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Summary. We continue here the study of a general method of approxima-
tion of nonlinear equations in a Banach space yet considered in [2]. In this
paper, we give fairly general approximation results for the solutions in a
neighborhood of a simple limit point. We then apply the previous analysis
to the study of Galerkin approximations for a class of variationally posed
nonlinear problems and to a mixed finite element method for the Navier-
Stokes equations.
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1. Introduction

Consider nonlinear problems of the form:
F(A,u)=0, (1.0

where F is a sufficiently smooth function from R x V into V for some Banach
space V. In the first paper of this series [2], we have studied the numerical
approximation of branches {(4, u(A)); Ae A} of nonsingular solutions of problem
(1.1), where AcR is a compact interval. We now turn to the approximation of
singular solutions such as limit points and bifurcation points.

In this paper, we shall be concerned with the approximation of the solutions
of (1.1) in a neighborhood of a simple limit point (1,,u,) of F ie. a point
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(Ao- ug)eR x ¥V which satisfies the following properties:

F(ho, ug)=0; (1.2)
D, F(iq,u,) is singular and

dim Ker (D, F(Aq. u,)) =codim Range (D, F (Ao, up))=1; (1.3)
D, F(Ay, ug)¢Range (D, F(1y, uy))- (1.4)

The third paper of this series will be devoted to the study of simple
bifurcation points in the general case and in the presence of symmetry proper-
ties.

As in [2], we shall give a fairly general analysis in order to include various
approximation schemes such as conforming finite element methods or mixed
finite element methods. Moreover, our results can be extended so as to cover the
cases of finite element methods with numerical integration and finite difference
methods; in that direction, we refer to [11] which improves and generalizes the
difference results of [13].

An outline of the paper is as follows. In Sect. 2, we consider a simple singular
point (4,,u,) of F, 1.e. a point which satisfies the conditions (1.2) and (1.3), and
we derive the corresponding bifurcation equation. Then we introduce a general
method of approximation of problem (1.1) and we establish various results
concerning the approximation of this bifurcation equation. These results will be
constantly used in the subsequent sections and the part 3 of this series of papers.
In Sect. 3, we assume that (4,, u,) is a simple limit point of F so that there exists
a unique branch {(A(a), u(e)); la|<a,} of solutions of (1.1) passing through the
point (44, u,). We then show that the approximate problem has a unique branch
{(An(), up()); lal Sy} of solutions in a neighborhood of (4,,u,) and we give
estimates of {4,(c) — A(a)} + [ u(o) — u, ()|, which are uniform in the parameter o.
In Sect. 4, we suppose that (44, 4,) is indeed a nondegenerate turning point; we
prove that the approximate problem has indeed a unique turning point (47, u}))
in a neighborhood of (1,, u,) and we derive estimates of |4) — ;| and [u) —u,l .
In Sect. 5, we apply the above results to the Galerkin approximations of
nonlinear variational problems. We then obtain generalizations of the results of
[7—9]; see also [3]. Finally, Sect 6 is concerned with the analysis of a mixed
finite element method for the Navier-Stokes equations in a stream function-
vorticity formulation yet considered in {2]; for a related work, see [12]. Let us
point out that the techniques developed in Sect. 6 may be adapted for analyzing
various mixed finite element approximations of other nonlinear problems.

For the numerical computation of the turning points of the discretized
problems, see [6] and the references therein.

2. General Analysis of Simple Singular Points
2.1. A Preliminary Result

Let us first state an useful version of the abstract results of [2] concerning the
approximation of branches of nonsingular solutions of nonlinear problems. This
preliminary result will be of constant use in all the sequel of this paper.
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Let X, Y, Z be three (real) Banach spaces and @ be a C" mapping (r=2) from
BxY into Z where B is a bounded open subset of X. We shall denote by
Dd(x, yye F{(X x Y;Z) the total derivative of @ at the point (x,y) and by
D ®(x,y)e#(X;Z) and D, ®(x,y)e#(Y;Z) the corresponding partial deri-
vatives. We shall also denote by D'®(x, y)e (X x Y; Z), 2<I<r, the I-th total
derivative of & where #(X xY;Z) is the space of all continuous I-linear
mappings from X x Yinto Z.

Theorem 1. We assume that the mapping D" @ is bounded on all bounded subsets of
B x Y. Let g be a bounded C” function from B into Y such that, for all xeB, the two
Sollowing properties hold:

D(x, g(x))=0; 2.1)
D, ®(x,g(x)) is an isomorphism from Y onto Z with
1D, ®(x, g(x) gz y Sc.

For each value of a parameter h>0, let ¢, be a C" mapping from B x Y into Z
such that

(2.2)

(i) lim sup |D'®(x.y)—D' DX W gyxxy:2y=0 0 IS —1, (2.3)
h—0 (x,y)e®

(i) sup |ID" Dl 4 x v,z =C(C independent of h) (2.3)
{(x,y)e®

for all bounded subset < B X Y.
Then there exist two constants a and hy>0 and, for h=h,, a unique C’
mapping g, from B into Y such that we have for all xeB

D, (x, g,(x))=0, 04
lgn(x)—g(x)l, <a. .

Moreover, we have for all x,x*eB and all integer m with 0S<m=r—1 the
Jfollowing error bound

(@) 1D"g,(x*) = D" g (Xl ¢, x: )

m 4
=K {l\ x*—x| x+ ZO %@(X, g(x))— P (x, g(x)))' y,(x:Z)}’ (2.5)
= |
(i1) SulI;“Drthyr(x;y)éK~ (2.5)

where D™g, and D™g are the m-th derivatives of g, and g respectively and K >0 is
a constant independent of h.

Proof. Let us first check that, for h<h, small enough and xeB, D, ®,(x, g(x)) is
an isomorphism from Yinto Z. In fact, we may write

D, ®,(x, g(x)) =D, @(x, g(x)) (I +A4,(x)),
where

A, (x)=D, @ (x, g(x)) (D, P,(x. g(x)) — D, @ (x, g(x})-



4 F. Brezzi et al.
Using (2.2) and (2.3), we get for h<h,
S0P A4, <.

Hence, I+ A4,(x) is an isomorphism of Y and we have for all xeB

1
1D, @, (x, g(x)) " ||y(z;n§W 1D, ®(x, g(x, g(X)™ 'l gzivy S 2¢.

(x)”.w(y; Y)

Next, the mapping D'® is bounded on all bounded subsets of Bx Y, 0<[<r.
Using (2.3), we obtain:
(1) Sullg 1D, @, (x, {09] PRS-

(ii) each mapping D'®,, 0<I<r—1, is Lipschitz continuous on all bounded
subsets of B x Y uniformly in h.

Since by (2.1) and (2.3)
sup [ ®,(x, gD =sup IPy(x, g(x) — P(x, g (X)) ;0

as h—0, we may apply Theorems 1 and 2 of [2]: there exists a unique C"
function g, from B into Y such that (2.4) holds. Moreover, we have for all
x, x*eB and all integer m with 0<m=<r—1

1D gn(x) = D" g (X #,,x; )

éK{IIX* ~xilx+ Y I9y(x, g(x), Dg(x), ..., Dlg(x))n.?,(X;Z)}»
I=0

where the mappings N (6, YV, Y NEBXx YX L(X;Y)x ...
X LX; V)- D (x, y, yY, ..., Y e L (X; Z) are defined by induction

qs(hO)(x7 y):(ph(xs )’),

q);'l+ 1)(x’ v, y(l), “.’y(l-é— 1)):D (P},”(X, Y, y(l)’ y(l))

1
+ Y Dy @Y (x, y, yU, .y ),y Dy D =y,
i=0

Now, we notice that

dl
T Plx. 8 (X)) = P (x, g (x), D (x), ., D'g(x))
and

1

d
T Pl g =0,

so that the estimate (2.5) (i) follows immediately. The property (2.5) (ii) is
obvious. B

! Hereand in all the sequel, ¢, ¢y, ¢,, ..., ¢;, ..., will denote various positive constants independent of h
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2.2. The Continuous Case

Let V and W be two (real) Banach spaces with norms |-}, and {-{, re-
spectively. We introduce a C? mapping (p=1) G: R x V- W and a linear compact
operator Te £ (W, V). We set:

FlA, w)=u+TG{A u). (2.6)
We assume that (1,, uo)eR x Vis a simple singular point of F in the sense that

(i) FO=F(Aq, uy)=0,

2.7
(i) D,F°=D,F(Ay,uy)=I1+TD,G(%y, uy)e L(V; V) @7
1s singular and —1 is an eigenvalue of the compact
operator TD, G(4,, u,) with algebraic multiplicity 1.
The problem is to solve the equation
F(4,w)=0 (2.8)

in the neighborhood of the singular point (4, u,).

Let us denote by V' the dual space of V and by (-, -)> the duality pairing
between the spaces Vand V'. Then, as a consequence of (2.7) (it) and the classical
theory on compact operators, we have

Lemma 1. There exist ¢, €V and @¥eV’ such that on the one hand

D,,FO'Q’Q:O’ losly=1,

. (2.9)
V,=Ker(D,F%) =R,

and on the other hand

(D, F¥ - 0¥ =0.{p. 05> =1,

. (2.10)
V,=Range(D,F%) = {veV; (v, p%>=0}.

Moreover, we have
V=V oV,
and D,F° is an isomorphism of V,. 1

We shall denote by L=(D,F°|, )~ " the inverse isomorphism of D,F°|, .
Let us now define the projection operator Q: V-V, by

Qu=v—Lv, 0¥y, veV. (2.11)
Then the Eq. (2.8) is equivalent to the system

QF (4, u)=0,

(I—Q)F(4,w=0. (2.12)

Given ueV, there exists a unique decomposition of the form

u=ug+ap,+v,aclR, vel,. (2.13)
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Setting:
A=do+e, (2.14)
the first equation of {2.12) becomes
F (& a0, v)=0, (2.15)
where the C? function #:R? x V,—V, is defined by
F(E o, 0)=0F (Ao + & ug+a@y+0) (2.16)

By using (2.7) (i) and Lemma 1, we find that %#(0,0,0)=0 and D,%(0,0,0)
=D,F°|, is an isomorphism of V,. Hence, by the implicit function theorem, we
get

Lemma 2. Assume the hypothesis (2.7). Then there exist two positive constants &,
o, and a unique CP mapping v: [ &, o] X [ —ag, ag]—V, such that

F (& o0, v(E,0))=0,

5(0,0)=0. 2.17)

Hence, solving the Eq. (2.3) in a neighborhood of the singular point (4,, 1)
amounts to solve the bifurcation equation (see [1] for instance for a similar

h
approac ) (I—Q)F(/10+f»”0+a(p0+v(f’ OC))ZO,

i.e. the equation

S 0= Fldg+ & ug+ape+v(é, o). 95> =0, (2.18)

in a neighborhood of the origin.
Elementary calculations show that:

0
70.0=20.0~0. 2.19)

G
In Sect. 3, we shall discuss the case where 52:(0, 0)=%0.

2.3. The Approximation

Let us next study the finite-dimensional approximation of Eq. (2.8) in the
neighborhood of the simple singular point (4,,u,). For each value of a real
parameter h>0 which will tend to zero, we introduce a finite-dimensional
subspace V, of the space Vand an operator T,e Z(W, V,). We set:

F,(Au)y=u+T,G(A, u), .eR,ueV. (2.20)
The approximate problem consists in solving the equation:

Fy (4, u,) =0, (2.21)



Approximation of Nonlinear Problems. Part. 11 7

ie. in finding pairs (4, u,)eIR x V, solutions of (2.21). Let us notice that we can
equivalently solve the equation (2.21) in R x V.
As in the previous subsection, the equation (2.21) is equivalent to the system

OF (4, ) =0, (2.22)
(I — Q) Fy (4, u,) = {Fy(4, ), 93 9 =0.
Setting
Fehotl (223)
U,=Ug+o@y+v,, ccR v,eV,,
the first equation of (2.22) becomes
FAE o, v,)=0, (2.24)
where the C? function #,: R? x V, >V, is defined by
Fl&, 0, 0)=QF, (Ao + & ug+apy+0). (2.25)

We introduce the C? mapping J: [ — &g, Eq] X [—ag. %] =W defined by

JE )=G(Ay+E ug+apq+v(é, o). (2.26)

Theorem 2. Assume the hypothesis (2.7). Assume in addition that G is a CP

mapping (p=2) and the mapping D?G is bounded on all bounded subsets of R x V
and
i | 7= Ty 1, =0 (227)
h—

Then, there exist three positive constants &, oy, a and, for h<h, small enough,
a unique C? mapping v,: [ —&y, &gl x [—aq, 0]V, such that
Fl&, 0,0, (8, ) =0,

o, o) —v(& )lly Sa, [E1 = Eo. ldl S

Moreover, there exists a constant K >0 independent of h such that, for all
EEre[—¢,, &), all o, a*e[ —uag, 0] and all integer m with 0<m=<p—1, the
following error estimate holds:

(1) D™, (&*, o*) — D™ (&, | &,me: v

= K{Ié* =&+l —al+ 3 HT=T) DV o)l g,

=0

(2.28)

} (2.29)

(ii) IDPo,(E*, 0¥ o e 1y S K- (2.29)

Proof. Since D, #(0,0,0) is an isomorphism of V,, we may suppose that in
Lemma 2 the constants &, and o, are chosen in such a way that

1D, 7 (&, o, v(& )l gw vy S IE1S o 2] Sa.
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On the other hand, we have
F (& o, 0)=F(E a0, v)=0(T—T,) G(Ay+ & ug + oy +0). (2.30)

Hence, it follows from (2.27) that D'#,—D'# in #(R*xV,;V,), 0<I<p,
uniformly on every bounded subset of [—¢&,,&,] x [ —a,,a,] x V,. Therefore,
we may apply Theorem 1. there exists a unique C? function v,:[—&y,&0]
x [ —ay, aq]—V, which satisfies (2.28).

Moreover, using (2.26) and (2.30), we obtain for § &*e[—¢&;, <] o o
e[ —ag, %) and 0=m=<p—1

D™ v, (&%, a*) = D™ v(&, 0 &, m2; v,

éK{lé* =&+l —al+ 3 1Q(T-T,) DI, Of)llwmz;m}»

I=0
from which (2.29) follows. W

In fact, we shall also need a more specific version of the previous result. Let
t—>(&(t), aft)) be a pair of CP real functions defined for |t{=<t¢, and let
t—(EX(t), o (1)) be a family of pairs of CP real functions defined for [t]<t, which
satisfy for h <h,

sup [E()| =&, sup [G(BI=Co,

[ES lt =10
sup |a(t)[§(x0» sup [at(t)l§ao~

lti=t0 ftl Sto

Lemma 3. Assume the hypotheses of Theorem 2. Assume in addition that for
0<m<p—1

| | o -
0 tim sup (| Z2(E 0 E0) |+ | T O —a@) ) =0 @31
(ii) ltsilgo ( pr |+ dtp” o (1) ) independent of h. (2.31)

Then, we get for all te[ —t,,t,] and all integer m with 0<m=<p—1

O EE D) 21(0) ~ (@), o(0) |

l 1

0 —a0)

8

Proof. Let us introduce the functions ¥ and ¥,: [ —t,,t,] x V,—V, defined by

Y(t, w)y=F(E(1), a(t), w),
Yult, w)=F (G5 (D), o (1), w).

— &)+ (2.32)

<KZ{

d
+H(T— T,,)WJ(é(t), a(t))
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Setting

w(t)=o( (1), 2(1), w, (1) = 0, (&G (£), o5¥ (1)),

we obtain

l//(l‘v W(t)):wh([’ Wh(t)):()? ltl é tO‘

On the other hand, the constants £, and o, being choosen as in the proof of
Theorem 2,

D, (t, w(t) =D, F (£(t), a(2), v(E (1), 2 (1))

is an isomorphism of V, for |t|<t, with

sup |D,, ¥ (t, w(t))~ ! Hy(vz VZ)SC

ltl<to

Furthermore, we have

Yt w) =y, (6, w)=Q(T—T,) G(Ao+C(1). ug + (1) oo + W)
TOT, LG (Ao + &) up+o(t) oo+ W)

—G(Ao+ &5 (1), ug+of (D o +w)]. (2.33)

Then it follows from (2.27) and (2.31) that D', »> D'y in Z(R x V,,; V,),0<I<p—1,
and D?y, is bounded, uniformly on every bounded subset of [ —¢,, t,] x V,.

Now, applying Theorem 1 to the function y, gives for all te[ —¢,,t,] and all
integer m with 0Sm<p—1

m

d
gt —w)|

,(!//(l w(t) =y, (t, w(t))) .

The estimate (2.32) is a consequence of (2.33) and the previous
mequality. B

By Theorem 2, we see that solving the Eq. (2.21) in a neighbourhood of the
singular point (4,, 4,) amounts to solve the approximate bifurcation equation

Sul& ) ={FfAo+E ug+apo+0,(8,a), @F> =0 (2.34)

in a neighbourhood of the origin. Now, in order to analyze the approximation
of the solutions of problem (2.8) by those of problem (2.21), it remains to

compare the solutions of the bifurcation equation (2.18) with those of (2.34).
o

This will be done in the next section in the case where ;—5(0 0)+0. The case

of

3 ==(0,0)=0 will be analyzed in the 3rd paper of this series.

We shall need in the sequel estimates of D™ f (&, o), 0<mZp.
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Lemma 4. Assume the hypotheses of Theorem 2. Then we have for all
L& e[ =&y, Eol o, a* e[ —ay, 0] and all integer m with 0<m=<p—1

M ID"AE 0 =D E D, mom
éK{K*—ﬂ+W*—M*‘i1KT*7DDU@memww§’ (239)
(M) 0P oy o SK.
Proof: We first set
J (&) =G(A,+E, u0+a(00+vh(f, o)). (2.36)

By using the definitions (2.6), {2.18), (2.20) and (2.34) of F, f, F, and f,
respectively, it is easy to check that

& a*) = f(&, ) =a* —a+{(T,— T) J (&, 2), 95>

+ (TIWE*, %) = J(E, ), 95, (2.37)
and

D" f, (&%, 0*) = D" f (£, 0) = (T, = T) D"J(&, ). @
+(TD" (&%, a*) = DI, o)), 9F),  1=mSp—1.

By (2.27) and the boundedness of the mapping D'G, 1 <I<m+1, we obtain
for0=m=<p-—1

D™ £ (¥, o*) = D™ (&, D)l o, 2. my

§C{lé* =&+l —af + i D' v,(*, 0%) = D' v(&, )| 4,2 v
1=0

+I(T-T)D"J(, a)llfmanz;m}

so that the estimate (2.35) follows from Theorem 2. W

Again, we shall need a more specific estimate. Introducing as in Lemma 3
the pairs of functions t — (£(t), a{t)) and t — (EX(1), o (1)), we have

Lemma 5. Assume the hypotheses of Theorem 2 together with (2.31). Then, we get
Jor all te[ —t,,t,] and all integer m with 0<m=<p-—1

dm
S U0, i (1) = £ (8(2), el 0)))

i

d
(€O )

1

d
+|a7(oc(r)—a:=<r»

1

égi{

=0

(2.38)

!

d
+ ‘(T— 1) 5 J (1), ()
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Proof. 1t follows from (2.37) that

Jul& (@), o5 () —f (), (1))
=ort) —alt)+ (T, — T) J(C (1), a(1)), 95>
+LTUNE (0, 05 () = J(E (1), (1)), 9>

Differentiating m times the above expression and using (2.27) together with
the boundedness of D'G, 1 <I<m+1, gives
(f;.(é (), o (D) = J(E(2), (1))
m l
<c ;{dxﬁo &)+
dl
+ 72 (0GR (). 057 (0)) — v(&(0). (1)) ,

8

Hence the estimate (2.38) follows from Lemma 3. H

dt'"

dl
}ﬂwﬂn—um

dm
I “(T_ T) I (€0, ()

3. Simple Limit Points

3.1. The Continuous Case

Let us consider again problem (2.8). From now on, we shall assume that (4,, u,)
is a simple limit point of F, i.e. a simple singular point of F which satisfies in
addition

D,F°=D,F(,,u,)¢ Range(D,F°). (3.1)
Let us state the following classical result

Lemma 6. Assume the hypotheses (2.7) and (3.1). Then there exist 0,>0 and a
unique CP mapping ael —oq, o] = E(0)eR such that

SE(),0)=0, lo|=Zay,

£0) ~0. (32)

Hence, there exists a unique branch {(A(x), u(a)); |l Sy} of solutions of (2.8) in a
neighborhood of the simple limit point (1, u,), where o — A(a) and o — u(o) are C?
functions given by

Aary=12o+ &(),

u(o) =g+ oo+ v(&(a), ®). (3.3)

Proof. 1t follows from Lemmata 1 and 2 that the condition (3.1) can be
equivalently stated in the form

of

56 0.0=<D, FO, 0% +0. (3.4)
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Therefore, using (2.19) and applying the implicit function theorem to the
function f give the desired result. W

Let us compute the first and second derivatives of the function a — &(x) at
the origin. First, differentiating (3.2) and using (2.19), we obtain

dg
(=0 (3.5)

On the other hand, by differentiating (2.17) with respect to ¢ and « at the
point (0,0), we get

v o
%(0,0)— —LOD,F®,

(3.6)
% (0.0)=0,
do

where L=(D,F°|, )~ '. Then, differentiating (3.2) twice and using (3.5) and (3.6},
we find after straightforward calculations

42
T 0= —<{D,F% 0% " (DLF° (99, 9o) 0%, (3.7)

where D2, F®=D2, F(ly,uy)e¥L,(V; V) denotes the second partial derivative of F
with respect to u at the point (A, ).

When (D2, F® (@, @), 9% is +£0, the point (4,,u,) is called a nondegenerate
turning point or a normal limit point of F. In that case, we have the following

diagram for the branch of solutions of {(2.8)

T

3.2. The Approximation

We now want to establish the existence of a branch of solutions of the equation
(2,21) in a neighbourhood of the branch {(A(e), u(®)); lal = «,} of solutions of (2.8),
at least for h<h, sufficiently small. To do that, we begin by considering the
approximation bifurcation equation (2.34).

Lemma 7. Assume the hypotheses of Theorem 2 together with the condition (3.1).
Then there exist two positive constants o, b and, for h<h, small enough, a unique
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C? mapping o€l —ag,aq] = & ()R such that, for |a] <o

JuGn(@), ) =
1€4(e) — S =b.

Moreover, there exists a constant K >0 independent of h such that, for all
ol —aq, o] and all integer m with 0<m < p— 1, the following error estimates hold :

(3.8)

i

(T—-T,) d,G(/l(oc),u(oc))

>

d m
@ T (@)@ =K Z

(3.9)

(i) P

Proof. Lemma 4 together with (2.27) and Lemma 6 enables us to apply
Theorem 1: there exists a unique C? function £,: [ —o,a,] = R which satisfies
(3.8). Moreover, we obtain for |u|<a, and 0Sm=p—1

m

<c}

(Ch(ot) (o) I ,(f (@), ) = ful £ (@), ). (3.10)

The estimate (3.9)(i) follows from (3.10) and Lemma 5 used with t =a(t) =af(t)
=a and &(t)=EF(t)=£&(x). The estimate (3.9)(i1) follows from Theorem 1. W

We define the pair of C? functions ae[ — oy, aq] = {A,(a), u,(0))eR x V by

Aulo) = Ao+ Ep(e0),
U () =y + o @+ 0,(E,(20), ). (3.11)
We have

Fy (o), (@) =0, la| =0,

so that {(1,{x),u,(®)); || <a,} is a branch of solutions of problem (2.21). Let us
denote by A™(a), u™(x), A™(ex), u™(«) the m-th derivatives of the functions A(),
u(a)’ )“h(a)v uh(a)‘

We can now state our main result.

Theorem 3. Assume the hypotheses of Theorem 2. Assume in addition that the
condition (3.1) holds. Then the approximate problem (2.21) has a unique branch of
solutions {(4,(o), u,(0)); |2l Sy} in a neighbourhood of the branch of solutions
{(Ae), u(e)); 1ol S oo} of the continuous problem (2.8).

Moreover, these branches of solutions are of class C* and we obtain for all
ael—ag, o] and all integer m with 0<m<p—1 the error estimate

144 (0) = A )] + [l (o) —u™ ()]

m d!
<K Y ) G(Aa).u(e) (3.12)
1-0 o v

Proof. The first part of the theorem follows from Lemma 7. The estimate (3.12)
will follow from (3.9)(i) if we prove that we have for 0S<m=<p—1
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dm
Jom On(Eu(e) @) — (¢ (). )
* 14

1

N Gl u()

But this a direct consequence of the estimate (3.9) and Lemma 3 used with t =a(t)

=0 () =0, () =&(a), EF()=Cy(0). W

In order to get practical bounds for the error [AM™(a)—A™ ()| + ||uf™ (o)
—u™(a)||,, it remains to estimate the right-hand side member of (3.12). We
observe that

u(o) + G(A(a), u(e)) =0
and therefore
!

d 1
T G(A(w). u(@) = —u(a). (3.13)

In Sects. 5 and 6 where we consider Galerkin or finite element approxi-
mations of nonlinear boundary value problems, using (3.13), we shall obtain
such estimates by only assuming that the solution u(x) is “sufficiently smooth”
together with its derivatives u®(a), 1 SI{<m.

4. Nondegenerate Turning Points

In this section, we assume that the simple limit point (4,,4,) is a nondegenerate
turning point, i.e. (A, u,) satisfies the conditions (2.7), (3.1), and

(DLF® (00, 900) 08> +0. (4.1

In this case, using (3.5) and (3.7), we have

d d*¢
T =0, L0+

so that the function o — &(a) has a local maximum or minimum at the point o
=0.

Assume that G is a C? mapping with p=3. Then it follows from the estlmate
(3.9) used with m=0,1,2 that there exists an interval [ —o,«,] and, for h<h,
small enough, a unique value oy €[ —a,,«,] such that

.o
lima, =0,
h—0

d
da h(“h) 0,

2

d
Wé,,(a) 2e¢>0 forall ae[—ay, o], 4.2)

where the constant ¢ is independent of h.
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We set:
Ay =2(0),  up =u,o). (4.3)

We can easily check that the point (47, u?) is indeed a nondegenerate turning
point of F,.

Theorem 4. Assume the hypotheses of Theorem 3 with p=3. Assume in addition
that the condition (4.1) holds. Then for h<h, small enough, we have the error
estimate

1 dl
47201+ 1)~ uolly SK Y W(T=T) 7 G ull,of . (44)
=0
where K is a positive constant independent of h.
Proof. We get from (4.2)
d d
afl <! 355,,(0)~ = E;(é,,m)—éw»‘.
Using Lemma 7, we obtain
1 d!
gl ¢y Y T —T,) - G(Aw), u(@)),_ o (4.5)
fary do v

Next, we write
147 = Aol = 1€, (o) £1E4lerp) — £, (0)] + 1£,(0)]

and, using again Lemma 7 and the estimate (4.5) together with the uniform
boundedness of d¢,/da, we find

1

! d
0—2l<e, ¥ W(T— T GA@, u(@) o
=0 o

v

Similarly, the function du,/d« is uniformly bounded and
ety —uglly < lluye) — u, (Ol + [[u,(0) —u(0)[y
S esfol + 11y (0) — u(O) ]y -

Hence, using (4.5) and Theorem 3, we obtain

1

d
(T=T) 77 GA@), w0l o

1
IIM;?—uo|IV§C4 Z
=0

v

This proves the theorem. H

In many cases the above error bound for |A) —4,| can be improved. We set
G°=G(Ay,uy), D,G°=D, G(A,,u,) and we denote by [(T—T,)D,G°]*eL(V'; V")
the adjoint operator of (T—T,)D,G°c L (V; V).
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Theorem 5. Assume the hypotheses of Theorem 4. Then, for h < h,, small enough, we
have the error estimate

I4; — Aol SK{IA(T—T)G®, ¢8|
+I(T-T,)Gll, - IUT—T)D,G°T* ol

1 dl 2
+ 2 NT— T,,)d—,G(A(oc), u(@)le- o (4.6)
=0 o v
Proof. By the uniform boundedness of the function d*¢,/da?, we have
d
EUODISIELO +[5(0) (af1+ colog
so that by Lemma 7 and (4.5)
1 dl 2
lé,,(a,?)léléh(O)HcllZo (T— T;.)WG(/I(O‘), U@y o , (4.7)

Let us next give an estimate for |£,(0)]. The bound (3.10) with m=0 gives
1£4(0)] = ¢,] £,(0,0)!. (4.8)
On the other hand, using (2.37) with { =¢*=a=0*=0, we get
ful0,0)={T,— T) G, 9> +<T(G(Ag, ug +1,(0,0)) -G, 93> (49)
The error estimate (4.6) will follow from (4.7), (4.8) and (4.9) if we check that
KT(G(4o, 1o +0,(0,0) — G°), 0]
el (T—T) GOl AT~ T,)G°lly + I(T— T,)D,G°T* 9§l ). 4.10)

In fact, we have

KT(G(Ag, g + 1,0, 0))_GO)JP3>
SKT,D,G° v,(0,0), 0> +c,liv,(0, 0117
<IKTD,G°-1,(0,0), o> + (T, — T)D,G° - 1,(0,0), o )|
+¢,4 11040, 00117
Thus, we obtain
KT, (G(Ag, uo +04(0, 0)—G°), p¥>I<I{TD,G°1,(0,0), o>
+¢5104(0,0)l (10,0, Ol + | (T, —~ T)D,G°1*- 9§ 1-).

Since 1v,(0,0)eV,, we have by Lemma 1
(TD,G°-1,(0,0), 0> =<{D,F’-1,(0,0), o> =0.
Moreover, we have by Theorem 2 used with m=¢*=(=0*=0=0
1040, 0)lly S e IT— TG lly-
Hence (4.10) is proved. B
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Remark. It is worthwhile to notice that the results of Theorem 3 can also be
obtained in a more direct way. In fact, let us consider the functions % and 4,: R
xR xV, >R x V, defined by

G, &,0)=(QF (Ao + & ugtapa+v), (FAg+&us+ap,+0v),08>)
and

G, &, 0)=(QF (Ao + & up+ oo+ ), (F(Ag + 8 ug + oy +0), 0F)).
Clearly, problems (2.8) and (2.21) are respectively equivalent to

Yo, &, v)=0 (4.11)
and

G (0,8, v)=0. 4.12)

Now, it is easy to check that %(0,0,0)=0 and D ,,%(0,0,0) is an isomor-
phism of R+ V, so that (0,0,0) is now a nonsingular point of ¥ (for a related
approach, see [6]). Moreover D'%, > D'¢ uniformly in a neighborhood of
(0,0,0), 0<I=<p. Hence, applying Theorem 1 to (4.11), (4.12) gives (3.12).

However, using this approach, the proof of Theorem 5 appears to be more
complicated. Furthermore, the results of Lemmata 3-5 will be constantly used in
the third paper of this series devoted to the study of bifurcation points. M

5. Application I: Galerkin Approximation of Nonlinear Problems

In this section, we want to apply the above results to a class of conforming
approximations of variationally posed nonlinear problems.

Let V and H be two (real) Hilbert spaces with scalar products ((.,.)}, (.,.)
and norms |.||, |.| respectively. We suppose that V< H with continuous imbed-
ding and V is dense in H. If we identify H with its dual space H', we have Vc H
< V' with densely continuous imbeddings and the scalar product (.,.) may also
represent the duality pairing between the spaces V and V.

Let W be a reflexive Banach space such that Hc W< V' with continuous
imbeddings. We assume that the canonical injection of Winto V' is compact?.
We introduce a continuous bilinear form a: VxV—IR and a C? mapping
(P=2)G:RxV—->W. Then we consider the nonlinear problem: Find pairs
(A4, u)eR x V solutions of

a(u, vy +(G(A, u),v)=0, VYoeV. (5.1)

We further assume that the bilinear form a is V-elliptic in the sense that there
exists a positive constant y such that

alv,v)=zylvll?, VeV (3:2)
We can now define the operators T, T*e Z(V’; V) by
a(Tf,v)=a(v, T*f)=(f,v), VveV, VfeV" (5.3)

2 This implies that the canonical injection of V into H is also compact
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Then an equivalent form of problem (5.1) consists in finding pairs (4, u)elR
x V solutions of
F(h,wy=u+ TG(A,u)=0. (5.4)

Next, we are given a family {V,} of finite-dimensional subspaces of ¥ and we
consider the approximate problem: Find pairs (4,u,)eR x ¥, such that

a(u,, v,)+(G(4, 1), 0,) =0,  Vu,el,. (5.5)

Let us define the operators I1,€ #(V; V) and T,€Z2(V'; V,) by

a(ll ,u—u,v,)=0, Vuv,eV,, Yuel, (5.6)
and
a(T, fo)=(fiv)),  Vyel, VfeV. (5.7)
Clearly, we have
T,=I,T. (5.8)

and problem (5.5) consists in finding pairs (4,u,)e R x V solutions of
F (A u,)=u,+T,G(4,u,)=0. (5.9)

Assume that for all veV

lim inf fo—u,]=0. (5.10)

h->0ppeVy
Then, as an easy and classical consequence of (5.2) and (5.6), we have

lim jo—H,v =0, VveV.

h-0
Moreover, since Te L(W; V) is compact, we obtain

lim || T— T;.“f(w; vy= lim||(I—-1,)T Hy(W;V) =0.
h—0 h—0

Now, we suppose that (1,,u,)eR x V is a simple singular point of F and we
choose ¢, and ¢} as in Lemma 1. It is an easy matter to check that g,V is an
eigenvector corresponding to the eigenvalue u=0 (with algebraic multiplicity 1)
of the linearized variationally posed eigenproblem: Find pelR and @€V, ¢ +0
such that

a(p,v)+(D,G% ¢, v)=pu(p,v), Vuel? (5.11)
Setting
Y5 =T* @3, (5.12)

we check that y¥eV is the eigenvector of the adjoint variationally posed
eigenproblem

a(v,y¥)+(D,G° v, y¥)=0, VYoveV (5.13)

3 Usually, one proceeds to the complexification of the spaces V, H and W and one looks for
eigenvalues ue. But this is not necessary here
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such that
aley, y3)=1. (5.14)

Suppose that the condition (3.1), or equivalently the condition
(DG y5)+0 (5.15)

holds, i.e. (4, u,) is a simple limit point of F. Then, there exists a unique branch
{{(Ale), u(@)); |l S} of solutions of (5.1) (or (5.4)) in a neighbourhood of (4,,u,).
This branch is of class C? and may be parametrized as in (3.3) with A(0)
=y, u(0)=u,.

Theorem 6. Assume that G is a C? mapping (p=2) and the mapping D?G is
bounded on all bounded subsets of R x V. Assume in addition that (i,,ug) is s
simple limit point of F and that the approximation property (5.10) holds. Then,
there exists a unique branch {(4,(a),u,(®)); || Sy} of solutions of (5.5) (or (5.9)) in
the neighbourhood of the branch {(A«), u(a)); |al S oy}. This branch is of class C?
and, for all e[ —a,,0,] and all integer m with 0=m=p—1, we get the error
estimate

12 (00) = A7 (0] + [l (o) — u™ (@)

<K i inf |u®(0)—v,. (5.16)

I=0vneVn

Proof. Let us show that this is a consequence of Theorem 3. In fact, we have
only to check that for 0<I<m

But, using (3.13) and (5.8), we get

dl
(T=T,) 7 r G u@)) <c inf lu®(a) =,

vheVn

1

(T-T,) % G(A(). u(e) = 1T, u (@) —u(a).

Since, by (5.2), we have for all veV

lo— vl <c inf Jo—o,l,
vheVy

the result follows. W

Finally, we assume further the condition (4.1), or equivalently

(D2, G (@q. 9o) Y &) *0, (5.17)

ie. (4y,u,) Is a nondegenerate turning point of F. By the results of Section 4,
there exists a unique nondegenerate turning point (47,u;) of F, in a sufficiently
small neighbourhood of (4,, u).

Theorem 7. Assume the hypotheses of Theorem 6 with p=3. Assume in addition
that the condition (5.17) holds. Then we have the error estimates

lup —uoll SK{ inf lug—wv,]+ inf [jug—v,l} (5.18)

vneVh vheVn
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and
A2 — Aol SKACinf ity v, )2+ inf fip =0,
+(inf fJug—ov,l)( inf Y& — i)}, (5.19)
vheVn YneVn

d
where ugy = i {0).

Proof. The estimate (5.18) follows directly from Theorem 4, (3.13) and (5.8). On
the other hand, (5.19) will be a consequence of Theorem 5 if we show that

(T—T)G% ol Se i inf Iluo—vhll)(win£ s =l (5.20)
and h h h h
!I[(T~T;,)G°]*'wé‘!lvéczwini g —ll- (5.21)

First, using (3.13), (5.3), (5.6), (5.8) and (5.12), we have
(T—T,)G% @¥)=all — ) TG®, T* p¥)=alll, uo— g, ¥3)
=a(llug—uo, Y5 =¥, VY,V
from which (5.20) follows immediately.
Next, for proving (5.21), we write:
I(T—T)D,G°T* ¢§ly-= Sup I(T-T,)D,G° v, 9¥)l.
ol = 1

Then, given veV, we have

(T-T,)D,G° v,0¥)=a((I—11,)TD,G°-v, T* ¢}¥)
=a((I—1)TD, G- v, y§—1), VeV,

so that (5.21) holds. MW

6. Application II. A Mixed Finite Element Approximation
of the Navier-Stokes Equation

Let Q be a bounded simply connected plane domain with boundary I'; we
consider the Navier-Stokes equations for an incompressible viscous fluid con-
fined in Q in the stream function formulation

vA* Yy —curl{dy grad Y)=f in Q,

6.1)
1//:%:0 on I,
on

where f is given in H~ (), v>0 is the viscosity coefficient and 0/0n denotes the
outer normal derivative along I'. Problem (6.1) has at least one solution
YeHy(Q).
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We introduce the linear operator #eL(H™*(Q); H3(Q)): ge H™*(Q) >y
=RgeH:(L) defined by

APy =g in Q,
0 (62)
v=2_0 onr
on

In addition, we consider the C® mapping ¥: (L, ¢)eR x H3(Q)—>%(1, )
eH ~2(Q) defined by

G(A, )= — A(curl(4y grad ¢)+f). (6.3)

Clearly, solving problem (6.1) amounts to find y e H3(©) solution of

1
FALU=Y+R%(A,y)=0, i == (6.4)
Notice that the operator #D,%(4, V)e L(HE(Q); Hi(Q)) is compact.
Now, let y,eH3(Q) be a simple singular solution of (6.1) corresponding to v
=v,. This means that the linearized Navier-Stokes operator

X > vy A2 X —curl(4y, grad X + AX grad y,)

has an eigenfunction X,e H3(Q)corresponding to a zero eigenvalue of algebraic
multiplicity 1, or equivalently X, is an eigenvector of the compact operator
AD,%(%4,Y,) corresponding to the eigenvalue —1 of algebraic multiplicity 1.

We denote by XieH2(Q) an eigenfunction of the formal adjoint of the
linearized Navier-Stokes operator

X ->vo A2 X +div(4y, curl X)— 4 grad §, - curl X)

corresponding to the zero eigenvalue. If Dwfq(/{o,l[/o)*ég(l‘]é(g); H~%(Q)) is the
adjount operator of D,%(4,.Y,). then X§ is an eigenvector of the operator
AD,G (Ao, o)* corresponding to the eigenvalue — 1. Note that (ZD, 9 (4o, ¥o))*
=D, 9 (Ao Yo)* Re L(H™ 2(Q); H-*(Q)) is the adjoint operator of ZD,9(A,, )
and #~'X¥ is an eigenvector of (#D,%(A,, Y,))* corresponding to the eigen-
value —1. According to Lemma 1, we may choose the functions X, and X§ in
such a way that

1Xoll 2y =1, <X07%_1X§>:§AX0AX3dXZ1A (6.5)
o

We further assume that Y, is a simple limit solution of the Navier-Stokes
equations (6.1) with v=v, in the sense that {(4,.¥) 1s a simple limit point of F;
i.e. ¥, 1s a simple singular solution of {6.1) which satisfies

(D, F (Ao o) B XE) 40
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or equivalently

[ Ay, grad g, - curl X% dx+( f, X%)+0* (6.6)
Q

This limit point (4y,¥,) will be a nondegenerate turning point of the Navier-
Stokes problem if in addition we have

(D2, F(hotho) (X0, Xo)  R™'XE>+0

or equivalently

[ 4X,grad X" curl X% dx +0. (6.7)
2

For approximation purposes, we need to introduce another formulation of
the Navier-Stokes problem. As in [2, Sect. 4], we are looking for a pair u=(y, w)
where w = — Ay is the vorticity. We set (with standard notations for the Sobolev
spaces):

V=Wl HQx 2(Q), W=W-"%Q) (6.8)

We introduce the linear operator T: H~*(Q) — HZ(Q) x L*(€Q) defined by

Tg=(Rg, —ARg). (6.9)

By the Sobolev imbedding theorem, T belongs also to the space L (W; V).
We next define the C* mapping G: (A, u=(}), w))eR x V - G(4, u)e W by

G(4, uy= Alcurl(w grad ) — f). (6.10)
Then a pair u=(, w)eV satisfies the equation

F(Au)=u+TG(A,u)=0 (6.11)

if and only if the function ¥ is a solution of the Navier-Stokes problem (6.1)
corresponding to v=1/4 and w= —Ay.

Now, we assume very weak regularity hypotheses on the domain Q so that
Re LW~ 13(Q); H**+%(Q)) for some s >0 and therefore the operator Te Z(W; V)
is compact.

Let ¥, be a solution of problem (6.1) corresponding to v=v, and let (. u,),
Ao=1/vy, ug=(o,we=—4Y,), be the associate solution of problem (6.11).
Then, we need the following natural result whose proof is left to the reader.

Lemma 8. A function ,€ H3(Q) is a simple singular solution of (6.1) (resp. a
simple limit solution of (6.1)) corresponding to v=v, if and only if (4,u,) is a
simple singular point of F (resp. a simple limit point of F ). In that case, setting

Po=(Xo, —dXo)eV,  F=(E5.ne)eV” (6.12)

4 (.,.)> denotes the duality pairing between any space and its dual
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with
&&= — Ay div(4y, curl X¥),
15 = —Aolgrad y - curl X¥), (6.13)
we have
D,F° $,=0 (D ,FO)*pt =0. (6.14)

Moreover, a simple limit point (Ay,u,) is a nondegenerate turning point of the
Navier-Stokes problem if and only if (1,,u,) is a nondegenerate turning point of
F. n

Note that, by normalizing the eigenfunctions ¢, and @¥, we obtain the
eigenvectors ¢, and ¢f of the abstract theory. On the other hand, since

XE 4+ A, R(div {4y, curl X¥)—A(grad - curl X§)=0,
it follows from (6.13) that
XE=R(E—Ang). (6.15)

Assume that ¥/, is a simple limit solution of (6.1) corresponding to v=v,.
Then, by the results of Sects.2 and 3, there exists a unique branch
{(Mo), Y(@)); fx| =g} of solutions of (6.1) in a neighbourhood of (4,,,) in
R x H3(Q) with 2(0)=4,, ¥(0)=1,; or equivalently, there exists a unique branch
A (), u() = (o), — A (o))); lel Sy} of solutions of (6.11) in a neighbourhood
of (Ay, ugy) with A(0)=14,, u(0)=u,. This branch is of class C*.

Let us introduce a mixed finite element method yet considered in [4], [2,
Section 4]. For simplicity, we suppose that Q is a polygonal domain which is
assumed to be convex so that the linear operator Tis continuous from W~13(Q)
into W>3(@Q)x W' 3(Q) (cf. [10], [5]).

Let (Z;) be a family of triangulations of Q made with triangles K whose
diameters are <h. We assume that (7,) is uniformly regular in the sense that
there exist two constants ¢, 7>0 independent of & such that

hy<opg, tTh<hg<h,

where hy is the diameter of K and py is the diameter of the inscribed circle in K.
Then, we define for each integer /=1 the finite-dimensional spaces
0,=0V={0eC’(Q); 0|,eP, forall KeZ,},
?, =2, ={pe@,; 0|, =0}, (6.16)
V,i=VP=0,x ¢,V
where P, denotes the space of all polynomials of degree <! in the two variables
X, X5
Let us define the operator T,: ge W—u,=(y,, w,)=T,geV, by
[Po, - Vodx=(g.¢>  forall ped,
2

(6.17)
[(@,0—Vy, - ¥VOdx=0 forall 0eO,,
Q
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where ¥ stands for the operator grad. Then a mixed finite element approxima-
tion of the Navier-Stokes problem consists in finding a pair u,=(,, w,)eV,
solution of

|

F(hu)=u,+T,G(Au)=0, i= (6.16)

Let us recall the approximation properties of the operator T, (cf. [4], [2,
Lemma 6]).

Lemma 9. Assume that the polygonal domain is convex. Then, we have

'l'in(l) I T"T;.“.Y(W;Vy:()- (6.19)

If geW is chosen in such a way that u=(y, w)="Tg satisfies the smoothness
property ye H** 3(Q)nW*+1=(Q) for some keR with 1 <k<l, we have

NT=T)gly < ChHInhP (Il ices @+ I s 1), (6.20)
where =0if[22 and f=1 if I=1.
We are now able to prove

Theorem 8. Let s, be a simple limit solution of the Navier-Stokes problem (6.1)
corresponding to A,=1/v, and let {{A(x), Y(o); || Sy} be the branch of solutions
of (6.1) such that A(0)=4,, Yy (0)=y,. Then, there exists a neighbourhood ¢ of the
origin in R x W (Q)x [*(Q) and, for h<h, small enough, a unique branch
{{A, (@), ()= (Y (a), w,(0); la] S oo} of solutions of (6.18) such that (4,(x)— A(e),
u, (o) —u(o)e@ for all o)L, where u(a)=(0p(a), w(a)=—AY(a)). Moreover, we
have

a—(A,(a), u,(@)) is a C* functions from [ —a,, +ay] into V; (6.21)

'lll_{lé | zl;go{liﬁ,'"’(d)—l"")(d)! +HIYE (@)~ @ wy @ 622)
+lo (@)= ™ (@) 2} =0,

for all integer m=0.
If, in addition, a—y(a) is a C™ function from [ —o,, + 0]

into H*+3(Q)nW*+ 1 =(Q) for some keR with 1 <k <, we get the estimate

|27 (@) = A ()l + 1™ (@) = ¥ (@ 4
+llp () — 0™ (@) 2y S CH*|In kY, (6.23)

where B=0 if I<2 and f=1 if I=1 and C is a constant independent of h and
ael —ag, %ol

Proof. Let us check the hypotheses of Theorem 3. First, the properties (2.7) and
(3.1) follow from Lemma 8. Next, we may write G(4, u)=AH (1) where Hisa C”
quadratic mapping from Vinto Wand D*H is bounded on all bounded subsets
of V. Moreover, (2.27) holds by Lemma 9. Hence, we may apply Theorem 3: the
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desired results are therefore consequence of Lemma9 again and the fact that
u(o) = — TG(A(a), u(z)). A

We conclude this section by considering the case of a nondegenerate turning
point of the Navier-Stokes problem. We begin by a preliminary result. Let
g.g*eW,; we set

Tg=Ww), Tg*=@W* 0%, T,g=W, o) T,g"=} o).
Lemma 10. We have for all 0, 0*€0,
<!//~lﬁ;.»g*>=!§2{7(l/l—¢h)'V(w**O*HV(!//*—l//;“)'V(w—9)

+o— o) 0* —o*)+H(w* —of) (0 —o)+(o—o) (0 *—of)} dx.
(6.24)

Proof. Using (6.2), (6.9) and (6.17), it is an easy matter to check that the following
properties hold:

(i) Vo—w,) Vodx=0
i for all pe@,,
(i1) fV(w*—of) Vedx=0
_ ° (6.25)
(iif) (VW —y,)-V0dx=[(w—w,) fdx
. ° ° for all fe@,.
(iv) [V p*—yt)-Vodx = [(w* —w}f)0dx
Q Q
We have

=g === 4™ = [V —¥,) - Vo*dx

so that we obtain for all (*€®,
W=, 8=V —) ¥ (0*— 0% dx+ [Py —y,)-V0*dx.  (626)
Q 2

Next, using (6.25) (ii1) with 0 =0*, we get
[P —y,) V0*dx={(0—w,) 0% dx
Q 0

6.27
= [(w—w,) (0* —0*)dx+ [0 —w,) 0*dx. (627)
o o

Using (6.25) (1) with ¢ =y gives
flo—w)o*dx=[V(io—w,) Vy*dx=[V(io—w,) V*—yFdx.
2 2 2

Hence, by (6.25) (iv), we obtain for all He@,

j(w—wh) w*dx= j Viw—6)-V(y*—ykydx+ f(@—a)h)(co*—w,’}‘)dx. (6.28)
o] Q o

Now, (6.24) follows trivially from (6.26), (6.27) and (6.28). W
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We can now state

Theorem 9. Assume the hypotheses of Theorem 8. Assume in addition that (44, )
is a nondegenerate turning point of the Navier-Stokes problem. Then, the approxi-
mate problem (6.18) has a unique nondegenerate turning point (A, up =2, wd))eR
x V, in a suitable neighbourhood of (1,,uy)=(Ay, Wo, wo=—~4Y)) in RxV.
Moreover, we have

)l.iné {M;?_/lol + IW;? — Yol wieyt ”w;?_wo”l,z(m} =0. (6.29)

If, in addition, a—y(0) is a C!' function from [—og,0a,] into
H** 3 Q)n W+ 1 =(Q) for some keR with 1 <k <1 we get the estimate

A2 = Aol + ¥ —¥ollwe @ T o} =@l = CH*~ Hln hP, (6.30)

where f is defined as in Theorem 8. Furthermore, we obtain if the functions ¥, X%
belong to H*+2(Q)nW*+1-*(Q)

Ch*=1  if 122

. 6.31
Chi=¢  if =1 (63D

Mg _'10|§{

Proof. The first part of the theorem together with the bound (6.30) follow
immediately from Theorem 4 and Lemmata 8 and 9. It remains only to check
the bound (6.31).

For the sake of simplicity, we restrict ourselves to the case [=2.

Then (6.31) will be a consequence of Theorem 5 and Lemma 9 if we show
that the two following estimates hold:

IK(T=T,) G, )= Ch** 1, (6.32)
I(T~T,)D, G°1* plly. = Ch*~?, (6.33)

where ¢f =p@¢¥, ¢ being given by (6.12) and (6.13) and u being a normalizing
factor. We first notice that

I(T—T,) D,G°1* ¢¥lly = sup IK(T=T,)D,G" -, 98>
flollv = 1

Hence, in order to prove (6.32) and (6.33), we need to estimate expressions of
the form

AT-T,) g ¢5>. geW.
Given ge W, we set:
Tg - (d” CO), Th g = (Wh’ wh)

Using (6.13) and the regularity hypotheses on the functions ¥, and X%, we have
n¥e H¥Q). Thus, we may write

UAT=T,) g @3> =<¥ = E§ ~ AN +<¥ =¥y, AnG) +<w —w,, 15). (6.34)
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Let us first derive a bound for [{y —,, £& —Ani>]. We set:
gr=0"—dng,  Tgr=* 0%,  Tg* =5, o).

Using (6.15), we have y*=X3¥, w*=—A4X%. Moreover, by Lemma 10, we
have, for all 6, 0*c@®,

l<‘// ’_\//ha é)ok —4 ’1>‘0<>| § “‘/f *'l’;.Hm(Q)Hw* _G*HH‘(Q)+ ”‘/’* _‘j/:”mm)nw_ 6“H1<9)
+ Hw_wh”u(m”w* ——G*HLZ(Q)+ [ w* “w;T”LZ(Q)”w_ QHLZ(Q)

+ ||(,L)—wh||1‘2(g)“w* _a):”Lz(Q)' (6.35)

On the other hand, using (6.17) and w= — A4y, we may write for all {8,
= AnE) +{0—wpnE> =~ [V =) V(n§ — ) dx
0
+ flw—w,) (15 —)dx,
2

so that

[~ A0 +<o~ @y, 1 S W =¥l gy 118 — Ll
+llew — ] LZ(Q)H’r’O‘ = L2(Q)- (6.36)

Thus, combining (6.34)-(6.36), we get for all 6, 6%, (e®,

K(T-T) g 0| S W =¥l i@ 0* — 0% |l 10+ 108 — Ll 1 2)
+ |W*_‘//;T”H!(Q)“w“euul(m‘*'||(U_whHLZ(Q)
+ (lo* =0 L2y + 118 — Ll L2() (6.37)
+ * _w;THLZ(Q)”(U_ 9“1}(9)

+ ffw — | 1)(9)“03* _w:”LZ(Q)'

Were are now able to obtain (6.32) and (6.33). First, we choose in (6.37) g=
—G° so that Y=y, o= —AY,. Since the functions =y, and Y* =X} belong
to H*(Q), we have by [4, Remark 6.1]

I —Wll gy + 1 * = ikl gy ) < CRE
Thus, it follows from (6.37) that we have for all , 6*, (c®,

[K(T—T,) G®, 31 Ch M {h [ —0l| s+ 00— 01l 2
Fhl@* = 0% o)+ l0* = 0% Loy + BINE — Ll sy + 1178 — Ll 20y +HES-

Since @, w*, nEe H*(Q), the bound (6.32) is a consequence of the previous
inequality and standard approximation results.

In order to derive (6.33), we choose in (6.37) g=D,G°-v,veV. We observe
that Tge H*(Q) x H' (). Then using Lemma 9 and the same technique as above
gives the desired estimate. W
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