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Summary. Recently the author defined the class of natural Runge-Kutta  
methods and observed that it includes all the collocation methods. The pres- 
ent paper is devoted to a complete characterization of this class and it is 
shown that it coincides with the class of the projection methods in some 
polynomial spaces. 

Subject Classifications: AMS(MOS) 65 L05; CR: G1.7. 

1. Introduction 

Recently the author [7] introduced the notion of Natural  Continuous Extension 
(NCE) of a v-stage Runge-Kut ta  (RK) method of order p 

Ki =f ( to  + ci h, Yo + h ~ ai~ K j), 
j = l  

Yl=Yo+ h ~. biKi 
i = 1  

i=  1 . . . .  , v, (1.1a) 

(1.1b) 

for the numerical solution of the initial value problem (IVP) 

y'(t)=f(t, y(t)), t>=to 

y(to) =Yo 
(12) 

in lR" at the point tl = to + h, where f(t ,  y) is as smooth as necessary. 
The RK method (l.1) has order p ( >  1) if 

ly(tl)_ yll=O(h~+ 1), (13) 

where t'l stands for any norm on N.". 

* This work was supported by the Italian Ministero della Pubblica lstruzione, funds 40% 
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A NCE of degree d is determined by (and therefore can be identified with ) 
a v-vector polynomial b(O)=(bl(O) . . . . .  b~(O)) r, where bi(O)cll a (the space of 
polynomials of degree <d),  i=  1 . . . . .  v. 

With 

U(to+Oh)=yo+h ~ bi(O ) Ki, (1.4) 
i = l  

the following properties are satisfied by u(t): 

U(to)=y o and u ( t l ) = y l ;  (1.5) 

max [y'(t)--u'(t)l=O(hd); (1.6) 
to<t~tl 

i '  (t) [ y '  (t) --  ( t) ]  t = (h p (1.7) G u' d O + 1) 

to 

for every sufficiently smooth matrix-valued function G (t). 
The NCEs were introduced in order to get a continuous approximation 

of the solution y(t) of (1.2) without any extra function evaluations. Condition 
(1.5) assures that the NCE interpolates the nodal values given by the RK formula 
(1.1). Condition (1.6) assures the highest order of uniform approximation which 
is possible by means of a polynomial of degree d (possibly less than p). Finally, 
the asymptotic orthogonality condition (1.7) allows to preserve the nodal order 
p when the NCE is used, for instance, while solving an IVP with driving equation 
or a delay differential equation (DDE). 

In I-8] the author investigated some stability properties of RK methods 
for DDEs. In that setting he gave the definition of natural R K  methods, which 
was suggested merely by technical necessities. In fact, as we shall see, the descrip- 
tion of the so called P-stability region is much simplified for them. 

In order to recall this definition, note that a RK method (1.1) is defined 
by the triplet A = ]lau]}, b = (bl . . . .  , by) r and e = (c~, .. . ,  c~) r (the so called Butcher 
notation) and that NCE determines a v x v-matrix B = II bj(cl)ll. 

Definition 1.1. The RK method (1.1) is natural if it has a NCE such that B = A .  
The P-stability region of a RK method for DDEs is the set Sp of the pairs 

of complex numbers (~, fl), c~:=ah, fl:=bh, such that the numerical solution 
of 

y ' ( t ) = a y ( t ) + b y ( t - z ) ,  t > 0  

y( t )=g( t )  for --r<_t<_O 

(a, b e (~, z > 0 and g (t) is continuous and complex valued) asymptotically vanishes 
for every delay z and for every step-length h satisfying 

h = z/m, m positive integer. 

Theorem 13 in 1-8] states that the interior of the P-stability region is 

Sp, :{ (O~,[~)E~X(I~]oc~:S  A and Ifl[<a,}, 



Natural RK-Methods 425 

where S A is the A-stability region of the underlying RK method, 

( r ,=inf{Izl lz~C and [r,(z)l=l} 

r~(z)=l+(c~+z)br(I-eA-zB)-le ,  e = ( 1 , . . . , l )  r. 

In general, the computat ion of o~ is not easy. To see this it is sufficient 
to look at the Heun method (v = p = 2) with linear interpolation for which 

r~(z)= [1 + a + a z / 2 + ( a +  l)z/2]/(l -z/2). 

In this case the analytical computat ion of e~ takes about two pages! 
On the other hand, if the method is natural, i.e. B = A, then it immediately 

follows that 

r~(z)= R ( ~ + z ) ,  

where R is the absolute stability function of the RK method (see also Section 4), 
and hence that (Theorem 16 in [81) 

c~ = d(~, SA) 

for every aeSA, where d( . ,  .) is the Euclidean distance in the complex plane. 
Therefore we have a drastic simplification. For example, for v = p = 2 ,  we 

can consider the trapezoidal rule with linear interpolation, which is a natural 
RK method. We have 

r, (z) = r (a + z) = [ 1 + (c~ + z)/2]/[  l - (c~ + z)/2] 

and hence straightway 

or, = - Re(a) 

for every c~eSA={aEll2lRe(a)<0}. In this case we have a so called P-stable 
method. 

Similar simplifications hold also when natural RK methods are applied to 
neutral DDEs  (see Bellen, Jackiewicz and Zennaro Ell). 

The main purpose of this paper is to characterize the class of the natural 
RK methods. In [81 it was noticed that any collocation method is natural, 
since the collocation polynomial is a NCE such that B=A, where A is the 
matrix of the equivalent R K  formula (1.1). 

In general, we shall prove that a nonconfluent R K  method (1.1) (for which 
q+-c~ if i4=j, see Dekker and Verwer [2]) is natural if and only if it is equivalent 
to a projection method in some polynomial space. More precisely, it is necessary 
and sufficient that there exists a linear projector Qa of C~ tl],  N/") onto 
Ha-l([to, tl], JR") (d is the degree of the NCE such that B=A), depending 
on A, b and e, such that 

U(to)=yo 

u'(t)=Q.j(t, u(t)), uEFla([to, tl], IR") (1.8) 

yl =u(t0. 
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In view of this result we can say that the word "natura l"  in Definition 
1.1 is justified. In fact it turns out that the RK formula (1.1) is naturally derived 
from a polynomial method which yields a really natural continuous approxima- 
tion. 

The paper ends with an analysis of the absolute stability properties of the 
natural RK methods, generalizing what was proved by Norsett and Wanner 
[4] for collocation. 

2. Some General Facts about NCEs 

Given a nonconfluent RK method (that is ci,t=cj if i4=j) of the form (1.1), we 
fix our attention on the v-vectors b and e and on the integer p (>  1), i.e. the 
order of the method. 

As it is shown in [7], if a v-vector polynomial b(0) is a NCE, then it satisfies 
the following properties: 

b(O)=O and b(1)=b;  (2.1) 

b'(O)rer-l=-O "-1, r = l ,  . . . ,d ;  (2.2) 

1 

S OSb'(O)re~-ldO=l/(r+s), r = d + l  . . . .  ,p  and s=O, . . . , p - r ,  (2.3) 
0 

where e r-  1 :=(c]- i . . . . .  c~- 1)r. 
Note that (2.3) makes sense only if d<p .  
Moreover, the degree d of a NCE is subject to the following inequality: 

q<=d<=it , (2.4) 

where q..=[(p+ 1)/2] and #..=rain {v, p}. 

Definition 2.1. A v-vector polynomial b(0) of degree d satisfying (2.4) is a feasible 
interpolant for the RK method (1.1) if it verifies conditions (2.1), (2.2) and (2.3). 

It is not true that every feasible interpolant is also a NCE. This fact can 
be understood by noticing that (2.2) and (2.3) are conditions corresponding 
only to some special elementary differentials of the Butcher series (see [7]). 
In general, only NCEs of minimal degree q are assured to exist. We can conclude 
that different RK methods of the same order p based on the same b and e 
can be more or less rich of NCEs. Obviously, this depends on the matrix A. 

Now observe that, since ~<p ,  (2.3) implies 

l 

S O~b'(O)rc'-~dO=l/(r+s), r = d + t  . . . . .  /~ and s=O . . . . .  p- r .  (2.5) 
0 

Remark 2.2. Looking at the proof of (2.4) in [7] (Theorem 5), we observe that 
(2.2) and (2.5) for r = d + l  are sufficient to prove the inequality q<d<v. To 
get d<p, one must instead consider the condition (1.6), which implies (2.2) as 
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a part icular  case, the condit ion (1.5), which is equivalent to (2.1), and the order  
p of the method,  i.e. (1.3). 

Now consider a v-vector polynomial  b(0) of degree d satisfying (2.4), (2.1), 
(2.2) and (2.5) and, for any polynomial  ~ e H  v_ 1, define 

v 

P~.a re(0),= ~ b'i(O) ~(c3. (2.6) 
i = 1  

We can easily conclude that Pv, d is a linear projector  of liv 1 onto  lid_ 1 

such that 
1 1 

OSP~.dzr(O)dO=~ O~rt(O)dO for all s>O (2.7) 
0 0 

and roe / / ,  i such that  s + d e g ( ~ z ) < p -  1. 
Moreover ,  

bi(O) =P~.d li(O), i= 1 . . . . .  V, 

where the li(O)'s are the Lagrange coefficients 

li(O)=jl~, i ciO--cJ'-- cj i= 1 . . . . .  v. 

(2.8) 

(2.9) 

This is yield by (2.6), since lieH,, j and li(cj)=6i ~ (the Kronecker  3). 
Finally, remark that  

1 

P~. d l, (0) d 0 = bi, i = 1, . . . ,  v. (2.10) 
0 

Definition 2.3. Given an integer d satisfying (2.4), a linear projector  /],..d of llv 1 
onto  H d_ 1 is a feasible projector for the RK method (1.1) if it verifies condit ions 
(2.7) and (2.t0). 

Lemma 2.4. A v-vector polynomial b(0) of degree d satisfying (2.4), (2.1), (2.2) 
and (2.5) is a feasible interpolant. 

Proof. It is sufficient to prove that (2.5) implies (2.3) in the case # = v .  To  this 
aim, assume # =  v < p  and let v+  l <_r<_p and O<_s<_p-r. Fur thermore ,  consider 
the v-vector polynomial  1(0).-=(ll (0) . . . . .  Iv(O)) r of degree v -  1 (see (2.9)). 

Then, since O < s < p - r < p - v -  1, by (2.8) and (2.7) we get 

OSb'(O)re"-ldO=~ 0 s P~.dI,(O) c~ -1 d O = ~  OSl(O)'rc"-idO. 
0 0 i 0 

(2.11) 

N ow observe that, since the RK method (1.1) has order  p, the quadra ture  
formula with nodes ci and weights bi has polynomial  order  >__ p -  1 and therefore 
the polynomial  M ( O ) = ( O - c j ) . . . ( O - c , , )  is o r thogonal  to Hp_~-1.  Thus, since 
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0 r ~ l (0 ) re~- l=n(0)M(0)  with nelI~_~_~ and since s + r - v - 1  < p - v - l ,  we 
obtain 

1 

O~l(O)re ~ ~ dO= l/(r + s), (2.12t 
0 

which, together with (2.11), completes the proof. []  

Theorem 2.5. The feasible interpolants of degree d Jorm an aJfine maniJbld P] 
of  (Hn) ~ whose dimension is 

6 ~ , d = d ( v - d ) - ( # - d ) ( 2 p +  1 - # - d ) / 2 - ( v - # ) .  (2.13) 

Moreover, formulas (2.6) and (2.8) with h(0)= 0 define a bilinear correspondence 
between Fd and the set ~,~ of the feasible projectors Pv.d, which then is an aJfine 
manifold of 2#(Hv_ i, Hd- 1). 

Proof Assume that b(u(0 ) . . . . .  h(k)(O)~F d and choose Pl . . . . .  pkelR such that pl 
+ ... + p k = l .  Then it is quite easy to see that h(0).'=pl h(1)(0)+ ... +pkb(k)(O) 
satisfies (2.1), (2.2) and (2.3). Thus F d is an affine manifold. 

In order to compute its dimension 6v, d, note that the general v-vector polyno- 
mial h(0) such that h(0)=0 (see (2.1)) is determined by vd coefficients. On the 
other hand, (2.2) imposes d 2 linearly independent conditions and there are other 
( # - d ) ( 2 p +  1 - # - d ) / 2  linearly independent conditions given by (2.5), which, 
by Lemma 2.4, is equivalent to (2.3). 

If # = v < p ,  then the weights bi of the quadrature formula (1.1b) of the RK 
method are uniquely determined and hence h(1)= h (see (2.11) is already included 
in (2.5) for s=0 .  On the contrary, if # = p < v ,  then the vector b of the weights 
can be chosen in an affine manifold of IR v whose dimension is v - p  and hence, 
in this case, (2.5) for s = 0  includes only p of the v conditions h(1)=h. We can 
conclude that, in any case, other v - #  conditions are to be counted to get 
formula (2.13). 

To prove the last part of the theorem we have only to observe that, if 
P~.d is a feasible projector for the RK method (1.1), then (2.8) with h(0)=0 
defines a v-vector polynomial b(0) of degree d satisfying (2.41, (2.l), (2.2) and 
(2.5). Hence, by Lemma 2.4, it is a feasible interpolant. [] 

Theorem 2.6. The NCEs of  degree d form an affine submanifold N~ of  Fd. 

Proof It is obvious that Nd~_Fd. If btu(0 ) . . . . .  b(k)(O)~Nd, then u(l)(t) . . . . .  Utk)(t) 
given by (1.4) satisfy (1.5), (1.61 and (1.7). Choose p~ . . . . .  pkelR such that Pl 
+ . . .  + p k = l  and consider the function u(t):=pl utl)(t)+ . . .  + p k u ( l , ) ( t )  which, 
by (1.41, corresponds to b(0)=p~ b(u(0)+ ... +pkb(k)(O). It is quite easy to see 
that also u(t) verifies (l.5), (1.61 and (1.71 and thus b(O)~Nd. [] 

These theorems yield an upper bound to the number of NCEs of degree 
d that a RK method may possess. 

Note that for d=v<=p we get 6, ,v=0. This means that only one NCE of 
degree v can exist, as it was already proved in [7]. Furthermore, observe that 
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in this case the corresponding feasible projector P~,~ is the identity map on 
/ v - -  1 " 

The last part of this section is devoted to study the relationships among 
the various manifolds F d and Nd, where d varies in the interval [q, ~]. Obviously, 
this makes sense only for methods such that q<# .  

To this purpose, consider two integers d, d'e[q,/~] with d '<d  and then a 
linear projector Pa,d, of Hd- ~ onto Ha,_ ~ such that 

1 I 

O~Pa, d, Tr(O)dO= ~ O~(O)dO for all s > 0  (2.14) 
0 o 

and rcsll d_ ~ such that s + d e g ( ~ ) < p -  1. 
Following the same line of the previous proofs, we can easily get the following 

result. 

Theorem 2.7. The set ~,d'  of the projectors Pa, d, is an aJfine manifold o f - ~ ( H d - I ,  
Ha' 1) whose dimension is 

6d,e, = ( d - d ' ) ( d  + 3 d ' -  2 p -  1)/2. (2.15) 

The next theorem gives the relationships between ,~A,d and ~v,d', where d' <d. 

Theorem 2.8. I f  P~,de~,d and Pa, d'e~.d" with d' <d, then the linear operator P~,a' 
defined by 

P~,a,= Pa, d,. P~, d (2.16) 

belongs to ~,a'. 
Conversely, if P~,d,~v,a, with q<d'  < # - 1 ,  then for every d>d',  d<=#, there 

exist P~,dEJ~.d and Pa, a ' ~ , d ,  such that (2.16) holds. 
In both cases Pa,d, is the restriction of P~.d" to Ha i" 

Proof. The direct implication is easily got by using the properties of Pa,d'. The 
fact that Pa, d' is the restriction of R.d' to H a_ 1 is yielded by (2.16), since P~,a 
is the identity map on Ha- ~. 

The converse is trivial if d = v = # .  Otherwise, given P~,d' and d<v  such that 
d'<d<=#, note that the restriction of Pv, d' to Hd-~ is a projector P~.d,e~,d,. 
Then consider the linear projector Pv,d of //~_ ~ onto Ha- t such that P~,e 0r- 
=P~,a, O r - l , r = d +  l . . . . .  v. 

It is immediately seen that P~,e satisfies (2.7) and that (2.16) holds. Finally, 
the validity of (2.10) for Pv, a', (2.16) and (2.14) for s = 0  yield the validity of 
(2.t0) also for P~,a- Hence P~,ae~,e. [] 

It is interesting to remark that our construction of P~,a satisfying (2.16) for 
a given P~.d" is not necessarily the unique one possible. In other words, the 
dimension 6~,a' of 24,d, may be strictly less than 6~,a+6e, a, (see (2.13) and (2.15)). 

As a consequence of Theorem 2.8 and Theorem 2.5 we have the following 
corollary. 

Corollary 2.9. A v-vector polynomial fl(O) of degree d' such that q<=d'Nl~--I 
and /~(0)=0 is a feasible interpolant for the RK method (1.1) if and only if for 
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every d > d', d < l~, there exist a feasible interpolant b(0) o]" degree d and a projector 
Pd.d,~O~d.d, such that 

fl'i(O)=P~.d, bi(O), i:- 1 . . . . .  v. (2.17) 

We conclude this section by improving the result given by Theorem 6 in 
[7]. 

Theorem 2.10. I f  the RK method (1.1) has a NCE b(0) of degree d>q, then 
every fl(O) defined by (2.17) is also a NCE c~f degree d' for every d'= q . . . . .  d -  1. 

Moreover, if Nd:Fd for d>q, then we have also Nd,=Fd, Jor ever>' 
d ' : q  . . . . .  d - 1 .  

Proof The latter part of the theorem is clearly a consequence of the former 
part and of Corollary 2.9. 

To prove the former part, one can look at the proof of Theorem 6 in [7] 
and just observe that it is still valid by using a projector Pd, d,e~,a, instead 
of the projector used there. We do not do this here for the sake of brevity, 
since a lot of notation should be introduced to this aim. []  

3. Projection Methods and Equivalence Theorem 

Consider v distinct abscissae Cl . . . . .  c~e[0, 1], an integer d satisfying (2.4) and 
a projector P~,d of /7~ ~ onto H a_l satisfying (2.7). Then we can define the 
linear projector Qd of C~ tl],  IR") on to /Tj  1 ([to, tt],  IR m) by 

v 

Qd ~p(t).'= ~, P~,d li(O) tP(to +Ci h), 0:=( t - to ) /h  , (3.1) 
i - 1  

where the li(0)'s are the Lagrange coefficients (2.9). 

Lemma 3.1. Assume that for hE(O, h0], ho>0,  all the derivatives of q~h~CP([to, 
tl], ]R m) and Fh~CP([to, tl], ~~ are uniformly bounded with respect to h. 
Then the projector Qa defined by (3.1) is such that 

max kOh(X)-- Qd q~h(X)l = O(hd) (3.2) 
t o ~ < t l  

and 

i~ Fh (x) [Oh (X)-- Qd tPh (X)] d x = O (h p + 1). 
to 

(3.3) 

Proof By the hypotheses on Fh(X ) and ~ph(x), we can expand them in Taylor 
polynomials at the point t 0, whose coefficients are uniformly bounded as h ~ 0. 
Then, since Qd is a projector onto H d_ 1([to, ti],  lRm), we immediately get (3.2). 
In order to obtain (3.3), we must instead make use of the orthogonality properties 
(2.7) and (2.11)-(2.12) of P~,d. [ ]  
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Theorem 3.2. A projection method (1.8) in which Qd is given by (3.1) is equivalent 
to a nonconfluent R K  method (1.1) of  order p, and P~,d is a .feasible projector 
of  it. 

Proof  As done  by Norse t t  and Wanne r  [4, 5] for collocation,  with 

Ki = f ( t o  + ci h, u (t o + c~ h)), i = 1 . . . . .  v, (3.4 a) 

Cl 

aij = S P v ,  d lifO) dO, i, j = I . . . . .  v, (3.4b) 
0 

1 

bi = ~ P~..d l~(O)dO, i =  1 . . . . .  v, (3.4c) 
0 

the equivalence with a v-stage R K  method  (1.1) is easily obtained.  
T o  see that  the order  is p, consider  the Grobner -Alekseev  nonl inear  variat ion-  

of-constants  formula  for the IVP (1.2) 

y (t) - u (t) = i K (t, x) I f  (x, u ( x ) ) -  u' (x)] d x, 
to 

(3.5) 

where K(t,  x) is a var ia t ional  matr ix  depending on u(t) (see again [-4] or [5]). 
Then,  by (1.8), we get 

t l  

y (t i) - Y t = S K (t l, x) [ f  (x, u (x)) -- Qdf  (x, u (x))] d x. (3.6) 
to 

By the smoothness  of  f ( t ,  y), some s tandard  analysis yields the uniform 
boundedness  of the derivatives of  u(t) and K(t, x) as h - , 0 .  Therefore  the hypo-  
theses of L e m m a  3.1 are satisfied and (3.3) yields (1.3). 

Finally, by (2.7) and (3.4c), we have that  P~.d is a feasible projector.  [ ]  

The  next theorem is a kind of converse of T h e o r e m  3.2. 

Theorem 3.3. I f  a nonconfluent R K  method (1.1) of order p is equivalent to a 
projection method (1.8), then the projector Qd is defined by (3.1), where P,,.d is 
a feasible projector. 

Proof  In order  to be equivalent  to a v-stage R K  me thod  of the form (1.1), 
a project ion me thod  (1.8) must  be de termined by a projector  Qd of C~ 
t l] ,  IR ' )  on to  l i  d 1(It0, t l ] ,  IR m) which makes  use only of function evaluat ions  
at the points  t o + c~ h, i = 1, . . . ,  v. Thus  we have 

Qdtp(t)= ~ ?i(O)q)(to+cih), O,=(t-to)/h, 
i = l  

(3.7) 

where 7i(O)eHd- 1, i= 1, . . . ,  v. 
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By the equivalence of the methods applied to the simple IVP y'(t)=f(t), 
y(t0) = to, by (1.1 b) and (3.7), we immediately get 

1 

7i(O)dO=bi, i=1  . . . . .  v. (3.8) 
0 

The method being of order p, (1.3) must hold for every IVP (1.2) and thus, 
by (3.7) and (3.6) and by expanding K(tl, x) and f(x,  u(x)) in Taylor polynomials 
at the point to, we can easily conclude that 

1 

S Os~(o)rer-~dO=l/(r+s), r = l  . . . . .  p and s=O, . . . ,p - r ,  (3.9) 
0 

where ~(0)'=(71 (0) . . . . .  yv (0)) r. 
If we define b'(0).'=7(0), b(0):=0, by (3.7), (3.8) and (3.9), we have that b(0) 

satisfies (2.1), (2.2) and (2.3). Hence, by Remark 2.2, also the inequality q<_d<v 
holds. Moreover, since Qd is a projector onto lld_l([to, tl], IRm), by (3.6) and 
(1.3), it is d<p and thus d satisfies (2.4). 

Finally, (2.8) completes the proof. []  

We have characterized the projectors Qa which define a RK method. Now 
we are in a position to state the main result of this paper. 

Theorem 3.4. A nonconfluent v-stage RK method (1.1) is natural if and only if 
it is equivalent to a projection method (t.8). 

Proof First assume that the RK method (1.1) is equivalent to a projection 
method (1.8). In order to prove that it is natural, by Theorem 3.3 and by (3.4b), 
we have only to show that the polynomial u(t), solution of (1.8), satisfies (1.6) 
and (1.7). 

To do this, consider once again (3.5) and, consequently, 

y'(t)-u'(t)= i OK t, ( x )  If(x,  u(x))- Qdf(x, u(x))] dx + f(t, u(t))-- Qdf(t, u(t)) 
tO 

and 

t l  t l  

G(t)[y'(t)-u'(t)] dt= S H(x)[f(x, u(x))--qdf(x, u(x))] dx, 
to to 

where 

H(x)=G(x)+ i'G(~).~t (~,x)d~. 
x 

Then Lemma 3.1 furnishes the desired result. 
Conversely, assume that the nonconfluent RK method (1.1) is natural. This 

means that it has a NCE b(0) of some degree d such that (3.4b) and (3.4c) 
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hold, where P~,d is the corresponding feasible projector.  Then, by Theorem 3.2, 
we can conclude that it is equivalent to the projection method (1.8) in which 
Qd is given by (3.1). [ ]  

The above character izat ion allows us to classify as natural  some other  class- 
es of RK methods  besides collocation. Incidentally, note that  for col locat ion 
methods the feasible projector  P~., in (3.1) is the identity map  on H v_ 1. 

A simple but  popular  example is given by the so called 0-methods, for which 
v=2 ,  d = l  a n d / a = p  ( = 1  or =2). The feasible projector  P2.1 in (3.1) is defined 
by 

P2.1 re(0) = (1 - p )  rc(0)+pTr(1). 

(Here the usual parameter  0 has been replaced by p not to change the nota t ion 
used in this paper). 

Moreover ,  we quote  the one-step subregion methods studied by Vermiglio 
[6], for which the abscissae Cl . . . .  , cv are the v Loba t to  points in [0, 1], d=q 
= v - 1, p = 2 v - 2 and p = v. The feasible projector  P~, v- 1 is the only one possible 
for these data  (in fact (2.13) yields 6v,~_ 1= 0), that  is the interpolat ion projector  
at the v -  1 Gaussian points in [0, 1]. 

Finally, we quote  the fully implicit methods studied by Jackiewicz [3] (see 
also Bellen, Jackiewicz and Zennaro  [1]), in which d = v - 1  and p > v - 1 .  The 
feasible projector  P,.~_ t is the interpolat ion projector  at v - 1  distinct points, 
other  than the ci's. 

The  next theorem completely characterizes the NCEs  of a natural  RK meth- 
od. 

Theorem 3.5. Assume that the nonconfluent RK method (1.1) is natural and let 
(1.8) be the equivalent projection method. Then Nk=Fk Jbr k=q  . . . . .  a, a : = m i n { d  
+ 1, v}, and, even if v > d +  1, Nk=Ofor k > d +  1. 

Proof. Consider  a feasible interpolant  ~(0) of degree a. To  prove that  it is a 
NCE,  in view of (3.4a), we must show that  the polynomial  

v 

V(to+Oh):=yo+h ~ fli(O)f(to+q h, U(to+C, h)) (3.10) 
i - - i  

is such that 

and 

max ly'(t)-d(t)l = O ( h  ~) (3.11) 
t o < t < t  1 

~-f G(t)[y'(t)--v'(t)] dt =O(h p+ 1) (3.12) 
to 

for every sufficiently smooth matr ix-valued function G(t). 
If P~,, is the feasible projector  corresponding to ~(0) and if Q, is the projector  

consequently defined by (3.1), then (3.10) yields 

y' (t) - v' (t) = f (t, y( t ) ) -  Q~f (t, u(t)) 
= (I - Q~)f(t, y(t)) 

- ( I  - Q~) [ f  (t, y ( t ) ) -  f (t, u (t))]  
+ f (t, y(t))-- f (t, u(t)), (3.13) 



434 M. Z e n n a r o  

where I is the identity map on C~ t:] ,  IR"). 
Since u satisfies (1.6), we have 

max If(t, y ( t ) ) -  f (t, u(t))I = O(h "+ '). 
to<t<tl  

Therefore, since a < d +  l, (3.2) (in which d is replaced by a) yields (3.11). 
The validity of(3.12) is a consequence of (3.13), (3.3) and (1.7). 
We can conclude that N~=F~ and therefore, by Theorem 2,10, that Nk=Fk 

for k = q  . . . . .  a. 
To complete the proof, assume v>d+ 1 and suppose that a NCE fl(O) of 

degree k > d + 1 exists. Then consider the IVP y'(t)= y(t), y(0)= 1, whose solution 
is exp(t). Reasoning as above, since f( t ,  u(t))=u(t) is a polynomial of degree 
< d  and since k - l > d ,  for the function v(t) defined by (3.10) we get v'(t) 
=Qk u(t)=u(t) and thus, by (3.11) in which a is replaced by k, 

max lexp( t ) -  u(t)l = O (hk). 
to <=t <=ta 

This fact is clearly an absurde. In fact a polynomial of degree <d<_k-2 
cannot be uniformly a k-th order approximation to the exponential. [ ]  

At the light of this result we can say that the natural RK (or projection) 
methods are the richest of NCEs. In particular, for a collocation method every 
feasible interpolant is also a NCE. 

We conclude this section with some remarks about  the implementation of 
a v-stage natural RK method. 

Although at first sight (1.1) seems to lead to the solution of a v x m-dimension- 
al nonlinear system each step, the true dimension of the problem is instead 
d.m only, where d is the degree of the polynomial u(t) in (1.8). In other words, 
although the method makes use of function evaluations at v points, its "diffi- 
culty" is given by the degree d rather than by the number  of stages v. Alternative- 
ly, we could say that d is the degree of implicitness of the method, 

To see this, we can write the general polynomial UCHd([to, tl], IR m) such 
that U(to)=y o in the form 

d 

u(t)=Yo+h ~ ~zj(O)Hj, O:=(t-to)/h, (3.14) 
j - 1  

where ns(0)=0, j = l ,  . . . ,d ,  {n'l . . . .  ,%} is a suitable basis of He ~ and 
HI . . . . .  HeelR m. 

Then, by (3.1) and (2.8), substitution of (3.14) into (1.8) yields 

d v d 

Tc)(O)Hs= ~ b'k(O)f(to+Ckh, yo+h ~ ~zs(Ck) Hj), (3.15) 
j = l  k = I  j = l  

which is a system whose unknowns are the m-vectors H~ . . . . .  Hal. 
In order to simplify (3.15), we recall that there are exactly d polynomials 

among the bk(0)'s which are linearly independent. We can suppose, without 
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any restriction, that  these polynomials  are b 1(0) . . . . .  bd(O ). Therefore, if d<v, 
there exist coefficients %k such that 

By choosing 

d 

bk(O)= ~ 7jkbj(O), k = d 4 - 1  . . . . .  v. (3.16) 
j = l  

~i(O):=bi(O), i = 1  . . . . .  d, 

since they are linearly independent,  (3.15) and (3.16) furnish 

d 

Hi =f(to + ci h, Yo + h ~, bj(ci) Hi) 
j = l  

v d 

+ ~ aikf(to+Ckh, yo+h ~ bj(ck) Hj), 
k = d + l  j = l  

i =  1 . . . .  , d. (3.17) 

If d =  v (collocation methods), then we find again (1.t) with Hi= Ki, i =  1 . . . . .  v. 
Otherwise, if d < v, then 

H i = K i 4- ~ O~ik K k, i : 1 ,  . . . ,  d. 
k=d+ t 

The form of (3.17), as well as that of (1.1), suggests, for example, the applica- 
tion of  a direct iterative scheme. However,  for any d, the number  of  function 
evaluations per iteration always is equal to v. 

4. Stability Analysis 

In this section we briefly analyze the stability properties of  the natural  RK 
(or projection) methods  with respect to the usual linear test equat ion 

y'(t)=2y(t), 2 = t i ;  

y (0) = 1. (4.1) 

The main appearance is that  the result given by Norset t  and Wanne r  [4] 
for col locat ion similarly extends to all projection methods.  

In order  to s tudy the absolute stability function R(z), z :=h2 ,  which is such 
that yl=R(z)yo when the projection method  (1.8) is applied to (4.1), wi thout  
any restriction we can fix h = 1. Moreover ,  since the case d =  v leads to colloca- 
tion, we assume d < v -  I. 

Therefore Theorem 3.3 yields 

u'(O) = zP~.~ u(O) 
u (0) = 1, (4.2) 

where P~,d is the feasible projector  in (3.1). 
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Remark  that  R (z) = Y l = u (1). 
Since u is a polynomial  of degree < d, (4.2) is equivalent to 

u' (O)= zP~ + l,~ u(O) 
u(0) 1, (4.3) 

where ~+  ~,d is the restriction of P~,d to Fld. 

Theorem 4.1. The solution of (4.2) is the polynomial 

u(O)=( ~ p'd-J)(O)z~)/( ~ p(d-~)(O)z~), (4.4) 
\ j  = 0 / J  x j  = 0 

where 
P(O)=Od-- Pd+ 1.d od (4.5) 

is a monic polynomial of degree d. 

Proof. The polynomial  u(O) can be written as 

u( O) = ud 0 d + terms of lower degree. (4.6) 

We have Ud#0. In fact, if it were not  so, then we should have ueIld_ ~ 
and therefore, by (4.3), u'(O)= zu(O), u(0)= 1, that  would yield the absurde equali- 
ty u(O)=exp(zO). 

N o w  define 

p (0) -'= [u (0) - Pd + 1, d U (0)]/Ud, (4.7) 

which, by (4.6), yields (4.5). 
By (4.3) and (4.7) we get 

u'(O)-zu(O)=Kp(O), K : =  --ZUd. 

Reasoning as in the proof  of Theorem 4 in [4], the applicat ion of the varia- 
t ion-of-constants formula and repeated partial  integrat ion lead to (4.4). [ ]  

In particular,  for 0 = 1 formula (4.4) furnishes the form of the absolute stability 
function 

R (z) = , o ( c l -  j )  z j ( a - j )  z . 

j j :  

We can conclude that  the absolute stability propert ies  of a project ion method  
(1.8) are determined by the polynomial  p(O). On the other  hand, formula (4.5) 
defines a one- to-one  correspondence  between the polynomials  p(O) and the pro- 
jectors Pd+l,d and consequently,  for fixed d, formula (4.8) between the absolute 
stability functions R(z) and the projectors  P~+ ~,d. 

Therefore  the number  of possible absolute stability functions for a projection 
me thod  (1.8) is given by Theorem 2.7, which states that  the projectors  P~+l,d 
form an affine manifold whose dimension is 6d+Ld=2d--p. It is remarkable  
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that this number  is independent  of the number  v of stages of the equivalent 
natural  R K  method.  

A consequence of this is that different projection methods  may have the 
same absolute stability function R(z). 

For  instance, if the polynomial  p(O) has d distinct roots  r . . . . .  ~a in [0, 
t] ,  then the project ion method  (1.8) has the same absolute stability function 
of the collocation method at the points 41 . . . . .  ~e (compare once again [4]). 

However ,  this is not  a general occurence. 

Theorem 4.2. The polynomial p(O) defined by (4.5) has at least p - d  distinct roots 
in (0, 1) where it changes its sign. 

In particular, if d = q and p= 2q, then p(O) is uniquely determined and coincides 
with the (monic) Legendre polynomial of degree q in [0, I]. 

I.[" d = q  and p = 2 q  1, then ~5a+1. a=l  and, in any case, p(O) has q distinct 
real roots. Moreover, at least q-- 1 of them are in (0, 1). 

Proof By (2.14) and (4.5), we have 

1 

O'p(O)dO=O, s = 0  . . . . .  p - d - 1 .  (4.9) 
0 

If we suppose that  p(O) changes its sign only at r points ~ . . . . .  i re(0,  1), 
r < p - d -  1, then we should have 

1 

(O-~ l ) . . . (O-~r)  P(O)dO=O. 
o 

Since the integrand has the same sign in [0, t ] ,  we should get p(O)-O, 
which makes the absurde. 

Now assume d = q  and p=2q.  Then (2.15) yields 6a+~.a=0 and therefore 
p(O) is uniquely determined.  Moreover ,  (4.9) states that it is o r thogonal  to H o- 
in [0, 1] and thus it must  coincide with the (monic) Legendre polynomial  of 
degree q in [0, 1]. 

If d = q  and p = 2 q - I ,  then (2.15) yields fia+ 1.a = 1 and therefore p(O) is not 
uniquely determined. In any case, it has q - 1  distinct roots  in (0, 1) where it 
changes its sign. It is a real polynomial  and thus the remaining root  is real. 
If this last root  coincided with another  root,  it would be a double  root  and 
the sign of p(0) would not  change. Therefore  all the roots  are distinct. [ ]  

We conclude the paper  with a corol lary of the above Theorem 4.2, which 
characterizes the absolute stability function R(z) of a project ion me thod  (1.8) 
in which d = q. 

Corollary 4.3. I f  d---q, then the projection method (1.8) has the same absolute 
stability function R(z) of a collocation method at q points (possibly one of them 
lies outside [0, 1]). 

In particular, if p=2q ,  then these points are the q Gaussian points in [0, 
l] and thus R(z) is A-acceptable. 
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