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Summary. For the numerical solution of differential equations of the second order
(and systems of ...) there are two possibilities: 1. To transform it into a system of the
first order (of doubled dimension) and to integrate by a standard routine. 2. To apply
a ‘“direct’’ method as those invented by Nystrém. The benefit of these direct methods
is not generally accepted, a historical reason for them was surely the fact that at that
time the theories did not consider systems, but single equations only. In any case the
second approach is more general, since the class of methods defined in this paper
contains the first approach as a special case. So there is more freedom for extending
stability or accuracy.

This paper begins with the development of a theory, which extends our theory for
first order equations [1] to equations of the second order, and which is applicable to
the study of possibly all numerical methods for problems of this type. As an applica-
tion, we obtain Butcher-type results for Nystrém-methods, we characterize numerical
methods as applications of a certain set of trees, give formulas for a group-structure
(expressing the composition of methods) etc.

Recently in [2] the equations of conditions for Nystréom methods have been
tabulated up to order 7 (containing errors). Our approach yields not only the correct
equations of conditions in a straight-forward way, but also an insight in the structure
of methods that is useful for example in choosing good formulas.

1. Introduction

We consider systems of differential equations

Y'=Fy), y(x)=e V(%)= (1)

where y is in some space E (IR”, say) and f is assumed to be sufficiently differen-
tiable. Since x can be adjusted to the system as x’'=0, it is of cource no restric-
tion of generality to assume (1) independent of x.

We now show that, for differential equations of type (1), it is natural to con-
sider trees with distinguished nodes, N(ystrom)-trees. A continued differentiation
of (1) gives using chain rule and " =/:

’

y =y
yll =,
y(S) =Dyf-y' 4 Dyf-f e

— ()

y & =D, D\ f-(y", y') F D Dif-(¥', ) + Do f-f
+ Dy Dyf-{f, ¥y + Do Dof -1, h + Dyf-AD1f-9") + Dyf-(Dyf-f)
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These expressions, which very soon become complicated, are now written in terms
of monotonically labelled N-trees as follows:

-1

|
?;
//}2/ \Q%z
¥ 57 ‘*r G\r@ § §

In this representation, each ““fat’ node represents “f’’ and each branch leaving
this node a derivative:

1

D, if the sequent node is ““fat”’, and
D, if the adjacent node is ““meagre .

Proposition 1. The derivation with respect to x consists of:

1. putting an arc with a meagre node to each fat node (derivative with
respect to y);

2. putting an arc with a fat node to each fat node (derivative with respect
to ¥');

3. putting an arc with a fat node to each meagre end-node (derivative of ',
whichis f}). O

The labels indicate the order of generation of these nodes following this
procedure. The set of trees which appear in this way are the monotonically
labelled Nystrom-trees, denoted by LNT.

2, Trees

In this section we give a description of the different sets of trees, which are
useful in the theory of Runge-Kutta as well as Nystrom methods, namely:

Definition 2 (Monotonically labelled (rooted) trees (LT)). Let neZ, » =0.
A monotonically labelled tree of order # is a map

t:{2,...,n} > {1,..., 0}

such that () <7 (i=2, ..., n).
The order is denoted by o (¢).
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Example. The map 21, 31, 43 represents the eighth tree of Figure 1.

3 4
3 4 4 34 A
2 2 3 2 3 4
I \V >2 \J/ K2 LR ) 2 2
1 1 1 1 1 1 1 1

Fig. 1. LT’s

The node with number 1 is called the root.

Definition 3 (Trees (T)). A tree is an equivalence class of LT’s which represent
the same graph but differ in numeration. This equivalence relation can be defined
by
tau < 1) o(t)=o0(u).

2) There exists a permutation ¢ of {1, ..., g(#)} such that o(1)=1 and
tE)=0ouc™t(i) (i=2,..., 0(?)).

Example. The 6-th, 7-th, and 8-th LT of Figure 1 are equivalent. Thus in the

geometric representation, the labels can be left away.

Definition 4 (Monotonically labelled Nystrom-trees (LNT)). A m.L.N-tree of
order # is a map t€ LT together with a specification of its nodes into fat ones and
meagre ones, i.e. a second map

g:{1, ..., n} —>{0,1}
such that

a) the root is meagre, i.e. g(1)=0;

b) a meagre node has no ramifications and each adjacent node must be fat,
ie.:
g(t)=0=card (¢t (3)) =1 and q(£5)) =1 if 1(5)+4

IExamples are given in Figure 2.

s s 4

3 3 " 4 3 5 3
>)2 2 2 2 2

1 1 1 1 1

Fig. 2. LNT’s

[

[€)

Definition 5 (N(ystrom)-trees (NT)). A N-treeis an equivalence class of LNT’s
with respect to the equivalence relation

¢ q) ~(u,7)=1)
2)
3) g())=70(3).

} same as in Definition 3,

Examples are given in Figure 3.
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SR T

T T

Fig. 3. NT’s

In both cases we have the projections LT — T, LNT — NT which forget the
labelling.

We now come to a construction, which will be fundamental in the next section
and with the help of which every N-tree can be constructed from NT’s of lower
order:

Definition 6. Let £, ..., £,eNT and £€ Z with 0 <% <m. Then we denote by

b=[t, ..., b by, o0y 8] (4)

a new NT which is obtained by:

‘e

1. The roots of ¢4, ..., f,, are identified to a new fat node “‘charlie” say;
2. The roots of 4, ..., ¢, are connected by a new branch to charlie;

3. Finally a new root is affixed underneath of charlie.

This has sense only if the orderis =1 for 4, ..., f, and =2 for ¢, 4, ..., ¢

m*

Examples are given in I'igure 4.

Y Y Y

'1 [ t] tz] ”1 t2] [’1 tZJ
Fig. 4

m

Proposition 7. o([ty, .., bs b i1y -- s b)) = 2 0(t) —m-+k+2. O
i=1
Proposition 8. Every f€NT with g (¢) =23 can be represented in the form (4)
with trees of lower order. Except of permutations among #,, ..., f, and ¢, 4, ..., £,
this representation is unique.

Proof. Take away the lowest two nodes (and the adjacent branches) and
collect from what results those with meagre roots as ¢, ..., t,. The rest, where
now the lowest node is fat, will lead to £, ,4, ..., ¢, O

Thus, functions on NT can be defined by recursion on the order.

3. The Expansion of the Solution

We next give a recursive definition of the terms, which have appeared in the
Taylor-expansion of the solution in (2) and which arein one-to-one correspondence
with the NT’s.
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Definition 9 (Elementary Differentials). For every teNT we define a function
F(t): EXE — E recursively by

F@)(y,5')=y

Fr)(y.y)=y

F(z) (0,5)=13.5)

Ft)(y,y)=DiDF~*f- (F(t), ..., Ft), F(tey), ... Flt,))

where f=1[t, ..., 5 thayy oo e Ll
{(For the definition of z; and 7z, see Fig. 3.)

Because of the symmetry of partial derivatives this definition does not depend
on permutations among &, ...,%, as well as ¢4, ...,,, and is therefore well-
defined. In the development of (3), as can be seen from Proposition 1, every LNT
of order p appears exactly once in the p-th derivative. We thus have:

Theorem 10. For the solution of the Equation (1) we have

Y (x)= 2 F(t) (Yo Yo)
te LNT
e{t)=p
and
he®)

y(x0+h)= teZﬁT ( )(yo’yll)) o)

In these expressions we use the same symbol ¢ once for an element of LNT
and once for the equivalence class of £.

4. Nystrém-Series
Extending the concept of Butcher-series, which was fundamental in [1], we
now define (taking regard of Theorem 10)
Definition 11, With a mapping a: NT — R we combine the series
, , he(t)
N(@,yo50) = 25 a(t) F(t) (v0.50) 557
te LNT 4
and call it N(ystrom)-Series. Its derivative is
, , o het—1
N'(@,y0,50) = 2, &) Fl) (y050) T =7 -
te LNT {e()
1+0

Observe that the exact solution of (1) is a N-series N(p, o, Yo) With
p(@)=1  forall £eNT (Theorem 10). {5)

Similarly, y (%, k) can be written as a N-series N(p,, ¥y, ¥o) With
pult) =20, (6)

We treat the infinite expansions over LNT in a formal fashion. This is all
right aslong as one is concerned with coefficient matching. For analytic differen-

28 Numer, Math,, Bd. 25
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tial equations, however, the convergence (as power series in %) of the actually
occurring N-series can be deduced from the (complex) Implicit-Function-Theorem.

The coefficients a(¢) in the Nystrom series are uniquely determined, if the
identity should hold for all {. This follows from

Proposition 12, For every t€NT there exists an initial value problem (1) such
that for the first component of F(%) (v, o)

+0 for u=t

F(u) (v, yl’))1{:0 for w=t.

Proof. For p(f) <1 take f=0. Otherwise we put E=R¢®~! and construct
for { a polynomial as follows: Take any representative of ¢ and denote this
LNT by (¢, q).

Let then for an index ¢
M (@)= {k|i=t(k), g (k) =1}
be the set of the indices of the fat nodes directly above the node labelled 7 and
@) ={k|t(R)=1 q()=0,t()=i} U {k|t(k)=1, q(k)=0, ¢ (k) =0}

u 53]

the set of the indices of the fat nodes which are connected with via a meagre

IR

node and of the meagre end-nodes which are directly above 4.
The components of f are then defined by (i=2, ..., o(f))
T [ vi it q()=

Il v
Fl(ye s Vo) (Vo - Vo)) = {kEM(” pedrel
0 if ¢(f)=0

With the initial values yy==(0, ..., 0) and Yo= V20, -- -, Yo(.0), Where
, 0 if ¢(t)=1
Vo= {1 if g(i)=
this function fullfills all requirements, what is best seen at an example. [

Example. Consider the NT of Fig. 5 and take as its representative the LNT
which is sketched beside it.

6

w
s

Fig. 5

Then the function f is given by

fo=¥sys (=0, fi=ye =1, [s=0.
The corresponding initial values are y,=(0, 0, 0, 0, 0,) and y,=(0, 1, 0, 0, 1). By
definition of the elementary differentials

2 f -
yo:yo 31329,1(2
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if ¢ is the considered NT. For all other NT’s u F (1) (y,, ¥o); is zero, since the only
derivative of f, that does not vanish is the second ... etc.

Theorem 13. Let a: NT — R, 4’: NT —> R be mappings. If a(#)=1, a'(0)=0
and a'(z;)=1, we have

! 1f ot ’ 12 ’ hQ(‘)—2
£(N(a, 50,50, N'(@ 50,50 = 2, a"OF®) (¥ Y0) 7o — 17
1eTNT {e(®) —2)!
where a’': NT — IR is defined by
a"(0)=a"(z)=0
a"(7g) =1 7)
@) =alt) - - alt) @(fs) - @) for I=Th oo, s gy -oe) byl

Proof. Several proofs are possible, for example one could proceed similarly
to the proof given in (1] for ““Theorem 6. Here we give a different approach

using expansions in power series (as far as they exist; if necessary error terms
are to be added).

H(N(a, ¥o, ¥0), N'(@', ¥o, ¥o))

f}’o:yo ;1 Z 7 ( — T Dle—kf(yo: Vo)
< ((N(a, ¥4, Yo) — ¥o)* (N (e, yo,yé)—yé)"'"')
%%+Zzﬁ7k.2

t,e LNT 1€ LNT tg41€ LNT tm€ LNT

e(t)=1 oltn=2

a(tl) .o a (tk) a’(tk+1) ves a’(tm) F([tl, R tk; ceey tm]) (yo,y:))
]lQ(t1)+“‘+Q(tﬂl)—m+k

Tt ot (et — 1) - (e, —1)!

Let uy, g, ... be the numbers of mutually equal LNT's among ¢,...,¢, and
v,,7,, ... the numbers of mutually equal LNT’s among #,,,, ..., ¢,. For a fixed
k! -kt . .
set of trees there are thus ———-—-- (”: ' ) different permutations of these
728 I77S SNV TR 7% R

trees, which do not change the value of the above summand. We assume now
that LNT is an ordered set (<), so, the above sum can be written as follows:

SRCED D DD )

0 t, e LNT tkeLNT te+1€ LNT tm€ LNT
hEsoestke)Zl k1S Stmo(tlz2

a'(lby ooos bs bt - B ) Fll o 85 B, - ]) (Yo» Vo)
i 1 ( o[ty oo bps bpq oo b)) —2 )
mlpg! onlwlo \o(h), ..., 0 (), 0(lasd) —1, -, 0(t) —

hq([tl,...,tk;tk+1,...,t,n])—a
(o[t o0 by s - B — 20

28*
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To one element of this summation set, e.g. the tupel (m, &, ¢, ..., 4, tyiq, -, b)s
there correspond in a natural way exactly

1 . o(t)—2
gl bl (e(tl),...,eak),e(tk+1)—1....,e(tm)—1)
LNT’S ¢, such that
t=1{tyy oo, by bins o er B
{equality in the sense of N-trees (Definition §)).
Namely, the labels 1 and 2 are fixed for every LNT. The distribution of the

remaining g (¢) —2 labels gives the multinomial coefficient. Finally we have to
devide by y;! ,! ... and »! #,! ..., because an exchange of equal LNT’s¢,, ..., ¢,

OF puy, «oos by do&s not change the LNT ¢. Thus we arrive at
, he()—3
=1(Y0.30) + Z O El) Yoy Ga—g1- U
Q(t)23

Remarks. 1. The notation a'(f) is selected, because f(N(a, ¥o, o), N'(@', Yo, Vo))
represents a kind of second derivative.

2. If f is not analytic at (y,, yo), but its derivatives exist up to a certain order,
then Theorem 13 is valid for the truncated series with a remainder term O (A™*?).

5. Nystrom—Methods for Differential Equations
A Nystrom method for solving (1) can be defined by:
Y=1y,+hay,+hAf{(Y,Y)
Y=1y,+hA}{(Y, 7).

Here Y=(Y;,...,Y,) and Y=(Y,,..., Y,) are vectors, whose components are
elements of E. f(Y, Y) denotes the vector with the components 1y, 7’.), h the
step-size and 1=(1, ..., 1)7. The s-vector a=(a, ..., )7 and the real (s, s)-
matrices 4= (a;;) and A =(&,,) determine the method. They must be fitted to
equalize Y;=1y, with the solution at xy+ % up to a certain order, and Y,= y; with
¥ (5o ). ~

The method is called explicit (Y and Y can be computed explicitly from (8))
if the matrices 4 and 4 have zeros in and above the diagonal.

Usually in literature only explicit Nystrom methods are considered, the

theory of this paper, however, applies to implicit methods as well.

(8)

For a nonautonomuous system

Y'=f%13yY)
we add x"'=0 and formula (8) becomes (if explicit)

i—1

=f(%p+o; h, Yota, hyo+h Z“u ,,yo+hZa,, i

yl—y0+ashy0+h Z as; ]
s—1

yl—y0+h Z as; i
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Here we have introduced the values k;=f(xo+a,k, Y;, Y,), what makes the
formulas better adjusted to numerical computations.

It is of course also possible to define multi-step methods, hybrid methods or
general multi-value methods, etc, in a similar way.

6. Conditions for the Parameters

We now use Theorem 13 to derive the order conditions for «;, a;; @,;; by

equalizing the N-series of y(%,+4) and Y, (resp. ¥'(%p+5%) and Y,) up to a certain
order.

Assume for Y; a N-series
Yi=N(ail yOv y:))
and for 17, the derivative of a N-series
Y, =N'(a, o, ¥o)-
With a(t) = (a,(¢), ..., a,(£))T and a'(¢) = (a1 (¢), ..., a;(#))T we have
hel®)

Y= 3 a(()Fl) (v 30,7 =N 0 5)
téTRT !
and
?_ Z ') F(t ’ h—ow_l_-__Nf(a: r)
_teLNT“() & (¥0, ¥0) @) -7 — , Yo Yo)-

We further use the notation a”(f) = (ay (¢), ..., a; (£)) .
Theorem 14, For the Nystrém method (8) we have
Y=N(a,yo %) and Y=N'(a, 50,

where
a(@) =1, a'(@)=0,
1) =%, (7)) =1,
a(r)=a, a'(7y) ) ©)
a(t)=p() - (e(®)—1) Aa” (),

12 A L1 Q (t) g 2
a'(t)=(e(t)—1) 4a"(t).
Pyoof. By inserting Theorem 13 into (8). O
Comparing this theorem with Theorem 10 we see that
Yi—y (rg+ M) =0(W*Y iff a()=1 for () <p
and
Y —y (% +h)=0"*Y) iff a(t)=1 for p() Sp+1.
In Table 1 we present the above conditions for N-trees with g (f) =4.

The following theorem shows how the final shape of these conditions, which
results from the recurrence process of Theorem 14, can be directly obtained from
the N-tree:

Theorem 15. Attach to every fat node of a NT ¢ a summation letter
(R, I, m,n, ... etc).
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Table 1

2 22 a,=1 Ta,=1
3 ®

3 62 ag,o,=1 2Xag,0,=1
3 k

3 6Z“sk‘7kl=1 2ZEska,=1
kl ki

4 12X a, af =1 3Na, k=1
) )

4 123 85 Qg ap =1 3Xassapapm=1
klm kim

4 24 X ag ap; =1 6 Xagy ay =1
Xl kl

4 24Zask5klal=1 6ZEsk5k,al==1
Py Py,

?

p

7

Y
\f 4 12§aska,,ak,=1 3%;;5,,%5,”:1
$

4 24 Xoagayar,=1 6 X apag @ ,=1
kim klm

Then the order condition for ¢ has the form
_ y () -
’})(t) Z Asr T"_1; Dy Z askT::1
R l,m, ... Q(t) kB lm, ...
where ¥ is a product which contains the factors

&,; whenever a lower node ‘%" is directly connected with a highernode “/”,

a, ; whenever a lower node ‘%2’ is connected via a meagre node with ““7”’ and
ki

«f whenever the lower node ““%&’’ is connected with ¢ meagre end-nodes.

y (¢) is the classical coefficient introduced by John Butcher (for trees). It is the
product of all p(u), where # runs over all trees which are got, if one root after
the other is left away. O

Example. For the N-tree sketched in Figure 6 one has the equations

151447242 3 @y By; Gy Oh A p 0 Bipyy 6 @y, =1
kimnpr

14-4-7-2-4-2 Z Eskdklﬁkma:alpala—mnafstamf=1'
kimnpr
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Fig. 6

7. Simplifying Assumptions

The equations of condition are nonlinear equations in the parameters «;,

a;;, @;;- In this section we give conditions to be satisfied in order to reduce the
large number of conditions.

Proposition 16. Let #; and u, be two N-trees as sketched in Figure 7, where
the encircled parts are assumed to be identical. Then the condition

pYag, o P=al  (k=1,...,5) (10)
1

implies, that for a, a' defined by Theorem 14 a(u,) =a(u,) and a’(uy) =a’(u,).
Similarly,

pp—1) Dapof P=af  (k=1,...,5) ‘ (11)
1
implies that a(v,) =a(v,) and a'(v;,) =a'(vy) (Fig. 7).
p—1 p—2
N2 % p
) P M)l &
%, w ¢} V2
Fig. 7

Proof. In the representation of u, and u, all N-trees are equal with one ex-
ception. But this can be written as

= by, o, b by s by @] With  w=[7y, ..., 73;]
NE
p—1
resp. »
ot et
Go== [ty o oor by Tas ovvy Ty Bpgrs - ooy bl

o(it;) =p(#,) is evident and (10) implies a”(#)=a""(#,). Thus we obtain the
result by the formulas (9).

The second part of this proposition is proved in the same way. O

Already the conditions (10) with p=1 and (11) with p=2 reduce the number
of equations considerably. The remaining ones are seen in Table 2 for g (f) = 5.
(This table corresponds to that of [2].)
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If in addition f(y, ¥') does not depend on ¥, many equations can be left away,

E. Hairer and G. Wanner

since the corresponding elementary differentials vanish (Table 3).

Table 2

¢ o a, (8 =1 ag () =1

1 a, =1 1=1
? 2 2Xa,=1 Yag=1
)) 3 62 a,0=1 2 0=1
Y 4 12 Y ag, el =1 3Xa,0i=1
“g, 4 24 a,a50=1 6 Xagpay =1
Y 5 20 Y a ol =1 4Yagoai=1
dﬁ( 5 40 a apay0=1 8a a0y =1
X 5 60X o, a0 =1 122, 8,00 =1
% 5 120 2,8, 4 B Ay Uy =1 | 24 2838318 g%y =1
? 5 120 Y a,, a0y =1 24 Ya, a5 0=1

Table 3

: e ag (f) =1 ag () =1

1 o, =1 1=1
? 2 2Ya,=1 Ya,,=1
}P 3 62 a,,0,=1 2 a0,=1
Y 4 12X a0f =1 3Xa 0 =1
\+/ 5 20 Y ay, 0f =1 4G, 0f=1
é 5 120 X agp @y a;=1 24 Ya,a,,0=1
Y 6 30X a,,0f=1 5Ta,ab=1
?’ 6 180 Y a0y @y 0y =1 30X a0 ay,0=1
g 6 360 3 a5y a5;0f =1 60 Xa,, a, 08 =1




A Theory for Nystrom Methods 395

8. Pairs of N-Trees

In order to extend this theory (group operation, composition of methods,
global error, asymptotic expansion, ...) we need the concept of “ Pairs of N-trees’'.

Definition 17. A LNT u==(u, #) is a LN-subtree of the LNT ¢t={(¢, q) if

a) e(u) =e ),

b) te,...en=u and glu, __ ou=7:
Forafixed % (0 <% < g (f)) there exists exactly one I.N-subtree u of f with g (u) =£%.

Definition 18. A monofonically labelled pair of N-trees (LPNT) uc¢is a LNT
together with a LN-subtree w.

In the geometric representation we distinguish the I.N-subtree by doubled
lines. Examples are given in Figure 8.

S 5 5 s 5 s
3 3 3 3 3
4 4 4 “ . 3 .
2 2 2 2 2 2
1 1 1 1 1 1
Fig. 8

Definition 19 (Pairs of N-trees (PNT)). A pair of N-treesis an equivalence class
of LPNT’s with respect to the equivalence relation

(11, 11) C(by, @) ~ (th2, 72) (25, Go)

1) et)=e), o(m)=0(us);

2) There exists a permutation o of {1,...,0(4)} such that o(1)=1,
c({t,...,em)})={1, ..., 0(u)} and 4, (})=0ty07 () for i=2,...,0(4);

3) al)=g:00)

In Figure 9 two equivalent LPNT’s are sketched (6= (3, 4)).

5 5
3 4 4 3
2 2
1 1
Fig. 9

As can be seen, this equivalence relation is just made to identify trees with
different labels, but with the same geometrical structure. Thus, in the graphical
representations the labels are omitted.
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Definition 20. Let u, ¢y, ..., 4, <4, €PNT and k€ Z with 0=k <m (o(¢;) =1
fori=1,...,k; o(t;) =2, 0(u;) =1 for i=k--1, .., m). Then we denote by
wCt=uyChy, o, Ty gy Clyagy o ees U Cly> (12)

a new PNT which is obtained by:

1.

2.¢ same as in Definition 6 with ¢; replaced by u,¢,.

3.

4. The branches which connect the root of #<¢ with charlie as well as the
branches connecting charlie with theroots of u,C¢, (i=1, ..., k), 1, &= @ are doubled.

Analogous to Proposition 8 we have:

Proposition 21. Every uC(tePNT with p(f) =3 and ¢(#) =2 can be repre-
sented in the form (12) with pairs of N-trees of lower order. Except of permuta-
tions among u, Ch, ..., #,CE, and uy, iy, ..., #,,<t, this representation is
unique. (O

9. Composition of N-Series

In this section we give the general theorem on the composition of N-series
which extends ““Theorem 6’ of {1]. First of all we prove the following general-
ization of Theorem 13

Theorem 22. Let a: NT — IR, a’: NT — IR be mappings. If a(@)=1, a’'(#) =0,
a’(zy)=1, we have for any LNT #
, L, , , he)—elu)
0 (V30,58 N0 3= Jo aChTO B0 )~ gpuyi
where a: PNT — R is defined by
a{Pct)=alt)
a(z, <t)=a'(t)

a(vyCtg) =1 (13)
a(uCt)y=alu,Ct) - --- - a(u,Ct,) for
uCt=uy by, oo, g <lys Up  Tlyiq, oo e, %, <80

The summation is over all LPNT’s such that the distinguished subtree is equal to
the given LNT u.

Remark. Observe that u </ is once used as an element of LPNT and once as
an element of PNT. We use the same symbol since there is no possibility of
confusion.

Proof. The first three relations of (13) are immediately seen from the definition
of the elementary differentials. The last one can be proved in the same manner
as the proof of Theorem 13 was done. [

Example. Let ut==<u,ty; uyCly, u3<t> be as in Figure 10. For », <4, and
u3Cly the function a is already defined, u,<¢, is again decomposable as #,(f,=
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{uyCty; usClg>. So finally by (13)

a(uCt)=a(uy Cty) a(uyCly) a(usCly) a(usCls) =a'(t) alty) a'(t;) a'(t).

¥

u1<t1 Uy ly uy gy u4(t4 ug fy

{1y =1,) (uy=1,) (ug = 00) (us= 1))

Remark. The situation is similar to that in the proof of Proposition 8: One has
to remove # and the adjacent branches and, from what rests, collect the trees with

meagre roots as v, ..., v;. To each of the others one has to affix a new root with
one branch to obtain w,, ..., w;. Then
aluct)=a(v,) ... alv;) a'(wy) ... a'(w;). (13a)

Observe that (7) of Theorem 13 can now be written as
a'’'(t) =a(r, Ct).
Definition 23. For teNT, # (te PNT we define

o.(t) = the number of LNT’s in the equivalence class of ¢,
o (#Ct) = the number of LPNT’s in the equivalence class of % Ct.

a(f) and «(#Ct) give the number of possible monotonic labellings of the nodes
of ¢ such that, in the second case, the nodes of « are labelled first.

Theorem 24 (Composition of N-series). Let a, @, b, b’ be mappings NT — R
such that a (@) =1, @'(§) =0, a'(zy) =1, ¥'(9)=0. Then

N(b, N(a,90,50), N (@', 50, ¥0)) = N{a b, %9,50)
N'(¥, N(a, Y0, ¥0), N'(@, 0, ¥0) =N"((a b)’, %o, o)

where the mappings a b and (a b)’ are given by

B o)) afuct)
@ie= 3 (o) 5 bWt
(el —1)aley
@rio= 3 (507 e e, (14)
uF0

((a &) (9)=0).

Remark. 1f tis a fixed N-tree, , expresses the summation over all pairs
uCtePNT

wCw such that w=1¢ as N-trees. This notation we shall use throughout this paper.
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Proof of Theorem 24. Using Theorem 22 we have
N(b, N(a,95,50), N'(@’, 30, %0))

, hQ(“)
= Z b(w) F(u) (N(a,0,55), N' (@', Yo, ¥0))

, Je®
= Z Z b(“) a(u’Ct) F(t) (y()!yo) o(w)! (o(t) — o(u))!

u € LNT ucteLPNT

. e(®) ;. he®
- ( (&b a <u<t>)F<t) (030 25

o)\ x(uct) pelt)
T & (uctePNT (9(“)) () b(w) a(MCt)) 0 (.50 51 ol)!

The second part of Theorem 24 is proved in the same way. O

Example. For the first trees, the composition (14) is as follows:

(a ) (0)=0(0)
(@ 8) (7)) =5(0) a(71) +0 (1)

(@) (2)=(0) a(sa) + ;) (s () + (s

(@) (0)=
(@d) (1) =0'(z)
(@ 8)’ (3) =b'(7) a'(7y) +6'(7a).
Corollary 25. Suppose that the numerical results y,, y; of a method (s, &, 4, 4)

are taken as initial values for a second method (7, 8, B, E). Then the final result
can be interpreted as the result of one method (r+s, y, C, C—‘) where

N C A 0 o 4 o0
P“\La+g) ““\za+miA B “T\Ld B

00 1 0:+-0 ﬁ1>
=i i i), m=(: i i)
040 1 0-++0 ﬁ'
Then for the composed method we have (for the last components) for £eNT
Cris()=1(as b)), i (t)=(as )" (t)
with the composition of Theorem 24.
Proof. The proof is simply by inserting formula (8) into a similar expression
for the second method and using 1. y,=LY, 1.y,=LY, - y|=MY. O
Denoting by
G={(a,a'){a:NT >R, a:NT->R, a@=1, a'{@)=0 a'(z)=1},
we see that formulas (14) define a composition on G:
G X G — G .
{(a, a’), (b, ") > (a b, (a b)).
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Proposition 26. G with the above relation is a group.

Proof. The associativity follows from Proposition 12, because of

N((a b) ¢, 50,56) =++-=N(a(b c), %, ¥o)-
As a right-neutral element we have (0, o), where

O(t):{1 if t=9 o,(t):{1 if t=1,

0 else 0 else.

The existence of a right inverse is seen from the formulas (14), because b (¢), b'(f)
can be computed explicitly in terms of @, 2’ and &(u), b'(u) with g(u) <p (). O

10. Numerical Examples

We now shortly demonstrate how numerical methods could actually be found.

Note first that for the coefficients a,; the same conditions are obtained as for
classical Runge Kutta methods. Indeed, the condition a;(f) =1 for t€NT, where ¢
has only one meagre node (the root), is just the same as the order condition for
Runge Kutta methods for that tree, when the root has been removed (cf. Theo-
rem 15). Thus one can take the coefficients of any Runge Kutta method (of
order ¢) as 4. If one then puts A =42, =4 1, then all order conditions (up to g)
are satisfied, since this choice corresponds exactly to the RK method 4 applied

y2 ] (yl’yz)

Other solutions, however, are possible. So if we choose for A Kuttas classical
method

0 0 0 0 0
1/2 0 0 0 O

A= 0o 12 o o o0},
0 0 1 0 0
1/6 1/3 1/3 1/6 0

the condition (10) with p=1 gives 4 1=a, thus
a=(0,1/2,1/2,1, 1)T.

Then the remaining conditions of Table 1 give

0 0 0 0o O
A 0 0 0 0
A=| 1/4—A—v v 0 0 o
2y 12—2»—p p 0 O
1/6 116 1/6 0 0

The parameters A, », u can freely be chosen. In every case we have Nystrom
methods of order 4. Special values could be determined by (11) with p=2 leading
to A==1/8. Trying to equalize also some of the conditions of higher order, we are
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led to v=1/10 and u=1/5. So we have

0 0O 0 00
118 0 0 0 0
A=|1/40 110 0 0 ©
1/5 1/10 1/5 0 ©
1/6  1/6 1/6 0 0

Computing the leading error terms— we have made a computer program which
generates automatically the N-trees and corresponding coefficients up to any
order —one sees that the above choice of parameters gives results closer to the
solution that the RK method (1=v=p=0).

Passing from RK to N-methods it is impossible (what follows from the re-
marks at the beginning of this section) to improve the order with the same number
of function evaluations. However, if we look for N-methods for the special
differential equation y”’=f(x,y), where f is independent of 3’, the number of
conditions is reduced and we can gain order. So for example it is possible to
obtain order 6 with only 5 function evaluations. Such a method, chosen in order
to make round-off errors and the leading error term small, is given by

a=1(0, 1/5, 1/2, 4/5, 1, 1),

0 0 0 0 0 0
56 O 0 0 0 0
0 3 0 0 00
A= 14 2 186

125 25 125 0 0 0

1 4 5
—% 37 0 sz 00

1 25 4 25

i6 108 a7 a3z 0 O
The last row of 4 (the other elements of A are not used with this special type of
equations) is given by

1 125 8 135 1
(6 432 27 432 i6 )

™
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