

A Note on C° Galerkin Methods for Two-Point Boundary Problems

Miente Bakker

Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam

Summary. As is known [4], the C° Galerkin solution of a two-point boundary problem using piecewise polynomial functions, has $O(h^{2k})$ convergence at the knots, where k is the degree of the finite element space. Also, it can be proved [5] that at specific interior points, the Gauss-Legendre points the gradient has $O(h^{k+1})$ convergence, instead of $O(h^k)$. In this note, it is proved that on any segment there are k-1 interior points where the Galerkin solution is of $O(h^{k+2})$, one order better than the global order of convergence. These points are the Lobatto points.

Subject Classifications: AMS (MOS) 65 N 30; CR: 5.17.

1. Introduction

We consider the two-point boundary problem

$$Lu \equiv -(p(x)u')' + q(x)u = f(x), \quad x \in [0, 1] = I;$$

$$u(0) = u(1) = 0.$$
 (1)

We suppose that p, q and f are such that (1) has a unique and sufficiently smooth solution.

Let, for a constant integer N, $\Delta: 0 = x_0 < x_1 < \ldots < x_N = 1$ be a partition of I with

$$h = N^{-1};$$
 $x_j = jh;$ $I_j = [x_{j-1}, x_j]$

and let for a constant integer $k \ge 2$ and for any interval $E \subset I$, $P_k(E)$ be the class of polynomials of degree at most k restricted to E.

We define for $m \ge 0$ and $s \ge 1$

$$W^{m,s}(E) = \{ v \mid D^{j} v \in L^{s}(E), j = 0, ..., m \};$$

$$H^{m}(E) = W^{m,2}(E);$$

$$H^{1}_{0}(I) = \{ v \mid v \in H^{1}(I); v(0) = v(1) = 0 \};$$

$$M^{k}_{0}(\Delta) = \{ v \mid v \in H^{1}_{0}(I); v \in P_{k}(I_{j}), j = 1, ..., N \};$$

$$\|v\|_{W^{m,s}(E)} = \left[\sum_{j=0}^{m} \|D^{j} v\|_{L^{s}(E)}^{2} \right]^{\frac{1}{2}};$$

$$\|v\|_{H^{m}(E)} = \left[\sum_{j=0}^{m} (D^{j} v, D^{j} v)_{L^{2}(E)} \right]^{\frac{1}{2}},$$
(2)

where D^{j} denotes d^{j}/dx^{j} . If E = I, we write (α, β) instead of $(\alpha, \beta)_{L^{2}(I)}$ and $\|\alpha\|_{m}$ instead of $\|\alpha\|_{H^{m}(I)}$.

Let $U \in M_0^k(\Delta)$ be the unique solution of

$$B(U, V) = (f, V), V \in M^k_0(\Delta),$$
(3)

where $B: H_0^1(I) \times H_0^1(I) \to \mathbb{R}$ is defined by

$$B(u, v) = (pu', v') + (qu, v); u, v \in H^1_0(I).$$
(4)

We assume that B is strongly coercive, i.e. there exists a C > 0 such that

$$B(v, v) \ge C \|v\|_{1}^{2}, \quad v \in H_{0}^{1}(I).$$
(5)

In the sequel, C, C_1 , are generic positive constants not necessarily the same.

Lemma 1. Let $u \in H_0^1(I) \cap H^{k+1}(I)$ be the solution of (1) and let $U \in M_0^k(\Delta)$ be the solution of (3). Then the error function e(x) = u(x) - U(x) has the bounds

$$\|e\|_{l} \leq Ch^{k+1-l} \|u\|_{k+1}, \quad l = 0, 1; |e(x_{j})| \leq Ch^{2k} \|u\|_{k+1}, \quad j = 1, \dots, N-1; \|e\|_{L^{\infty}(l)} \leq Ch^{k+1} \|u\|_{k+1}.$$
 (6)

Proof. See [6], [4] and [7]. □

In the next §, we prove that the local order of convergence improves slightly at specific points interior to I_j , if u satisfies stricter smoothness requirements on the interior of I_j .

2. Order of Convergence at Lobatto Points

On the segment [-1, +1], we define the Lobatto points $\sigma_0, \ldots, \sigma_k$ by

$$(1 - \sigma_l^2) \frac{d}{d\sigma} P_k(\sigma_l) = 0, \quad l = 0, \dots, k,$$
 (7)

where $P_k(\sigma)$ is the k-th degree Legendre polynomial. Associated to this polynomial is the quadrature formula (see [1, formula 25.4.32])

C° Galerkin Methods for Two-Point Boundary Problems

$$\int_{-1}^{+1} f(\sigma) \, d\sigma = \sum_{l=0}^{k} w_l f(\sigma_l) - \frac{(k+1) \, k^3 \, 2^{2k+1} \left[(k-1)! \right]^4}{(2k+1) \left[(2k)! \right]^3} \, f^{(2k)}(s), \, s \in (-1, +1)$$

$$w_l = \frac{2}{k(k+1) \left[P_k(\sigma_l) \right]^2}, \quad l = 0, \dots, k.$$
(8)

From (7) and (8), we define

$$\xi_{jl} = x_{j-1} + \frac{h}{2}(1+\sigma_l); \quad l = 0, \dots, k; \ j = 1, \dots, N;$$

$$(\alpha, \beta)_j^* = \frac{h}{2} \sum_{l=0}^k w_l \, \alpha(\xi_{jl}) \, \beta(\xi_{jl}); \quad \alpha, \beta \in W^{2k, \, \infty}(I_j); \quad j = 1, \dots, N; \qquad (9)$$

$$(\alpha, \beta)_h = \sum_{j=1}^N (\alpha, \beta)_j^*.$$

We return to problems (1) and (3). It is known that

$$B(e, V) = 0, \quad V \in M_0^k(\Delta). \tag{10}$$

For any I_i , we define

$$M_0^k(I_j) = \{ V | V \in M_0^k(\Delta), \operatorname{supp}(V) = I_j \}.$$
(11)

We temporarily drop the subscript j from the numbers ξ_{ij} . We define a natural basis $\{\phi_i\}_{i=1}^{k-1}$ for $M_0^k(I_i)$ by

$$\phi_i(\xi_l) = \delta_{il}, \quad 1 \le i, \ I \le k - 1, \tag{12}$$

where δ_{il} is the Kronecker symbol. If we elaborate (10) for $V = \phi_i$, i = 1, ..., k-1, we get

$$(e, L\phi_i) = [p(x) e(x) \phi'_i(x)]_{\xi_0}^{\xi_k}, \quad i = 1, \dots, k-1.$$
(13)

Approximation of $(e, L\phi_i)$ by Lobatto quadrature yields

$$\sum_{l=1}^{k-1} w_l L \phi_i(\xi_l) e(\xi_l)$$

$$= 2h^{-1} [p(x) e(x) \phi_i'(x)]_{\xi_0}^{\xi_k} - w_0 e(\xi_0) L \phi_i(\xi_0)$$

$$- w_k e(\xi_k) L \phi_i(\xi_k) + Ch^{2k} D^{2k} (eL \phi_i) (\xi \in I_i), \quad i = 1, ..., k-1.$$
(14)

This is a linear system for $e(\xi_1), \ldots, e(\xi_{k-1})$. We have to prove the nonsingularity of $(w_l L \phi_i(\xi_l))$ and to compute the order of the solution. We know that

$$hB(\phi_{i}, \phi_{l}) = h(L\phi_{i}, \phi_{l})$$

= $h^{2} \sum_{\nu=1}^{k-1} w_{\nu}L\phi_{i}(\xi_{\nu})\phi_{l}(\xi_{\nu}) + Ch^{2k+2}D^{2k}(L\phi_{i}(\xi)\phi_{l}(\xi)), \xi \in I_{j}$
= $h^{2} w_{l}L\phi_{i}(\xi_{l}) + Ch^{2k+2}D^{2k}(L\phi_{i}(\xi)\phi_{l}(\xi)), \xi \in I_{j}.$

Hence we have

$$|hB(\phi_{i},\phi_{l}) - h^{2} w_{l} L\phi_{i}(\xi_{l})| \leq Ch^{2}.$$
(15)

This means that $M_1 = (h^2 w_l L \phi_i(\xi_l))$ is nearly equal to a symmetric positive definite matrix whose entries and positive eigenvalues are of O(1) and consequently has an inverse with the same properties. If we represent $(hB(\phi_i, \phi_l))$ by M_2 , we find that

$$M_1 = M_2 + h^2 M_3 = M_2 (I + h^2 M_2^{-1} M_3).$$

where all M_i have entries of O(1). Since the spectral radius of the perturbation matrix is of $O(h^2)$, it is evident by power series expansion that

$$M_1^{-1} = M_2^{-1} + h^2 M_4$$

where the entries of M_4 are of O(1). This proves that M_2^{-1} has entries of O(1) and so we have that $(w_l L \phi_i(\xi_l))^{-1}$ has entries of $O(h^2)$.

We turn to the second part of our problem. The first three terms of the right hand side of (14) are of $O(h^{2k-2} ||u||_{k+1})$. For the last term, we prove that

$$\|D^{2k}(eL\phi_i)\|_{L^{\infty}(I_j)} \leq C \|e\|_{W^{2k,\infty}(I_j)} \|L\phi_i\|_{W^{2k,\infty}(I_j)}.$$
(16)

From [3], it can be proved that

$$\|D^{l}e\|_{L^{\infty}(I_{j})} \leq \frac{Ch^{k+1-l}\|u\|_{k+1}}{\|D^{l}u\|_{L^{\infty}(I_{j})}}, \qquad l \leq k;$$
(17)

Furthermore,

$$\|L\phi_i\|_{W^{2k,\infty}} \le Ch^{-k},\tag{18}$$

hence we summarily have

$$\left|\sum_{l=1}^{k-1} w_l L \phi_i(\zeta_l) e(\zeta_l)\right| \leq C h^k [\|u\|_{k+1} h^{k-2} + \|u\|_{W^{2k,\infty}(I_j)}],$$

 $i = 1, \dots, k-1.$
(19)

This was the last step in the proof of

Theorem 1. Let $u \in H_0^1(I) \cap H^{k+1}(I) \cap \bigcap_{j=1}^N W^{2k,\infty}(I_j)$ be the solution of (1) and let $U \in M_0^k(\Delta)$ be the solution of (3). Then the error function has the local error bound.

$$|e(\xi_{jl})| \leq Ch^{k+2} [\|u\|_{k+1} h^{k-2} + \|u\|_{W^{2k,\infty}(I_j)}],$$

$$j = 1, \dots, N; \ l = 1, \dots, k-1. \quad \Box$$
(20)

3. Lobatto Quadrature

Usually, B(,) and (,) are to be evaluated by numerical quadrature. We will show that Lobatto quadrature leaves the order of convergence at the Lobatto points invariant.

We define

$$B_{h}(\alpha,\beta) = (p\alpha',\beta')_{h} + (q\alpha,\beta)_{h}; \quad \alpha,\beta \in \bigcap_{j=1}^{N} W^{2k,\infty}(I_{j}),$$
(21)

where $(,)_h$ is defined by (9).

Lemma 2. Let $Y \in M_0^k(\Delta)$ be the solution of

$$B_h(Y, V) = (f, V)_h, \quad V \in M_0^k(\Delta)$$
(22)

and let $u \in H_0^1(I) \cap H^{k+1}(I) \cap \bigcap_{j=1}^N W^{2k,\infty}(I_j)$ be the solution of (1). Then the error function $\eta = u - Y$ has the bounds

 $|\eta(x_j)| \leq Ch^{2k} ||f||_{2k, \Delta}; \quad j = 1, ..., N-1,$

if h is small enough, with

$$\|f\|_{l, \Delta} = \left[\sum_{j=1}^{N} \|f\|_{H^{1}(l_{j})}^{2}\right]^{\frac{1}{2}}.$$
(23)

Proof. See [4].

We now consider $\varepsilon(x) = U(x) - Y(x)$, where U is the solution of (3). From (3) and (22), we obtain for every I_j

$$\begin{aligned} |B(\varepsilon, V)| &\leq |(f, V) - (f, V)_h| + |B_h(Y, V) - B(Y, V)| \\ &\leq Ch^{2k+1} ||V||_{H^k(I_j)} [||f||_{H^{2k}(I_j)} + ||Y||_{H^k(I_j)}], \quad V \in M_0^k(I_j). \end{aligned}$$

If we take for V any of the basis functions ϕ_i of $M_0^k(I_j)$, as defined by (12), we have

$$|B(\varepsilon,\phi_i)| \le Ch^{k+1} [\|f\|_{H^{2k}(I_j)} + \|Y\|_{H^k(I_j)}], \quad i = 1, \dots, k-1.$$
(25)

Since

$$\sum_{l=1}^{k-1} w_l \varepsilon(\xi_l) L \phi_i(\xi_l) = 2h^{-1} B(\varepsilon, \phi_i)$$

$$- w_0 \varepsilon(\xi_0) L \phi_i(\xi_0) - w_k \varepsilon(\xi_k) L \phi_i(\xi_k)$$

$$- \frac{2}{h} [p(x) \varepsilon(x) \phi_i'(x)]_{\xi_0}^{\xi_k} + Ch^{2k} D^{2k} (\varepsilon L \phi_i) (\xi \in I_j)$$
(26)

and

$$\|D^{2k}(\varepsilon L\phi_{i})\|_{L^{\infty}(I_{j})} \leq C \|\varepsilon\|_{W^{k,\infty}(I_{j})} \|\phi_{i}\|_{W^{k,\infty}(I_{j})} \leq Ch^{-2k} \|\varepsilon\|_{L^{\infty}(I_{j})} \leq Ch^{-k+1} \|f\|_{2k, d},$$
(27)

we have

$$\begin{aligned} \left|\sum_{l=1}^{k-1} w_l \,\varepsilon(\xi_l) \, L\phi_i(\xi_l)\right| &\leq C_1 \, h^k [\|f\|_{H^{2k}(I_j)} + \|Y\|_{H^k(I_j)}] \\ &+ C_2 \, h^{2k-2} \, \|f\|_{2k,\,4} + C_3 \, h^{k+1} \, \|f\|_{2k,\,4}. \end{aligned}$$
(28)

The nonsingularity of $(w_l L \phi_i(\xi_l))$ has already been proved, its inverse is of $O(h^2)$, hence we have

$$|\varepsilon(\xi_l)| \le C_1 h^{k+2} [\|f\|_{H^{2k}(I_j)} + \|Y\|_{H^k(I_j)}] + C_2 h^{k+3} \|f\|_{2k, \Delta}.$$
(29)

Since (see [3]).

$$\|Y\|_{H^{k}(I_{j})} \leq \|\eta\|_{H^{k}(I_{j})} + \|u\|_{H^{k}(I_{j})} \leq Ch \|u\|_{k+1} + \|u\|_{H^{k}(I_{j})}$$

$$\leq C \|u\|_{k+1},$$
(30)

we can prove by combination of (20), (29) and (30)

Theorem 2. Let $u \in H_0^1(I) \cap H^{k+1}(I) \cap \bigcap_{j=1}^N W^{2k,\infty}$

 (I_j) be the solution of (1) and let $Y \cap M_0^k(\Delta)$ be the solution of (22). Then the error function η has the bounds

$$\begin{aligned} |\eta(\xi_{lj})| &\leq C_1 \, h^{k+2} [\|f\|_{H^{2k}(l_j)} + \|u\|_{k+1}] + C_2 \, h^{k+3} \|f\|_{2k, \Delta}; \\ j &= 1, \dots, N; \quad l = 1, \dots, k-1. \quad \Box \end{aligned}$$

4. Conclusions

We have found a weaker form of superconvergence at other points than the knots. The findings of this paper stress the important part that Lobatto points play in the C° Galerkin method for two-point boundary problems. This is especially true for k=2, since in that case the error is of $O(h^4)$ at all Lobatto points.

The results of this paper can be easily applied to the case of two-point initial boundary problems (see [2]) and probably to other cases, such as nonlinear boundary problems.

References

- 1. Abramowitz, A., Stegun, I.: Handbook of mathematical functions. Dover Publications, 1968
- 2. Bakker, M.: On the numerical solution of parabolic equations in a single space variable by the continuous time Galerkin method. SIAM J. Num. Anal. 17, 161-177 (1980)
- 3. Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation in \mathbb{R}^N with applications to finite element methods. Arch. Rational. Mech. Anal. 46, 177-199 (1972)
- 4. Douglas, J. Jr., Dupont, T.: Galerkin approximations for the two-point boundary problem using continuous, piecewise polynomial spaces. Num. Mat. 22, 99-109 (1974)

- 5. Lesaint, P., Zlamal, M.: Superconvergence of the gradient of finite element solutions. R.A.I.R.O. 13, 139-166 (1979)
- 6. Strang, G., Fix, G.J.: An analysis of the finite element method. Englewood Cliffs, New Jersey: Prentice-Hall 1973
- 7. Wheeler, M.F.: An optional L_{x} error estimate for Galerkin approximations to solutions of twopoint boundary problems. SIAM J. Num. Anal. 10, 914-917 (1973)

Received December 12, 1979; Revised April 12, 1981