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Summary. Recently the author defined the class of natural Runge-Kutta
methods and observed that it includes all the collocation methods. The pres-
ent paper is devoted to a complete characterization of this class and it is
shown that it coincides with the class of the projection methods in some

polynomial spaces.

Subject Classifications: AMS(MOS) 65L05; CR: G1.7.

1. Introduction

Recently the author [7] introduced the notion of Natural Continuous Extension

{(NCE) of a v-stage Runge-Kutta (RK) method of order p

Ki=f(to+cihyo+h Y a;K), i=1,...,v,

i=1

yi=Yyot+h Y bK;

i=1
for the numerical solution of the initial value problem (IVP)

V=1 y(), 2t
y({to)= Yo

in R™ at the point t, =t,+ h, where f (¢, y) is as smooth as necessary.
The RK method (1.1) has order p(= 1) if

ly(t)) =y =001,
where |-| stands for any norm on R™.
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A NCE of degree d is determined by (and therefore can be identified with )
a v-vector polynomial b(#)=(b,(8), ..., b,(0))", where b,(0)ell, (the space of
polynomials of degree =d),i=1,...,v.

With

u(to+0h)=y,+h Y bi(0)K,, (1.4)

i=1

the following properties are satisfied by u(¢):

ulto)=yo and u(t;)=y,; (1.5)
max [y () —u' ()| = O (h%); (1.6)
fl GOy ) —uw()]dt|=0(h""") (1.7

for every sufficiently smooth matrix-valued function G(r).

The NCEs were introduced in order to get a continuous approximation
of the solution y(t) of (1.2) without any extra function evaluations. Condition
{1.5) assures that the NCE interpolates the nodal values given by the RK formula
(1.1). Condition (1.6} assures the highest order of uniform approximation which
is possible by means of a polynomial of degree d {(possibly less than p). Finally,
the asymptotic orthogonality condition (1.7) allows to preserve the nodal order
p when the NCE is used, for instance, while solving an IVP with driving equation
or a delay differential equation (DDE).

In [8] the author investigated some stability properties of RK methods
for DDEs. In that setting he gave the definition of natural RK methods, which
was suggested merely by technical necessities. In fact, as we shall see, the descrip-
tion of the so called P-stability region is much simplified for them.

In order to recall this definition, note that a RK method (1.1} is defined
by the triplet A=|la;ll, b=(b, ..., b,)T and c=(cy, ..., ¢,)7 (the so called Butcher
notation) and that NCE determines a v x v-matrix B= || b;(c))|l.

Definition 1.1. The RK method (1.1) is natural if it has a NCE such that B= A.

The P-stability region of a RK method for DDEs is the set Sp of the pairs
of complex numbers (x, f), a:=ah, f:=bh, such that the numerical solution
of

y(t)y=ay()+by(t—1), t>0
y(ty=g(t) for —t=t=0

{a, beC, 1>0 and g(t) is continuous and complex valued) asymptotically vanishes
for every delay 7 and for every step-length h satisfying

h=1/m, mpositiveinteger.
Theorem 13 in [8] states that the interior of the P-stability region is

Sp={(o f)eCx ClaeS, and |fl<0,},



Natural RK-Methods 425

where S 4 is the A-stability region of the underlying RK method,

o,=inf{iz]|ze€C and |r,(z)]=1}
r2)=1+{a+2)bT(I—aA—zB) ‘e, e=(1,..., 1"

In general, the computation of g, is not easy. To see this it is sufficient
to look at the Heun method {v=p=2) with linear interpolation for which

ra@)=[1+a+a2/2+(a+1)z/2]/(1 - z/2).

In this case the analytical computation of ¢, takes about two pages!
On the other hand, if the method is natural, i.e. B= 4, then it immediately
follows that

ra(z)= R(a+2),

where R 1s the absolute stability function of the RK method (see also Section 4),
and hence that (Theorem 16 in [8])

o,=d{x, S )

for every aeS,, where d(.,.) is the Euclidean distance in the complex plane.

Therefore we have a drastic simplification. For example, for v=p=2, we
can consider the trapezoidal rule with linear interpolation, which is a natural
RK method. We have

r,(z2)=R{a+z)=[1+(x+2)/2]/[1 —(x+2)/2]

and hence straightway
6,= —Re(a)

for every aeS,={aeC|Re(n)<0}. [n this case we have a so called P-stable
method.

Similar simplifications hold also when natural RK methods are applied to
neutral DDEs (see Bellen, Jackiewicz and Zennaro [1]).

The main purpose of this paper is to characterize the class of the natural
RK methods. In [8] it was noticed that any collocation method is natural,
since the collocation polynomial is a NCE such that B=A, where A is the
matrix of the equivalent RK formula (1.1).

In general, we shall prove that a nonconfluent RK method (1.1) (for which
¢;%c¢;if i%j, see Dekker and Verwer [2]) is natural if and only if it is equivalent
to a projection method in some polynomial space. More precisely, it is necessary
and sufficient that there exists a linear projector Q, of C°([t,, t,], R™) onto
I, ([te, t;], R™) (d is the degree of the NCE such that B= A), depending
on A, b and ¢, such that

u(to)=yo
W({)=Q.f (t, ut)), uelllty,t,],R") (1.8)
yy=ulty).
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In view of this result we can say that the word “natural” in Definition
1.1 is justified. In fact it turns out that the RK formula (1.1) is naturally derived
from a polynomial method which yields a really natural continuous approxima-
tion.

The paper ends with an analysis of the absolute stability properties of the
natural RK methods, generalizing what was proved by Norsett and Wanner
[4] for collocation.

2. Some General Facts about NCEs

Given a nonconfluent RK method (that is ¢;%c; if i#)) of the form (1.1), we
fix our attention on the v-vectors b and ¢ and on the integer p(=1), ie. the
order of the method.

As it is shown in [7], if a v-vector polynomial b(6) is a NCE, then it satisfies
the following properties:

b(0)=0 and b(l)=b; 2.1)
b@) e =0t =1, ..., d: 2.2)

1

[OV(O ¢ dO=1/r+s), r=d+1,...,p and s=0,...,p—r, (2.3)
0
where ¢~ L:=(c¢h, 71, L, 0 Y
Note that (2.3) makes sense only if d <p.
Moreover, the degree d of a NCE is subject to the following inequality:

qgsd=<y, (2.4)

where g:=[(p+ 1)/2] and p:=min{v, p}.

Definition 2.1. A v-vector polynomial b(6)) of degree d satisfying (2.4) 1s a feasible
interpolant for the RK method (1.1) if it verifies conditions (2.1), (2.2) and (2.3).
It is not true that every feasible interpolant is also a NCE. This fact can
be understood by noticing that (2.2) and (2.3) are conditions corresponding
only to some special elementary differentials of the Butcher series (see [7]).
In general, only NCEs of minimal degree g are assured to exist. We can conclude
that different RK methods of the same order p based on the same b and ¢
can be more or less rich of NCEs. Obviously, this depends on the matrix A.
Now observe that, since p < p, (2.3) implies

1
OV O dO=1/r+s), r=d+1,...,u and s=0,...,p—r. (2.5)

0

Remark 2.2. Looking at the proof of (2.4) in [7] (Theorem 5), we observe that
(2.2) and (2.5) for r=d+1 are sufficient to prove the inequality g<d=<v. To
get d<p, one must instead consider the condition (1.6), which implies (2.2) as
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a particular case, the condition (1.5), which is equivalent to (2.1), and the order
p of the method, L.e. (1.3).

Now consider a v-vector polynomial b(0) of degree d satisfying (2.4), (2.1),
(2.2) and (2.5) and, for any polynomial nell,_, define

P ym(0):= 3 bi{0) n(c;). (2.6)
i=1
We can easily conclude that P, ; is a linear projector of I1,_, onto I1,_,
such that
1 1
P n(0)d0=[ °n(0)d6 forall s=0 (2.7
0 0

and mell,_; such that s+deg(m)<p—1.
Moreover,

b;(g):a,dlz(g), [:1’ s Y (28)
where the [;(6)’s are the Lagrange coefficients

1.v .
1,.(0):]19 S (2.9)

j*i i

This is yield by (2.6), since [;eJI,_, and l,(c;)= J;; (the Kronecker ).
Finally, remark that

1
[P li(®)do=b, i=1,..,v. (2.10)
(4]

Definition 2.3. Given an integer d satisfying (2.4), a linear projector B, ;, of IT,_,
onto IT,. , is a feasible projector for the RK method (1.1) if it verifies conditions
(2.7) and (2.10).

Lemma 2.4. A v-vector polynomial b(8) of degree d satisfying (2.4), (2.1), (2.2)
and (2.5) is a feasible interpolant.

Proof. It is sufficient to prove that (2.5) implies (2.3) in the case g=v. To this
aim, assume u=v<p and let v+ 1 <r<pand 0<s<p—r. Furthermore, consider
the v-vector polynomial 1(0):=(l,(6), ..., [,(0))" of degree v—1 (see (2.9)).

Then, since 0<s<p—r=<p—v—1, by (2.8) and (2.7) we get

1 1 v 1
f()sb’(())rc"ld()zjf)s(z P, li(O)c;“)d0=j CUOT1dO.  (2.11)
4] 0 i=1 0

Now observe that, since the RK method (1.1) has order p, the quadrature
formula with nodes c¢; and weights b; has polynomial order = p—1 and therefore
the polynomial M(#)=(#—c,)...(8—c,) is orthogonal to I1,_,_,. Thus, since
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010 e ' =n(0) M(0) with meIl,_,_, and since s+r—v—1<p—v—1, we
obtain

1

§031(9)Tc'*‘d0=1/(r+s), (2.12)

0

which, together with (2.11), completes the proof. [

Theorem 2.5. The feasible interpolants of degree d form an affine manifold F,
of (I1,)Y whose dimension is

0y a=d(v—d)—(u—d)2p+1—p—d)2—(v—p). (2.13)

Moreover, formulas (2.6) and (2.8) with b(0)=0 define a bilinear correspondence
between F; and the set 2, , of the feasible projectors P, ,, which then is an affine
manifold of L, _,, 11, ).

Proof. Assume that b,(0), ..., by, (0)e F; and choose p,, ..., p,€IR such that p;
+ ... +p,=1 Then it is quite easy to see that b(6):=p, b,(6)+ ... + p; by, ()
satisfies (2.1), (2.2) and (2.3). Thus F, is an affine manifold.

In order to compute its dimension 9, ;, note that the general v-vector polyno-
mial b(#) such that b(0)=0 (see (2.1)) is determined by vd coefficients. On the
other hand, (2.2) imposes d? linearly independent conditions and there are other
(u—d)2p+1—pu—d)/2 linearly independent conditions given by (2.5), which,
by Lemma 2.4, is equivalent to (2.3).

If p=v=<p, then the weights b; of the quadrature formula (1.1b) of the RK
method are uniquely determined and hence b(1)=b (see (2.1)) is already included
in (2.5) for s=0. On the contrary, if u=p<v, then the vector b of the weights
can be chosen in an affine manifold of R” whose dimension is v—p and hence,
in this case, (2.5) for s=0 includes only p of the v conditions b(1)=b. We can
conclude that, in any case, other v—u conditions are to be counted to get
formula (2.13).

To prove the last part of the theorem we have only to observe that, if
P, , is a feasible projector for the RK method (1.1), then (2.8) with b(0)=0
defines a v-vector polynomial b(f) of degree d satisfying (2.4), (2.1), (2.2) and
(2.5). Hence, by Lemma 2.4, it is a feasible interpolant. [

Theorem 2.6. The NCEs of degree d form an affine submanifold N, of F,.

Proof. It is obvious that N;S Fy. If b;)(0), ..., by (0)eN,, then uy)(t), ..., uy, (1)
given by (1.4) satisfy (1.5), (1.6) and (1.7). Choose py, ..., preR such that p,
+ ...+ p,=1 and consider the function u(f):=p, ug,(t)+ ... +p, Uy, (t) which,
by (1.4), corresponds to b(0)=p, b (0)+ ... +p, by, (0). It is quite easy to see
that also u(t) verifies (1.5), (1.6) and (1.7) and thus b(6)eN,. [

These theorems yield an upper bound to the number of NCEs of degree
d that a RK method may possess.

Note that for d=v=p we get J, ,=0. This means that only one NCE of
degree v can exist, as it was already proved in [7]. Furthermore, observe that
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in this case the corresponding feasible projector P, , is the identity map on
n,_,.

The last part of this section is devoted to study the relationships among
the various manifolds F; and N,, where d varies in the interval [g, p]. Obviously,
this makes sense only for methods such that g <p.

To this purpose, consider two integers d, d'e[q, u} with d'<d and then a
linear projector B, , of I1,_, onto 11, _, such that

1 1
[ 0°P .7(0)d0= [ °n()d0 forall s=0 (2.14)
0 8]

and nell, | such that s+deg(n)<p—1.
Following the same line of the previous proofs, we can easily get the following
result.

Theorem 2.7. The set &, , of the projectors P, , is an affine manifold of £, _,,
I, ) whose dimension is

Saa=(d—d)d+3d —2p—1)/2. (2.15)

The next theorem gives the relationships between %, ; and &, ., where d' <d.

Theorem 28. If P, ;,e€%, , and F, 4 €%, , with d' <d, then the linear operator P, ,
defined by

Rao=Fa4 B, (2.16)

belongs to 2, ,.

Conversely, if P, 4€%, 4 with g=<d' Zu—1, then for every d>d', d<y, there
exist P, ;e &, s and P, g€, 4 such that (2.16) holds.

In both cases P, ;. is the restriction of P, 4 to Il1;_ .

Proof. The direct implication is easily got by using the properties of B, ;. The
fact that P, , is the restriction of P, ;. to II,_ is yielded by (2.16), since P, ,
is the identity map on I1,_ .

The converse is trivial if d=v=p. Otherwise, given P, ;, and d <v such that
d'<d <y, note that the restriction of P, 4 to I, is a projector B 4€% 4.
Then consider the linear projector P, , of IT, _; onto II, , such that B, ,0" !
=P 0 Lr=d+1,.., v

It is immediately seen that P, ; satisfies (2.7) and that (2.16) holds. Finally,
the validity of (2.10) for P, ,, (2.16) and (2.14) for s=0 yield the validity of
(2.10) also for B, ,. Hence P, 4%, ,. [

It is interesting to remark that our construction of F, , satisfying (2.16) for
a given P, , is not necessarily the unique one possible. In other words, the
dimension é, , of & , may be strictly less than 6, ,+ 0, 4 (see (2.13) and (2.15)).

As a consequence of Theorem 2.8 and Theorem 2.5 we have the following
corollary.

Corollary 2.9. A v-vector polynomial B(0) of degree d' such that q=<d <u—1
and B(0)=0 is a feasible interpolant for the RK method (1.1) if and only if for
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every d>d', d <y, there exist a feasible interpolant b{8) of degree d and a projector
P 4+ €P, 4 such that

BAO)=P, . bi(0), i=1, .. v. (2.17)

We conclude this section by improving the result given by Theorem 6 in

[7].

Theorem 2.10. If the RK method (1.1) has a NCE b(0) of degree d>gq, then
every B(0) defined by (217} is also a NCE of degree d’ for every d'=gq, ...,d—1.

Moreover, if Ny=F, for d>q, then we have also N, =F, for every
d=gq,..,d—1.

Proof. The latter part of the theorem is clearly a consequence of the former
part and of Corollary 2.9.

To prove the former part, one can look at the proof of Theorem 6 in [7]
and just observe that it is still valid by using a projector B, ;€% , instead
of the projector used there. We do not do this here for the sake of brevity,
since a lot of notation should be introduced to this aim. []

3. Projection Methods and Equivalence Theorem

Consider v distinct abscissae ¢y, ..., ¢,€[0, 1], an integer d satisfying (2.4) and
a projector P, ; of II, | onto II,;_, satisfying (2.7). Then we can define the
linear projector Q, of C°({t,, t;1,IR™ onto I1,_, ({t,, t, ], R™ by

Q4 0(t):= ZPdl Yolto+c h),  O:=(t—ty)/h, 3.1

where the [;(6)’s are the Lagrange coefficients (2.9).

Lemma 3.1. Assume that for he(0, hyl, ho>0, all the derivatives of ¢, CP([t,,
t,1, R™ and F,eC?([t,, t,], L (R™) are uniformly bounded with respect to h.
Then the projector Q, defined by (3.1} is such that

max 9,9 - 0, @43} =0k (3.2)
and
[ F()Lon(0)— 0y on(x)] dx| = O (7 1), (3.3)

to

Proof. By the hypotheses on F,(x) and ¢,(x), we can expand them in Taylor
polynomials at the point ¢,, whose coefficients are uniformly bounded as h— 0.
Then, since Q, is a projector onto IT, ,([t,, t;], R™), we immediately get (3.2).
In order to obtain (3.3), we must instead make use of the orthogonality properties
(2.7yand (2.11)42.12) of B, ,. [



Natural RK-Methods 431

Theorem 3.2. A projection method (1.8) in which Q, is given by (3.1) is equivalent
to a nonconfluent RK method (1.1) of order p, and P, ; is a feasible projector
of it.

Proof. As done by Norsett and Wanner [4, 5] for collocation, with

Ki=f(to+cihulty+c;h), i=1,...,v, (3.4a)

ay=[ BaLO)d0, i j=1,..,v, (3.4b)
0
1

b= Pal(0)d0, i=1,..,v, (3.4¢)
0]

the equivalence with a v-stage RK method (1.1) is easily obtained.
To see that the order is p, consider the Grobner-Alekseev nonlinear variation-
of-constants formula for the IVP (1.2)

t

yO)—u(®)= | Kt x)[f (x,u(x)—u'(x)]dx, (3.5)

to

where K{t, x) is a variational matrix depending on u(t) (see again [4] or {5]).
Then, by (1.8}, we get

yt)=yi= f Kty x)Lf (x, u(x)) = Qaf (x, u(x))] dx. (3.6)

to

By the smoothness of f(t, y), some standard analysis yields the uniform
boundedness of the derivatives of u(t) and K(t, x) as h— 0. Therefore the hypo-
theses of Lemma 3.1 are satisfied and (3.3) yields (1.3).

Finally, by (2.7) and (3.4c¢), we have that P, , is a feasible projector. []

The next theorem is a kind of converse of Theorem 3.2.

Theorem 3.3. If a nonconfluent RK method (1.1) of order p is equivalent to a
projection method (1.8), then the projector Q, is defined by (3.1), where P, ,; is
a feasible projector.

Proof. In order to be equivalent to a v-stage RK method of the form (1.1),
a projection method (1.8) must be determined by a projector Q, of C°([t,,
t,], R™ onto I, ([t,, t,], R™) which makes use only of function evaluations
at the points t,+¢; b, i=1, ..., v. Thus we have

Quopt)= 3 70 oto+c;h),  0:=(t—to)/h, (3.7)

i=1

where y,(Q)ell, _,,i=1, ..., v.
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By the equivalence of the methods applied to the simple IVP y'(t)=f(t),
y(to)=to, by (1.1b) and (3.7), we immediately get

1
[ 7:0)d6=b,, i=1,...,v. (3.8)

0

The method being of order p, (1.3) must hold for every IVP (1.2) and thus,
by (3.7) and (3.6) and by expanding K(t,, x) and f (x, u(x)) in Taylor polynomials
at the point t,, we can easily conclude that

1

[ FyO e do=1/r+s), r=1,..,p and s=0,....p—r, (39

0

where y(0)=(7, (0). ..., 7,(0)".

If we define b'(6):=y(6), b(0):=0, by (3.7), (3.8) and (3.9), we have that b(0)
satisfies (2.1), (2.2) and (2.3). Hence, by Remark 2.2, also the inequality g <d <v
holds. Moreover, since Q, is a projector onto IT,_,([t,, t;1, R™), by (3.6) and
(1.3), it is d < p and thus d satisfies (2.4).

Finally, (2.8) completes the proof. []

We have characterized the projectors @, which define a RK method. Now
we are in a position to state the main result of this paper.

Theorem 3.4. 4 nonconfluent v-stage RK method (1.1) is natural if and only if
it is equivalent to a projection method (1.8).

Proof. First assume that the RK method (1.1) is equivalent to a projection
method (1.8). In order to prove that it is natural, by Theorem 3.3 and by (3.4b),
we have only to show that the polynomial u(¢), solution of (1.8), satisfies (1.6)
and (1.7).

To do this, consider once again (3.5) and, consequently,

y(O—u @)= %I; (t, X)Lf (x, u(x) = Qaf (x, u(x)] dx + f (£, u(6) — Quf (t, u(t)

to

and

fl GOy —vw(®]dt= f H)Lf (x, u(x)—Qaf (x, u(x))] dx,

where

HO=6(+ | 6 O5 20 de

Then Lemma 3.1 furnishes the desired result.
Conversely, assume that the nonconfluent RK method (1.1) is natural. This
means that it has a NCE b(6) of some degree d such that (3.4b) and (3.4c)
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hold, where P, ; is the corresponding feasible projector. Then, by Theorem 3.2,
we can conclude that it is equivalent to the projection method (1.8) in which
Q,is given by (3.1). [

The above characterization allows us to classify as natural some other class-
es of RK methods besides collocation. Incidentally, note that for collocation
methods the feasible projector P, , in (3.1) is the identity map on I, _,.

A simple but popular example is given by the so called 8-methods, for which
v=2,d=1and pu=p (=1 or =2). The feasible projector P, , in (3.1) is defined
by

By n(0)=(1—p) m(0)+ pn(1).

(Here the usual parameter § has been replaced by p not to change the notation
used in this paper).

Moreover, we quote the one-step subregion methods studied by Vermiglio
[6], for which the abscissae ¢, ..., ¢, are the v Lobatto points in [0, 1], d=¢
=v—1, p=2v—2and p=v. The feasible projector P, ,_, is the only one possible
for these data (in fact (2.13) yields é, ,_,=0), that is the interpolation projector
at the v—1 Gaussian points in [0, 1].

Finally, we quote the fully implicit methods studied by Jackiewicz [3] (see
also Bellen, Jackiewicz and Zennaro [1]), in which d=v—1 and p=v—1. The
feasible projector P, ,_, is the interpolation projector at v—1 distinct points,
other than the ¢/’s.

The next theorem completely characterizes the NCEs of a natural RK meth-
od.

Theorem 3.5. Assume that the nonconfluent RK method (1.1} is natural and let
(1.8) be the equivalent projection method. Then N,=F, for k=gq, ..., ¢, 0:=min{d
+1,v}, and, even if v>d+1, No=0 for k>d+1.

Proof. Consider a feasible interpolant B(0) of degree . To prove that it is a
NCE, in view of (3.4a), we must show that the polynomial

v(to+0h)=yo+h Z Bi(0) [ (to+c; hu(to+c; h) (3.10)
is such that -
max [y (6) =" (0]=0(h") (3.11)
and v
}‘ GOy (O)—v'(O1dt|=0(h""") (3.12)

to

for every sufficiently smooth matrix-valued function G(1).
If B, , is the feasible projector corresponding to (0) and if Q, is the projector
consequently defined by (3.1), then (3.10) yields

y (O = (@)= y() = Quf (£, u(1))
=(I=Q,)f (1, y(1)
—(I=Q)LS (& () —f (&, u(®))]
+ /(6 y (@) =1t u(@), (3.13)
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where I is the identity map on C°([t,, t,], R™).
Since u satisfies (1.6), we have

max (£ (¢, y(O)—f (6, u(O) =0k,

0S5ty

Therefore, since 0 <d + 1, (3.2) (in which d 1s replaced by o) yields (3.11).

The validity of (3.12) is a consequence of (3.13), (3.3) and (1.7).

We can conclude that N,=F, and therefore, by Theorem 2.10, that N, =F,
fork=gq, ..., 0.

To complete the proof, assume v>d+1 and suppose that a NCE f(0) of
degree k>d+ 1 exists. Then consider the IVP y' () = y(t), y(0)= 1, whose solution
is exp(t). Reasoning as above, since f(t, u(t))=u{t) is a polynomial of degree
<d and since k—1>d, for the function »(t) defined by (3.10) we get v'(¢)
=Q, u(t)=u(t) and thus, by (3.11) in which o is replaced by k,

max [exp(t) —u(t)| = O (h").

loStsn

This fact is clearly an absurde. In fact a polynomial of degree <d=<k-—2
cannot be uniformly a k-th order approximation to the exponential. [}

At the light of this result we can say that the natural RK (or projection)
methods are the richest of NCEs. In particular, for a collocation method every
feasible interpolant is also a NCE.

We conclude this section with some remarks about the implementation of
a v-stage natural RK method.

Although at first sight (1.1) seems to lead to the solution of a v x m-dimension-
al nonlinear system each step, the true dimension of the problem is instead
d-m only, where d is the degree of the polynomial u(¢) in (1.8). In other words,
although the method makes use of function evaluations at v points, its “diffi-
culty” is given by the degree d rather than by the number of stages v. Alternative-
ly, we could say that d is the degree of implicitness of the method.

To see this, we can write the general polynomial uell ([ty, t,], R™) such
that u(ty) =y, in the form

u(t)=yo+h ¥ m(O)H;, 0:=(t—to)/h, (3.14)

J

where #;(0)=0, j=1,...,d, {7}, ..., 7} is a suitable basis of I7, ; and
H,, .. HeR"
Then, by (3.1) and (2.8), substitution of (3.14) into (1.8) yields

d v d
z 7'5}(0) H;= Z b @) f(to+cih, yo+h Z nj(ck) Hj)» (3.15)
j=1 k=1 j=1
which is a system whose unknowns are the m-vectors H, ..., H,.

In order to simplify (3.15), we recall that there are exactly d polynomials
among the b, (A)s which are linearly independent. We can suppose, without
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any restriction, that these polynomials are b,(0), ..., by(8). Therefore, if d<v,
there exist coefficients o, such that

d
b ()= o, bi(0), k=d+1,.., v (3.16)
i=1
By choosing

T(0)=b{0), i=1,...,d,

since they are linearly independent, (3.15) and (3.16) furnish

d
Hi=f(to+c;hyo+h Yy, bi(c)H)
j=1

v d
+ Y oauflto+chyo+h ) bic)H), i=1,....d (3.17)
i=1

k=d+1 i=

If d=v (collocation methods), then we find again (1.1) with H,=K,, i=1, ..., v.
Otherwise, if d <v, then

H=K+ Y Ko i=1,...,d

k=d+1

The form of (3.17), as well as that of (1.1), suggests, for example, the applica-
tion of a direct iterative scheme. However, for any d, the number of function
evaluations per iteration always is equal to v.

4. Stability Analysis

In this section we briefly analyze the stability properties of the natural RK
(or projection) methods with respect to the usual linear test equation

y=2ay, i=C
y(0)=1. 4.1)

The main appearance is that the result given by Norsett and Wanner [4]
for collocation similarly extends to all projection methods.

In order to study the absolute stability function R(z), z:=h4, which is such
that y, =R(z) y, when the projection method (1.8) is applied to (4.1), without
any restriction we can fix h=1. Moreover, since the case d=v leads to colloca-
tion, we assume d <v—1.

Therefore Theorem 3.3 yields

w(O)=zF 4 u(®)
u(0)=1, 4.2)

where P, , is the feasible projector in (3.1).



436 M. Zennaro

Remark that R(z)=y, =u(l).
Since u is a polynomial of degree <d, (4.2) is equivalent to

W(0)=zPrs 1 4 u(6)
u(0)=1, (4.3)

where P, , ,1s the restriction of B, , to I1,.

Theorem 4.1. The solution of (4.2) is the polynomial

u(9)=( 49 (0) ) / ( P 9(0) ) (4.4)
j=0 j=0

where
9(9)20‘1_314»1.49‘1 (4.5)

is a monic polynomial of degree d.

Proof. The polynomial u(f) can be written as
u(0)=u, 6° + terms of lower degree. (4.6)

We have u,;#+0. In fact, if it were not so, then we should have uell, ,
and therefore, by (4.3), u'(0)=zu(6), u(0)=1, that would yield the absurde equali-
ty u(6)=exp(z9).

Now define

pO)=[u(0)—Fy 4 u(0)]/u,, (4.7)

which, by (4.6), yields (4.5).
By (4.3) and (4.7) we get

W(0)—zu(@®=Kp(@), K:=—zu,.

Reasoning as in the proof of Theorem 4 in [4], the application of the varia-
tion-of-constants formula and repeated partial integration lead to (4.4). [

In particular, for 6 =1 formula (4.4) furnishes the form of the absolute stability
function

R(z)=(i p"‘_j’(l)zj>/(i P4 (0) Zj>. (4.8)

Jj=0 =0

We can conclude that the absolute stability properties of a projection method
(1.8) are determined by the polynomial p(f). On the other hand, formula (4.5)
defines a one-to-one correspondence between the polynomials p(8) and the pro-
jectors Fy.,, , and consequently, for fixed d, formula (4.8) between the absolute
stability functions R(z) and the projectors B, 4.

Therefore the number of possible absolute stability functions for a projection
method (1.8) is given by Theorem 2.7, which states that the projectors P, 4
form an affine manifold whose dimension is 8, ;,=2d—p. It is remarkable
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that this number is independent of the number v of stages of the equivalent
natural RK method.

A consequence of this is that different projection methods may have the
same absolute stability function R(z).

For instance, if the polynomial p(0) has d distinct roots &,, ..., &, in [0,
1], then the projection method (1.8) has the same absolute stability function
of the collocation method at the points &, ..., &, (compare once again [4]).

However, this is not a general occurence.

Theorem 4.2. The polynomial p(6) defined by (4.5) has at least p—d distinct roots
in (0, 1) where it changes its sign.

In particular, if d=gq and p=2gq, then p(0) is uniquely determined and coincides
with the (monic) Legendre polynomial of degree q in [0, 1].

If d=q and p=2q—1, then 0,,, ,=1 and, in any case, p(0) has q distinct
real roots. Moreover, at least q—1 of them are in (0, 1).

Proof. By (2.14) and (4.5), we have
1
[ &p0)ds=0, s=0,....,p—d—1. 4.9)
0

If we suppose that p(6) changes its sign only at r points &,, ..., £,€(0, 1),
r<p—d—1, then we should have

1
fo-¢ —¢&)p(0)d6=0.

Since the integrand has the same sign in [0, 1], we should get p(6)=0,
which makes the absurde.

Now assume d=¢q and p=2q. Then (2.15) yields é,,, ;=0 and therefore
p(0) is uniquely determined. Moreover, (4.9) states that it is orthogonal to IT,_,
in [0, 1] and thus it must coincide with the (monic) Legendre polynomial of
degree g in {0, 1].

If d=g and p=2g—1, then (2.15) yields d,,, ,=1 and therefore p(f) is not
uniquely determined. In any case, it has g—1 distinct roots in (0, 1) where it
changes its sign. It is a real polynomial and thus the remaining root is real.
If this last root coincided with another root, it would be a double root and
the sign of p(6) would not change. Therefore all the roots are distinct. [

We conclude the paper with a corollary of the above Theorem 4.2, which
characterizes the absolute stability function R(z) of a projection method (1.8)
in which d=gq.

Corollary 4.3. If d=gq, then the projection method (1.8) has the same absolute
stability function R(z) of a collocation method at q points (possibly one of them
lies outside [0, 1]).

In particular, if p=2gq, then these points are the g Gaussian points in [0,
1] and thus R(z) is A-acceptable.
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