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Summary. For the numerical solution of differential equations of the second order 
(and systems of ...) there are two possibilities: i. To transform it into a system of the 
first order (of doubled dimension) and to integrate by a standard routine. 2. To apply 
a "direct" method as those invented by Nystr6m. The benefit of these direct methods 
is not  generally accepted, a historical reason for them was surely the fact that  at that  
time the theories did not consider systems, but  single equations only. In  any case the 
second approach is more general, since the class of methods defined in this paper 
contains the first approach as a special case. So there is more freedom for extending 
stability or accuracy. 

This paper begins with the development of a theory, which extends our theory for 
first order equations [1 ] to equations of the second order, and which is applicable to 
the study of possibly all numerical methods for problems of this type. As an applica- 
tion, we obtain Butcher-type results for Nystr6m-methods, we characterize numerical 
methods as applications of a certain set of trees, give formulas for a group-structure 
(expressing the composition of methods) etc. 

Recently in E2] the equations of conditions for Nystr6m methods have been 
tabulated up to order 7 (containing errors). Our approach yields not only the correct 
equations of conditions in a straight-forward way, but  also an insight in the structure 
of methods that  is useful for example in choosing good formulas. 

1. Introduction 

We consider systems of differential  equat ions  

Y"=/(Y,Y ' ) ,  y(Xo)=Yo, Y'(Xo) =Y'0, (1) 

where y is in  some space E (IR", say) and / is assumed to be sufficiently differen- 
t iable.  Since x can be adjus ted  to the system as x " = 0 ,  it  is of cource no restric- 
t ion  of general i ty  to assume (1) independen t  of x. 

We now show that ,  for differential  equat ions  of type (1), it  is na tu ra l  to con- 
sider trees with dis t inguished nodes, N(ystr6m)-trees.  A cont inued  different iat ion 

of (1) gives us ing chain rule and  3/ '  ~ / :  

y'  _--y' 

y~3)=D1/.y' + D J .  / ~. : ~  __, 

yI,J = D1Ox t. (y,  y ) -F O2D~/" (Y,/)  + Oxl "/ 

+ 9192/ .  (/, y') + D2DJ.  (/,/) + DJ. (D1/ .y '  ) + D J . ( D J . / )  
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These expressions, which very soon become complicated, are now written in terms 
of monotonically labelled N-trees as follows: 

, J  

J / \ ,  

1 1 1 

~  

l 
72 

1 

1 1 1 1 

(3) 

In this representation, each " f a t "  node represents "[" and each branch leaving 
this node a derivative: 

D 2 if the sequent node is " f a t " ,  and 

D 1 if the adjacent node is "meagre" .  

Proposition 1. The derivation with respect to x consists of: 

1. putt ing an arc with a meagre node to each fat node (derivative with 
respect to y); 

2. putting an arc with a fat node to each fat node (derivative with respect 
to y'); 

3. putting an arc with a fat node to each meagre end-node (derivative of y ' ,  
which is /) .  [] 

The labels indicate the order of generation of these nodes following this 
procedure. The set of trees which appear in this way are the monotonically 
labelled NystrSm-trees, denoted by LNT. 

2. Trees 

In this section we give a description of the different sets of trees, which are 
useful in the theory of Runge-Kutta as well as Nystr6m methods, namely: 

Definition 2 (Monotonically labelled (rooted) trees (LT)). Let n EZ, n>_0. 
A monotonically labelled tree of order n is a map 

t: {2 . . . . .  ~ )  - ~  {1 . . . . .  n) 

such that t (i) < i (i = 2 . . . . .  n). 

The order is denoted by ~ (t). 
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Example. The map  2 ~ 1, 3 ~ 1, 4 ~ 3 represents the eighth tree of Figure 1. 

3 3 4. 4 3 4 ~3 4 

1 1 1 1 1 1 1 1 t 1 

Fig. 1. I..T's 

The node with number  l is called the root. 

Definition 3 (Trees (T)). A tree is an equivalence class of LT 's  which represent 
the same graph but  differ in numerat ion.  This equivalence relation can be defined 
by  

t) e(t)=e(,). 
2) There exists a permuta t ion  a of {t . . . . .  9(t)} such tha t  a ( t ) = 1  and 

t(i)=aua-l(i) ( i = 2  . . . . .  q (t)). 

Example. The 6-th, 7-th, and 8-th LT of Figure t are equivalent.  Thus  in the 
geometric representation, the labels can be left away. 

Definition 4 (Monotonically labelled Nystr6m-trees  (LNT)). A m.l .N-tree of  
order n is a map  tELT together  with a specification of its nodes into fat ones and  
meagre ones, i.e. a second map  

q: {t . . . . .  n} {o, t} 
such tha t  

a) the root  is meagre, i.e. q(l) :=0;  

b) a meagre node has no ramifications and each adjacent  node must  be fat, 
i.e.: 

q(i)=O=~ card(t-~(i)) < t and q(t-~(i)) =l if t-~(i) ~O. 

Examples  are given in Figure 2. 

1 1 1 

5 5 4 

3 4 3 3 

2 

1 I I 

Fig. 2. LNT's  

Definit ion 5 (N(ystr6m)-trees (NT)). A N-tree  is an equivalence class of LNT ' s  
with respect to the equivalence relation 

(t, q) ,~  (u, r) <:~ l ) /  
2)j same as in Definit ion 3, 

3) q(i)=r a(i). 
Examples  are given in Figure 3. 
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Fig. 3. NT's 

In  bo th  cases we have the project ions LT --~ T, LNT -+ NT which forget the 
labelling. 

We now come to a construct ion,  which will be fundamen ta l  in the next  section 
and  with the help of which every N-tree can be constructed from NT's  of lower 
order: 

Definition 6. Let t~ . . . . .  t~ENT and kE Z with 0 ~ k  _<m. Then  we denote  by  

t ~  Etl . . . . .  tk ; tk+l . . . . .  t,~l (4) 

a new NT which is ob ta ined  by:  

1. The roots of t~+l, . . . ,  t,, are ident if ied to a new fat node "cha r l i e "  say;  

2. The roots of tl, . . . ,  t k are connected by  a new branch to charlie;  

3. F ina l ly  a new root is affixed undernea th  of charlie. 

This  has sense only if the order is ~ 1 for tl, . . . ,  t k and  >= 2 for t~ ~ 1, . . . ,  t,~. 

E x a m p l e s  are given in Figure 4. 

t I t z [ ;  tx, t2] I t1;  t2] [ t l ,  t 2 ;] 

Fig. 4 

m 
Proposition 7. e([tl  . . . . .  t~; t k F1 . . . . .  tm] ) -~-  )', q ( t i ) - - m + k + 2 .  [] 

i = 1  

Proposition 8. Every  tENT with 0(t) >=3 can be represented in  the form (4) 
with trees of lower order. Except  of pe rmuta t ions  among t I . . . .  , t~ and  tk~ 1 . . . . .  t,~ 
this representa t ion is unique.  

Proo/.  Take away the lowest two nodes (and the adjacent  branches) and  
collect from what  results those with meagre roots as t 1 . . . . .  t k. The rest, where 
now the lowest node is fat, will lead to tk+ 1 . . . . .  t~. [] 

Thus,  funct ions  on NT can be defined by  recursion on the order. 

3. The Expansion of the Solution 

We next  give a recursive def ini t ion of the terms, which have appeared in  the 
Taylor-expansion of the solut ion in (2) and  which are in one-to-one correspondence 
with the NT's.  
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Definition 9 (Elementa ry  Differentials).  For  every  t ENT we define a function 
F(t) : E • E --~ E recursively b y  

F(r (y, y ' ) = y  

F(vl) (y ,y ' )  = y '  

F(T,) (y ,y ' )  = / (y,y') 

F(t) (y, y')---- D~ D'~ -k ].  (F(t) . . . . .  F(tk), F(tk+l) . . . . .  F(t,,)) 
where t =  It a . . . . .  tk; t,+ 1 . . . . .  tin]. 

(For the definit ion of 31 and  ~, see Fig. 3.) 

Because of the s y m m e t r y  of par t ia l  der ivat ives  this defini t ion does not  depend 
on pe rmuta t ions  among  t 1 . . . . .  tk as well as tk+ 1 . . . . .  t~, and is therefore well- 
defined. In  the  deve lopment  of (3), as can be seen f rom Propos i t ion  t ,  every  L N T  
of order  p appears  exac t ly  once in the p- th  derivat ive.  We thus  have:  

Theorem 10. For  the solution of the Equa t ion  (t) we have  

ylp) (x0)___ ~, F(t)(Yo, Y'o) 
t E L N T  
e ( t ) = p  

and 
, hO(t) 

y (xo+h)=  ~ F(t)(Yo, Y o ) ~ ( . .  [] 
tE L N T  

In  these expressions we use the  same symbol  t once for an e lement  of L N T  
and once for the equivalence class of t. 

4. Nystr6m-Series 

Extend ing  the concept  of Butcher-series,  which was fundamen ta l  in It ], we 
now define ( taking regard of Theorem 10) 

Definition 11. Wi th  a m a p p i n g  a: N T  --> P, we combine the series 

, , h Q ( t )  

N(a,yo,Yo) = ~, a(t) F(t) (Yo, Yo) q(t) l 
t E L N T  

and call i t  N(ystrSm)-Series .  I t s  der ivat ive  is 

, t s hQ ( t ) - - I  

N (a,yo,Yo)= ~_j a(t)F(t)(Yo, Yo) ( o ( t ) - t ) '  " 
t E L N T  

t4=0 

Observe t ha t  the exact  solution of (t) is a N-series N(p,yo,Yo) with  

p ( t ) = t  for all t E N T  (Theorem t0). (5) 

Similarly,  y ( x o + n  h) can be wri t ten  as a N-series  N(p,,yo,y'o) with 

p ,  ( t ) :  ~ {') (6) 

We t rea t  the infini te expansions  over  L N T  in a formal  fashion. This  is all 
r ight  as long as one is concerned with  coefficient matching.  Fo r  analyt ic  differen- 

28 Numer .  Ma th . ,  Bd .  25 
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t ial  equations,  however,  the convergence (as power  series in h) of the actual ly  
occurring N-series can be deduced f rom the (complex) Impl ic i t -Funct ion-Theorem.  

The coefficients a (t) in the Nys t r6m series are uniquely  determined,  if the 
iden t i ty  should hold for a l l / .  This  follows from 

Proposition 12. For  every  t E N T  there exists an init ial  value problem (t) such 
t ha t  for the first  componen t  of F(u) (Yo, Y'o) 

F(u)(yo,  Y,o)l{~=~ for u = t  
= for u=t=t. 

Pro@ For  ~(t)=<t t ake  / = 0 .  Otherwise we put  E =  IR ~ and construct  
for  / a po lynomia l  as follows: Take  a n y  representa t ive  of t and denote this 
L N T  b y  (t, q). 

Le t  then  for an index i 

M'q)={k l i= t (k  ), q ( k ) = t }  

be the set of the indices of the fat  nodes direct ly  above the node labelled i and 

M(i)  = {k i t  (k) = l, q (1) = O, t(l) = i} u {k[ t  (k) = i, q (k) = 0, t -~ (k) = 0} 

the set of the indices of the fat  nodes which are connected with  " i "  via  a meagre  
node and of the meagre  end-nodes which are direct ly  above  " i " .  

The components  of / are then  defined b y  ( i =  2 . . . . .  Q (t)) 

, f H y k '  H 3'; if q ( i ) = t  
k((Y,, . . . . .  Yo(,)), (Y'2 . . . . .  Ye(o)) = / kcu(i) 0 k~u'(i) 

if q ( i )=O.  

Wi th  the ini t ial  values Yo= (0 . . . . .  O) and Y'o= (Y'2o . . . . .  Y~,(t),o), where 

, [0  if q (i) = t 
Y ~ ' ~  if q ( i ) = 0 ,  

this funct ion fullfills all requirements ,  wha t  is best  seen a t  an example.  D 

Example .  Consider the NT of Fig. 5 and take  as its representa t ive  the LNT 
which is sketched beside it. 

3 4 

Fig. 5 

Then the  funct ion [ is g iven b y  
t 

Is = YsY4, /a = O, 14=Ye, 15= 1, ts= O. 
The corresponding init ial  values are Yo= (0, 0, 0, 0, 0,) and  Y0= (0, 1, 0, 0, t). By  
definit ion of the e lementa ry  differentials  

, ~ O~h,li x~ o l i . ,  
F(t) (Yo, Y0)l = Oy~ ay i ~ oy k y~- -  1 
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if t is the  considered NT. F o r  all  o ther  NT's  u F(u)  (Yo, Y'o)l is zero, since the  only  
de r iva t ive  of /2  t ha t  does not  vanish  is the second . . .  etc. 

Theorem 13. Le t  a:  NT -+ IR, a '  : NT -+ IR be mappings .  If  a (0) = t ,  a'(0) = 0 
and a ' ( x l ) =  1, we have 

hq(O-~ 
f (N  (a, yo, Yo) ' ' , , ' N (a ,Y0,Yo))= ~ ,  a"( t )F( t ) (Yo,  Y'o) ( e ( t ) - 2 ) !  

tE L N T  

where a " :  NT -+ ]R is def ined b y  

a"(O)  = a " ( ~ l )  = o 

a " ( ~ )  = 1 (7)  

a " ( t ) = a ( t l )  . . . . .  a(tk) a'(tk+l) . . . . .  a'(tm) for t =  It 1 . . . . .  tk" tk .  x . . . . .  tm]. 

Proo/. Several  proofs are possible,  for example  one could proceed s imi la r ly  
to the  proof  given in [1] for " T h e o r e m  6" .  Here  we give a di f ferent  app roach  
using expans ions  in power series (as far  as they  exis t ;  if necessary  error  t e rms  
are to be added) .  

t r t 
! (N(a, Yo, Yo), N (a ,  Yo, Y'o)) 

=/(Yo,  Y'o)+ ~ ,  k 1 D k D  " - ~ ' "  v'" k ! ( m - - k )  I 1 2 ltYo,~o) 
m > l  k = O  

v k i t v t m - - k  
�9 ( (N(a,yo ,Yo)--Yo)  (N  (a ,Yo, Yo)--Yo) ) 

= / (Yo ,  Yo )+  2 k , ( m - - k ) '  Z "'" Z Z "'" Z 
m > l  k = 0  " r  / k E L N T  t k + l f i L N T  t m E L N T  

eCt~>l ecru)>2 

�9 a ( t l ) . . .  a (t~) a'(tk+l) . . .  a' (t,,) F(It  1 . . . . .  tk; . . . .  tm]) (Yo, Y'O) 
h e f t , ) +  . . .  + Q ( t m ) - - r a +  b 

~(tl)  ! . . .  0(tk) ! (~(tk+x) - -  1)!  . . .  ( q ( t , , )  - -  1 ) !  . . . .  " 

Let  #1, #2 . . . .  be the  numbers  of m u t u a l l y  equal  L N T ' s  among  6 . . . .  , t k and  
vl, v 2 . . . .  the  numbers  of m u t u a l l y  equal  L N T ' s  among  tk+ 1 . . . . .  tm. F o r  a f ixed 

k! ( m - k ) !  
set of t rees there  are thus  different  p e r m u t a t i o n s  of these /~1!/~l . . .  v l lv2! . . .  
trees,  which do no t  change the  va lue  of the  above  summand .  We assume now 
t h a t  L N T  is an  ordered  set ( ~ ) ,  so, the  above  sum can be w r i t t e n  as follows: 

28* 

= ] ( Y o ,  Y'o)+ ~ ,  ~ ,  ~ ,  "'" ~,  ~ ,  "'" 7~ 
m:>l k=O t,ELNT tkELNT t~+IELNT tmELNT 

q< . . .  <:~ q(t~)>l t~+a<... <~t~ o(t~)>2 

�9 a"([t: . . . . .  tk; tk+: . . . . .  t , ,])  F ( ~  6 . . . . .  tk; tk+: . . . . .  t , , ])  (YO, YO) 

~ !  ~ !  . . .  ~ !  ~ !  . . .  0 ( 6 )  . . . .  (tk), o ( t ~ + O - t  . . . . .  o ( t , ~ ) - l l  

hq ([q, ..., t~; t~+l . . . .  , ~ ] ) - ~  

( ~ ( [ t l  . . . . .  tk; tk+l  . . . . .  t, ,]) - 2 ) !  " 
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To one element  of this s u m m a t i o n  set, e.g. the tupel  (m, k, t 1 . . . . .  tk, tk+ x . . . . .  tin) , 
there correspond in a na tu ra l  w a y  exac t ly  

~ !  m !  . . .  ~ !  ~,! . . .  0 ( 6 )  . . . . .  q(tk), ~(t~+~)-t . . . . .  q ( tm)- t  
L N T ' S  t, such t ha t  

t = I t  1 . . . . .  t k ;  t k +  1 . . . . .  tr~ ] 

(equali ty in the sense of N- t rees  (Definit ion 5)). 

Namely ,  the labels t and  2 are f ixed for every  LNT.  The dis t r ibut ion of the 
remain ing  Q ( t ) -  2 labels gives the  mul t inomia l  coefficient. Final ly  we have  to 
devide b y  th ! it2 ! -.. and  vl I v~ ! . . . .  because an exchange of equal  L N T ' s  t 1 . . . . .  t k 
or  tk+ a . . . . .  t~ does not  change the  L N T  t. Thus  we arr ive a t  

, , h e ( t ) - t  

=](Yo,Yo)+ Z a"(t) F(t)(Yo, Yo) (g( t ) - -2) '  " [] 
t E LNT 
e(t)__s 

t e t t Remarks. 1. The  no ta t ion  a"(t) is selected, because / (N(a ,  yo,Yo), N (a ,Yo, Yo)) 
represents  a k ind  of second derivat ive.  

2. I f  f is no t  ana ly t ic  a t  (Yo,Yo), but  i ts  der ivat ives  exis t  up to a cer tain order,  
then Theorem 13 is val id for the  t runca ted  series wi th  a remainder  t e rm  0 (hm+l). 

5. Nystr6m--Methods for Differential Equations 

A N y s t r b m  me thod  for solving (1) can be defined by :  

Y = l y o + h ~  y'o+ h2A/(Y, Y) 
Y = l y o + h A l ( Y ,  Y). (8) 

Here  Y =  (Y1 . . . . .  Y~) and  Y =  ( ~  . . . . .  ~ )  are vectors,  whose components  are 
elements  of E . / ( Y ,  Y) denotes  the vec tor  wi th  the componen t s / (Y i ,  ~') ,  h the 
step-size and  1 = ( I  . . . . .  t) T. The  s-vector  ~ = ( ~ 1  . . . . .  ~8) T and  the real (s, s)- 
matr ices  A = (a/i) and  A =  (aii) de te rmine  the method.  They  mus t  be f i t ted  to 
equalize Y~ = Y l  wi th  the  solut ion a t  x o +  h up to  a cer ta in  order,  and  ~-----y~ with  

y ' ( x 0 + k ) .  
The  m e t h o d  is called explicit  (Y and  Y can be computed  expl ici t ly  f rom (8)) 

if the  mat r ices  A and  Z have  zeros in and  above  the diagonal.  
Usual ly  in l i tera ture  only explicit  N y s t r 5 m  methods  are considered, the 

theory  of this paper ,  however ,  applies to implici t  me thods  as well. 

For  a nonau tonomuous  sy s t em 

y " = / ( x , y , y ' )  

we add x " =  0 and  formula  (8) becomes (if explicit) 
i - 1  i - 1  

ki=/(xoW~ih, Yo+*qhYo+ h2 E a/iki, Y'oW h E ~/iki) 
i=l i=x 

S--1 

yx-----y0+c% h y'o+h 2 ~ asi k i 
/ = 1  

s - 1  

y'l=yo+h X usjk~. 
i = 1  
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Here we have in t roduced the values k~=/(xo+o~ih , Y~, ~ ) ,  what  makes the 
formulas bet ter  adjusted to numerical computat ions .  

I t  is of course also possible to define multi-step methods,  hybr id  methods or  
general multi-value methods,  etc, in a similar way. 

6. Conditions for the Parameters 

We now use Theorem t3 to derive the order condit ions for ~i, aii, ai i  by  
equalizing the N-series of y ( x o + h  ) and Y~ (resp. y ' ( xo+h  ) and ]7s) up to a cer tain 
order. 

Assume for Yi a N-series 
t 

Y~=N(ai ,  Yo, Yo) 

and for Y/ the  derivative of a N-series 

- -  t t 

Y~ = N (ai, Y0, Yo). 

Wi th  a ( t )=  (a I (t) . . . . .  a, (t))r and a ' ( t ) =  (a~ (t) . . . . .  a'~ (t))T we have 

hq(t) 
Y = ~. a (t) F(t) (Yo, Y'o) ~ = N(a, Yo, Y'o) 

t e L N T  

and 

F =  ~,  a'(t)F(t)(Yo, Y'o) h,O)-I , , , t ~ L ~  (q (t) - 1) ! - -  N (a , Y o Y o ) .  

t t  t e  We further  use the nota t ion a ( t )=  (ai(t) . . . . .  a's'(t)) r. 

Theorem 14. For  the Nys t rSm method  (8) we have 

where 
' Y = N ( a ,  Yo, Yo) ,  Y = N ( a ,  yo, Yo) and - ' ' ' 

a (0) = t ,  a'(0) = o, 

a ( * l ) = ~ ,  a'(*d = 1 ,  
a (t) = ~ (t). (0 (t) -- 1) A a"(t), (9) 

e ( 0  > 2  
~ ' ( 0  = (~ (0  - t) ~a"(O. 

Proo/. By insert ing Theorem 13 into (8). [] 

Compar ing this theorem with Theorem t0  we see tha t  

Y , - - y ( x o + h ) = O ( h  #+t) iff a , ( t ) = t  for q(t)<=p 
and 

~ s - - y ' ( x o + h ) = O ( h  #+1) iff a ; ( t ) = t  for e ( t ) ~ p + 1 .  

In  Table t we present the above conditions for N-trees with Q (t) < 4. 

The following theorem shows how the final shape of these conditions, which 
results f rom the recurrence process of Theorem t4, can be direct ly  obta ined from 
the N- t ree :  

Theorem lS. At tach  to every fat  node of a NT  t a summat ion  letter 
(k, l, m, n . . . .  etc.). 
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Table I 

q (t) 

t 

2 

, , ,  (t) = t ~; (t) = 1 

% = 1  t = 1  

2 Z a s k =  l Z a s k =  l 
k k 

6 Z a s k ~ k = t  2 Z a s k t X k = t  
k k 

6 ~, a s k f f k t =  t 2 ~ a s k a k t =  t 
kl  kl 

t2  ~,, ask ~k = t 
k 

12 ~ ask ~k a k l =  t 
kl 

12 ~, a s k a k l a k m = t  

3 X S s k ~ 1 = l  
k 

3 N i c k  ~k i k l  = 1 
kl 

3 Y. '~skaktak, , ,=t  
k lm 

24 ~ ask akl  ~ 1 
kl  

24 ~ a s k a k l ~ l ~  t 
kl 

24 ~,, a s k a k l a t m =  t 
k lm  

k lm 

6 Z a s k  a k l =  1 
kl 

6 ~askakl  ~l= t 
kl 

6 ~ a s k a k l a l m = l  
k lm 

Then the order condit ion for t has the form 

7(0 Y, as~ ~ = t ,  ~,(t) Y, ~ , ~ = 1  k,~ . . . . . .  ~(t) k,z . . . . . .  

where ~ is a product  which contains the factors 

~,z whenever  a lower node " k "  is direct ly connected with a higher node " I " ,  

ak, whenever  a lower node " k "  is connected via  a meagre node with " l "  and 

~ whenever  the lower node " k "  is connected with q meagre end-nodes. 

7 (t) is the classical coefficient in t roduced by  John  Butcher  (for trees). I t  is the 
product  of all ~ (u), where u runs over all trees which are got, if one root  after  
the o ther  is left away. [] 

Example .  For  the N-tree  sketched in Figure 6 one has the equat ions  

- - a a m v ~  1 t 5 . t 4 . 4 . 7 . 2 - 4 " 2  ~. a s ~ a k t a ~ a l t , ~ z a , , n ~ x n  
klmnpr 

1 4 . 4 . 7 . 2 - 4 . 2  ~, as~a,,ak.a~a,,a,~..4a..=t. 
klmnpr 
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7. Simplifying Assumptions 

The equat ions  of condi t ion  are  nonl inear  equa t ions  in the  pa r a me te r s  oq, 
ai], g~j. In  this  sect ion we give condi t ions  to be sa t i s f ied  in o rder  to reduce the  
large number  of condi t ions .  

Proposit ion 16. Let  u I and  u 2 be two N- t rees  as ske tched  in F igure  7, where  
the  encircled par t s  are assumed to be ident ical .  Then the condi t ion  

~ Z ~k~ ~ ,P - I -~  (k=~ . . . . .  s) (1o) 
1 

implies,  t ha t  for a, a '  def ined b y  Theorem 14 a(ul)=a(u2) and a ' ( u l )=a ' ( u~ ) .  
Similar ly ,  

p(p -~ )  ~ - ~ = ~  (k=~ . . . . .  s) (~) 
l 

impl ies  t ha t  a (Vl) - -  a (v2) and a'(vl) = a'(v2) (Fig. 7). 

p - - 2  

t~ 1 U 2 Y) ffl  /)2 

Fig, 7 

Proof. In the  represen ta t ion  of u 1 and u 2 all N- t rees  are equal  wi th  one ex- 
cept ion.  But  this  can be wr i t t en  as 

5 1 =  [tl . . . . .  tk; tk ~1 . . . . .  t~, wl with w =  IT1 . . . . .  T 1 ; ]  

pZ1 
resp. 

U2:I~1 . . . . .  t k ,  T 1 . . . . .  "K1; tk+ 1 . . . . .  t,,,]. 
r  is ev ident  and  (10) implies  a" (51) :a"(~/2) .  Thus we o b t a i n  the  

resul t  b y  the  formulas  (9). 
The  second pa r t  of th is  p ropos i t ion  is p roved  in the  same way.  [] 
A l r eady  the  condi t ions  (t0) wi th  p : t and  (I t)  wi th  p :  2 reduce the  n u m b e r  

of equa t ions  considerably .  The remain ing  ones are  seen in Table  2 for Q ( t ) ~  5. 

(This t ab le  corresponds  to t ha t  of [2].) 
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I f  in  a d d i t i o n  [(y, y') does  n o t  d e p e n d  on  y',  m a n y  e q u a t i o n s  can  be  lef t  away ,  
s ince the  c o r r e s p o n d i n g  e l e m e n t a r y  d i f fe ren t i a l s  v a n i s h  (Table  3)- 

t e (t) 

I 

2 

u 

y 

t o (t) 

I 

T 

u 

T 

Table  2 

as (t) = t a~ (t) = 1 

m , = l  t = t  

6 X a ,  k~ ,k=l  2 X ~ , k ~ = !  

1 2 E a ,  k ~ l = *  3 E ; , k ~ l =  1 

24 E ask a'~l u.l = I 6 E a-s k~k~ o~l= t 

40 ~, ask o~kakl~l= t 

120 ~.. ashaklalm ~'m = 1 

1 2 0 ~ a s ~ % ~ % =  t 

4 Y . ; , ,  ~,~ = 1 

8 X ~ , k ~ k ; k ~ ' q =  t 

24 F . ~  k ak la-~. ~,,, = t 

24 ~ ' ; , k  aM ~tl-~ 1 

Table 3 

as ~') = ,  a;  (,) = ,  

~ s = l  t = t  

2 E a s k = !  ~ k = l  

6 ~ . a , k ~ k = 1  2 Y ~ , k = k =  t 

t2  X a , ,  ~ = t 3 Z~,k~I=  ! 

-- 3 2o X,,,k ~d = t * X . , ,  ~k = I 

, 2 o  y, a,k a k , ~ , =  ' 24 X~s~  a,,oc, = , 

3o Y.a,k~'t = t 

t 80 ~. % k % ak J oq = 1 

360 ~, ask akz at~ = 1 

s X ~ , k  a t  = 

30 Y'~sk % akt at= ! 

60 Y'~,k akt 'd  = 
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8. Pairs of N-Trees 

In  order to extend this theory  (group operation, composit ion of methods,  
global error, asymptot ic  expansion . . . .  ) we need the concept o f "  Pairs of N- t rees" .  

Definition 17. A L NT  u =  (u, r) is a LN-subtree  of the LNT t =  (t, q) if 

a) q (u) _< q (t), 

b) t]{2 ...... ~l,)~=u and q]~l ..... t,l,,)~ = r .  

For  a fixed k (0 --<_ k --<_ e (t)) there exists exactly one LN-subtree u of t with ~ (u) = k. 

Definition 18. A monotonical ly  labelled pair  o] N-trees (LPNT) u s  is a L N T  
together  with a LN-subtree  u. 

In  the geometric representation we distinguish the LN-subtree by  doubled 
lines. Examples  are given in Figure 8. 

2~ 4 4 3 3 3 3 4. 

t 1 

Fig. 8 

Definition 19 (Pairs of N-trees (PNT)). A pair  of N-trees is an equivalence class 
of L P N T ' s  with respect to the equivalence relation 

(Ul, rl) ( (tl, ql) ~ (u2, r2) ((t2,  q2) 

l )  e (tl) = q (t..), o ( - 0  = q (u..); 

2) There exists a permuta t ion  a of {t . . . . .  e(tl)} such tha t  a ( l ) - = l ,  
a ({t . . . . .  e (u,)}) = {t . . . . .  e (ux)} and t 1 (i) • a t 2 6 -1(i) for i =  2 . . . . .  e (t,) ; 

3) q l ( i ) = q 2 a ( i )  �9 

In  Figure 9 two equivalent LPNT ' s  are sketched ( a =  (3, 4)). 

5 5 

Fig. 9 

As can be seen, this equivalence relation is just made to ident i fy  trees with 
different labels, but  with the same geometrical structure.  Thus, in the graphical  
representat ions the labels are omitted.  
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Definit ion 20. Let  u l ( t  1 . . . . .  u,~(t ,~EPNT and  kE Z wi th  O<_k <--m (Q(ti)>=1 
for i = t  . . . . .  k; ~(ti) ~ 2 ,  Q(ui) >=~ for i-----k+ 1 . . . .  m). Then we denote  b y  

u Ct = (*h Ctl . . . . .  uk Ctk ; uk+l Ctk+a . . . . .  um (t,~) (12) 

a new P N T  which is ob t a ined  b y :  

i !} same as in Def in i t ion  6 wi th  t i replaced b y  u~<t,. 

4. The  branches  which  connect  the  root  of uCt  with  charl ie  as well as the  
branches  connect ing  charl ie  wi th  the  roots  of u i Ct i (i = l . . . . .  k), u i 4 = 0 are  doubled.  

Analogous  to P ropos i t ion  8 we have :  

Proposition 21. E v e r y  u C t E P N T  wi th  ~ ( t ) ~ 3  and  ~ ( u ) > 2  can be repre-  
sen ted  in the  form (t 2) wi th  pa i r s  of N- t rees  of lower order.  E x c e p t  of p e r m u t a -  
t ions  among  u~Ctx, . . . ,  ukCt k and  uk+~Ctk+l, . . . ,  U,~Ct,, th is  r ep resen ta t ion  is 
unique.  [] 

9. Composition of N-Series  

In  th is  sec t ion we give the  general  t heo rem on the  compos i t ion  of N-ser ies  
which ex tends  " T h e o r e m  6"  of It ]. F i r s t  of all  we prove  the following general-  
iza t ion  of Theorem ~ 3 : 

Theorem 22. Let  a:  NT ---> IR, a ' :  NT -~  IR be mappings .  If a(0)=1, a'(0)=0, 
a ' ( x l ) =  1, we have  for a n y  L N T  u 

, he(0-e{u) 
F(u) (N(a, yo, Yo) , ' ' ' ' N C a ,Yo, Y.))--- ~ ,  a(uCt)  F(t)(Yo,Yo)  (q( i~-d(u~)i-  

u (  t ~ L P N T  

where a:  P N T  -+ ~ is def ined  b y  

a ( O c t )  = a (t) 

a(zl<t)  = a'(t) 

a ( u C t ) = a ( u l C t l )  . . . . .  a(u,,(t ,~) for 

u C t =  (ux Ct x . . . .  , u k <tk; u~+x <tk+x, . . . ,  u,~ Ct,~}. 

The s u m m a t i o n  is over  all L P N T ' s  such t ha t  the  d i s t ingu i shed  subt ree  is equal  to 
the  g iven  L N T  u. 

Remark .  Observe  t h a t  uCt  is once used as an e lement  of L P N T  and  once as 
an e lement  of PNT.  We use the  same symbo l  since there  is no poss ib i l i t y  of 
confusion.  

Proo]. The first  three  re la t ions  of (13) are i m m e d i a t e l y  seen f rom the def in i t ion  
of the  e l emen ta ry  dif ferent ia ls .  The  las t  one can be p roved  in the  same m a n n e r  
as the  proof  of Theorem t 3 was done. [] 

Example .  Let  u C t = ( u l ( t l ;  u , ( t , ,  u~Cta) be as in  F igure  10. F o r  ulCt  x and  
u3Ct 3 the  funct ion  a is a l r eady  defined,  u,  Ct 2 is again  decomposable  as u,  C t , =  
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(u4(t4; us( ts ) .  So f inal ly  by  (t3) 

a(u( t )  =a(ulCtl)  a(u4(t4) a(us(ts) a(u3(t3)=a'(tl) a(t4) a'(ts) a'(t3). 

u ( t  u l ( t l  u 2 ( t  2 u3(t~ 

F ig .  10 

Y 
u, ( t 4 u 5 ( t 5 

(*q = O) ( u s  = ~) 

Remark. The s i tua t ion  is s imi lar  to tha t  in the  proof  of P ropos i t ion  8 : One has  
to remove u and the  ad jacen t  branches  and,  from what  rests ,  collect the  trees wi th  
meagre  roots  as vl, . . . ,  ve To each of the  o thers  one has  to aff ix a new roo t  wi th  
one branch  to ob t a in  wl, . . . ,  w i. Then 

a ( u c t ) = a ( v l )  . . .  a(~,,) a'(~'l) . . .  a ' (wj) .  (13~) 

Observe t ha t  (7) of Theorem 13 can now be wr i t t en  as 

a"(t) = a (~2 (t) .  

Definit ion 23. F o r  tENT,  u ( t E P N T  we define 

(t) = the  n u m b e r  of L N T ' s  in the  equiva lence  class of t, 

(u ( t )  = the  n u m b e r  of L P N T ' s  in the  equ iva lence  class of u ( t .  

e(t) and  e (u ( t )  give the  number  of possible  mono ton i c  label l ings of the  nodes 
of t such tha t ,  in the  second case, the  nodes  of u are label led  f i rs t .  

Theorem 24 (Composi t ion of N-series) .  Let  a, a', b, b' be mapp ings  NT --~ IR 
such t h a t  a(0)---1,  a ' ( 0 ) = 0 ,  a ' ( ~ l ) =  1, b ' ( 0 ) = 0 .  Then  

' N (a ,Yo, Yo))=N(a b,yo,.Yo) N(b,N(a,yo,Yo ), " ' ' 
t r ! ! i t t 

N'(b', N(a, yo,Yo), N (a ,Yo, Yo ) )=X  ((a b) ,Yo, Yo) 

where the  m a p p i n g s  a b and  (a b)' are given by  

Z (~(t) l~(uCt) 
(a b) (t) ~-  u(tE PNT \q  (u)]  - -~((~ - b (u) a (u  ( t )  

N" [ e ( t ) - l ~  ~(,,<t) , (a b)' ( t ) =  , , ~ , ~ \ ~ ( ~ )  _ ~/ ~(t~- b (u) a (uc t ) .  (14) 
u . 0  

((a b)' (0) - -  o). 

Remark. If  t is a f ixed  N- t ree ,  ~ expresses the  s u m m a t i o n  over  al l  pa i r s  
u(tEPNT 

u ( w  such t h a t  w = t as N-trees .  This  n o t a t i o n  we shall  use t h roughou t  th i s  paper .  
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Proo/o/ Theorem 24. Using Theorem 22 we have 

N(b, N(a, yo,y'o), N'(a',yo, y'o) ) 

= (N(a, yo, yo), N (a ,Yo, Yo)) q(u) t 
u E L N T  

, hq(#) 
V~Z.ffLN ~, b(u) a(uCt)F(t)(yo,yo) 0(u)! (• q(u))! 

u T u C t  E L P N T  

t hO(t) 
-- ~ss ( ~, (e(t)~b(u)a(u(t) F(t)(y~ off)' 
- -  t E N T  \uZt q L P N T  \ ~  (U)] 

= X (  2 (~  ) ' ~ ' '  t E L N T  ~u<tePNT\e(u)] - ~ - -  b(u) a(u(t)  F(t) (Yo,Yo) Off)! " 

The second part  of Theorem 24 is proved in the same way. [] 

Example. For the first trees, the composition 04) is as follows: 

(a b) (0) = b (r 

(a b) (~1) ----- b (0) a (vl) + b (•) 

(a b)(~2)= b (0 )a (vz )+  ( : )b( ,~)a ' (vz)+  b(v~) 

(a by(0) = o 

(a b)' (*3) = b'(*l) a'(~,) + b,(z,) 

Corollary 2S. Suppose that the numerical results Yx, Y[ of a method (s, ~, A, 2t) 
are taken as initial values for a second method (r, fl, B, B). Then the final result 
can be interpreted as the result of one method (r+s, 7, C, C) where 

(a ;) 
7 =  Lo~+fl '  C= L A + M A  ' 

,= (! Z il (ill ~ 
Then for the composed method we have (for the last components) for tENT 

c , + , ( t )  = (as b,) (0, c~+, (0 = (as b,) '  (0 

with the composition of Theorem 24. 

Proof. The proof is simply by  inserting formula (8) into a similar expression 
for the second method and using 1 �9 y x = L Y ,  1. y ' I=LY,  ft. y ' l = M ~ .  [] 

Denoting by  

G={(a,  a')/a: NT -+ ~ ,  a ' :  NT -+ ~ ,  a(O) = t ,  a'(O) = 0 ,  a'(~t) = t }, 

we see that  formulas (14) define a composition on G: 

G x G --+ G 

,a, a'), (b, b') -- (a b, (a b)'). 
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Proposition 26. G with the above relation is a group. 

Proo/. The associativity follows from Proposition 12, because of 

N ( (a b) c, yo, y'o ) . . . . .  N (a (b c), yo, y'o ). 
As a right-neutral element we have (o, o'), where 

{10 if t = 0  o,(t) ={Io if t=~1 
o (t) = else else. 

The existence of a right inverse is seen from the formulas (t4), because b (t), b'(t) 
can be computed explicitly in terms of a, a' and b (u), b'(u) with e (u) < Q (t). [] 

10. Numerical Examples 

We now shortly demonstrate how numerical methods could actually be found. 
Note first that for the coefficients aii the same conditions are obtained as for 

classical Runge Kut ta  methods. Indeed, the condition a: (t) = 1 for tENT, where t 
has only one meagre node (the root), is just the same as the order condition for 
Runge Kut ta  methods for that  tree, when the root has been removed (cf. Theo- 
rem t 5). Thus one can take the coefficients of any Runge Kut ta  method (of 
order q) as A. If one then puts A --~2, ~=.~ 1, then all order conditions (up to q) 
are satisfied, since this choice corresponds exactly to the RK method .4 applied 
to the system 

Y!~ ( Y~ ~ 
Y21 = \!  (Y~ Y,)]" 

Other solutions, however, are possible. So if we choose for .4 Kuttas classical 
method 

0 0 0 0 i l  1/2 o o o 

,I o o, o~ , 

1/6 t/3 1/3 1/6 

the condition (10) with p = t gives ,4 1=~,  thus 

, x =  (0, 1/2, 1/2, t ,  t) r. 

Then the remaining conditions of Table I give 

0 o o 
A =  t /4--2t- -v  v 0 0 �9 

2v t / 2 - - 2 v - - #  /~ 0 

tl6 tl6 tl6 o 

The parameters $, v,/~ can freely be chosen. In every case we have NystrSm 
methods of order 4. Special values could be determined by (l 1) with p = 2 leading 
to )I= 1/8. Trying to equalize also some of the conditions of higher order, we are 
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led to v = t / t 0  and /u= t /5 .  So we have 

0 0 0 0 i l  1/8 o o o o 

A - - - - - , I / 4 0  1 / t0  0 0 0 . 

t/10 1/5 o 

\ t / 6  t/6 1/6 0 

Computing the leading error terms--we have made a computer program which 
generates automatically the N-trees and corresponding coefficients up to any 
order--one sees that the above choice of parameters gives results closer to the 
solution that the RK method (~= v= /x=0) .  

Passing from RK to N-methods it is impossible (what follows from the re- 
marks at the beginning of this section) to improve the order with the same number 
of function evaluations. However, if we look for N-methods for the special 
differential equation y"=f(x,y), where [ is independent of y ' ,  the number of 
conditions is reduced and we can gain order. So for example it is possible to 
obtain order 6 with only 5 function evaluations. Such a method, chosen in order 
to make round-off errors and the leading error term small, is given by 

~=(0 ,  1/5, 1/2, 4/5, t, t) T, 

0 0 O0;)  0 
o o o o o  

/ o -{ o o o 
A =  | 14" 2 16 

| x - 2 g  ~ ~2 5 0 0 
I _ ~  14. o 

9 2 7  v 5 0 

- -  1 6  1 0 8  2 7  4 , 3 2  0 

The last row of A (the other elements of A are not used with this special type of 
equations) is given by 

8 ) 
3 2  ~ 2 7  4 3 2  1 6  0 . 
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