally finite-dimensional category A. 
The radical ~ A  of A is the ideal assigning to a pair of objects (x,y) the 
subspace ~ A ( x , y )  of A(x, y) formed by the non-invertible morphisms. The 
radical-square ~2 A is defined by ~2 A(x, y)=  ~ ~A(z ,  y) ~A(x ,  z). The quiver 

zffA 

QA of A has as vertices the objects of A; if x, y are two such objects, we join x 
to y with a sequence of n arrows x - , y ,  where n = [ ~ A ( x , y ) / ~ 2 A ( x , y ) : k ] .  
Now, if A is locally bounded, QA is locally finite. We get an isomorphism 
k Q A / I ~ A  for some ideal l c k Q ~  2 by sending the different arrows x - * y  onto 
respresentatives in ~'A(x, y) of chosen basis vectors of ~ A ( x ,  y)/:~2A(x, y). 

2.2 If A is a k-category, a A-module is a k-linear functor [:A~ 
where Modk is the category of k-vector-spaces. The A-module d is finitely 
generated if it is a quotient of a finite direct sum of representable functors. We 
denote by modA the category of all finitely generated A-modules, by indA 
(resp. proj A) the full subcategory formed by chosen representatives of the 
indecomposable modules (resp. by the projective modules). 

Let A be locally bounded: a A-module d is then finitely generated iff 
X [d(x): k ] <  oo; it is indecomposable projective (resp. injective) iff it is iso- 
x~a 
morphic to some A(?, x) (resp. to DA(x, ?), where DV denotes the dual of a vector 
space V); the category mod A admits Auslander-Reiten sequences. In fact, the 
existence-proof given in [7] extends easily to the locally bounded situation. So 
does the construction of the Auslander-Reiten quiver FA; this is a translation- 
quiver whose underlying quiver is obtained from Q~naA by contracting possible 
multiple arrows to simple ones. 

Definition. A locally representation-finite category is a locally bounded category 
A such that the number of .#~indA satisfying E(x)#:0 is finite for each x. 

It is easy to see that the last condition is equivalent to saying that ind A is 
locally bounded. 

2.3 Proposition (M. Auslander [-1]). The following statements are equivalent: 
(i) M is isomorphic to ind A for some locally representation-finite A. 

(ii) M is locally bounded and satisfies the following conditions a), b): 
a) g d d i m M ~ 2 ,  i.e. Ext3(m, n)=O for all m, n~modM. 
b) For each projective p~mod M, there is an exact sequence 0-+ p-* i o--* i 1, 

where io, i~ ~mod M are both injective and projective. 
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Proof (i)~(ii): Assume that M =ind  A, where A is locally representation-finite. 
As we noticed in 2.2, M is locally bounded. Obviously, the functor 
(~-~Homa(?, {) yields an equivalence mod A ~,proj  M. Accordingly, a mor- 
phism g:m0--*m 1 of p ro jM is isomorphic to HOma(?,f):HOmA(?,fo) 
-+ HOmA (?, {1) for some morphism f:{o~#~ of modA. It follows that the 
kernel of g in m o d M  is isomorphic to Homa('? , Kerr) ,  which is projective. 
This proves a). 

In order to prove b) we may assume that p = H o m  a(7, ~'). Let 
O--~{-+jo--~jl be an injective resolution of ( in modA. This yields an exact 
sequence O-,p-+io~i l ,  where io=Homa(?,jo) and il=HOmA(?,jO are pro- 
jective by construction. Statement b) now follows from the fact that Homa(?,j)  
is injective in modM,  i f j  is so in modA: indeed, for each t " e M = i n d A  and 
each 2eA, we have canonical isomorphisms 

Hom a ({, DA(2, ? ) ) - ~  Horn A (A(). ?), D ( ) ~  D~(2)~+ D Hom A (A(?, 2), (), 

which show that HomA(?,j ) is identified with the injective M-module 
DM(A(?,2),?) if j=DA(2,?). Accordingly, Homa(?,j) is an indecomposable 
injective M-module, i f j  is an indecomposable injective A-module. 

(ii)~(i): Let us first recall a classical result. With each additive category I 
we can associate a new additive category [ which looks as follows. The objects 
of [ are the morphisms of I; a morphism from i 0 I , i l  to Jo g 'Jl is an 
equivalence class of commutative squares 

ho 
io --~Jo 

(h~ h ' ) : / ~  < i g 

ia - ' J l  

two such squares (ho, ht) and ho, h' 0 being equivalent if ho-h o factors through 
f Now, the classical result is the following: if 1 is a full subcategory of an 
abelian category C, and if I consists of injective objects of C, then the kernel- 

functor Ker: [ -+ C, which maps i o ~  i i onto Kerr,  is fully faithful. 
In the situation of our proof, we choose for 1 the full subcategory of 

m o d M  consisting of the modules which are projective and injective. The 
conditions a) and b) mean that the kernel-functor yields an equivalence 
[ ~ p r o j  M. On the other hand, choose d to be the full subcategory o f / f o r m e d  
by chosen representatives of the indecomposable modules of 1. The functor 
jF--,D(j,?) yields an equivalence from 1 onto the full subcategory of modA 
formed by the injective modules; accordingly, the induced functor [ ~ m o d A ,  

which m a p s j 0 ~ g  j l  onto KerD(g, 2), is an equivalence. By composition of the 
obtained equivalences proj M ~=- [--~, mod A, we get an isomorphism 
M ~ + i n d A ,  since M is identified with a full subcategory of proj M by means 
of the embedding p~--,MU,/*). 

2.4 Definition. A k-category M which satisfies the equivalent conditions of the 
preceding proposition is called an Auslander-category. 
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Assume that M = i n d A ,  where A is locally representation-finite. In 2.3 we 
used the embedding A - ~ M ,  2---~DA(),, ?). In fact, it is often more convenient to 
use the embedding A ~ M ,  2~--A(?,2). For this sake we need an M-internal 
characterization of the objects of M of the form A(?, 2): let us say that an object 
/2 of a locally finite-dimensional category M is top-torsionfi'ee if there is a non- 
zero morphism ~EM(/~, v) such that ~f l=0 for each non-invertible morphism fi 
with range /2. In case M = i n d A ,  an object #~M is top-torsionfree iff it is 
isomorphic to some A(?, 2) (the equivalence of these statements is obvious, as it 
simply provides us with a characterization of the projective indecomposable A- 
modules among all the indecomposable ones). 

The terminology "top-torsionfree" can be justified as follows: the non- 
invertible morphisms fl~M(~c,~ 0 are the elements of the radical ~M(~c,#) 
=(~M(?,  kt))(K); accordingly, a morphism ~ M ( # ,  v) satisfies ~f l=0 for each 
non-invertible fi iff M(?,~): M (?, p) --* M (?, v) factors through the simple top 
ku=M(? , / 0 /~m(? , / 0  of M(?, #) (notice that ku(/2)=k and k~,(v)=O for v4:#). So 
/~ is top-torsionfree iff the top k is "torsionfree", i.e. can be embedded into some 
projective M-module M(?, v). 

There is another useful characterization, saying that an object 12 of an 
Auslander-category M is" top-torsionfree iff k~ has projective dimension < 1 in 
mod M: indeed, if M (?, ~) factors through k,, the sequence 
0 ~ K e r  M(?, ~ ) - + M ( ? , / 0 ~ k , ~ 0  is a projective resolution of k, (Ker M(?, ~) is 
projective, since g # d i m M < 2 ) .  Conversely, if we have a projective resolution 
0 - - ~ p - * M ( ? , / 0 ~ k , - ~ 0 ,  then either p = 0  and # is obviously top-torsionfree, or 
the resolution yields a non-zero element ~ in Ext~(k~, p); now, if O--~p--,io---~i 1 
is a minimal injective resolution, e is associated with a non-zero morphism 
k ,~ i~ .  Since i 1 is projective, k is torsion-free. 

In the sequel we need the preceding (trivial) developments in form of the 
following 

Proposition. Let P be the full subcategory formed by the top-torsionfree objects 
of an Auslander-category M. Then P is locally representation-finite and the 
functor which maps # e M  onto the P-module M(?,/2)IP yields an isomorphism 
M ~ i n d P .  

2.5 Let F be a locally finite translation-quiver. The mesh-ideal is the ideal I r 
of the path-category kF which is generated by the elements 

# x = ~  ~(a~)ckF(~x, x), x non-projective, 
a 

where ~ ranges over all arrows of F heading for x. The mesh-category of F is 
the residue-category k(F)=kF/ l  r. We say that F is locally bounded if k(F) is so. 

Proposition (Riedtmann [15]). a) I f  F is locally bounded, so is every full sub- 
translation-quiver. 

b) F is locally bounded iff the universal covers of its connected components 
a r e  SO. 

c) F is locally bounded, simply connected and stable iff it is isomorphic to a 
Dynkin-translation-quiver 71A,, 7ZDp or 7lEq (p, q, n ~N, n > 1, p > 4, 8 > q > 6; see 
[6], [15]). 
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We recall that  a full  sub-translation-quiver A of F is determined by a subset 
A o of F o" an ar row x -5~y  of F belongs to A iff x and y belong to Ao; 
fur thermore,  a vertex x e A  o is projective in A if it is so in F or if rxq~A o. 

Proof  If x, YeAo, the morph i sm-space  k(A)(x,  y) is identified with the quot ient  
of  k(F)(x, y) obta ined by annihilat ing the paths which factor through a point  
of  F o \ A  o. This proves  a). 

If  ~: A - * F  is a covering of translat ion-quivers,  it is clear that the induced 
functor  k(~)" k(A)--*k(F) yields i somorphisms 

@ k ( A ) ( x , z ) ~ k ( F ) ( ~ x , ~ y )  and @ k ( A ) ( t , y ) ~ k ( F ) ( r c x , ~ y ) ,  
z t 

where z and t range through the vertices of A lying over ~y and ~x re- 
spectively. In  case ~o: Ao---~Fo is surjective, F is locally bounded  iffA is so. 

For  c) we refer to [15 3. 
a~ 

2.6 Lemma.  Let  F be a locally bounded translation-quiver and y~ ~ x ,  1 < i<r ,  
the arrows stopping at some vertex x e F  o. I f  x is projective, the ~ induce a 
minimal projective resolution 

r 

o-,  @ k(F) (?, y,) ---, k(r)  (?, x) ~ kx-~  0 
i = l  

of  the simple k(F)-module k~. I f  x is not projective, the c~ i and ~r~ i induce a 
minimal projective resolution of  length 2 

k ( F ) ( ? , r x ) -  tk(r)(? . . . .  ~1 , @ k(F)(?,yi) tk~r )e ,~ , ) l  ,k(F)(?,x)_~kx__,O" 
i = 1  

Proof. Obviously,  the c~ i produce bijections + kF(t, y i ) ~ k F + ( t ,  x) {2.1). If x is 
i = 1  

projective, the induced maps  @ lr( t ,  Yi)-* lr(t ,  x) are bijective too. Passing to 
i = 1  

the quotients,  we get the first sequence. If x is not projective, we have 

Ir( t  , x ) =  ~ c~ilr(t , y i )+pxkF( t ,  ~x) (2.5). 
i=1  

This yields the second sequence. It is clear that  both  sequences are minimal.  

Remarks. a) The  l emma  shows that  we can go back from the mesh-category 
k(F) to the t ranslat ion-quiver  (F, r). Namely ,  F is the quiver of  k(F) (2.1). A 
vertex x is projective iff the projective d imension of k x is <:1; if x is not 
projective, ~x is determined by the fact that  k(F)(?, rx)  is the componen t  of  
degree 2 in the min imal  projective resolution of k x in m o d  k(F). 

b) In general, the morph i sm [k(F)(?, a~i)] of our  l emma is not  mono.  
F o r  instance, if F = 7 ] /12  (1.6), the projective resolution of k o is 
"" P -  3--~ P-  2 --~ P -  1 -----~ Po  ---~ ko -~"  O, where pi = k(7Z A 2) (?, i). 
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c) I f  x is a non-projective vertex of  F, we have Extl(kx, p ) = 0  for each 
projective k(F)-module p. Indeed, we can compute  Extl(kx, p) by applying the 
functor HOmk(r)(?, p) tO the projective resolution of k x given in the lemma. If 
p=k(F)(?,  z), this yields 

0 ~ Homk(r)(kx, p) ~ k(F) (x, z) ~ + k(F) (Yi, z) ~ k(F) (z x, z) 
i = 1  

since HOmk(r)(k(F ) (?, y), k(F)(?, z ) ) ~  k(F)(y, z). Applying our  lemma to the 
translation-quiver F ~ , we see that the preceding sequence is exact at the point  

@ k(r)(y,, z). 
i = 1  

2.7 Lemma.  I f  F is a locally bounded translation-quiver, the following state- 
ments are equivalent: 

(i) g (  dim k(F) < 2 
(ii) Each top-torsionfree (2.4) object of  k(F) is a projective vertex of  F. 

(iii) Each top-torsionfree object of  k(/'~ is an injective vertex of  F. 

Proof. Clearly, the morphism [k(F)(?, cr~i)] of Lemma 2.6 is mono  for each 
non-projective x iff no zx  is top-torsionfree in k(/"~ (2.5). This yields the 
equivalence (i)~-(iii). Similarly, we have (i)*~(i~ where (i ~ is the state- 
ment saying that k ( / ' ~  k(F) ~ has global dimension <2.  

2.8 Proposition. I f  F is a locally finite translation-quiver, the mesh-category 
k(F) is an Auslander-category iff F satisfies the conditions a), b) and c) below." 

a) k(F) is locally bounded. 
b) I f  x is a non-projective vertex of F and t~6k(F) (x, y) a non-zero morphism, 

t eL there is an arrow x - -*  x of  F such that O=t= #Eek(F)  (x', y). 
c) For each projective vertex peFo, there is a vertex j e F  o and a linear form 

e: k(F)(p,j)--~ k, such that the composition 

k(F) (p, x) x k(F) (x,j)---, k(F) (p,j) ~ , k 

yields a vectorspace duality between k(F)(p, x) and k(F)(x , j )  for any x s F  o. 

In statement b), ~ denotes the residue class of c~ modulo  the mesh-ideal I r. 

Proof  Assume that k(F) is an Auslander-category. Then it is locally bounded 
and has global dimension < 2 (2.3). So it follows from 2.7 that a non-projective 
vertex has " top- tors ion" .  Accordingly, F satisfies a) and b). Now identify k(F) 
with ind A for some locally-representation-finite A. If p s F  o is projective, kp has 
projective dimension < 1 (2.6). By 2.4, p is identified with some A(?, 2), 2eA. 
Now, Ok(F)(p,  ?) is isomorphic to k(F)(?,j), where j = D A ( 2 ,  ?) (see part  ( i )~(i i)  
of the proof  of proposi t ion 2.3). Condi t ion c) expresses the well-known fact that 
an isomorphism k(F)(?,j) - ,  Dk(F)(p, ?) is determined by some appropriate  
linear form e~k(F)(p, j) .  

Conversely, assume that F satisfies the conditions a), b), c). Then we have 
g # d i m k ( F ) < 2  by 2.7. Take a minimal injective resolution O-~k(F) 
( ? , y ) ~ i o - ~ i l ,  y~Fo, in modk(F) .  A simple k(F)-module kp Occurs as a sub- 
module of i 0 iff it occurs as a submodule of k(F)(?, y); if this is so, p is top- 
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torsionfree (2.4). Accordingly, i o is the direct sum of the injective hulls of 
simple modules of the form kp, where p is a projective vertex (2.4 and 2.6). 
Now the injective hull of kp is Dk(F)(p,?), and this is isomorphic to some 
k(F)(?,j) by condition c); so i o is projective. Similarly, if kz, occurs as a 
submodule of i 1, we have 

0 =I = Homk(r)(kp, il) = Extllr)(kv, k(F) (?, y)). 

By 2.6c) it follows that p is a projective vertex. As we did for i o, we infer that 
i 1 is projective. So k(F) is an Auslander-category by 2.3. 

Remarks. a) Let j have the property required in condition c) above. Denote by 
q~Dk(F)(j,j) the unique algebra-homomorphism of the local algebra k(F)(j,j) 
onto k. The map Dk(F)(~,j): Dk(F)(j,j)--,Dk(F)(y,j) which is induced by an 

arrow j a~y of F assigns to q the zero-form ~--~r/(~/~)=0. Now Dk(F)(?,j) is 
isomorphic to k(F)(p,?). The morphism q'~k(F)(p,j) associated with r/ is non- 
zero and satisfies fir/ '=0 for each /3. This means that j is top-torsionfree in 
k(F ~ (2.4), i.e. that j is an injective vertex of F. In fact, this result also follows 
from the first part of the proof of our proposition. 

b) I f  F has no oriented cycle, for instance if it is simply connected, we have 
k ~ k ( F ) ( j , j ) ~  Dk(F)(p, j). In this case, condition c) just  means that the com- 
position k(F) (p, x) x k(F) (x, j)--~ k(p, j) is a duality. 

c) Figure 2.8 gives a simple example of a translation-quiver F satisfying a), 
b) and c). By proposition2.5, we have k ( F ) ~ i n d A ,  where A is the full 
subcategory of k(F) formed by the projective vertices, i.e. the path-category of 

. ~ "  
the quiver-, �9 (see w and [7] w for other examples of this kind). 

. / " a . / _  _ JY 
~ 

Pz J 3  

Fig. 2.8 

Other examples are given by Fig. 1.3b, where k ( F ) ~ i n d k [ Q ] / I ,  Q being 
the quiver "~ r and I the ideal generated by T 4. Similarly, we have 
k(/~) ~ ,  ind k[Q]/[, where (~ is the infinite quiver 

. . . n - 2  ---~ n -  1 ~n- , n + l  >n+2. . .  
Tn 2 T n -  I "In Tn+l 

and [ the ideal generated by the elements T,+IT . T,_ 1T,_ 2, n~Tl. 
For an application of proposition 2.8 we refer to [-16], where it was proved 

that translation-quivers associated with Brauer-relations satisfy the conditions 
a), b), c). 

2.9 Definition. A translation-quiver F satisfying the conditions a), b), c) of 
proposition 2.8 will be called a Riedtmann-quiver. 
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Theorem. Let F be a connected translation-quiver, F its universal cover. The 
following statements are equivalent: 

(i) F is the Auslander-Reiten quiver of some locally representation-finite k- 
category. 

(ii) F is a Riedtmann-quiver. 
(iii) /~ is a Riedtmann-quiver. 

We shall prove  this theorem in w 3 below. It yields the wanted justification 
for the in t roduct ion of coverings. It will yield a construct ion of many  repre- 
sentation-finite algebras out of  one, as soon as we shall know that most  
Riedtmann-quivers  admit  plenty of  finite coverings (see w 4). 

3. Covering Functors 

3.1 Definition. Let F: M - * N  be a k-linear functor between two k-categories. 
F is called a covering functor if the maps 

[ I M ( x , z ) - ~ N ( a , b )  and L I M ( t , y ) - , N ( a , b ) ,  
z/b t/a 

which are induced by F, are bijective for any two objects a and b of  N. Here  t 
and z range over  all objects of  M such that  Ft=a and F z = b  respectively; the 
maps  are supposed to be bijective for all x and y chosen among  the t and z 
respectively. 

Examples. a) If ~: A ~ F  is a covering of translat ion-quivers,  we know that  the 
induced functor k(~): k(A)-* k(F) is a covering functor (see 2.5). 

b) Assume that  A is locally representation-finite and connected (i.e. A is 
neither empty  nor the disjoint sum of two non-empty  subcategories). Then the 
Auslander-Rei ten quiver F A is connected.  Denote  by ~: FA--,F A its universal  
covering at the point  m. 

Under  these assumptions,  proposi t ion  1.6 implies the existence of a well- 
behaved functor F:  k(Fa)--*indA in the sense of R ied tmann  ([15], 2.2; [16], 
1.5), i.e. of a k-linear functor which maps  an object y of  s onto  ny  and the 
m o r p h i s m / ~  associated with an a r r o w / / o f  ~a onto  an irreducible morph i sm of 
m o d A :  Indeed, choose some point  x of  F A lying over  m and consider the 
length-function tr as defined in 1.6. We use a first induct ion in order  to define 

F on the arrows y ~ z  such that ~c(z)>l: If  ~c(z)=l or if z is projective, we 
choose for F / ~ H O m A ( ~ y ,  ~z) any irreducible morph i sm;  if z is not projective 
and K(z)>2, consider the mesh stopping at z (Fig. 3.1): 

f 

Fig. 3.1 
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We may suppose that FtTfl~ is already constructed. We know then that there is 
an Auslander-Reiten sequence of mod A having the form 

0-- ,~t  t F ~ L , @ ~ y  i f~'J ,~z--,O 

(see for instance [7], 1.6). So we can set Ffl~=~b~. A second induction, resting 

on dual arguments, is used in order to define F on arrows y ~ z  such that 
~c(y) < 0. 

Now proposition 2.3 of [15] extends to the present situation. Using this 
proposition together with its dual, we see that F is a covering functor. 

c) Let F: M--~N be a covering functor and N' a full subcategory of N. Let 
M ' = F - I ( N  ') be the full subcategory of M formed by the objects mapped into 
N'. Clearly, the induced functor F': M'--, N' is also a covering functor. 

Furthermore, consider the ideal of N generated by the morphisms of N 
which are factorized through N'. Factoring out that ideal and restricting to the 
objects of N not lying in N' we get a category which will be denoted by N/N' 
(compare with [2]). The functor M/M'--~ N/N' induced by F is again a cover- 
ing functor. 

3.2 Let F: M - ~ N  be a covering functor between k-categories. With each 
additive functor m: M~ we associate its push-down Fxrn: N~ which 
is constructed as follows: For each object aeN, we set 

(F~m) (a) = L] re(x), 
x/a 

where x ranges over all objects of M such that F(x)=a; if b ~ a  is a 
morphism of N, the map (F~m)(e): (F~m)(a)-~(F~m)(b) to be defined assigns to 
(px)eLim(x) the family (~m('~ar)(px))eI_im(y), where ~ay is determined by 

x/a x y/b 

2 
y/b 

People in search of an abstract justification will prove that pushing down 
m~--,F~m is left adjoint to "pulling up" n~-~noF ~ More relevant for us is the 
fact that the second bijection in definition 3.1 yields a canonical isomorphism 
F;~M(?,y)~N(?,Fy),  that Fx is exact, and that it maps k-finite-dimensional 
M-modules onto finite-dimensional N-modules. 

Proposition. Let F: M- - ,N  be a covering functor between locally bounded 
k-categories, and let ~ m  denote the radical of m~modM. Then we have 
F a ~ m ~  ~F~m, and m is projective in m o d M  iff F~m is so in modN. 

Proof Clearly, Fz preserves dimension. So it maps one-dimensional M-modules 
onto one-dimenisonal N-modules, i.e. simple modules onto simple ones, and 
semi-simple modules onto semi-simple ones. Since m/~m is semi-simple, we 
infer that Fam/F~JIm ~ ~Fx(m/~m) is semi-simple, hence that ~ F ~ m c F ~ m .  
On the other hand, if p--M(?, x) is projective indecomposable, we know that 
Fap~-,N(?, Fx). In this case, ~F~p and Fa~ p both have codimension 1 in Fxp. 
We infer that J IFap=F~p  if p is projective indecomposable, and more gener- 
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ally if p is projective. In the case of an arbitrary m~modM, consider an 
epimorphism p ~ m ~ O ,  where p is projective. In the induced square 

~F~p , ~F~m 

F ~ p  ~ , F z ~ m  

and fl are epi. Accordingly, NF~ m = Fx ~m. 
Since FxM(?, y ) ~ , N ( ? ,  Fy), the image of a projective module is pro- 

jective. Conversely, suppose that Faro is projective, and let p ~ m  be a pro- 
jective cover of m. Then f induces an isomorphism of the tops p/~p ~, m/~m. 
As Fx preserves the radical, we get 

F x p/~F~ p ~ F~ (p/~p) ~ F~ (m/~m) ~ F~ m/~F a m, 

so that Fap F~z Fxm is a projective cover of Fxm. Since Fxm is projective, Fxf  
is invertible, and so is obviously f 

3.3 Let F: M--*N be a covering functor between locally bounded k-categories. 
Each object x~M yields canonical isomorphisms 

F~ M (?, x) ~, N(?, F x) 

Fx ~ M (?, x) - ,  ~ Fx M (? , x ) ~ N ( ? ,  F x) 

Fz ~2 M(?, x ) ~ F ~ M ( ? ,  x ) ~  ~#~2N(?, Fx) 

and 

i.e. 

Fz ( ~ M (?, x)/~2 M (?, x)) - ,  F a ~ M  (?, x)/Fa ~2 M (?, x) 

- ,  ~N(?,  Fx)/~2 N(?, Fx) 

H ~ M ( z , x ) / ~ 2 M ( z , x )  ~,~N(b,  Fx)/~2(b, Fx), Vb~N. 
z/b 

Accordingly, if the quiver QM of M contains an arrow y-*x, then QN 
contains an arrow Fy-*Fx  (2.9). In other words, F induces a quiver-morphism 
Q~': 0M-' QN. 

Definition. A locally finite-dimensional category N is called square-free if the 
spaces ~N(b, a)/~ZN(b, a) have dimension < 1 over k for all a, b. 

In the foregoing situation, M is obviously square-free if N is. Furthermore, 
for each arrow b ~ a  of Qu and each point x of QM lying over a, there is 

exactly one arrow y ~ x  of QM lying over ~. Taking into account that the 
definition of covering functors is self-dual, we deduce the dual statement saying 
that each y over b is the starting point of a unique arrow lying over ~. In 
other words, we have the 

Proposition. A covering functor between square-free locally bounded k-categories 
induces a covering map between the associated ordinary quivers. 
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3.4 Proposition. Let F: M--~N be a covering functor between square-free lo- 
cally bounded k-categories, and let SPin denote the socle of mEmodM.  Then we 
have FzStm----~ StF~m, and m is injective in m o d M  iff Fzm is so in modN.  

Proof First we prove the second part using the relation FzSPm~Sr If 
xeM,  the injective hull of the simple module k x is identified with DM(x,?). 
Using Fz5,~m~->5,~Fzm we infer that FzDM(x,?) has kvx as socle; so it is 
contained in the injective hull DN(Fx, ?) of kFx. On the other hand, the first 
bijection of definition 3.1 tells us that FzDM(x, ?) and DN(Fx, ?) have the same 
dimension. Hence we have FzDM(x, ? ) ~ D N ( F x ,  ?), and Fzm is injective if m 
is so. The converse is proved as in 3.2. 

Now we come to the socle of F~m. Clearly, FzSr is semi-simple, and 
therefore we have F~Sem=S~F~m. We prove the equality by induction on the 
height ( = L o e w y  length) h of m. The statement is clear if h = l .  In order to 
tackle the case h=2, we first consider the second socle 5P2Ix of the inde- 
composable injective M-module Ix=DM(x , ?). The socle k x of 5P2I x yields an 
exact sequence 

e: O ~ k x ~  StzI~--~ + ky ~O, 
i - - 1  

where y~ ranges over the heads of the arrows of QM starting at x. Suppose that 
the socle of F~5~2I~ is not simple. Then there is a 2-dimensional semi-simple 
N-module n and a commutative diagram with exact rows 

Fze: O~kvx  ,F~SPzI~, , + kry,---, 0 
l i= ll~ ' 

O-~kFx ~ n , kr~, ~ ~ 0 .  

By assumption, the kFy ' a r e  pairwise non-isomorphic. Therefore, e has the form 
r 

~=Fae', where e': ky ---~ @ ky. Now the pullback of e under ~' does not split, 
i=1 

nor does its image under F~, since F~ preserves the radical. This contradicts the 
semi-simplicity of n. 

We infer that FxSe f=~F  S if ( = ~ 2 1 x ,  and more generally if # is the 
second socle of an injective M-module. For an arbitrary M-module m of height 
2 there is a socle-preserving embedding of m into such an E. We infer that 
5P F~ m c S~ F~ d = F~ SP d = F~ SP m, hence that 5# F~ m = F~ Se m. 

Finally, consider the case of height h > 2  and let (l~,)e(5~Fzm)(a). If 
(#,)E(F~Se2m)(a), we are reduced to the case h=2 .  Otherwise, the image (fit) of 
(#,) in F~(m/5'~m)(a) lies in the socle of Fx(m/St'm) without lying in 
Fa(SP 2 m/Sem)-~ Fx 5~(m/5#m), a contradiction by induction on h [ 

Remark. The propositions 3.2 and 3.4 are by no way dual, since the "dual"  of 
the left adjoint functor Fa is a right adjoint functor. In fact, elementary 
examples show that proposition 3.4 gets wrong if we drop the assumption that 
N is square-free. 
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3.5 Proposition. Let F: M - + N  be a covering functor between connected square- 
free locally finite dimensional categories. Then M is an Auslander-category iff N 
is so. 

Proof Clearly, M is locally bounded iff N is so. Suppose that M is an 
Auslander-category. Then each simple M-module k x admits a projective resolu- 
tion of the form O-- ,P2-- ,P l~M(?,x)~kx- - ,O.  The push down of this is a 
projective resolution of kvx in m o d N  (3.2). This shows that g ~ d i m N < 2 .  
Similarly, let O - * M ( ? , x ) - , i o - , i  ~ ... be a minimal injective resolution of the 
projective M(?, x) in modM. Then i o and i 1 are also projective. The push 
down O-*FxM(?,x)-~Fxio-*F;i~. . .  is a minimal injective resolution of 
N(?, Fx) by 3.4. As Fx i 0 and Fx i I are projective, we deduce from 2.3 that N is 
an Auslander-category. 

Conversely, let N be an Auslander-category. The push down 

. . .FzP 2 F~r , FzP1--~ N(?,Fx)-~kFx-~O 

of the minimal projective resolution of kx, x~M, is a minimal projective 
resolution by 3.2. Since g# dimN<-2, Fz f  is a monomorphism, and so is f 
Hence g{ dim M =< 2. Similarly, the push-down of a minimal injective resolution 
0 ~ M ( ? ,  x )~ io - -* i  1 ... is a minimal injective resolution of N(?,Fx) by 3.4. 
Therefore F~ i 0 and Fz i 1 are projective, and so are i 0 and i x by 3.2. 

3.6 Proof of Theorem 2.9. (i)~(iii): Suppose that F=FA, where A is locally 
representation-finite. Consider a well-behaved functor F: k(FA)---~indA (3.1b). 
Since indA satisfies the conditions a) and c) of 2.1, so does k(FA) (F is a 
covering functor !). Hence k(FA) is locally finite-dimensional (condition b) of 2.1 
follows from the definition of the mesh category). On the other hand, ind A is 
square-free by a result of Bautista ([3], [15] 3.5, [17-1 2.5). By proposition 3.5 
k(/~A) is an Auslander-category. 

(iii)~(ii): Let n:/~--~F be the canonical projection and k(n): k(F)-~k(F) 
the induced covering functor. By Proposition 2.5b) k(F) is locally bounded. By 
construction k(F) is square-free. As k(/~) is an Auslander-category, k(F) is one 
by 3.5. 

(ii)~(i): Let P be the full subcategory of k(F) whose objects are the 
projective points of F. Then k(F)~-~ ind P and F is identified with Fp. 

4. The Fundamental Group of a Riedtmann-Quiver is Free 

The result stated in the title can be proved by a combinatorial version of van 
Kampen's theorem. However, since our intuition is geometric, we shall side 
with topology, accepting to struggle with technical details beside the com- 
binatorial point in order to borrow from topological attainments. 

4.1 The Geometric Realization of a Translation-Quiver. Let Q be a quiver with 
vertex-set Q0 and arrow-set Q1. Associate with each arrow x - r a y  a copy I, 
of the unit interval I = [ 0 , 1 ] .  Denote by / ,={0 ,1}  its "boundary",  by 
~3~: [,-- 'Qo the map such that O,(0)=x, ~ (1 )=y .  The geometric realization tQI 
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of Q is the amalgamated sum attached to be following diagram of topological 
spaces 

Qo < t++l L i / .  i > U I , ,  
~EQ1 ~EQ1 

where i is the inclusion and Qo carries the discrete topology. The canonical 
mapj+: I~--+ ]Q] yields a homeomorphism of 15 onto its image f+ =j+(I+) if x4=y; 
otherwise, [, is a circle. The topology of [Q[ is the weak Kelley-topology: a 
subset F is closed iff Fc~[+ is closed for each ++. 

If G is a (non-oriented) graph, its geometric realization [GI is by definition 
the geometric realization of the quiver G obtained from G by orienting each 
edge in some chosen direction. The choice made is of no consequence for us, 
since different orientations lead to canonically isomorphic geometric realiz- 
ations. 

Let us now turn to a translation-quiver F. The geometric realization of the 
associated quiver /~ (1.2) is the one dimensional skeleton of the space to be 
defined. In fact, the geometric realization ]El of F is obtained by attaching 
triangles to [/~], one along each ]~p], where fl ranges over all arrows of grade 1 
with non-projective head and Ap denotes the subquiver of f illustrated in 
Fig. 4.1. 

rcx 

case ~x .#  ~( 

Fig. 4.1 

~'x 

case "c:x= x 

More precisely, denote by Ap a copy of the triangle A={xEIR3: 0~x1, 
0<x2, 0~x3, Xl+xz+x3=l}, by zip its "boundary",  by gp: Ap--~[/~] the map 
such that g~(0, l - t ,  t)=jp(t), gp(1- t ,  O, t)=j~x(t ) and g~(1 - t ,  t, 0)=j~p(t). By 
definition, the geometric realization IF[ of the translation-quiver F is the 
topological amalgamated sum of the diagram 

IFI LI Ap J> II 
P fl 

where j is the inclusion-map. We identify If] with is canonical image in ]F] and 
denote by Aa the canonical image of Ap. All these canonical images are closed 
in ]F]. Furthermore, a subset F of IF] is closed iff all the intersections If[c~F, 
z~t+ (~ F are closed. 

Proposition. Let x be a vertex of the translation-quiver F. The fundamental 
groups II(F, x) and//(]El, x) are naturally isomorphic. 

Proof Denote by KF the simplicial set of dimension < 2 which has the vertices 
of F as 0-simplices, the arrows of jO as non-degenerated 1-simplices, the 

Y 

diagrams ~ ~  of F as non-degenerated 2-simplices ([8], [15]). The 

' rX  . . . . .  -~X 
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groups FI(F, x) and FI(KF, x) are natural ly isomorphic,  since they admit  the 
same descript ion ([8], II, 7.1). The groups FI(KF, x) a n d / / ( I F ] ,  x) are natural ly 
i somorphic  by [8], Ap. 1, w (notice that  lee coincides with the geometr ic  
realization of K F  by [8], III ,  w 1). 

4.2 Suppose from now on that the t ranslat ion-quiver  F is locally finite. Our  
objective is to compare  the fundamental  group of F with that  of a graph. 

Let x be a vertex of F. The set of all n~7/, such that  r ' x  is defined, is 
clearly an interval D of 2~. We call the set x ~ = { t " x :  n~D} the v-orbit of x. The 
vertex x is stable if D=2~ ([15]), it is periodic if it is stable and has finite v- 
orbit ;  the cardinali ty of  x ~ is then called the period of x. In a similar way, if 
x ~ y  is an arrow of F, we shall consider its a-orbit ~ ,  which is the set of  all 
arrows of F of the form a m ~. 

Whenever an arrow x ~ y o f  F connects a periodic vertex x with a stable 
vertex y, then y is also periodic: otherwise, there would be infinitely many  
arrows start ing at x. Accordingly, the t -orbi ts  of  a connected componen t  E of 
the stable par t  sF ([15], 1.4) of F are either all infinite or  all finite. In the 
second case we call E a periodic component of F. 

By Ried tmann ' s  result ([15], 1.5) a periodic componen t  E has the form 
7IT/FI, where T is an oriented tree and / /  an admissible au tomorph i sm group 
of 7IT. We call E tree-finite if the graph T underlying T is finite (notice that  
is uniquely determined by E). The t ranslat ion-quiver  F itself will be called tree- 
f ini te  if it is locally finite and all its periodic componen t s  are tree-finite. 

The  graph G r associated with F has as vertices the periodic components  
and the non-per iodic  r-orbi ts  of  F. To  each periodic component ,  considered as 
a vertex of G r, we at tach a loop of G r. The remaining edges of  G r are 
associated with the non-per iodic  a-orbi ts  of F. More  precisely, let ~ be a a- 
orbit  connect ing the t -orbi ts  x * and y~ of F. If both  x and y are non-periodic,  
we associate with ~ an edge of G r connect ing the vertices x ~ and y:. If  y is 
not periodic and x belongs to the periodic componen t  E, we associate with a ~ 
an edge of G r connect ing E and y~. For  examples  we refer to the lists at the 
end of the present  paper.  

Theorem. I f  F is a tree-finite translation-quiver, the geometric realizations o f  F 
and G r are homotopy-equivalent. 

Corollary. I f  F is a Riedtmann-quiver and x a vertex of  F, the fundamental group 
II(F, x) is free. 

By Riedtmann ' s  result (see 2.5) we know that  a Ried tmann-quiver  F is tree- 
finite. On the other hand it is wel l -known that  the fundamenta l  group of a 
graph is free. Accordingly, the corollary follows easily from the foregoing 
theorem which will be proved  in 4.3 

4.3 Proof  of  Theorem 4.2. Consider  an ar row x ~ , y  of  F and denote  by F~ 
the sub- t ransla t ion-quiver  of  F formed by x ~, y~ and ~". This F, has only one a- 
orbit ;  f rom the classification of the t ranslat ion-quivers  with one a-orbi t  (a 
good exercise!) we deduce the following: Suppose that  ~ is not  periodic, i.e. 
that  x and y are not both  periodic. Denote  b y / ]  the subquiver  o f /~  formed by 



350 K. Bongartz and P. Gabriel 

IPI )C 

5," loft 
Fig. 4.3 

c~ and all arrows of grade 2. Then IF,[ is identified with a strong deformation 
retract of 141 ([20], Chap. 1 Sect. 4). 

Now we choose a representative e of each non-periodic ~r-orbit. This yields 
a family of subspaces [/]1 of IF[. We denote by X the union of these subspaces 
and of the geometric realizations of the periodic components. Matching to- 
gether strong deformation retractions s  [F~I x I - ,  IF,[ of IF~I onto I/~l, we get a 
strong deformation retraction of IF[ onto X. Now X contains the geometric 
realization [x~l of each z-orbit x ~, considered as a sub-translation-quiver of [FI. 
If x is not periodic, [x~[ is homeomorphic to IR, [0, 1] or [0, 1[. Therefore, the 
space Y obtained from X by contracting each "non-periodic" Ix~l to one point 
is easily seen to be homotopy equivalent to X (see Fig. 4.3). 

The space Y is already quite near to [Gr[. But it still contains sub-spaces 
identified with the geometric realizations [El of the periodic components E of 
F. It remains for us to shrink each such [El to a loop. By [15], 4.2, E is 
identified with some 7lB/p ~, where B is an oriented tree and p an admissible 
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automorphism of 2~B. Choose a vertex b in B and denote by x: ZB--~ZA 2 the 
quiver-morphism such that to(0, b)=0 (see 1.6). We identify I7/BI with IR • ]BI 
by means of the "natural" homeomorphism which maps a vertex (n, c) onto 
(x(n, c), c) and is "affine" on the "triangles". 

The automorphism fi of the graph /~ underlying B, which is induced by p, 
either has a fixed point, or it exchanges two neighbours of/3. In any case, the 
induced automorphism IP[ of [/ll=lBI has a fixed point ~o. Moreover, there is a 
strong deformation retraction h: I /3]•  of l/J[ onto (o, which is com- 
patible with I~1 (i.e. h(J~]x,t)=(h(x,t), Vxel/~l, Vtd ) .  The induced strong 
deformation retraction IR x h: IR x t/3[ x I-~IR x I/~l is compatible with the 
action of [Pl on IR x I/3I=I2~B I. So it induces a strong deformation retraction of 
the residue space ]TZBI/]p]=IE ] onto a circle S. Under this retraction all the 
vertices fo E are mapped into some contractible closed arc of S. Shrinking this 
arc to one point, we get by composition a homotopy equivalence fE of rE[ onto 
some circle SE, which maps all vertices of E onto one single point. 

The preceding construction is done for each periodic component E. The 
topological amalgamated sum of the resulting diagram 

LI sE LI IEI , r 
E E 

may then be identified with [Gr]. A simple classical homotopy extension 
argument shows that the induced map f:  Y-~ [Gr] is a homotopy equivalence: 
Indeed, for each E there is a homotopy hE: ]El •  such that hE(x, 0)----x, 
he(x, 1)=h~(y, 1) and fE(hE(x, t))=fE(hE(y, t)) for all t, whenever fE(x)=fE(y). 
Construct a continuous extension h: Y •  of LIhE, using intuition or the 

E 

general homotopy extension property ([20]). Then h(?, 1) factors through [Gr[, 
i.e. we have h(y, l)=s(f(y)) for some continuous s: [G_r]-~Y and all y~Y. 
Moreover, h is a homotopy between Jr  and sf  The map h: [Gr[ • I -~  [Gr[, such 
that h(f(y), t)=f(h(y, t)) for all (y, t), is a homotopy between lll~rl and fs. 

5. Standard Representation-Finite Algebras 

5.1 Definition. A locally representation-finite k-category A is said to be stan- 
dard if ind A is isomorphic to a mesh-category k(F) (2.2). A Riedtmann-quiver 
F is called standard if each locally representation-finite k-category whose Aus- 
lander-Reiten quiver is a cover of F is standard. 

Clearly, if A is standard, there is an isomorphism k ( F a ) ~ i n d A  which is 
the identity on the objects. Most of the known examples are standard. The first 
known non-standard example is due to Chr. Riedtmann: see number 14 bis) in 
our list of the maximal representation-finite k-categories with 2 objects. 

Our purpose in this paragraph is to relate non-standard algebras to stan- 
dard ones. In order to do so, we first consider a locally finite-dimensional k- 
category M with radical ~ M  (2.1). The powers ~ " M  are the ideals of M which 
are defined inductively by the formulae: ~o  M(x, y) = M (x, y) and 

~"+ 1M(x, y ) = ~  ~M(z ,  y) ~"M(x,  z). 
z 
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The associated graded category GrM has the same objects as M; its morphism- 
spaces are the direct sums 

(GrM) (x, y) = 11 ~"M(x ,  y)/~"+ ' M(x, y); 
n~N 

the composition of GrM is induced in the usual way by that of M. 

Proposition. I f  A is a locally representation-finite category, there is an isomor- 
phism k(FA) ~, Gr(ind A) which is the identity on the objects. 

Proof Set I = i n d A .  First we associate an irreducible morphism 

~_eNI (y , x ) \N2I ( y , x )  with each arrow y ~ x  of F A. Then we choose an 
Auslander-Reiten sequence of the form 

[/~l ~ [//1 ,a O ~ r x  ~ ,(+_)y~--=-*x---~u 

for each non-projective x; here y~ ~ x  ranges over all arrows of F a heading for 
x. Since ~21(zx,  y~) has codimension 1 in ~ I ( r x ,  yt3 ) ([3], [15] 3.5, [17] 2.5), 
we have L3-z~E_~e~2I(rx, yp) for some z ~ e k * = k \ { 0 } .  Together with the 
equation 2 ~ = 0  this yields ~ z p ~ 4 s ~ 3 I ( r x ,  x). 

Now, by the lemma stated below we can attach a scalar b~ek* to each 
arrow 7 of /~ (4.1) in such a way that z~=b~b~xtb,~. Hence we get 
2 (bp ~)(b~B ~r/~)= b~x 2 z p / / ~ 3  I(~ x, z). In other words, the map c~--~ b~g, where 

P 
ranges through the arrow-set of F, induces a k-linear functor F: k(FA)-, G r I  

which is the identity on the objects and is surjective on the morphisms (F hits 
the generating morphisms of Gr I). We infer that F is bijective on the morphisms, 
since we have 

dim(Gr I)(x, y)= dim I(x, y)= ~ dim k(ffA)(5, y)= dim (FA)(x, y). 
2/x 

Here ~ is the universal cover of F A, which we may assume connected; ~ is a 
point of ~ over y, and 5 ranges over all points of FA over x. Of course, we use 
the existence of covering functors k(FA)-+I and k(FA)-*k(F3). 

Lemma. Let F be a tree-finite translation-quiver and (z~) a family of non-zero 
scalars indexed by the arrows fl of F with non-projective head. There is a family 
(b.) of non-zero scalars indexed by the arrows of F (1.2) such that z~=b~b~?~ 1 b,~, 

Y~ 

rx  --v;-* x 

We shall produce the proof of this lemma in 5.4 below. 

5.2 Corollary. Let A be a representation-finite algebra. The standard 
representation-finite algebra A with Auslander-Reiten quiver F A is a degeneration 
of A. 
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Proof Set M = i n d A .  Choose a supplementary subspace S"(x,y) of 
~"+lM(x,y) in ~"M(x,y) for all x, yeM and each neN.  This yields finite 
direct sum decompositions M(x, y)=S~ y)GSl(x, y)OS2(x, y)O .... De- 
note by qSt: M ( x , y ) ~ M ( x , y )  the vector-space automorphism such that 
(gt(fo+fl+fz+...)=fo+tflq-tzf2+... if f, eS"(x,y)(t~k, t+O). Using these 
automorphisms we construct a new category M, having the same objects 
and the same morphism spaces as M. The composition g ~ f  of two mor- 

phisms of M t is expressed in terms of the composition g o f  of M by means of 
the formula g~ f=dp~(0F l(g) o t~t l(f)) .  Clearly, g~ f is a polynomial in t, 

whose value for t = 0  is the composition of g and f in G r M  (identify 
~ M(x, y)/~"+ l M(x, y) with S"(x, y)). Accordingly, the algebraic family (Mt),, k 
yields a degeneration of M into Gr  M, or equivalently a deformation of Gr  M 
into M. 

The algebra A, which we may suppose to be basic, is identified with 
(~M(p, q), where p and q range through the projective points of F A. Similarly, 
p ,q  

A is identified with (~(GrM)(p, q). We infer that the algebraic family 
P,q 

(~)Mt( p, q) yields a degeneration of A into A. 
P,q 

5.3 Corollary. Every finite Riedtmann-quiver has a finite covering which is 
standard. 

Proof Let F be a finite connected Riedtmann-quiver, H its fundamental group, 
7t:/~--,F its universal covering. For each vertex x of F we choose a vertex :2 of 
/~ such that 7z(:~)=x, and we denote by R x the set of vertices y of/~ such that 
k(/~) (:~, y)4:0. The elements 7oH such that 7 4:1 and y(R~)c~Rx+ 0 for some x 
form a finite subset S of /7 .  As H is free, it has an invariant subgroup P of 
finite index such that P ~ S = 0. The finite cover A = F/P of F is our candidate. 

Indeed, let A be a representation-finite algebra with Auslander-Reiten 
quiver A, and let F: k(F)-~M=indA be a well-behaved functor. For any two 
s, t~M such that M(s, t)+O and for each ge/~o lying over s, there is exactly one 
{~ffo lying over t and such that k(/~)(L {)4:0: In fact, we have y~=~ for some 
x~F 0 and some y~H; hence y[cRx; the relation k(/~)(g, 6/')4:0, 14:6~P, would 
imply 76t6R x and y 6 y - ~ S ,  a contradiction to our assumption Pc~S=O. 

Being a covering functor, F induces an isomorphism k(F)(g, {) ~M(s ,  t), 
where s, t.. .  are as above. On the other hand, we clearly have k(F)(g, t) 
cO~"k(,r)(g, t) and ~"+lk(/~)(g, {)=0, where n = ~ ( / ) - ~ ( ~  is determined by the 
grading morphism K introduced in 1.6. Applying proposition 3.2 we infer that 
M(s,t)c~"M(s, t) and ~"+lM(s,t)=O. In other words, only one grade really 
occurs in (Grm)(s ,  t). So we can deduce M = G r M  from k(/~)=Grk(/~) and 
apply proposition 5.1. 

A similar argument applies to any cover of A. 

5.4 Proof  of Lemma 5.1. Let us assume that F is a connected translation- 
quiver, or equivalently that /* is a connnected quiver. Consider the following 
differential complex 

62 61 
s~(r) ,s,(r) ,So(r), 
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where So(F), SI(F ) and S2(F ) are the free abelian groups generated by the 
vertices of F, the arrows of f and the arrows of F with non-projective heads 

respectively. For basis elements a ~ z  and y ~ x  of S1(F ) and S2(F ) we set 
6 1 a = z - a  and 62/~=/~-Tx+~r/~ respectively. Clearly, Coker 6 l is identified 
with 7/. 

We claim that K e r 6 2 = 0  if F is simply connected: indeed, assume that 
n=~nt3~eKer62. In order to show that nB=0 for each /~, consider the sub- 

translation-quiver F~ of F, which is formed by the a-orbit of/3 and the r-orbits 

of its extremities (4.3). Let z ~r~ t be a a-translate of/~ and m r the coordinate 
of b2n with respect to the basis-element ar/~ of SI(F): if t is projective, we have 
mr=n~r_l~; if z is injective, mr=n~rp; in all other cases m r = n ~  ,~+n~rp. Now, 
since F is simply connected, it has no periodic component  (7.2), so that F~ is 
neither periodic nor semi-periodic. A glance at the list of the translation- 
quivers with one a-orbit tells us that, either z is injective for some r, or the 
arrows ~/~ are all defined and distinct for small values of r~7/. On the other 
hand, we have m~=0 for each r and n~,.t~=0 if r is small enough. We infer that 
n ~  = 0 by induction on r. 

I f  F is simply-connected, we also have I m 6 2 = K e r 6  a. Indeed, we can show 
that each homomorphism of abelian groups f :  S~(F)~ M such that f62 = 0 has 
the form f = g 3 ~ :  Indeed, given f we set 

{(w)= ! f ( a , , ) _  ... _+f(a 0 

for any walk w=(yl  a . . . . . .  cqlx) (1.2), where f(ai) is endowed with the sign + 
or - according as a~ is oriented from x to y or not. The relation f b  2 = 0 means 
that f is constant on the homotopy classes. If F is simply connected, we 
construct g: So(F)-*M by setting g(y)=f(w),  where w is an arbitrary walk 
from a chosen fixed vertex x to the vertex y. The result is independent of w 
and provides us with a g such that f = g  61. 

If F is not simply connected, denote by ~:/~--~F is universal covering, b y / /  
its fundamental group. The sequence 

0-,s~(/~) ~,sl(/~) ~',So(/~)-~7/~0 
is exact and provides us with a free resolution of the trivial H-module 7/. 
Applying to this resolution the functor Homn(?,k*), where k * = k \ { 0 }  is 
endowed with the trivial H-structure, we obtain the differential complex 

Homz(So(F), k*) --, Hom~(Sl(F), k*) --~ Hom~(S2 (F), k*) -* 0 

whose second cohomology group is identified with H2(H, k*). Since H is free, 
we have He(H, k*)= {1}. So the second cohomology group is trivial. This is the 
statement of our lemma. 

Remark. The preceding proof  can be interpreted as follows: the differential 
complex S.(F) is a subcomplex of the singular complex of the simplical set KF 
associated with F (4.1). It is the subcomplex generated by the non-degenerated 
singular simplices. It is well-known that this subcomplex S.(F) is homotopy-  
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equivalent to the singular complex. Therefore, the n-th cohomology group of 
Hom~(S.(F), k*) is identified with the singular cohomology group H"(IFI, k*) of 
the topological space IFI. Now, the universal cover I/~l is acyclic by theo- 
rem 4.2. It follows that H"(IF], k * ) ~ H " ( F I ,  k*) by [12], IV 7.3. 

6. Simply Connected Algebras 

Up to the end of this paragraph we denote by A an algebra over k which is 
simply connected, i.e. representation-finite, connected, basic, finite-dimensional 
and having a simply connected Auslander-Reiten quiver F A. We denote by G A the 
associated graph, which is a tree by theorem 4.2. Like GA, all trees considered 
here are supposed to be finite. 

6.1 Among the known classes of representation-finite algebras the following 
ones turn out simply-connected: the algebras (with commutativity relations) 
associated with connected partially ordered sets ([11], [19]); the tree-algebras 
of Bongartz-Ringel [5]; the tilted algebras of Happel-Ringel produced by a 
hereditary tree-algebra ([4], [9]). We shall revert to these examples in a 
subsequent publication. 

Since the simply-connected algebra A admits a well-behaved isomorphism 
k(FA) ~ ind A (3.1b)), it is standard and isomorphic to @ k(FA)(p, q), where p, q 

P.q  

range over all projective vertices of F A. Accordingly, the classification of the 
simply connected algebras is equivalent to the classification of the simply 
connected finite Riedtmann-quivers. In this paragraph we try for a first ap- 
proach to this problem by demonstrating the existence of an inductive con- 
struction of the involved Riedtmann-quivers. Among other things our con- 
struction will yield the 

Theorem. For each tree T, the number n r of isomorphism classes of simply 
connected algebras A such that G A ~ T is finite. 

6.2 Since F A is simply connected and finite, there is a unique quiver-mor- 
phism tC:FA-,7ZA 2 such that 0=Mince(x), where the minimum is taken over 

x 

all vertices x of FA; we denote this quiver-morphism by ~c a. Since G A has no 
loop, each z-orbit t of F A contains exactly one projective vertex p~. We set gA(t) 
= Ka(pt)ElN. The function gA thus defined is a grading of G A in the following 
sense. 

Definition. A grading of a tree T is a function g: To-+N satisfying the con- 
ditions a) and b) below. A graded tree is a pair (T, g) formed by a tree T and a 
grading g. 

a) g ( x ) - g ( y ) e l  +27Z, whenever x and y are neighbours in T. 
b) g- 1(0) ,0.  

At the end of this paper we include the list of the gradings of some chosen 
small trees which arise from simply connected algebras. 

Our purpose is to show that A is completely determined by (GA, gA)" In 
order to do so, we first attach a translation-quiver Qr to each graded tree 
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T=(T ,g ) :  the vertices of Qr  are the pairs ( n , t ) e N x  T o such that  n - g ( t ) @ 2 N ;  
two such vertices (m, s) and (n, t) are joined by an arrow (m, s ) - , (n ,  t) if s, t are 
neighbours in T and n = m +  1," the projective vertices are the pairs (g(t), t); the 
translate of a non-project ive vertex is defined by ~ (n, t )=  ( n -  2, t) (see Fig. 6.2). 

6.3 Let us examine the case of  the graded tree (GA, gA) at tached to the simply 
connected algebra A. The m a p  X~(~CA(X), X~), where x ~ denotes the r-orbi t  of  x 
(4.2), identifies F A with a full sub- t ransla t ion-quiver  of Q(GA,gA~ and yields a 
dimension map dA: by definition, this map  associates with each vertex x of 
QtGA, gA) a function dA(X): (GA)o-~N, which is 0 if x lies outside F A and equals 
t~--,[k(Fa) (p,, x): k] if x lies in F A. 

The suppor t  of d A is by construct ion the set of  vertices of  F A. The point  
now is that  we can describe d A in a purely combinator ia l  way in terms of gA" 
More  precisely, for each graded tree T=(T ,g ) ,  there is a unique map  
d: ( Q r ) o - ~ N  r~ satisfying the condit ions a), b) and c) below. This d equals d a if 
T =  (G A, gA)" 

a) We have d ( g ( t ) , t ) = & , + ~ d ( g ( t ) - l , s ) ,  whenever t is such that  d(g(t) 
s 

- 1 ,  s ) > 0  for each neighbour  s of t in T satisfying g(s)<g(t).  In the preceding 
sum s ranges over the neighbours  s of t such that  g(s )<g( t ) ;  the Kronecker  
function 6, takes at r the value 1 or 0 according as r = t  or r4=t; a function is 
> 0  if all its values are > 0  and one of them at least is >0.  

b) We have d(n, t ) = ~ d ( n - 1 ,  s ) - d ( n - 2 ,  t), whenever (n, t) is a non- 
s 

projective vertex of Qr for which the functions d ( n - 2 ,  t) and ~ d ( n - l , s )  
s 

- d ( n - 2 ,  t) are both  >0.  Here  s ranges over  the neighbours of  t in T such 
that  g(s) < n. 

c) For  any other  vertex (n, t) of  Qr we have d(n, t )=0 .  

z 

6 

4 g 4 o 
4 0 0 0 . 
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4 4 " " " L 
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0 4 ~ .3 ~. 5 ~; 7 ,1 3 4o 

Fig. 6.2. The g r ad ing  g takes  the values  0, l,  2 (twicc) and  6. A vertex x of Qr ,  such that  d (x )>0 ,  is 
represented by the values of the m a p  d(x): To--~N 
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The preceding condit ions allow us to compute  the functions d(n, t) by 
induction on n, starting with n=g(t ) .  On the analogy of case T=G A we call d 
the dimension map of QT. We denote by R r the full sub-translat ion-quiver  of 
QT formed by the vertices (n,t) such that  d(n, t )>0 .  The grading g is called 
admissible, if R T contains all the projective vertices (g(t), t) of QT; it is called 
representation-finite if it is admissible and R r is finite. Accordingly, (T, g) is 
called an admissible or a representation-finite graded tree. For  instance, (GA, gA) 
is representation-finite and R~ A is identified with F a. 

6.4 Let T be an admissible graded tree. Our  next step is to examine the finite- 
dimensional  algebra AT=@k(RT)(q ,p) ,  where k(RT) is the mesh category of 

P , q  

R r and p, q range over all projective vertices of Rr :  
a) Each vertex x of  R T is associated with an AT-module M(x) 

=@k(RT)(p,  x), where p ranges over  all projective vertices of R r. The m a p  x 
P 

~---~M(x) yields a functor M:  k (Rr ) -*  m o d A  r, whose restriction to the projective 
vertices is fully faithful by construction. Accordingly, the algebra of endomor-  
phisms of M(p) has dimension 1 if p is projective. The formula  A T = @ M ( p )  

p 
further shows that  the M(p) furnish a complete  list of  indecomposable  pro-  
jective AT-modules. 

b) Let x ~ , p  range over  the arrows of R r heading for some projective 
vertex p=(g(t), t). Denote  by ~ the morph i sm of k(RT) associated with cc It 
follows from L e m m a  2.6 that  the induced morphisms  M(~) yield an i somor-  
phism @ M(x) ~~ ~ m ( p )  ( =  radical of M(p)). 

c) Let he7/. We want  to show that  the following s ta tements  hold: 
c 0 For  each vertex (n, t) of  R T, the A t - m o d u l e  M(n, t) is indecomposable and 

its dimension-vector is d(n, t) (6.3). In other words, the value of d(n, t) at s e T  o is 
the multiplicity of the top of M(g(s), s) as a Jordan-H61der  factor of  M(n, t); 
equivalently, it is the d imension of k(Rr)(M(g(s), s), M(n, t)). 

fi) For each non-projective vertex (n, t) of RT, the sequence 

M ( n -  2, t) [M(~,] ~ @ M ( n -  1, s) [M(~H M(n, t), 

which is induced by the arrows of R T of the form ( n -  1, s) ~ , (n, t), is Auslan- 
der-Reiten. 

7) For each injective vertex of R r of the form ( n - 2 ,  s), M ( n - 2 ,  s) is in- 
jective; moreover ,  in the quot ient  of M ( n - 2 ,  s) by its socle each direct sum- 
m a n d  occurs with multiplicity 1 and is i somorphic  to M ( n - 1 ,  r) for some 
ar row ( n - 2 ,  s) ~ (n - 1, r) of  R T. 

Our  p roof  proceeds as follows: Let m be a natural  number  and denote by 
H m the hypothesis  claiming that  the s tatements  ~), ~), 7) hold for each n ~ m .  
We shall prove  that  Hm is true by induction on m and on the cardinali ty IT01 
of T O . 

H m is obviously true if ITo l= l .  So we shall suppose that  IToL>I and that  
Hm is true for each m and each tree having cardinality strictly less than T. The  
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hypothesis H~, is also trivially satisfied for m=0.  So we shall suppose that 
m > 0 and that H,,_ 1 holds. 

The proof of the induction step is given in d) and e) below. It uses the 
following trivial implication of Hm_ l" if n<m, M(n,t) is isomorphic to the 
Auslander-Reiten translated-" M(g(t), t), r=l (n-g( t ) ) ,  of the projective module 
m(g(t), t). Accordingly, we have M(n, t) ~ m({,  s) if (n, t)+((, s) and :, n<m. 

d) Let ( m-2 ,  t) be a vertex of R r and N = M ( m - 2 ,  t). Denoting by ~ the 
radical of the category mod A r, we first show that [~(N,  L)/~2(N, L): k ] < l  
for any Le indA r. Moreover, in the case [~(N,  L)/~2(N, L): k] = 1, L is isomor- 
phic to m ( m -  1, s) for some arrow ( m -  2, t) ~ ~ ( m -  1, s) of R w 

Indeed, let p: N--~L be an irreducible map, Le indA.  I f  L is not projective, 
its Auslander-Reiten translate d L  is the domain of an irreducible map 
v: a l L - .  N. If ( m -  2, t) is not projective, part fl) of H,, 1 gives us the structure 
of the Auslander-Reiten sequence stopping at N (statement /~) of Sect. c)). We 
infer that ~ ( d L ,  N)/~z(~&L, N) has dimension 1, and that . , ~ L ~ M ( m - 3 ,  s) 
for some arrow ( m-3 ,  s) ~ , ( m - 2 ,  t) of R r. The same conclusion holds if 
( m - 2 ,  t) is projective by section b) above. Since d L  is not injective, (m -3 ,  s) 
is not an injective vertex of R r by part 7) of Hr, 1. Hence ( m -  1, s) belongs 
to R r and L is isomorphic to d - 1 M ( m - 3 ,  s ) ~ M ( m - 1 ,  s) by part fl) of 
H,,_I.  Our claim follows for 6 = a - 1  ~, since [~ (N ,  L)/~ 2(N, L): k] 
= [#/(alL,  N ) / ~ Z ( d L ,  N): k], 

Suppose non, that L=M(g(s),  s) is projective. By section b) we have M(m 
- 2 ,  t ) = N - ~ M ( g ( s ) -  l, r) for some arrow (g(s)-  1, r ) ~ ( g ( s ) ,  s) of R r. Now, 
if g (s ) -1  <m, the last assertion of section c) tells us that ( m - 2 ,  t )=(g(s ) -1 ,  r). 
Accordingly, our claim follows from section b), if we can exclude the possi- 
bility g ( s ) -1  =>m: in fact, if g(s)>m, we consider the full subgraph of T formed 
by the vertices v such that g(v)<g(s). This subgrapb is a disjoint union of trees 
T i, which we grade with gi=g[ Td-lai, where/~i=Min {g(x): x~T~}. Clearly, we 
have (g(s)-  1-~ i ,  r)6Rr, and ( m - 2 - / a j ,  t)~RT, for some i,j. As M(g(s) -  1, r) 
and M ( m - 2 ,  t) are isomorphic, they must have the same "support", i.e. the 
same Jordan-H/51der factors. Hence i=j. Since T i has less vertices than T, we 
already know that M ( m - 2 - # 1 ,  t ) - ~ M ( g ( s ) - 1 - l a j ,  r) implies t=r  and m - 2  
- / a i=g(s  ) -  1 - # j ,  a contradiction to g(s)>m. 

e) Proof of H,,: Let (m-2 ,  t) be a vertex of R r. Each arrow (m-2 ,  t) ~. 
( m - l ,  s) induces an irreducible map M(5). This follows from section b) if 
( m -  1, s) is projective, from part fl) of H,, 1 otherwise. We infer that the induced 

map M ( m - 2 ,  t) ~Mta)I ( ~ M ( m - l ,  s), where 6 ranges over all the arrows of R T 

with tail (m-2 ,  t), is irreducible. It is maximal irreducible by section d). 
If ( m - 2 ,  t) is an injective vertex of Rr, we have d(m-2 ,  t)>= ~ d (m-1 ,  s) by 

6 

6.3b), c). Since d(m-2 ,  t) and d ( m - l , s )  are the dimension-vectors of M(m 
- 2 ,  t) and M ( m - l , s )  by part a) of H,,_I,  M ( m - 2 ,  t) is injective. This and 
section d) prove part y) of H m. 

If (m- 2 ,  t) is not an injective vertex of RT, the dimension-vector of M(m 
- 2 ,  t) is strictly smaller than that of (~ )M(m-1 ,  s). Accordingly, M ( m - 2 ,  t) is 
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not injective. The maximal irreducible map [M(6)] yields an Auslander-Reiten 
sequence 

0-~ M ( m -  2, t) LMI~ @ M(m - 1, s) ~ Coker [M(3)] ~ O. 
,5 

Now, Coker [M(6)] is identified with M(m, t) by Lemma 2.6. This proves part 
fl) of H,,, and implies that M(m, t) is indecomposable. The exactness of the 
Auslander-Reiten sequence and part ~) of Hm_ * imply that M(m, t) has the 
dimension-vector ~ d ( m - l , s ) - d ( m - 2 ,  t )=d(m, t) (6.3b)). This proves part ~) 
of H,,. 

We summarize our findings in the following proposition. 

Proposition. f f  (T, g) is an admissible graded tree, the functor 
M: k ( R T ) ~ m o d A  T yields an equivalence between k(RT) and a full subcategory 
of indAT;  it induces a translation-quiver-isomorphism of R T onto a connected 
component of  the Auslander-Reiten-quiver FAT. 

Proof The proof that a well-behaved functor is a covering functor ([15], 2.3) 
extends to the present non-representation-finite case. It yields that M is fully 
faithful. The rest of the proposition has already been proved. 

6.5 Corollary. The map(T, g)~--~A T yields a bijection between the isomorphism 
classes of  representation-finite graded trees and the isomorphism-classes of  simply 
connected algebras. 

Proof Consider the mapA~--~(Ga, gA) in the reverse direction. By 6.1 and 6.3 we 
know that A ~ A  GA. By 6.4 we know that (GAT , gAT)~(T~ g). 

6.6 At last we give the promised inductive recipe to construct all repre- 
sentation-finite graded trees. 

Let T=(T, g) be a graded tree and x a vertex of R T. The starting function s x 
T'(RT)o--*N at x is defined by sT(y)=[k(RT)(x ,y):  k]. Its support S X �9 

s~-~(N'--{0}) is denoted by S T. The full subquiver of R r formed by S T is the 
Hasse-diagram of a partial order, with which we endow S~. 

In the sequel we denote by m a vertex of T with maximal grade (g(m)>g(t) 
for all t~To). We denote by t~ . . . .  , t r the neighbouring vertices of m in T, by 
T 1 . . . . .  T r the corresponding connected components of T \ { m } ,  by #~ the 
minimum of g on T~, by gi the grading g lTio- #i of T i. 

Proposition. With the above notations the following statements are true: 

a) (T, g) is admissible iff each (T i, gl) is admissible and each R T, contains x i 
=(g (m) -  1 -#~, tl), 1 <_i<_r. 

b) (T,g) is representation-finite iff the conditions ~) and fl) below are 
satisfied: 

cO Each (Ti, g~) is representation-finite, each R r, contains x i = ( g ( m ) - I  
T' <1. --p~, tl) , the values of  each s~, are = 

T 1 S Tr fl) The partially ordered set s~J_t . . .LI  ~ is representation-finite in the sense 
of  Nazarova-Roiter ([13]). 
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Let S be a partially ordered set. A S-space is by definition a vector-space M 
together with a family of subspaces M s, seS, such that M s c M  t if s<t .  The S- 
space M is the direct sum of two S-spaces M'  and M" if M = M ' |  and M~ 
=M~| for all seS. The partially ordered set S is called representation-finite 
in the sense of Nazarova-Roiter  if there are only finitely many finite-dimen- 
sional S-spaces admitting no proper direct sum decomposition. It has been 
shown by Kleiner, Nazarova and Roiter that this is equivalent to saying that S 
is finite and contains no subset whose Hasse-diagram for the induced order 
has one of the 5 forms given in Fig. 6.6 [13]. 

f 

. . . .  , t i t , !  . , i  t . ,  I 
Fig. 6.6. 

We postpone the proof of the proposition to Sect. 6.10. 

6.7 Corollary. Each tree T admits only a finite number of representation-finite 
gradings. 

Proof Suppose that the statement is already proved for the graded trees S 
having strictly less vertices than T. Then there is a natural number N such that 

(Rs) o ~ {(n, s): s~So, n < N} 

for each such S. As a consequence, each representation-finite grading g of T 
satisfies the relation g(t)__< N + 1, V t e T  o. This proves our statement. 

6.8 We will use the following well-known facts in 6.10: Let A be a basic- 
finite-dimensional algebra and A A = P I | 1 7 4  m a decomposition of A A into 
indecomposable projectives such that HomA(P m, P,,)= k and HomA(Pm, P/)= 0 for 
all i#: m. The decomposition yields an isomorphism 

A=EndAA  [." 

m - 1  
R-- omA(i  ,, )Accordingly each A mo where B = End A and 

dule can be interpreted as a triple (M 1, M 2, q~), where M 1 is a B-module, M z a 
k-vectorspace and q5 an element of HomB(M2| M 1 ) ~  H o m  k 
( M  2, HomB(R, M0). 

Let S be the support of the functor HomB(R,? ) in indB and UsS.  If 
f l , f 26HomB(R ,  U) are linearly independent over k and End B U=k,  we have a 
one-parameter family (U, k , f  1 + 2f2) of non-isomorphic indecomposable triples, 
and A is representation-infinite. 

If  [Horns(R, U): k ] = l  for all UeS, we endow S with the partial order such 
that U > V iff HomB(R,f)4=0 for some f ~ H o m n ( U ,  V). With this definition, the 
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second component m 2 of each triple (M1, M2, 05) carries a natural S-space 
structure (6.6): set M2v=05-1(Hv), where H v is the image of the composition- 
map 

Hom~(R, U)| HomB(U, M 1 ) ~  HomB(R, M 0. 

The functor (M 1, M2, 05)~M 2 thus defined induces a bijection between the 
isomorphism classes of indecomposable triples (M1, M2, 05) such that 05 4:0 and 
the isomorphism classes of indecomposable S-spaces M such that M~4: M for 
some s~S. 

For details see for instance [18]. 

6.9 Lemma. Assume that (T,g) is admissible and that y ,z~Sx=s~l(1)  (6.6). 
Then we have y>=z iff k(R.r)(x, f)4:O for some f~k(RT)(y, z). 

Proof. Let u,v be two vertices of S x, u ~ v  an arrow of R 1 and ~ a path 
from x to u inducing a non-zero-morphism ~k(RT) (x ,  u). It is clearly enough 
to show that ~ 4 : 0 .  We proceed by induction on ~(v), where K is the first pro- 
jection: ~c(n, t)=n, 

If v is projective, k(RT)(X, ~) is injective; so ~ 4 : 0 .  If v is not projective, 
consider the mesh stopping at v (Fig. 6.9) and the associated exact squence 

0--* k(nr)(X, zv)-* + k(Rr)(x, vi)-*k(R.r)(x , v) (2.6). 
i=1 

Suppose that r and gO=0;  then O=(afiO f for some f~k(Rw)(X, zv) such 
that (afl~)f=O for i4: 1. We infer that zveSx and that f = 2 ~ '  for some path ~' 
and some 24:0. This implies (afii)O'=)o-l(afii)f=O for i4:1, hence vieS x by 
our induction hypothesis (K(Vi)<K(n)). On the other hand, v~S~; so there is a 

path Z from x to some vj such that fi~Z4:0. Accordingly, we have j = l ,  7 = / ~  

for some #~k, and fllZ =/~fil ~ = 0 ,  a contradiction. 

~ V 

x 
~ V  ~ �9 ~ V  

p 

Fig. 6.9 

6.10 Proof of Proposition 6.6. a) The inductive definition of R r implies that 

{(n, t ) E ( R T ) o  : I1 < g(m), t 4: m} 

= [ I  {(n+/~i, t): (n, t)~(Rr,)o, n+Pi<g(m) }. 
i=1 

Furthermore (g(m), m) belongs to (RT) o iff Xi~(RT,)O for all i. This proves a). 
b) Suppose (T, g) representation-finite. Then all (T i, gi) are so, since the 

corresponding algebras A T' are residue-algebras of A T. Applying 6.8 to the case 

A = A  r and Pm-=M(g(m), m), we have B =  D AT' and R =  lZ[ M(xl). Since all A T  ̀
i=1 i= l  

are simply connected, each indecomposable B-module has k as ring of en- 
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domorphisms.  According to 6.8, this implies c~). Moreover ,  the part ial ly or- 
dered set S considered in 6.8 is identified with ST"I!  | | S  7"~ by 6.9. It is 

X l J L [  " " " I _ ~  X r 

representation-finite,  because A 7" is so (6.8). This proves that  the condit ions c() 
an d / / )  are necessary. The sufficiency p roof  is similar. 

7. The Representation-Finite Gradings of A. 

Our  purpose  in this section is to describe the representation-finite gradings of  
the tree A, illustrated below. They coincide with the admissible ones. We skip 
the proofs. 

A, 1 - - 2 - - 3 - - . . . - - n  - 1--n. 

7.1 With each grading g of  A, we associate a bounden quiver Kg which is 
defined as follows. The vertices of Kg are the projective vertices s=(g(s), s) of 
Q~A,, ~j (6.2). Two such vertices _s, 1 are connected by an ar row s ~ ,  t if one of 
the two following condit ions holds: either s < t, g ( s ) -  s = g ( t ) -  t and g ( x ) -  x < g(t) 
- t  whenever  s < x < t ;  or s>t, g(s)+s=g(t)+t  and g(x)+x<g( t )+t  whenever 
t<x<s .  We call q~ an e-arrow in the first case, a //-arrow in the second (see 
Fig. 7.1). We require that  the composi t ion  of any e-ar row with any //-arrow be 
zero (symbolically: ~ / /=  0 =//~). 

Fig. 7.1 

Proposition. A grading g of A, is representation-finite if[" Kg is connected and 
contains no subquiver of the form a) or b) below. I f  these conditions hold, the 
algebra A ~A"' ~) (6.4) is defined by the quiver Kg and the relations c~//=0=//cc 

.o 
<jr. 

7.2 The quiver K=Kg at tached to a representation-finite grading g of  A n 
satisfies the following conditions" 
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A) K is a tree. 
B) The arrows of K can be divided into an a-class and a /j-class which 

satisfy B1, B 2 and B3: 
B 0 The composit ion of  two arrows belonging to different classes is zero, 

whereas any composit ion of  arrows of the same class is not. 
B2) Each vertex x of  K is the head of one a-arrow and one /j-arrow at 

most;  similarly, at most one a-arrow and one / j -a r row start at x. 
B3) K contains no subquiver of the form a) or  b) (7.1). 
Conversely, let A be the algebra of  a bounden quiver K which has n vertices 

and satisfies the conditions A) and B). Then A is simply connected, and the 
associated tree G a (4.2) is isomorphic to A, .  In order to describe the grading gA 
and an isomorphism G A ~ A, ,  we divide the arrows of K into two classes c~,/j 
and consider the mapK0--~ 7/2 whose value (g(x), c~(x)) at x ~ K  o is constructed 
as follows by induction on the distance from x to a chosen origin ~rEK0: at the 
origin we set (g(cr), ~'(cr))=(0, 1); if c--~d is an c~-arrow of K, we require that 
(g(d), f~(d))=(g(c)+w,~(c)+w), where w - 1  is the number  of  vertices x such 
that the shortest walk from c to x has the form illustrated in Fig. 7.2(*); 
similarly, if c - ~ d  is a /J-arrow, we require that (g (d ) , ( (d ) )=(g(c )+w, f ( c )  
-g(w)) ,  where w - 1  is the number  of  vertices x such that the shortest walk 
from c to x has the form illustrated in Fig. 7.2(**). The construct ion of the 
injection K o ~  2 is illustrated in the Figs. 7.1, 7.3.2, 7.3.3 and 7.4.1. 

Now set 2 = M i n ( ( x )  and 7 = M i n g ( x ) .  Denote  by P ~ m o d A  the projective 
x~Ko xEKo 

cover of the simple A-module with support  x, by x ~ G A  the r-orbit  of  P~. 
Then:  the m a p S : x ~ - - ~ ( ( x ) - 2 + l  induces a bijection K o ~ { 1 , . . . , n } ;  the r- 
orbits x ~ and y~ are neighbours in G a iff [Z(y)-~7(x)[ = [{(x)-~(y)l  = 1; the grade 
gA(X r) of XrEGA equals g(x)--7- 

(.,  Ot ~ 

pi, ~i, *" ~0 
Fig. 7.2 

7.3 Definition. We call A-quiver a bounden oriented tree whose arrows are 
divided into an a-class and a fl-class such that the conditions B1, B 2 and B 3 o f  
7.2 are satisfied. 

Figure 7.3.1 proposes two examples (compare with Happel-Ringel  [23]). In 
~N the vertices are words formed with the letters a and b-1.  We order them 
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lexicographically writing them from the right to the left and setting b - l < a ;  
this yields for instance l < b - t < b - 2 < a b  ~ < a < b - ~ a < a  2. We call atom of  
class c~ any connected full bounden  subquiver S of S N which has T as smallest 
and a as biggest vertex (see Fig. 7.3.2). The number  cp of a toms of class e with 
p < N arrows is given by the formula 

__1 , 1 ( 2 p - 2 ~  t v e(t)= .y_., %t"-~-~l/1-4t= Y. ~ \p -1  / 
p>l  p>l  

= t + t  2 + 2 t  3 + 5 t  4 +  14t s + 4 2 t  ~ ... .  

If  [ is chosen as origin and (g, f):  So--, )Z 2 is the injection constructed in 
7.2, f(x) coincides with the ordinal of  x in the lexicographic ordering of So; so 
f ( i )  is 1, and e"(a) is the number  of vertices of S. On the other hand, �89 
- g ( x ) - l ) i s  the number  of letters equal to b 1 in the word x. A w o r d x i s  a 
tip of g if x belongs to S, whereas b - I x  and ax  do not. By construct ion a is 
the biggest tip. If f denotes the smallest tip, the interval {xeSo: l_<x_<c 7} is 
called the left lineage of S, 

Similarly, the vertices of S N are words in b and a-1 .  We endow them with 
the opposi te  of  the lexicographic order such that  a - l < b ;  so we have 
! > a-  t > a-  2 > ba -  l > b > a -  l b > b2. We call atom of  class fi any connected full 
bounden  subquiver  S of some _S N which has ! as biggest and b as smallest 
vertex (see Fig. 7.3.2). A word x is a tip of _S if it belongs to _S, whereas a - i x  
and bx do not. If ~ is the biggest tip of S, the interval {xeSo:  l > _ x > f }  is 
called the lett lineage of  S_. 

Now suppose that  m belongs to the left lineage of some ~q and m 1 to the 
left lineage of some S (for instance, set m = a b - l a b  -2 and m - l = b 2 a  - l b a  -1 
in Fig. 7.3.2). In case l < m < a  and _ l > m - l > b  we match  ,~ and _S together  
along the intervalls { x e S  o" l < - x < m }  and {y~S0: l > y > m  - I }  by identifying y 
with x = y m .  The resulting A-quiver  _S will be called an atom of  class aft (see 
Fig. 7.3.3). We endow it with the total order which extends the orders of  _S and 
S; for this order  b is minimal  and a maximal .  The number  bp of a toms of class 
c~fi with p arrows is given by the formula  

[2 

b( t )=  p>=~ bpt p= - � 8 9 1 8 9  ] / 1 - 4 t  

= y,  ( 2 p - - 4 ~  t P = t 4 + 6 t s + 2 8 t 6  + ....  
v>4 \ p - 4  ] 

7.4 Let S 1 . . . . .  S" be a sequence of a toms of class cqfl or aft. Then we can 
ama lgamate  S ~, . . . ,  S" by identifying the biggest vertex of S ~ with the smallest  
vertex of S ~+ ~, 1 < i <m. The resulting amalgamation S=... S ~ is an N-quiver (see 
Fig. 7.4). In case m = 0  we agree that the ama lgama t ion  consists of one vertex 
only. With this convention,  each N-quiver can be written in a unique way as an 
amalgamation. 

It follows that  the number gp of representation-finite gradings of  Ap+ 1 is 
given by the formula 
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1 I 
g( t )=  ~ gpt p=  

p>=O 1 - 2 t + ] / 1 - 4 t  - l + 2 t + 3 ] / 1 - 4 t  

= l + 2 t + 6 t  2 + 2 0 t  3 + 7 1 t  4 + 2 6 2 : + 9 9 2 t  6 

+ 3824t 7 + 14934t s + 58892t 9 + 233974t I o + ... .  

Accordingly, the number ap of isomorphism classes of simply connected algebras 
A such that G n ~  Ap+l is given by 

i-2: 
p~o i --]/TT~ 21 g(t2) 

= I + t + 4 t  2 + l o t  3 + 39t'~ + 131 t s + 5 0 9 t  ~ 

+ 1 9 1 2 t  7 + 7 5 1 7 t  8+29446 t  9+  I17183t  ~~  .... 

We infer that  

~(3]f2+2)P/gp--, 1 and ~(3l/2+2)P/ap--, 1 

when p tends to ~ .  

Fig. 7.3.3 

7.5 Let g be a representation-finite grading of A,, K = K g  the associated A- 
quiver (7.1), R = R ( A . , g  ) the associated Riedtmann-quiver  (6.3). For  each 
se{1 . . . . .  n} we denote  by u s (resp. by (~) the number  of vertices x=t=s of K such 
that  the shortest  walk from s to x in K has the form illustrated in Fig. 7.5.1 
(resp. 7.5.2). With these notations,  the vertices y of R satisfying k(R)(s, y)~ 0 are 
the pairs (p, q)~N x {1 . . . . .  n} such that (p-q)- (g(s) -s )~{O,  2, 4 . . . . .  2#s} and 
(p+q)-(g(s)+s)e{O, 2, 4 . . . . .  2us}. The set of  these pairs is called the rectangle 
starting at s_ (see Fig. 7.5.3). It  " s tops"  at the injective vertex -g=(g(s)+u,+: s, 
s+us-:s )  (compare  with Prop. 2.8c). For each point y of the rectangle starting 
at s we have [k(R)(_s, y): k] = 1. The vertex-set of R is the union of the rectangles 
starting at the different projective vertices (see Fig. 7.4). 

As a corol lary we infer that  the simply connected algebras A such that 
G A ~ - ~  A n coincide with the tilted algebras produced by hereditary algebras of 
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class A, (it follows from 7.4 and 7.5 that the Auslander-Reiten quiver of A has 
a section [-4]; see Fig. 7.4). 

7.6 Remarks. a) After the completion of our results we received an article by 
I. Assem and D. Happel on Generalized Tilted Algebras of Type A, [21]. 
They prove that the algebras of the bounden quivers satisfying condition A 
and part B 1, B 2 of condition B (7.2) coincide with the algebras obtained from 
hereditary algebras of class A, by a finite sequence of tilts. 

1 (2n) occuring in 7.3 are well-known in b) The numbers C , + l - n +  1 i1 c o m -  
/ 

binatorics as Catalan numbers. Three different combinatorial interpretations of 
them can be found in L. Comtet [22]. In our case we use a fourth in- 
terpretation of c,+ 1 as the number of subtrees S of S" which have n vertices 
and contain 1. In the terminology of Happel-Ringel [23], there is a natural 
bijection between these S and the isomorphism classes of multiplicity-free 
tilting modules over the algebra A of the Dynkin-quiver n--, n -  1 --,... -* 2-~ 1. 

c) The numbers ap and gp of 7.4 can be computed by means of the 
following induction-formulae: 

p+l (2 i_4t  i2+3i_6 
=2gp+2gp_l +4gp gp+ l 2+~=----4 \ i - 4  ] ( i - 2 ) ( i - 3 )  gp+~-i 

-~1 i -1  [2i-2~ 
202p=g2P4-gP+,.= ~ - -  \ i-- 1 ] gp i" 

Maximal Algebras with 2 Simple Modules 

Each representation-finite basic connected finite-dimensional algebra over k 
(=  algebraically closed) whose radical has codimension 2 is isomorphic or anti- 
isomorphic to a quotient of an algebra of the following list. The listed algebras 
are defined by quivers and relations. With each algebra A we produce its 
Auslander-Reiten quiver F A and the associated graph G A (4.2). In F a we have 
omitted the tips of the arrows, which are directed from the left to the right. We 
have to identitify two vertices denoted by the same letter, as well as the arrows 
connecting such vertices. Although the dimension-vector of an indecomposable 
module is completely determined by its position in FA, we indicate it in some 
cases: for instance, the notation e32 means that [32] is the dimension-vector 
of the module represented by the vertex e; similarly, 13p (resp. j).2) denotes a 
projective (resp. injective) indecomposable with dimension-vector [13] (resp. 
[22]) and top-dimension-vector [01] (resp. socle-dimension-vector [10]); the 
letters A, B, C. . .  stand for the numbers 10, 11, 12 .... Using the given dimen- 
sion-vectors and the additivity of the dimension occuring in a mesh, it is easy 
to compute all dimension-vectors. With the exception of algebra 14 bis, which 
is not isomorphic to algebra 14 in characteristic 2, all listed algebras are 
standard. 
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5 0 1 2 7 0  5 0 1 2 7 2  
1 4 5 4 2 3  1 4 5 5 2 5  

5 2 1 2 7 0  5 2 1 2 9 0  

2 3 5 4 2 3  2 3 4 5 1 3  

6 3 0 3 6 1  7 2 1 2 7 0  
1 3 3 3 1 1  1 4 3 4 1 3  

5 0 1 2 9 0  5 0 1 2 9 2  5 0 1 4 5 2  5 2 1 2 5 0  

1 4 4 5 1 3  1 4 6 5 1 4  3 5 4 3 1 1  3 4 4 4 3 3  

5 4 1 0 7 2  5 4 1 0 9 2  6 1 0 1 6 1  6 1 0 1 6 3  

1 2 5 5 2 1  1 2 4 6 1 1  1 4 3 4 1 3  1 5 5 5 1 1  
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