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Summary. The finite element discretization of many elliptic boundary value 
problems leads to linear systems with positive definite and symmetric coeffi- 
cient matrices. Many efficient preconditioners are known for these systems. 
We show that these preconditioning matrices can also be used for the linear 
systems arising from boundary value problems which are potentially indefi- 
nite due to lower order terms in the partial differential equation. Our main 
tool is a careful algebraic analysis of the condition numbers and the spectra 
of perturbed matrices which are preconditioned by the same matrices as 
in the unperturbed case. 

Subject Classifications: AMS(MOS): 65F10, 65N20, 65N30; CR: G 1.8. 

1. I n t r o d u c t i o n  

The finite element discretization of many elliptic boundary value problems leads 
to linear algebraic systems 

A x = b  (1.1) 

with positive definite and symmetric coefficient matrices A. The most simple 
example of such a boundary value problem is the Laplace equation 

with boundary conditions 

- A u = f  (1 .2)  

u=O (1.3) 

on a sufficiently regular subdomain of the R 2 or the R 3. 
Often systems like (1.1) are solved by applying a conjugate gradient type 

method implicitly to a preconditioned system 

B -  1/2AB- 1/2 y = B -  I/2 b. (1.4) 
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Many efficient preconditioners B are known. Examples are different types of 
multigrid methods [7, 3], methods based on incomplete factorizations of the 
coefficient matrix [1] or domain decomposition methods [4, 5, 11]. 

Typically all these methods get into trouble for equations like 

- A u + q u = f  (1.5) 

with a selfadjoint lower order term forcing indefiniteness of the corresponding 
linear system 

(A + M)  x = b. (1.6) 

For a direct application to (1.5), (1.6) expensive modifications to these iterative 
methods can be necessary. In addition for parameter dependent equations the 
matrix M in (1.6) can change very often, whereas A remains fixed. In this paper 
we show that the resulting problems can be avoided by using the preconditioning 
matrices B arising from (1.1) also as preconditioners for the linear system (1.6). 

Our approach is based on two observations. First, that the spectral condition 
number of 

B -  1/2 (A + M) B-  1/2 (1.7) 

can be estimated in terms of the condition number of the unperturbed matrix 

B -  1/2AB 1/2 (1.8) 

The constant depends only on the stability properties of the boundary value 
problem and of its discretization, not on the preconditioner B. Secondly, and 
this is our main argument, the eigenvalues of the matrix (1.7) cluster in the 
interval bounded by the minimum and the maximum eigenvalue of the matrix 
(1.8). The number of eigenvalues of the matrix (1.7) outside every fixed small 
neighborhood of this interval is bounded independently of the choice of the 
finite element space. 

The remainder of this paper is organized as follows: In Sect. 2 the basic 
algebraic estimates are derived. This section does not refer to the origin of 
the matrices. In Sect. 3 the connection with finite element discretizations is estab- 
lished; as an illustrative example of application we consider a simple second 
order boundary value problem. Sect. 4 deals with the consequences for Krylov- 
space methods. 

2. The Basic Algebraic Estimates 

We begin with some notations. Let 

(x, y )=  ~, x i y l  
i=1 

be the Euclidean inner product of two vectors x, y~R" and let 

I x l = ( x , x )  1/2 

(2.1) 

(2.2) 
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be the induced Euclidean norm. The associated matrix norm 

[AI = max IAxl (2.3) 
i~l=l 

is the spectral norm. The spectral condition number of an invertible square 
matrix A is 

~c(A) = [AliA-t[. (2.4) 

I denotes the identity matrix. Let 21, 22... ,  2, > 0  be the eigenvalues of the sym- 
metric and positive definite (n x n)-matrix A. Assume 

Axi=2ix i ,  (xi, xj) = 6i~, (2.5) 

for i , j= 1 . . . . .  n. Then the symmetric and positive definite (n x n)-matrices A s 
are given by 

A s x = ~ 2~(x, xs) x s. (2.6) 
j = l  

In the remainder of this section we fix two symmetric positive definite (n 
x n)-matrices A and B. In the application that we have in mind and as mentioned 
above, A is a discretization matrix of an elliptic boundary value problem and 
B a preconditioner for A. Define 

(x, Ax)  f l = m a x  (x, Ax) (2.7) 
a = m i n  (x, B x)' (x, B x)" 

x:l:O x#O 

Note that a is the minimum and fl the maximum eigenvalue of the precondi- 
tioned matrix B-  1/2AB- 1/2, and that 

--fl = t o (B-  I / 2 A B - 1 / 2 ) .  (2.8) 

Assume that  A + M is another  symmetric (n x n)-matrix, typically a discretization 
matrix of a modified boundary value problem with M representing a lower 
order part  of the differential operator.  Our question is: What  can be said about 
the spectral condition number  and the eigenvalue distribution of 

B-  1/2(A + M) B-  1/2, (2.9) 

quantifying the efficiency of B as a preconditioner for A + M? 
We remark that for B -  1 = HH T the symmetric matrices (2.9) and 

Hr (A + M) H (2.10) 
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are similar  and have the same eigenvalues. This is p roved  using the or thogonal i ty  
of B1/2 H. 

We begin our  analysis with: 

L e m m a  1. Assume that A + M is nonsingular. Then 

x(B-1/2(A+M)B-1/2)<=K(I+A-1/2MA-1/2) tc (B-1/ZAB -U2) (2.11) 

Proof F o r  all nons ingular  (n • n)-matrices A1, A 2 one has 

~c(A1 Az)<=K(A1)K(A2). 
Therefore  

to(B- 1/2(A + M) B -  1/2) 

<= K( B -  1/2 A 1/2) K( I + A - 1/2 M A - 1/2) K(A 1/2 B -  1/2). 

Using 

ICI=ICTI, ICI2=ICTCI 
one gets 

K(B-  1/2A1/2) K(A 1/2 B -  1/2)= to(B- 1/2 A B -  I/2),  

and the propos i t ion  follows. [ ]  

To  state our  first result we need the energy n o r m  

[Ix[[ 1 =(x ,  A x) 1/2 = ]A1/2 xI 

and its dual  n o r m  

[ J f [ [ - l =  max  ( f x ) = [ A - t / 2 f [ .  
Ilxlh - 1 

(2.12) 

(2.13) 

Theorem 1. Let A + M be nonsingular, and assume 

(x,(A + M) y) < c t [[xl[ 1 Ilyll 1, 

and 

Then 

x, y~R" ,  

[[ (A+M)- l f l l ,  <=c2[Ifll_,, f ~ R  ~. 

tr (B-  1/2 (A + M) B - 1/2) ~ C 1 e 2  K (B-  1/2 A B l/2). 

(2.14) 

(2.15) 

(2.16) 

Proof Because of  

m a x  
Itxlll= Ilyllt= 1 

and 

m a x  
II f [ [  - l = 1 

( x , ( A + M ) y ) =  m a x  ( A - 1 / 2 x , ( A + M ) A - 1 / 2 y )  
Ixl-lyl=l 

=[I+A-1 /2MA-1 /2 [  

I I ( A + M ) - l f [ I , =  m a x  [A ' /2 (A+M)- 'A1 /2A-1 /2 f [  
[A l /2f[  = 1 

= [ ( I  + A - 1/2 M A -  1/2)- 1[ 
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we have 

~c(l + A - 1/2 M A  - 1/2)=< c5 c2. 

The theorem now follows from Lemma 1. [ ]  

Remark. The symmetry  of  M does not enter into the proofs of  Lemma 1 and 
Theorem 1. 

N o w  we examine the eigenvalue distribution of the matrix (2.9). 
The eigenvalues 25 ~ 2 2 <  . . .  ~ 2  n of an arbitrary symmetr ic  (n x n)-matrix S 

are given by the min-max characterizat ion 

2 , .=  min max (x, Sx) (2.17) 
dim~ m xEOll,]x]=5 

and for m = 2 . . . . .  n by the max-min characterizat ion 

2 , .=  max min (x, Sx), (2.18) 
d i m f  =m i xe'i/'J,lxl=5 

where ~# and U ,  respectively, run over all subspaces of R" and ~V "l is the or thogo-  
nal complement  of  f with respect to the Euclidean inner product .  We refer 
to [6, 10, 12]. 

Lemma 2. Let t'5 ~ ]~2 <' '"  ~ ~n be the eigenvalues of the symmetric matrix 

Q = I + A -  5/2 M A -  5/2 (2.19)  

and )~ <21 < ... <2 ,  be the eigenvalues of 

B 5/Z(A+M)B ~/2 

ThenJor all indices m with p,, >0 

~/~,._<_ 2," =< fig," (2.20) 

where c~ and fl are given by (2.7). 

Proof Let x~, x2 . . . . .  x ,  be an o r thonormal  basis of  the R" with 

Qxk=l~kXk, k = l ,  ..., n. 

For  m =  1, . . . ,  n we set 

gm= span {xl . . . . .  x,,}. 

For  the p roof  of the lower estimate we define the space 

"~l(/tn = { B -  I / 2 A  1/2 y[ye,~rn} 

and utilize 
f ~ = {B,/EA- ,/2 y[yeg~}.  
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By the max-min  character izat ion (2.18) of  2m, m >  2, we have 

~rn ~ min 
xe~&_ a 
[x[=l 

---- rain 

Ixl=l 

(x, B -  1/2(A + M) B -  1/2 x) 

(A 1/2 B-  1/2 x, Q A 1/2 B-  1/2 X) 

rain (y, Q y). 

IBU2 A - i/2y[ = 1 

Assuming pro>0, for all y e 6 ~ _ l  with ]B1/2A-1/Zy[ = 1 one gets 

(y, Qy)>____l,,,,ly[2>____#m min Iz[ 2. 
zeR n 

]B1/2A 1/2z[=l  

Therefore 

2m~.~]l m m i n  [A1/2  B - 1 / 2  x[  2 

X 6 R  n 

IxI=l 

=/~m min (x, B-1/2AB-X/2x)  
x6R n 
Ixt=l 

=/2m 0~. 

Similarly, for 1/1 ----~ 0,  the character izat ion 

leads to 

21 = min (x, B-  1/2 (A + M) B- 1/2 x) 
xER n 
[xl=l 

~.1 ~ 1  a �9 

This proves the first par t  of  the temma. 
For  the p roof  of  the second estimate we introduce the spaces 

~m = { B1/zA - t/2 ylye~m}. 

The min-max character izat ion (2.17) of  the eigenvalues "~m gives 

~m < m a x  

Ixl=l 

max 

Ixl=l 

m a x  
ye~m 

[BI/2A- l/2y[ = 1 

(x, B-1/2(A + M) B-1/2 x) 

(A 1/2 B-  1/2 X, QA 1/2 B-  1/2 x) 

(y, Q y). 
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If p,. >0 ,  for all y~8, ,  with ]B1/2A-1/2 y] = 1 

(y, Qy)<#,.[y[2<pm max 
z ~ R n  

[BI/2A 1 / 2 z [ =  1 

[z[ 2. 

This estimate leads to the desired upper bound 

2,,</~,. m a x  [A1/2 B-1/2 xI 2 
X E R  n 

Ix[=1 

=p, .  max (x, B- I /2AB-1 /2x)  
X E R  n 
Ix[=l 

= ~.~/~. [ ]  

Now we can prove our second main theorem. 

Theorem 2. Assume 0 < 6 < 1 and 

~, dim k e r ( A - 2 M ) < m l ,  ~ '  dim k e r ( A - 2 M ) < m 2 .  (2.21) 
-- 1 /6  < ,~  < 0 0 < 2 <  1/6 

Then at most m 1 eigenvalues of the matrix 

B -  I/2(A + M)B-1/2 

are less than (1 -6 )c t  and at most m 2 eigenvalues of this matrix greater than 
(1+6)fl .  

Proof. In the notations of Lemma 2 one has, for # + 1, 

if and only 

Therefore 

( Q - p I )  x=O 

A -  1 M)A_I /Zx=O" 
#--1  

1 - - ~ / ~  i, i = m l + l  . . . . .  n, 

t t i ~  1 §  , i = 1  . . . . .  n--m 2 . 

By Lemma 2 the proposit ion follows. []  

Remark. For  the application of Theorem 2 the matrix A + M  does not need 
to be nonsingular. 

Note  that by Sylvester's law of inertia the number  of eigenvalues less than 
or equal to zero of the matrix (2.9) is independent of the choice of the precondi- 
tioner B. 

Our last theorem allows to give upper bounds for the numbers m 1 and m 2 
in (2.21). 
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Theorem 3. Let N be a symmetric (n x n)-matrix with 

+(x, Mx)<(n, Sx ) ,  x~R ~. (2.22) 
Assume 6 > 0 and 

dim k e r ( A - 2 S ) < l .  (2.23) 
0 < 2 . <  1/0 

dim k e r ( A - 2 M ) < l ,  ~ dim k e r ( A - 2 M ) < l .  (2.24) 
0 < 2 <  1/0 

Then 

E 
- 1 / 0 < 2 < 0  

Proof. Because of 

( x , A - I / 2 M A - I / 2 x ) ~ ( x , A  1 / 2 N A - 1 / 2 x ) ,  x6R", 

and the min-max characterization (2.17), the k-th eigenvalue of A-1/2NA - 1/2 
is greater than or equal to the k-th eigenvalue of A-1/2 MA-1/2. Therefore 

dim ker(A--2M) 
0 < 2 <  1/0 

= ~ dim ker(A- i/2 M A -  1/z - p I )  
# > 0  

< ~ dim k e r ( A - 1 / 2 N A - l / 2 - p I )  

= ~ dim k e r ( A - 2 N ) .  
0 < 2 < 1 / 0  

Replacing M by - M  one gets 

dim ker(A - 2M) 
-- 1 / 0 < 2 < 0  

= ~ dim ke r (A+2M)  
0 < ) . <  1/0 

< ~ dim ker(A--)~N). []  
0 < 2 <  1/0 

The bounds given in the theorems of this section are sharp. For  Lemma 1 
and Theorem I as for Lemma 2 and Theorem 2 this is shown by the trivial 
example B = A. For  Theorem 3 consider the matrices 

3. Finite Element Equations 

Let (2~_R d, d = 2  or d =  3, be a bounded polygonal domain. As an example 
of application we consider finite element discretizations of the elliptic boundary 
value problem 

d 

- ~  D~(aijDiu)+qu=f on f2, (3.1) 
i,j = 1 

u = 0  on c~f2. (3.2) 
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We assume that the coefficient functions aij and q are bounded and measurable, 
that 

air = ajl, i, j = 1 . . . .  , d, (3.3) 

and that 
d d 

aij(x)r/ir/j> # ~ r/2 (3.4) 
i , j = l  i = l  

for almost all xef2 and all r/eR a./~ is a given positive constant. 
The weak formulation of our boundary value problem is: find a function 

ue W01"2 (f2) satisfying 

B(u, v)=f*(v) ,  v e Wol, 2 (f2). (3.5) 

Here f *  is a given bounded linear functional on Wo~'2(f2) and the bilinear form 
B on W0 I" 2 (s is defined by 

Let 
12 

d 

no(U, v)= f E 
i , j=  I 

g2 

(3.6) 

aij Di uDj vdx.  (3.7) 

Under the given assumptions 

tlutl~ = Bo(U, u) (3.8) 

defines a norm on WoX'Z(f2) which is equivalent to the usual Wol'2(f2)-norm 
of this space. There exists a constant C1 > 0  with 

n(u, v)<C1 llultl ttvlll (3.9) 

for all functions u, ve wd'Z(f2). 
We assume that for all bounded linear functionals f *  on W~'2(f2) the bound- 

ary value problem (3.5) has a unique solution ue W~'Z(f2) satisfying 

I[ul[l<Cz sup tf*(v)l (3.10) 
Ilvllt=l 

with a constant C2 independent o f f * .  For  q(x)>O, x~f2, one can choose C2 = 1. 
To produce an approximate solution of the boundary value problem (3.5) 

we specify a finite element space S c Wd,Z(f2) and look for a u~S satisfying 

B(u, v)=f*(v) ,  w S .  (3.11) 
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We require that the discrete boundary value problem (3.11) is uniquely solvable 
and that, corresponding to (3.10), there exists a constant c2 independent of 
f *  with 

I[ul{ 1 "~c 2 sup [f*(v)[. (3.12) 
y e S ,  [I vll  ~ = 

This condition holds uniformly for all sufficiently accurate finite element spaces 
S; see 1-8] and [14]. For  q(x)>O, xsf2, (3.12) is satisfied with the constant 
cz = 1, as in the continuous case. 

For  a given basis ~ . . . . .  ~,  of S the discrete boundary value problem (3.11) 
is equivalent to the matrix problem 

(A + M)x=b, (3.13) 

where the coefficients of the (n • n)-matrices A and M and of the right hand 
side b are defined by 

Alkl = Bo (I]/k, IPl) (3.14) 

M]u= ~ q~bktP,dx (3.15) 
~2 

and where 
b[k=f*(~k), (3.16) 

u= ~ XlkOk (3.17) 
k = l  

is the solution of (3.11). 
For  these matrices A and M the assumption (2.15) in Theorem 1 is equivalent 

to (3.12) and means stability of the finite element discretization. Because of 
(3.9), (2.14) holds with cl = C1. Therefore for every symmetric and positive defi- 
nite matrix B the condition number of the matrix 

B- 1/2(A + M) B-  1/2 (3.18) 

is bounded in terms of the condition number of the matrix 

B- 1/2AB- I/2. (3.19) 

The constant is the same for all (sufficiently accurate) finite element spaces and 
independent of the preconditioner B. 

To examine the spectral behavior of the matrix (3.18) let w: Q--*R be a 
bounded measurable function satisfying 

and 

[q (x)] _< w(x) (3.20) 

w(x) > 0 (3.21) 
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for almost all xef2. The linear space of all measurable real-valued functions 
u on O with 

Ilull~ = j w(x)lu(x)l 2 dx (3.22) 
s 

being finite is a Hitbert-space under the norm (3.22). The solution space Wo~'2 ((2) 
is a compactly embedded subspace of this Hilbert-space. Therefore there exists 
a complete system of eigenfunctions Uke Wol'2 (Q), k =  1, 2, 3 . . . . .  and eigenvalues 
0< , i  I ~,i2 ~,i3 < ... with 

and 

Bo(Uk, V)=,Ik S wukvdx, veWd'2(s 
s 

WUkUldX=6kl 
s 

lim ,ik = + 0 0 .  
k~oo 

(3.23) 

(3.24) 

(3.25) 

Corresponding to this eigensystem there exists a set of discrete eigenfunction 
u l  . . . . .  ~,~S and eigenvalues 0<~[ 1 ~ 2 ~  "'" ~ n  with 

Bo(Uk' 1)):'~k I WUkVdX' YES, (3 .26 )  
s 

Wgk~ldx = 6kl. (3.27) 
s 

It is a well-known fact [-10], which can be proved using an appropriate general- 
ization of the min-max principle (2.17), that 

2k =< 2"k, k = 1 . . . . .  n. (3.28) 

If we define the (n x n)-matrix 

NIk' = S W~k~b,dx (3.29) 
s 

with the basis functions q/k of S introduced above, this means that for all given 
6 > 0  

dim ker(A--,IN) (3.30) 
0<; t<  1/6 

is bounded independently of the finite element space S. By the choice (3.20) 
of the weight function w (2.22) holds for the matrices (3.15), (3.29). Therefore 
by Theorem 3 for every given 6 > 0 also the numbers 

~2 dim k e r ( A - 2 M ) ,  ~ dim k e r ( A - 2 M )  (3.31) 
- -  1 / 6 <  2.<:0 0 < 2 <  I / 6  

are bounded independently of the choice of the finite element space. 
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For q(x)>0 almost everywhere in f2 (allowing q(x)=0 along a curve, for 
example) the canonical choice of the function w is 

w(x) = q(x) (3.32) 

With this choice the number of eigenvalues 2i< 1/6 of the original continuous 
problem becomes a bound for the corresponding discrete sum (3.31). Obviously 
this bound cannot be improved independently of the finite element space S. 
Generally, for q(x)4= 0 almost everywhere in O the optimal function w is 

w(x)=[q(x)]. 

To get a qualitative result it is sufficient to choose 

(3.33) 

w(x) = sup lq(y)l, (3.34) 

making the norm (3.22) to a constant multiple of the L 2 (f2)-norm. 
To finish our considerations we apply Theorem 2 and see that the eigenvalues 

of the preconditioned matrix (3.18) cluster, for every symmetric and positive 
definite preconditioner B, in the interval bounded by the minimum and maxi- 
mum eigenvalue of the unperturbed matrix (3.19). 

4. Consequences for Krylov-Space Methods 

We attempt to solve the linear system 

(A + M ) x = b  (4.1) 

with the (n x n)-coefficient matrix of Sect. 2 (or Sect. 3, respectively) by a residual 
minimizing Krylov-space method (see [9], for example) using the matrix B as 
preconditioner. It is well-known that these methods exploit the eigenvalue distri- 
bution of the preconditioned matrix. One of their basic properties is the estimate 

IB- 1/2 r1 [ ~ min max 1~(21)I tB- 1/2 r0l (4.2) 
PjEIIj Ai 

for the error of the j-th iterate xj. 

rj = b - ( A  + M) xj (4.3) 

is the residual corresponding to x~, H i denotes the set of all polynomials P~ 
of a degree less than or equal to j with P~(0)= 1, and 21 < 2 2 < . . . < 2 ,  are the 
eigenvalues of the preconditioned matrix (2.9). 

To get a rough idea of the performance of these methods we fix a value 
6~(0, 1) and set 

~x'=(1--3)~z, f l '=(l+6)fl ,  (4.4) 
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where ~ and/~ are the constants  (2.7). Let 

x,>p, 1 2 

be polynomials  of orders ml and m2 with m =  ml +m2 and set 

c * =  max IP*(L)[- 

Restricting the min imum in (4.2) to all polynomials  

P~(2) = P* (2) Q*(2) P;_,. (2), P;_,. e Hi_, . ,  

one obtains, for j > m, 

[B-t/2rj I<c, 

731 

(4.5) 

(4.6) 

(4.7) 

~' 1 + 6  ~c'=--= K(B- 1/ZAB- 1/2) (4.9) 
t~' 1 - 6  

 -1<1 q= +l 
mm max [Pk(2)}- l + q 2  ~, (4.11) 

/~,e Hk ~' < ~.<//' 

as it is shown in [ I] ,  for example. Therefore  for j => m 

f B -  1/2 rj} < 2c* q J-" [B-  ~/2 rol. (4.12) 

Up to the factor c*/q m and the factor ( 1+  6 ) / ( 1 -  6) in (4.9) this is the same 
well-known estimate for the speed of convergence as one gets for the case M = 0. 
A bound  for the constant  c* in terms of 

a =  min IRi[, b =  max IRil (4.13) 
i = 1  . . . . .  n i = t  . . . . .  n 

2 q  k 

(4.10) 

one has 

and 

Provided that  m is small, as in the applicat ion of Sect. 3, after a short  starting 
phase the speed of convergence of the i teration should be determined by the 
eigenvalues 2ie [a', fl']- Defining 

min max [P~-m(21)IIB- 1/2 ro[. (4.8) 
P j - m ~ 1 1 j - m  2ie[~',/~'] 
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and 

is 

b 
- - =  K ( B -  1 / 2 ( A  q- M) B-  1/2) (4.14) 
a 

c* <(1 b~m~ - + a )  " (4 .15)  

For a detailed evaluation of the formula (4.2) and for related questions we 
refer to [2] and the papers cited therein. 

As a simple standard illustration we consider the boundary value problem 

- A u + c o u = f  on O, 

u = 0  on 0(2, 

where ~ =  [0, 1] 2 is the unit square of R 2 and co is an arbitrary real constant. 
To discretize the boundary value problem we subdivide the square O into small 
squares of sidelength h. As the discrete solution space we use the space S of 
all functions being continuous on the unit square and piecewise bilinear on 
the small subsquares. Using the standard nodal basis of S this discretization 
leads to the matrices A and M represented by the difference stars 

and 

1 

F 

9 ~ 
1 

respectively. As a preconditioning procedure we switched to the hierarchical 
basis formulation [13, 14] of the linear system to be solved. We counted the 
number j of iteration steps necessary to reach 

IB- lie r j[ <=eIB- 1/2 rol. 

Note that for B-1 = S S  r, because of the orthogonality of S r B 1/2, 

IB- 1/2 rl = ]Srrl. 

The results for some representative values of co and e, the gridsize h = 1/80, 
a (6 x 6)-grid as initial grid for the construction of the hierarchical basis and 
the right-hand side 

f (x, y)= 1 



Preconditioning Indefinite Discretization Matrices 

T a b l e  1. The number of iteration steps for the given example 

e= 10 -2 e= 10 -4 e= 10 -6 

90 6 17 25 
60 7 17 25 
30 8 18 26 
0 11 20 27 

- 10 12 21 28 
- 2 0  19 27 35 
- 3 0  12 21 29 
--40 11 20 28 

50 10 20 28 
- 6 0  10 20 31 
- 7 0  10 21 31 
--80 10 20 32 
- 9 0  11 2I 33 
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a r e  l i s t ed  in T a b l e  1. T h e  c o n d i t i o n  n u m b e r s  C1 C2 of  t he  a s s o c i a t e d  c o n t i n u o u s  

p r o b l e m s  differ  c o n s i d e r a b l y ,  a n d  t he  fact ,  t h a t  t he  e i g e n v a l u e  2 ~  2 o f  t he  L a p l a c e  

o p e r a t o r  is ve ry  n e a r  to  20, e x p l a i n s  t he  r e l a t ive ly  l a rge  n u m b e r  o f  i t e r a t i o n s  

for  0} = - 2 0 .  B u t  as  a g e n e r a l  o b s e r v a t i o n  we c a n  c o n c l u d e  t h a t  a f t e r  a c e r t a i n  

s t a r t i n g  p h a s e  t he  s p e e d  of  c o n v e r g e n c e  d o e s  n o t  d e p e n d  ve ry  s ens i t i ve ly  o n  

t h e  c h o i c e  o f  co. 
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