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Summary. We continue here the study of  a general method of  approxima-  
tion of nonlinear equations in a Banach space yet considered in [2]. In this 
paper, we give fairly general approximat ion results for the solutions in a 
ne ighborhood of  a simple limit point. We then apply the previous analysis 
to the study of  Galerkin approximat ions  for a class of  variationally posed 
nonlinear problems and to a mixed finite element method for the Navier-  
Stokes equations. 

Subject Classifications: AMS (MOS):  65N30,  C R :  5.17. 

1. Introduction 

Consider  nonlinear problems of  the form: 

F(2, u ) = 0 ,  (1.1) 

where F is a sufficiently smooth  function from IR x V into V for some Banach 
space V. In the first paper of  this series [2], we have studied the numerical 
approximat ion  of  branches {(2, u()0); 2cA} of  nonsingular  solutions of  problem 
(1.1), where A c IR is a compact  interval. We now turn to the approximat ion  of  
singular solutions such as limit points and bifurcation points. 

In this paper, we shall be concerned with the approximat ion  of  the solutions 
of  (1.1) in a ne ighborhood  of  a simple limit point  (2 o,u0) of F, i.e. a point  
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(20, Uo)elR x Vwhich satisfies the following properties: 

F(2 o, Uo)=0; (1.2) 

DuF(2 o, Uo) is singular and 

dim Ker (D,F(2 o, Uo) ) = codim Range (D,F(2o, uo) ) = 1; (1.3) 

D~ F(2o, Uo) ~ Range (D, F(2 o, Uo) ). (I .4) 

The third paper of this series will be devoted to the study of simple 
bifurcation points in the general case and in the presence of symmetry proper- 
ties. 

As in [2], we shall give a fairly general analysis in order to include various 
approximation schemes such as conforming finite element methods or mixed 
finite element methods. Moreover, our results can be extended so as to cover the 
cases of finite element methods with numerical integration and finite difference 
methods; in that direction, we refer to [11] which improves and generalizes the 
difference results of [13]. 

An outline of the paper is as follows. In Sect. 2, we consider a simple singular 
point (2o, Uo) of F, i.e. a point which satisfies the conditions (1.2) and (1.3), and 
we derive the corresponding bifurcation equation. Then we introduce a general 
method of approximation of problem (1.1) and we establish various results 
concerning the approximation of this bifurcation equation. These results will be 
constantly used in the subsequent sections and the part 3 of this series of papers. 
In Sect. 3, we assume that (2o, Uo) is a simple limit point of F so that there exists 
a unique branch {(2(~),u(~)); Ic~]<~o} of solutions of (1.1) passing through the 
point (2o, Uo). We then show that the approximate problem has a unique branch 
{(2h(a),Uh(a)); [a[<~0} of solutions in a neighborhood of (2 o, Uo) and we give 
estimates of 12h(c~ ) -  2(~)1 + II u(cQ-Uh(e)llv which are uniform in the parameter a. 
In Sect. 4, we suppose that (2 o, Uo) is indeed a nondegenerate turning point; we 
prove that the approximate problem has indeed a unique turning point (2 ~ Uh ~ 
in a neighborhood of (20, Uo) and we derive estimates of 12 ~  2ol and o kiuh -uollv- 
In Sect. 5, we apply the above results to the Galerkin approximations of 
nonlinear variational problems. We then obtain generalizations of the results of 
[ 7 - 9 ] ;  see also [3]. Finally, Sect 6 is concerned with the analysis of a mixed 
finite element method for the Navier-Stokes equations in a stream function- 
vorticity formulation yet considered in [2]; for a related work, see [12]. Let us 
point out that the techniques developed in Sect. 6 may be adapted for analyzing 
various mixed finite element approximations of other nonlinear problems. 

For the numerical computation of the turning points of the discretized 
problems, see [6] and the references therein. 

2. General Analysis of Simple Singular Points 

2.1. A Preliminary Result 

Let us first state an useful version of the abstract results of [2] concerning the 
approximation of branches of nonsingular solutions of nonlinear problems. This 
preliminary result will be of constant use in all the sequel of this paper. 
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Let X, Y, Z be three (real) Banach spaces and q~ be a C" mapping (r > 2) from 
B x  Y into Z where B is a bounded open subset of X. We shall denote by 
DcI)(x ,y)eL~(XxY;Z)  the total derivative of q~ at the point (x,y) and by 
DxcI)(x,y)eS~(X;Z ) and D~,eb(x,y)eLP(Y;Z) the corresponding partial deri- 
vatives. We shall also denote by D~q~(x,y)eLP~(X x Y;Z), 2<l<r ,  the l-th total 
derivative of ~b where 2-w~(X x Y;Z) is the space of all cont inuous /-linear 
mappings from X x Y into Z. 

Theorem 1. We assume that the mapping D'cI) is bounded on all bounded subsets of 
B x Y. Let g be a bounded C~functionfrom B into Ysuch that, for all xcB,  the two 
following properties hold: 

4~(x, g(x)) = 0 ;  (2.1) 

D ~, ~(x, g(x)) is an isomorphism from Y onto Z with 
(2.2) 

II Dy @ (x, g (x))-- i]l ~(z; Y) ~ c. 

For each value of a parameter h > 0, let q~h be a C ~ mapping from B x Y into Z 
such that 

(i) lim sup [IDZcb(x, y)-D~cbh(x, Y)ll.~,tx • Y:Z)=0, 0_< I<_r- 1, (2.3) 
h ~ 0 (x, y)e~ 

(ii) sup II D'q~hl[~erlX • V;Z < C(C independent  of  h) (2.3) 
(x, y)E~ 

.['or all bounded subset ~ ~ B x Y. 
Then there exist two constants a and h o > 0  and, .for h<=h o, a unique C ~ 

mapping ghfi'om B into Y such that we have for all x e B  

~h(x,  gh(x)) = O, 
II gh (X) -- g (X)!l y < a. (2.4) 

Moreover, we have for all x , x * e B  and all integer m with O < _ m < r - t  the 
following error bound 

(i) IID~gh(x*)- O~g(x)ll~,,~x:y~ 

<K{llx*-x ?lld~Txt g(x))) ~e,r } , (2.5) _ I1 x + , ~ o  (~(x ,  g ( x ) ) - , G ( x ,  

(ii) sup II O~gh ]l~,4x; v> ~ K ,  (2.5) 
x~B 

where Dmgh and D"g are the m-th derivatives of g h and g respectively and K > 0  is 
a constant independent of h. 

Proof. Let us first check that, for h<h  o small enough and xcB,  Dy~h(X, g(x)) is 
an isomorphism from Yinto Z. In fact, we may write 

Dy@h(X, g(x)) = Dyeb(x, g(x))(I + Ah(X)), 

where 

An(x ) = Dye(x ,  g(x))- ~(D,.Cbn(X, g ( x ) ) -  DycI)(x, g(x))). 
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Using (2.2) and (2.3), we get for h < h 0 

sup I1An(x)ll~lv; y)<�89 
x~B 

Hence, I+Ah (x  ) is an isomorphism of  Yand we have for all x e B  

1 
liD, Oh(x, g(x))- ~ IIs~(z; v) < ~- 1 -- HAh(X)H~(y; y ) l i D y ~ ( X ,  g(x, g(x))- 1 [l~z; r)<2c~ 

Next, the mapping D ~ is bounded on all bounded subsets of B x Y, 0 < l < r. 
Using (2.3), we obtain:  

(i) sup ]jDx ~h(X , g ( x ) l l ~ x ; z ~  < c ~ 
xEB 

(ii) each mapping D ~ n ,  0 <l_< r - 1 ,  is Lipschitz cont inuous on all bounded 
subsets of B x Y uniformly in h. 

Since by (2.1) and (2.3) 

sup II q~h (x, g(x))l} z = sup }1 ~b,,(x, g(x)) - q~(x, g(x))][ z--*0 
xeB xcB 

as h ~ 0 ,  we may apply Theorems 1 and 2 of [2]:  there exists a unique C ~ 
function gh from B into Y such that  (2.4) holds. Moreover ,  we have for all 
x , x * 6 B  and all integer m with O<_m<_r-1 

}lDmgh(x) --Dmg(x)l/~m(x; r) 

where the mappings 4 ~ :  (x, y, y~l) . . . . .  ym)eB x Yx Y ( X ;  Y) x ... 
x ~z (X;  Y)~  ~ o  (x, y, y(*l . . . . .  y~) e ~ z ( X ; Z )  are defined by induction 

e~~ y) = 4,h(x, y), 
~(ht + 1)(x, y,  y~l) . . . .  , y(l + 1)) = Dx @~t)(x, y, y( t )  . . . .  , ym) 

l 

+ ~ DW, q)~n ~ (x, y, y(1) . . . .  , ym), y(i + 1); y(O) = y. 
i = 0  

Now, we notice that 

d l 
dx' ,Ph(x, g(x))= 4,~'~(x, g(x), D g ( x )  . . . . .  O'g(x)) 

and 

d l 

Tx'  q,(x,  g(x)) = o, 

so that the estimate (2.5) (i) follows immediately.  The proper ty  (2.5) (ii) is 
obvious. �9 

1 Here and in all the sequel, c, q ,  c2, ..., q ,  . . . ,  will denote various positive constants  independent o fh  
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2.2. The Continuous Case 

Let V and W be two (real) Banach spaces with norms ][-tlv and {]'l[w re- 
spectively. We introduce a C p mapping (p > 1) G : IR x V~ W and a linear compact 
operator  TeSf~(W; V). We set: 

F(2, u) =u  + TG(2, u). (2.6) 

We assume that (2 o, Uo)elR x V i s a  simple singular point of F in the sense that 

(i) F~ Uo)=O, 
(2.7) 

(ii) D , F ~  U o ) = I +  TDuG(2o, Uo)Cs176 V) 
is singular and - 1 is an eigenvalue of the compact  
operator  TD,  G(2 o, Uo) with algebraic multiplicity 1. 

The problem is to solve the equation 

F(2, u) = 0 (2.8) 

in the ne ighborhood  of the singular point (2 o, Uo). 
Let us denote by V' the dual space of  V and by ( ' , ' )  the duality pairing 

between the spaces Vand V'. Then, as a consequence of  (2.7) (ii) and the classical 
theory on compact  operators,  we have 

L e m m a  1. There exist qoocVand qo~eV' such that on the one hand 

D~F~ q)o =0,  II~Oollv= 1, 
(2.9) 

V 1 ~ Ker (DuF ~ = IRq) o, 

and on the other hand 

Moreover, we have 

(D,f~ *- ~ =0, (q~, ~ >  = 1, 

V 2 - Range (D u F ~ ) = { v e V; (v, qo ~) = 0}. 
(2.10) 

v =  v, | v~ 

and D:F ~ is an isomorphism of  V 2. �9 

We shall denote by L=(DuF~ - 1 the inverse isomorphism of D u F ~  
Let us now define the projection opera tor  Q: v ~  V 2 by 

Q v = v - (v, ~o*) q0 o, ve V. (2.11) 

Then the Eq. (2.8) is equivalent to the system 

er(,~, u)=o,  
(2.12) 

(t - Q) ~ (2 ,  u) = 0 .  

Given ue  V, there exists a unique decomposi t ion of  the form 

U = Uo + a~Oo + V, ~ I R ,  v~ V 2. (2.13) 
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Sett ing:  

2 = 2 o + ~ ,  (2.14) 

the first equation of (2.12) becomes 

~(~ ,  c~, v)=0,  (2.15) 

where the C p function .,~: IR 2 x Vz- ,V  2 is defined by 

~(~ ,  c~, v) = QF(20 + ~, u o + c~q~ o + v). (2.16) 

By using (2.7) (i) and Lemma 1, we find that J~(0, 0, 0 )=0  and DroP(0, 0, 0) 
=DuF~ is an isomorphism of V 2. Hence, by the implicit function theorem, we 
get 

Lemma 2. Assume the hypothesis (2.7). Then there exist two positive constants 4o, 
~o and a unique C p mapping v: [ - ~ o ,  40] x [ - % ,  0~0]---1" V 2 such that 

~-(~, ~, v(4, c0) = 0, 
v(0,0)=0. (2.17) 

Hence, solving the Eq. (2.3) in a neighborhood of the singular point (2 o, Uo) 
amounts to solve the bifurcation equation (see [1] for instance for a similar 
approach) 

(I - Q) F ( 2  o + 4, Uo + c(q0o + v(4, c~)) = 0,  

i.e. the equation 

f(~,  cQ-= (F(2o + ~, Uo+C~CPo+V(~, ~)), cp~) =0,  

in a neighborhood of the origin. 
Elementary calculations show that: 

(2.18) 

of 
In Sect. 3, we shall discuss the case where ~-= (0, 0) 4 0. 

c~  

2.3. The Approximation 

Let us next study the finite-dimensional approximation of Eq. (2.8) in the 
neighborhood of the simple singular point (2o, uo). For each value of a real 
parameter h > 0  which will tend to zero, we introduce a finite-dimensional 
subspace V h of the space Vand an operator TheLP(W; l/h). We set: 

Fh(2,U ) = U + T~ G(2, u), 2elR, ue V. 

The approximate problem consists in solving the equation: 

Fh(2, Ua) = O, (2.21) 

(2.20) 

Of 0)=0. (2.19) f(o, O) = ~ ( 0 ,  
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i.e. in finding pairs (2, Uh)elR x V h solutions of (2.21). Let us notice that we can 
equivalently solve the equation (2.21) in IR x V. 

As in the previous subsection, the equation (2.21) is equivalent to the system 

QFa(2, Uh) =0, 
(2.22) 

(I -- Q.) Vh(2, Uh) = ( Fh()~, Uh), ~p* ) q~O = O. 

Setting 

2=)~o+~, 
(2.23) 

Uh = UO + ~PO + Vh, ~ I R ,  Vh ~ V2, 

the first equation of (2.22) becomes 

~h(4, 0~, Vh)=0, (2 .24 )  

where the C r function ~'~h: IR2 x V 2 - , V  z is defined by 

~h(~, C~, V) = QFh(2 o + ~, U o + e(PO + V). (2.25) 

We introduce the C p mapping J:  [ - 4 0 ,  4o] x [ - % ,  %]-~W defined by 

J(~, c~) = G(2 o + ~, u o + ~q~o + v(4, cQ). (2.26) 

Theorem 2. Assume the hypothesis (2.7). Assume in addition that G is a C p 
mapping (p_>2) and the mapping DPG is bounded on all bounded subsets o f  lR x V 
and 

lim IF T -  Thll~e~w: v~ =0.  (2.27) 
h~O 

Then, there exist three positive constants ~o, %,  a and, for  h <= h o small enough, 
a unique C p mapping vh: [ - ~ o ,  4o] x [-c%, c%]-* V 2 such that 

4(4 ,  ~, Vh(~, C0)=0, (2.28) 
Ik v,,(4, c~)- v(4, c~)ll v <a ,  141 < 40, I~1 _-< % 

Moreover, there exists a constant K >0  independent o f  h such that, for  all 
~,~*e[ -4o ,~o] ,  all c~, c~*~[-%,c%] and all integer m with O<_m<_p-1, the 
following error estimate holds: 

(i) liD%d4*, c~*)- Dmv(4, ~ ) 1 1 ~ :  v) 

{ } =<K [~*- r +tc~*- c~l + I[(r-Th)DtJ(~,~)ll~e,~2. v~,  
I=0  

(ii) NDPVh(~*,O;*)II~e,~2;v)~K. (2.29) 

Proof. Since D ~ ( 0 , 0 , 0 )  is an isomorphism of V 2, we may suppose that in 
Lemma 2 the constants 4o and % are chosen in such a way that 

II O ,~ (~, o~, v(~, ~))- a II.~<v~: v~) < e, 131 < ~o, I~1 < % -  
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On the other hand, we have 

~(~,c~,v)--Yn(~,oc, v)=Q(T--Th)G(2o+~,Uo+O~q2o+V). (2.30) 

Hence, it follows from (2.27) that Dl~-~Dl~ in 5~ x V2; V2), O<l<p, 
uniformly on every bounded subset of [ - ~ o , ~ o ]  x [ - % , % ]  x V 2. Therefore, 
we may apply Theorem 1: there exists a unique C p function vh: [ - ~ o , ~ o ]  
x [ -  %, %]  ~ V 2 which satisfies (2.28). 

Moreover, using (2.26) and (2.30), we obtain for ~ ,~*c [ -~0 ,~0] ,  ~,e* 
e [ - % , % ]  and O<m<_p- 1 

][Dm Vh(~ *, c~*) - D ~ v(~, a)ll~e.,(~; v) 

<=K{I~*-~'+I~*-c~I+ ~ IIQ(T- Th)D'J(~'~)II~'('~;v'} 

from which (2.29) follows. �9 

In fact, we shall also need a more specific version of the previous result. Let 
t~(~(t),~(t)) be a pair of C p real functions defined for ltl<to and let 
t~(~*(t), ~(t)) be a family of pairs of C v real functions defined for ]t[ < t  o which 
satisfy for h < h o 

Lemma 3. Assume 
O<=m<=p-1 

sup I~(t)t =< go, sup Ir go, 
]tl<to ]tl~to 

sup ]~(t)[ < % ,  sup [~ '( t )]<%. 
]t[<to ]tl<to 

the hypotheses of Theorem 2. Assume in addition that Jbr 

( d~ ~(t)) + d" ) (i) lim sup (~*(t)-  (or =0  (2.31) 
h ~ O  [ t l<t  0 

d p d e ) 
(ii) sup (~7;~*(t)  + (2.31) itt_-<to\lat ] ~ ( t )  =e  independent of h. 

Then, we get for all t e [ - t o ,  to] and all integer m with O<m<=p-1 

~--fi~(vh(~(t), c(*(t))-v(~(t), ~(t))) v 

~ (I (t)--~(t)) 4- ~t~(CCh*(t)--~x(t)) (2.32) 
d* 

+ (T-  Tn)f~iJ(~(t), ~(t))v} 

Proof. Let us introduce the functions ~ and ~n: [ - t o ,  to] • V2-~V2 defined by 

~(t, w)= ff(r a(t), w), 

r w)=o%(r ~* (t), w). 
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Setting 

we obtain 

w(O = v(~ (t). ~(t)). wdt )= v,(~"; (t). c~ (t)). 

~(t, w(t))= Oh(t, Wh(t))=0, ]tl ~ t o- 

On the other  hand, the constants ~0 and ~o being choosen as in the proof  of 
Theorem 2, 

D w O(t, w(t))= D,,~((( t ) ,  ~(t), v(~(t), ~(t))) 

is an isomorphism of V 2 for ]tl<t o with 

sup ]lDwO(t, w(t)) lll~lv2;v2~<c. 
Itl_-<to 

Furthermore,  we have 

O(t, w ) -  Oh(t, w) = Q ( T -  Th)G(2o + ~(t ), Uo+~(t)~Oo+W ) 

+ Q Th [G(2 o + ~(t), u o + c~(t) qo o + w) 

- G (2 o + ~* (t), u o + ~* (t) (rio + w)]. (2.33) 

Then it follows from (2.27) and (2.31) that D ~ 0h ~ Dr0 in LP~(IR x V2; V2) , 0 <l__< p - 1, 
and DPOn is bounded,  uniformly on every bounded subset of [ - t  o, to] x V 2. 

Now, applying Theorem 1 to the function Oh gives for all t e [ - t  o, to] and all 
integer m with 0 < m < p - 1 

(wh(t)-w(t)) v<C,~-o ~ (O(t' w(t))-~h(t' w(t))) v" 

The estimate (2.32) is a consequence of (2.33) and the previous 
inequality. �9 

By Theorem 2, we see that  solving the Eq. (2.21) in a ne ighbourhood of the 
singular point  (2 o, Uo) amounts  to solve the approximate  bifurcation equat ion 

fn(~, c0 -= (Fh(2O + ~, Uo + c~ q)o + Vh(~, ~)), qO~) = 0 (2.34) 

in a ne ighbourhood of  the origin. Now, in order  to analyze the approximat ion  
of the solutions of problem (2.8) by those of problem (2.21), it remains to 
compare  the solutions of the bifurcation equation (2.18) with those of (2.34). 

~?f (0, 0) 4- 0. The case This will be done in the next section in the case where cT~ 

~ ( 0 ,  0 will be in the 3rd of this series. 0) analyzed paper 

We shall need in the sequel estimates of D"fh(~, o0, 0 < m < p. 
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Lemma 4. Assume the hypotheses of Theorem 2. Then we have for all 
~, ~* ~ [--~o, ~o], ~, c~*~ [--~o, ~o] and all integer m with O<=m<=p- 1 

(i) I[ D~fh(~ *, a*) -- D"f(~, ~) I1.~,.~;~) 

<=K{I~*-~[+I~*-~I+ ~' [I(T- Th)D'J(~'a)[I'%(~2;v'} (2.35) 

(ii) li DPfh(( *, ~*)ll~v(~;~) =< K. 

Proof: We first set 

Jh (~, a) = G(2 o + ~, u o + ~q~o + Vh(~, a)). (2.36) 

By using the definitions (2.6), (2.18), (2.20) and (2.34) of F, f, F h and fh 
respectively, it is easy to check that  

fh(~*, ~*) -- f (~, a) = a* -- ~ + ( (T h -- T)J(~, a), ~p~ ) 

+ (Th(Jh(r a*) -- J((, ~)), q~*), (2.37) 
and 

Dmfh(~ *, ~*) -- D"f(~, ~) = ( (T  h - T) D"J(~, ~), q~) 
m ~ ~ m +(Th(D Jh(~ ,~ )--D J(r t < m < _ p - 1 .  

By (2.27) and the boundedness of the mapping D~G, t <_l<_m+ 1, we obtain 
for 0_< m _ < p -  1 

IIDmfh(~ *, ~*)-- Dmf (~, ct)tl~(,2;al 

< c~]~* -- ~] + [~* -- al + ~ ]D ~ Vh(~*, a*)-- D ~ v(~, V) 
1=0  

+ II(T-Th)D J ( ~ , ~ ) l _ ~ ; v )  - 

so that  the estimate (2.35) follows from Theorem 2. [] 

Again, we shall need a more specific estimate. Introducing as in Lemma 3 
the pairs of functions t ~(~(t), a(t)) and t-~(~(t) ,a*(t)) ,  we have 

Lemma 5. Assume the hypotheses of  Theorem 2 together with (2.31). Then, we get 
for all t e l - t o ,  to] and all integer m with O<_m<_p-1 

(fh(~(t), a~(t)) a(t))) at --f(~(t), 

=o~{ f--~(~(t)--~*(t)) ~ d~ <= K ~= + (a(t) - a*(t)) (2.38) 

+ (T-Th)~--~J(((t)'a(t))v}" 
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Proof. It follows from (2.37) that 

fh(~*(t), a*(t))-- f (~(t), a(t)) 

= a ' t ) -  ~(t) + ( (T  h - r)J(~(t), ~(t)), ~p~) 

+ (Th(Jh(~*(t), ~*(t)) -- J(~(t), o~(t)), (p~). 

Differentiating m times the above expression and using (2.27) together with 
the boundedness  of D*G, 1 <_l<_m+ 1, gives 

~-t,,(,~(~*(t ), ~*(t))- f(~(t), a(t))) 

d I d l 
<=ct~=o { ~l-~(~*(t)--~(t)) + -~(c~(t)--c~(t)) 

+ ~(Vh(~*(t ), ~(t)) -- V(~(t), 0C(t))) V 

Hence the estimate (2.38) follows from Lemma  3. �9 

3. Simple Limit Points 

3.I. The Continuous Case 

Let us consider again problem (2.8). F rom now on, we shall assume that  (2 o, Uo) 
is a simple limit point of F, i.e. a simple singular point of F which satisfies in 
addit ion 

D~ F ~ - D~F(2 o, Uo) r Range (D, F~ (3.1) 

Let us state the following classical result 

Lemma 6. Assume the hypotheses (2.7) and (3.1). Then there exist % > 0  and a 
unique C p mapping ~ c [ - % , ~ o ]  --*~(~)~IR such that 

f(~(~), ~) =0,  }~1<~o, 
3(0) =0.  (3.2) 

Hence, there exists a unique branch {(2(a),u(~)); ]a]<ao} of solutions of(2.8) in a 
neighborhood of  the simple limit point (2o, Uo) , where ~ --* 2(a) and ~ ~ u(~) are C v 
functions given by 

2(~) =20 + ~(~), 
u(~) = u o + ~ ~Po + v(~(a), c 0. (3.3) 

Proof It follows from Lemmata  1 and 2 that the condit ion (3.1) can be 
equivalently stated in the form 

08~f~ (0, O) = (D~ ~o*) + (3.4) F o , 0. 
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Therefore, using (2.19) and applying the implicit function theorem to the 
function f give the desired result. �9 

Let us compute the first and second derivatives of the function c~--, ~(~) at 
the origin. First, differentiating (3.2) and using (2.19), we obtain 

~ ( 0 1 = 0 .  (3.51 

On the other hand, by differentiating (2.17) with respect to ~ and ~ at the 
point (0,0), we get 

c~v O0 ~.~(,  ) = - L Q D ~  F~ 

(?v (3,6) 
0~ (o, o) = o, 

where L =(D,F~ - ~. Then, differentiating (3.2) twice and using (3.5) and (3.6), 
we find after straightforward calculations 

d2~ (0)= - < D z F  ~ qo~> t <D2.F~ o, r q~*>, 
d~x 2 (3,7) 

where D,2,,F~ V) denotes the second partial derivative of F 
with respect to u at the point (2 o, Uo). 

When 2 o ( D , , F  ,(q~o,~Oo),~0~> is =I=0, the point (2o,Uo) is called a nondegenerate 
turning point or a normal limit point of F. In that case, we have the following 
diagram for the branch of solutions of (2.8) 

u 0 

) '0  

3.2. The Approximation 

We now want to establish the existence of a branch of solutions of the equation 
(2,21) in a neighbourhood of the branch {(2(c0, u(@; [~l < %} of solutions of (2.8), 
at least for h < h  o sufficiently small. To do that, we begin by considering the 
approximation bifurcation equation (2.34). 

Lemma 7. Assume the hypotheses of  Theorem 2 together with the condition (3.1). 
Then there exist two positive constants %,  b and, for h < h o small enough, a unique 
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C p mapping a 6 [ - a o , a o ]  ~ h ( a ) e I R  such that, for la]<_a o 

L(G(~) ,  ~) = 0, 

I~, ,(~)-  ~(~)1 _-< b. 
(3.8) 

Moreover, there exists a constant K>O independent of h such that, for all 
c~c [ -  Cto, %] and all integer m with 0 < m <= p -  1, the following error estimates hold: 

d m ~ d l 
(i) ~ (~h(~)-- ~(C0) I < K ,~o ( T -  T h ) ~  G(2(a), u(c0) v' 

(3.9) 
A P  

(ii) ~ ~h(c~) < K. 

Proof. Lemma 4 together with (2.27) and Lemma 6 enables us to apply 
Theorem 1: there exists a unique C p function ~h: [ - -%,  %] ~ IR which satisfies 
(3.8). Moreover, we obtain for I~1 < %  and O < m < p - 1  

,, d l 
d~-~ (~h(e)--~(a))<Ct~ ~ ~-ff(f(~(a),a)--fh(r (3.10) 

The estimate (3.9)(i) follows from (3.10) and Lemma 5 used with t=a(t)=a*(t)  
= e and ~(t)= ~*(t)= ~(a). The estimate (3.9)(ii) follows from Theorem 1. �9 

We define the pair of C p functions a e [ - % , % ]  ~(2h(a ), Uh(a))eIR x V by 

&(~) = ~-o + G ( ~ ) ,  (3.11) 
uh(~) = u o + ~ qo + vh(G(~), ~). 

We have 
F~(X~(~), uh(~))  = O, Ic~l ~ %, 

so that {(2h(cO, Ua(CO); I~1_-<%} is a branch of solutions of problem (2.21). Let us 
denote by 2(")(~), u~')(~), 2~m)(a), U~hm)(cO the m-th derivatives of the functions 2(c O, 
u(c0, ,~h(~), uh(c~). 

We can now state our main result. 

Theorem 3. Assume the hypotheses of Theorem 2. Assume in addition that the 
condition (3.1) holds. Then the approximate problem (2.21) has a unique branch of 
solutions {(2h(O:),Uh(O0);lO:l<O:O} in a neighbourhood of the branch of solutions 
{(2(c0, u(a)); [el <:Cto} of the continuous problem (2.8). 

Moreover, these branches of solutions are of class C p and we obtain for all 
c t~[-ao ,  %] and all integer m with O<_m<_p-1 the error estimate 

t,~km ~(~) - ,~(m'(~)l + II u~ m~ (c0 - u(m~(~)II v 
,, d t 

__<K ~ ( r -  Th)d-~ G(2(a),u(c0) v" (3.12) 
/ = 0  

Proof. The first part of the theorem follows from Lemma 7. The estimate (3.12) 
will follow from (3.9)(i) if we prove that we have for O<_m<_p-1 
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s v(~(~),c0) v 

But this a direct consequence of the estimate (3.9) and Lemma 3 used with t = c~(t) 
=~*(t)=~, ~(t)=~(~), ~ ( t )=~(~) .  �9 

In order to get practical bounds for the error I2~")(a)-2I")(~)l+llu~m)(cO 
-u(m)(c~)JIv, it remains to estimate the right-hand side member of (3.12). We 
observe that 

u(c0 + G(;t(~), u(c0)= 0 
and therefore 

d l 
T ~ - ,  G(Z(c 0, u(c~)) = - u(')(c~). (3.t 3) 

In Sects. 5 and 6 where we consider Galerkin or finite element approxi- 
mations of nonlinear boundary value problems, using (3.13), we shall obtain 
such estimates by only assuming that the solution u(a) is "sufficiently smooth" 
together with its derivatives u(~ 1 -< l _  m. 

4. Nondegenerate Turning Points 

In this section, we assume that the simple limit point (2 o, uo) is a nondegenerate 
turning point, i.e. (2 o, Uo) satisfies the conditions (2.7), (3.1), and 

2 0 {D~,,F -(~Po, ~Po), ~Po) ~ 0. (4.1) 

In this case, using (3.5) and (3.7), we have 

_ _  d 2 ~  
d~ (o)=o, d~(O)+O, 
da 

so that the function a ~ ~(a) has a local maximum or minimum at the point 
= 0 .  

Assume that G is a C p mapping with p >= 3. Then it follows from the estimate 
(3.9) used with m=0,  1,2 that there exists an interval [ - a l , a l ]  and, for h < h  o 
small enough, a unique value a ~  %] such that 

limao = 0, 
h~O 

d~(~~ 

d ~ h ( ~  ) > e > 0  for all c ~ [ - a , , c q ] ,  (4.2) 

where the constant e is independent of h. 
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We set: 

2 ~ = 2 h (c~~ u ~ = Uh(C~O). (4.3) 

We can easily check that the point "~ o (z h, Uh) is indeed a nondegenerate turning 
point of F h. 

Theorem 4. Assume the hypotheses of  Theorem 3 with p>  3. Assume in addition 
that the condition (4.1) holds. Then for h < h  o small enough, we have the error 
estimate 

1 d t 
t 2 ~ 1 7 6 1 7 6  ( T - T ~ ) J ~  zG(2(a)'u(ct))l'~~ v' (4.4) 

where K is a positive constant independent of  h. 

Proof  We get from (4.2) 

l~Ol_<_e-, d G ( 0 ) = ~ - 1  d ( G ( 0 ) _ ~ ( 0 ) ) .  

U s i n g  Lemma 7, we obtain 

( T -  dt G('~(ct)'u(cQ)[~=~ v" Ice~ cl ~ Th)~j  (4.5) 
/ = 0  

Next, we write 

0 

and, using again Lemma 7 and the estimate (4.5) together with the uniform 
boundedness of d~h/dC~, we find 

( T -  d~ G(,~(cO, u(~))t~= o - I~~ =< c2 ~ Th) ~-~l 
1 = 0  

Similarly, the function duh/dC~ is uniformly bounded and 

II u ~ - Uo It v =< II u , (~  ~ - uh(0)II v + i[ u~(0) - u(0)II v 

< c3}c~~ + 1{ uh(0)- u(0)H v- 

Hence, using (4.5) and Theorem 3, we obtain 

i d z 
{{u~ ~ ( T -  Th)~7~l G(R(c0, u(c0)l~= o v" 

This proves the theorem. �9 

In many cases the above error bound for I,~~ can be improved. We set 
GO= G0to, Uo), D,,G ~ =DuG(2 o, Uo) and we denote by [ ( T - T h ) D , G ~  V') 
the adjoint operator of ( T - T h ) D , G ~  V). 
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Theorem 5. Assume the hypotheses of  Theorem 4. Then, for h ~ h o small enough, we 
have the error estimate 

1tl~ =< K { I ( ( T -  Th)G ~ (p~)J 

+ [](T- Th)G~ v - ][ [ ( T -  Th)D,,G~ * ~o~][ v, 

~=o (T-- Th) d~G(2(,),u(~))]~=o ~. (4.6) +l= 

Proof. By the uniform boundedness of the function d2~h/d~ 2, we have 

< I~d0)l + ~ (0) (.oj + CO[0~O[ 2 

so that by Lemma 7 and (4.5) 
1 d z 2 

< ]~h(0)[ + C, t~0 (T-- Tn) ~ G(2(a), u(a))[~ = o v" (4.7) 

Let us next give an estimate for ]~h(0)l. The bound (3.10) with m = 0  gives 

I~,(o)J < c21A(o, o)j. (4.8) 

On the other hand, using (2.37) with ~ = ~ * = c ~ = a * = 0 ,  we get 

fn(0, 0) = ((Th-- T)G ~ ~0") +(Th(G(2o,Uo+vh(O,O))--G~ q)*) (4.9) 

The error estimate (4.6) will follow from (4.7), (4.8)  a n d  (4.9)  if we check that 

1( Th(G().o, u o + Vh(0, 0)) -- GO), cp~)[ 

~c3I](T-- Th)G~ Th)G~ + ][[(T- Th)D~ G~ ~o*[]v,}. (4.10) 
In fact, we have 

]( Th(G(2o, u o + Vh(O, 0))-- GO), q~)  

<= [( ThD,, G O. vn(O, 0), ~o~)] + c4 [[ Vh(O, 0)]j 

<= [(TD.G ~ Vh(O, 0), ~P*)I + ]((Th-- T)D~ G~ Vh(0, 0), ~p~)] 

+c411vd0,0)ll~. 
Thus, we obtain 

I( Th (G(2 o, u o + Vh(O, 0)) -- Go), ~o~)l < t( TDu G ~ Vh(O, 0), qO~ )] 

+ Cs I] Vn(O, 0)]] v([[ vh(O, O)1[ V + [] [(Tn -- T)D,, G ~ qo* ]l v')- 

Since Vh(O ,0)~ I/2, we have by Lemma 1 

( TD, G ~ . vn(O , 0), q)'~) = ( D~F ~ . vn(O, 0), q~) = O. 

Moreover, we have by Theorem 2 used with m = ~ * = ~ = a * = a = 0  

IlVh(O, O)Nv < c61l( T - Th)G~ 

Hence (4.10) is proved. �9 
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Remark. It is worthwhile to notice that the results of  Theorem 3 can also be 
obtained in a more  direct way. In fact, let us consider the functions fr and N~: IR 
x IR x V 2 ~ IR x V 2 defined by 

~(~,~,v)=(QF(2o+~,Uo+C~qOo+V), (f(2o+~,Uo+C~q~o+V),~o~)) 
and 

Nh(c~, ~, v) = (Qfh(2 o + ~, u o + e ~Po + v), (F(2 o + ~, u o + ~ qo o + v), (p3)). 

Clearly, problems (2.8) and (2.21) are respectively equivalent to 

f4(cr ~, v) = 0  (4.11) 
and 

Nh(~, 4, v) = 0. (4.12) 

Now, it is easy to check that N(0 ,0 ,0 )=0  and DI~,r is an isomor- 
phism of IR + V 2 so that (0,0,0) is now a nonsingular point of N (for a related 
approach,  see [6]). Moreover  DZNh--*D~N uniformly in a ne ighborhood of 
(0,0,0), O<l<p. Hence, applying Theorem 1 to (4.11), (4.12) gives (3.12). 

However,  using this approach,  the proof  of  Theorem 5 appears to be more 
complicated. Furthermore,  the results of Lemmata  3-5 wilt be constantly used in 
the third paper of  this series devoted to the study of  bifurcation points. �9 

5. Application I: Galerkin Approximation of Nonlinear Problems 

In this section, we want to apply the above results to a class of  conforming 
approximat ions  of  variationally posed nonlinear problems. 

Let V and H be two (real) Hilbert spaces with scalar products  ((. , .)),  ( . , .)  
and norms II. N, 1. I respectively. We suppose that  V c  H with cont inuous imbed- 
ding and V is dense in H. If  we identify H with its dual space H', we have V c  H 

V' with densely cont inuous imbeddings and the scalar product  ( . , . )  may also 
represent the duality pairing between the spaces V and V'. 

Let W be a reflexive Banach space such that H c W c  V' with cont inuous 
imbeddings. We assume that the canonical  injection of W into V' is compact a. 
We introduce a cont inuous bilinear form a: V x V ~ I R  and a C p mapping  
( p > 2 ) G : I R x V ~ W .  Then we consider the nonlinear problem:  Find pairs 
(2, u)~IR x V solutions of 

a(u,v)+(G(2,u),v)=O, VveV. (5.1) 

We further assume that the bilinear form a is V-elliptic in the sense that there 
exists a positive constant  7 such that 

a(v,v)>y]lv[I z, VveV. (5.2) 

We can now define the operators  T, T * e Y ( V ' ;  V) by 

a(Tfv)=a(v,T*f)=(fv) ,  VveV, VfeV'. (5.3) 

2 This implies that the canonical injection of V into H is also compact 
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and 

Clearly, we have 

Then an equivalent  form of p rob lem (5.1) consists in finding pairs (2, u)EIR 
x V solutions of  

F(2, u) ~ u + TG(2, u) = 0. (5.4) 

Next,  we are given a family { Vh} of f ini te-dimensional  subspaces of  V and we 
consider the approx ima te  p rob lem:  Find pairs  (2,Ua)elR x V h such that  

a(Uh,Vh)q-(G(2, Uh),•h)=O, V~)hEV h . (5.5) 

Let us define the opera tors  I I h e ~ ( V ;  Vh) and TheL, q~(V'; Vh) by 

a(I-lhU--U,t;h)=O, VVhffVh, V u e E  (5.6) 

a(ThfVh)=(fVh) ,  VvheVh, V feV ' .  (5.7) 

T~ =- Hh T, (5.8) 

and p rob lem (5.5) consists in finding pairs (2, uh)elR x V solutions of  

Fh(2, Uh) =-- U h + T h 6(2,  Uh) = 0. (5.9) 

Assume that  for all v e V  

t im inf IIV--VhN =0.  (5.10) 
h~O vheVh 

Then, as an easy and classical consequence of (5.2) and (5.6), we have 

lim jlV-HhVlI =0,  VveV. 
h~O 

Moreover ,  since TeLP(W; V) is compact ,  we obta in  

lira II T -  rhll~<w; v> = lim I1(I - H h )  r II.~(w; vl = O. 
h~O h~O 

Now, we suppose tha t  (2 0, Uo)~lR x V is a simple singular point  of F and we 
choose q~o and q~* as in L e m m a  1. It is an easy ma t t e r  to check that  (po~V is an 
eigenvector  cor responding  to the eigenvalue # = 0  (with algebraic multiplici ty 1) 
of  the linearized var iat ional ly  posed e igenproblem:  Find p~lR and q0cV,, q~=t=O 
such that  

Setting 

we check that  
e igenproblem 

a(rp, v)+(D,G~ v)=t.t(q),v), Vv~V 3 

O~=T*q,* ,  

~p~EV is the e igenvector  of  the adjoint  

(5.11) 

(5.12) 

variat ional ly  posed 

a(v, tp*)+(DuG~ V v e V  (5.13) 

3 Usually, one proceeds to the comptexification of the spaces E H and W and one looks for 
eigenvalues ge(I2. But this is not necessary here 
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such that 
a(~Oo, 0~) = 1. (5.14) 

Suppose that the condition (3.1), or equivalently the condition 

D G O ,/,*~ ,~-oi+0 (5.15) 

holds, i.e. (2 o, Uo) is a simple limit point of F. Then, there exists a unique branch 
{fit(c0, u(c0), Ic~l < %} of solutions of (5.1) (or (5.4)) in a neighbourhood of (2 o, Uo). 
This branch is of class C p and may be parametrized as in (3.3) with 2(0) 
= 2 0 ,  u (0 )  = u o. 

Theorem 6. Assume that G is a C p mapping (p>2) and the mapping DPG is 
bounded on all bounded subsets of  IR x V. Assume in addition that (2o,Uo) is s 
simple limit point o f F  and that the approximation property (5.10) holds. Then, 
there exists a unique branch {(2h(c0, Uh(C0); [C~I < C%} of solutions of(5.5) (or (5.9)) in 
the neighbourhood of the branch {(2(c 0, u(c0); I~l <~o}- This branch is of  class C p 
and, for all ae[-~Zo,C%] and all integer m with O<_m<_p-1, we get the error 
estimate 

I,~"~(~) - ,~"~(~)1 + II u ~ ( ~ )  - u~"~(~ll 

__<K ~ inf IIu(I)(0~)--Vht[. (5.16) 
l=Ol3h~gh 

Proof. Let us show that this is a consequence of Theorem 3. In fact, we have 
only to check that for 0 < l < m 

( T -  Th) d ~  t G(2(c O, u(cO) 

But, using (3.13) and (5.8), we get 

d l 
( T -  Th) ~ G(2(c O, u(cO) = 

<c  inf Ilu<'~(~)-vhll. 
vhEVh 

H .  u")(~) -  u" l (~) .  

Since, by (5.2), we have for all ve V 

j l v -Hhv l l<c  inf ilv--vhj I, 
Vh~Vh 

the result follows. �9 

Finally, we assume further the condition (4.1), or equivalently 

(D2,, G O. (~Oo, Oo), 05)* 0, (5.17) 

i.e. (2 o,uo) is a nondegenerate turning point of F. By the results of Section 4, 
there exists a unique nondegenerate turning point (2 ~ u ~ of F n in a sufficiently 
small neighbourhood of (2 o, Uo). 

Theorem 7. Assume the hypotheses of  Theorem 6 with p >= 3. Assume in addition 
that the condition (5.17) holds. Then we have the error estimates 

[[Uh ~ l =<K{ inf Iluo-vhll + inf Iluo-vhll} (5.18) 
VhEVh 1)h~Vh 
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and 
] 2 ~  inf IlUo-vhll)2+( inf lluo-Vhll) 2 

Dh~V h Uh~g h 

+( inf I[uo--vhl[) ( inf [[~b~--~ph[[)}, 
vhsVh Oh~Vh 

F. Brezzi et al. 

where u o = ~ (0). 

(5.19) 

Proof. The estimate (5.18) follows directly from Theorem 4, (3.13) and (5.8). On 
the other hand, (5.19) will be a consequence of Theorem 5 if we show that 

]((T- Th)G~ <=c1( inf ]]u o-vh[I)( inf []~b* - ~bh[I) (5.20) 
vh~Vh qth~Vh 

and 
II[(T-Th)G~ inf ItO~-q'hll- (5.21) 

OheVh 

First, using (3.13), (5.3), (5.6), (5.8) and (5.12), we have 

( (T-  Th)G ~ ~o*) = a((I - t L )  TG ~ T*  ~o~) = a ( I L  Uo - Uo, 0 ~) 

=a(H,,uo-uo,~b~-~bh), VtP~e Vh, 

from which (5.20) follows immediately. 
Next, for proving (5.21), we write: 

D o , ~ HE(T-L) ,O ] r  sup [ ( ( T - ~ ) D , G  ~ v,~p~)[. 
v ~ V  

II~ll = 1 

Then, given ve K we have 

( ( T -  Th)Du G ~ v, (p~) = a((I - Hh) TD, G ~ v, T* q~) 

= a ( ( I - H h ) Y D ,  V~ (US--Oh), VOh~Vh, 

SO that (5.21) holds. �9 

6. Application II. A Mixed Finite Element Approximation 
of  the Navier-Stokes Equation 

Let ~2 be a bounded simply connected plane domain with boundary F; we 
consider the Navier-Stokes equations for an incompressible viscous fluid con- 
fined in f2 in the stream function formulation 

vAaO-cur l (AO grad ~ )=  f 

~p=~-~=0 on F, 

in [2, 
(6.1) 

where f is given in H-I(O),  v > 0 is the viscosity coefficient and O/On denotes the 
outer normal derivative along F. Problem (6.1) has at least one solution 
C e H ~ ( ~ ) .  
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We introduce the linear operator 
=~g~HoZ(f2) defined by 

A2~=g 

~ 5 ~ ( H  - 2(f2); Hob(f2)): g~H-  2(~) _~. I/.t 

in (2, 

on F. 
(6.2) 

In addition, we consider the C ~ mapping N:(;t, tp)e]RxHoZ(O)-*N(2, O) 
~H-2(O) defined by 

fg(2, 0) = - 2(curl (A t) grad O) +f ) .  (6.3) 

Clearly, solving problem (6.1) amounts to find OcHg(f2) solution of 

g ( ; .  4,)--- ~, + ~.(~(,~, 4,) =o, 
1 

2 = - .  (6.4) 
v 

Notice that the operator ~D,fr O)eG(~(Hg(f2); H~(f2)) is compact. 
Now, let OoeHZ(f2) be a simple singular solution of (6.1) corresponding to v 

= %. This means that the linearized Navier-Stokes operator 

X ~ Vod2X-curl(A Oo grad X+ AX grad ~o) 

has an eigenfunction Xo~Ho2(O)corresponding to a zero eigenvalue of algebraic 
multiplicity 1, or equivalently X o is an eigenvector of the compact operator 
~D~,N(2 o, ~9o) corresponding to the eigenvalue - 1 of algebraic multiplicity 1. 

We denote by X~eH2(f2) an eigenfunction of the formal adjoint of the 
linearized Navier-Stokes operator 

X -* voA2X+ div(A ~9 o curl X ) -  A grad q/0 - curl X) 

corresponding to the zero eigenvalue. If Dole(2 o, ~o)*eGP(HZ(Q); H-2(O)) is the 
adjount operator of D~fr Oo), then X~ is an eigenvector of the operator 
/~Do.C#(2o, t/Jo)* corresponding to the eigenvalue - I. Note that (NDoN(2 o, qJo))* 
=DON(2 o, tpo)*~e~(H-2(O);  H-2(~)) is the adjoint operator of ~ D ,  qd(;t o, ~o) 
and ~ - l X ~  is an eigenvector of (~Dq, N(2 o, ~9o))* corresponding to the eigen- 
value - 1 .  According to Lemma 1, we may choose the functions X o and X~ in 
such a way that 

l lXol l , ,~--  1, <Xo,~-~X'&=S~XoAX'~dx=I. 
~2 

(6.5) 

We further assume that ~O o is a simple limit solution of the Navier-Stokes 
equations (6.1) with v=v o in the sense that (,t0,0o) is a simple limit point of ~ ;  
i.e. t)o is a simple singular solution of (6.1) which satisfies 
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or equivalently 

A 0o grad 0o" curl X~ dx + (f ,  X*) + 04 (6.6) 

This limit point  (2 o, 00) will be a nondegenerate turning point of the Navier-  
Stokes p rob lem if in addi t ion we have  

2 0 Z "  (Doo~(2o,Oo).(Xo,Xo), ~- lX~)=#O 

or equivalently 

A X o grad X o" curl X~ dx :f- O. (6.7) 
f2 

For  approx ima t ion  purposes,  we need to introduce another  formulat ion of 
the Navier -Stokes  problem.  As in [2, Sect. 4], we are looking for a pair  u = (0, co) 
where co = - A 0  is the vorticity. We set (with s tandard  nota t ions  for the Sobolev 
spaces): 

V= Wo ~' 4(0) x L2((2), W =  W -  1, -}(~,~). (6.8) 

We introduce the linear ope ra to r  T: H - 2 ( 0 )  ~Ho2((2)x L2(y2) defined by 

Tg = (~'g, - A~'g). (6.9) 

By the Sobolev imbedding theorem,  T belongs also to the space ~ ( W ;  V). 
We next define the C ~176 mapp ing  G: (2, u = (0, co))~IR x V ~ G(2, u)e W by 

G(2, u) = 2(curl(o) grad 0) - f ) -  (6.10) 

Then a pair  u = (0, co)e V satisfies the equat ion 

F(2, u) = u + TG(2, u) = 0 (6. t 1) 

if and only if the function 0 is a solut ion of the Navier -S tokes  p rob lem (6.1) 
cor responding to v = 1/2 and co = - A0. 

Now,  we assume very weak regulari ty hypotheses  on the domain  f2 so that  
e s  1, ~(f2); H 2 + s(~'~)) for some s > 0 and therefore the opera to r  Te  L~(W; V) 

is compact .  
Let 0o be a solut ion of  p rob lem (6.1) cor responding  to v=v o and let (2o,Uo), 

2 o = l / v o ,  u o = ( 0 o , O ~ o = - A 0 o ) ,  be the associate solution of p rob lem (6.11). 
Then, we need the following natural  result whose p roof  is left to the reader. 

L e m m a  8. A function OoeHg(f2) is a simple singular solution of (6.1) (resp. a 
simple limit solution of (6.1)) corresponding to v=v o if and only if (2o,Uo) is a 
simple singular point of F (resp. a simple limit point of F). In that case, setting 

~bo =(Xo,  - AXo)e V, qS~ = ( ~ ,  q~)e V' (6.12) 

4 ( . , . )  denotes the duality pairing between any space and its dual 
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with 

we have 

(~ = - 2 o div(A 0o curl X~), 

q~ = - 2~ ~ o  curl X~), (6.13) 

D,F~ (~o=0 (D,F~ 95~ =0. (6.14) 

Moreover, a simple limit point (20, Uo) is a nondegenerate turning point of the 
Navier-Stokes problem if and only if (2o,Uo) is a nondegenerate turning point of 
F. �9 

Note that, by normalizing the eigenfunctions ~o and ~ ,  we obtain the 
eigenvectors (Po and q~* of the abstract theory. On the other hand, since 

X~ + 2o~(div (A q/o curl X~) -  A (grad 0 0  curl X~)) = O, 

it follows from (6.13) that 

X~ = ~(~ ~ - d q*). (6.15) 

Assume that 0o is a simple limit solution of (6.1) corresponding to v=v o. 
Then, by the results of Sects. 2 and 3, there exists a unique branch 
{(2(~),~(c0); tc~l<c%} of solutions of (6.1) in a neighbourhood of (2 o, 00) in 
IR x Ho2(O) with 2(0)= 2 o, 0(0)= 2o; or equivalently, there exists a unique branch 
{()~(c0, u(c0=(O(c0, - A  ~,(c0)); I~l<c%} of solutions of (6.11) in a neighbourhood 
of(2 o, Uo) with 2(0)=2 o, u(0)=u o. This branch is of class C ~~ 

Let us introduce a mixed finite element method yet considered in [4], [2, 
Section 4]. For simplicity, we suppose that O is a polygonal domain which is 
assumed to be convex so that the linear operator Tis continuous from W-  1'-~(O) 
into W3"~-(Y2)x WI'~((2)(cf. [10], [5]). 

Let (Yhh) be a family of triangulations of O made with triangles K whose 
diameters are =<h. We assume that (ghh) is uniformly regular in the sense that 
there exist two constants a, z > 0  independent of h such that 

hK <=aPK, rh<hK <-_h, 

where h K is the diameter of K and PK is the diameter of the inscribed circle in K. 
Then, we define for each integer l>  1 the finite-dimensional spaces 

Oh=&hl)={OeC~ OIKePl for all KeJ~}, 

q~h = ~r ~ = {q~e Oh; q~]r =0}, (6.16) 
v ( l )  _ Vh=,h --Oh• ~h~V, 

where Pt denotes the space of all polynomials of degree < I in the two variables 
X I , X  2 . 

Let us define the operator Th: ge  W--~Uh=(t) h, ~Oh)= Thge Vh by 

~V~h'[7~odx=(g,q~) for all tpe~ h, 

(6.17) 
~((DhO--Vt~h.gO) dx=O for all OeOh, 
O 
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where V stands for the operator grad. Then a mixed finite element approxima- 
tion of the Navier-Stokes problem consists in finding a pair Uh=(Oh, mh)eV ~ 
solution of 

1 
Fh(2, Uh)=--Uh + ThG(2, Uh)=O, 2 = - .  (6.16) 

Y 

Let us recall the approximation properties of the operator T h (cf. [4], [-2, 
Lemma 6]). 

Lemma 9. Assume that the polygonal domain is convex. Then, we have 

lim [I T -  Thll~(w;v ) =0.  (6.19) 
h ~ 0  

I f  g E W  is chosen in such a way that u=(tp,~o)=Tg satisfies the smoothness 
property ~J ~ H k + ~ ( ~ ) ~  W k + 1, ~ (~2) for  some k ~ IR with 1 <- k <_ I, we have 

II(T- Th)gllv < Ch~-4llnhl~(ll~Jll,~+4~) + ll~4lw . . . . . .  ~m), (6.20) 

where f l=0 / f l_>2  and f l = l  i f  l=  l. 

We are now able to prove 

Theorem 8. Let  ~Jo be a simple limit solution of  the Navier-Stokes problem (6.1) 
corresponding to 2 o = 1/v o and let {(2(~), 6(~)); I~1 < %1 be the branch of  solutions 
o f  (6.1) such that 2(0)=2 o, qJ(0)= tp o. Then, there exists a neighbourhood C o f  the 
origin in I R x W ~ ' 4 ( O ) x L Z ( O )  and, for  h<=h o small enough, a unique branch 
{(~(~), u~(~) =(r ~o~(~))); Ic~l < %} of solutions of (6.18) such that (Zh(a) - 2(~), 
Ua(OO-u(a))e(9 for  all I~1__<% where u(a)=(6(c 0, co (a )=-A t/J(c0). Moreover,  we 
have 

a~(2h(~),uh(00) is a C~ functions f rom [ - -%,  + % ]  into Vh; (6.21) 

lim sup {I 2~")(~) -- 2")(c01 + II 6~")(~)-- 6~")(a)l[ w+,~(o) 
h~O I~'I _-<~,o (6.22) 

+ 11~o~"~(~)- co~"~(~)ll ~ }  = O, 

for  all integer m >= O. 
If, in addition, ~--*~(c 0 is a C" function from [ - % ,  + % ]  

into Hk+4(f2)c~W k+ ~'~'(f2) for  some k~IR with 1 <_k<_l, we get the estimate 

+ II ~m)(~) _ ~o(,,)(~)1 [ z~(~) < Chk-  ~ ]In hi ~, (6.23) 

where f l=0  i f  l<  2 and f l= 1 if  l=  i and C is a constant independent o f  h and 

~ e [ - % ,  % 3  

Proof. Let us check the hypotheses of Theorem 3. First, the properties (2.7) and 
(3.1) follow from Lemma 8. Next, we may write G(2, u ) = 2 H ( u )  where H is a C ~ 
quadratic mapping from Vinto Wand DE H is bounded on all bounded subsets 
of V. Moreover, (2.27) holds by Lemma 9. Hence, we may apply Theorem 3: the 
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desired results are therefore consequence of  L e m m a  9 again and the fact that  
u(cr - TG(2(ct), u(~)). �9 

We conclude this section by considering the case of a nondegenera te  turning 
point  of  the Navier-Stokes  problem.  We begin by a prel iminary result. Let 
g, g* e W; we set 

Tg =(~,, co), Tg* =(~* ,  co*), T h g = ( O h ,  coh), Tn g* = ( ~ ,  col). 

L e m m a  10. We have  f o r  all O, O*eO h 

( O - Oh, g*)  = S { v (o - O0. v (co* - o*) + v (q,* - 0*). v (co-  o) 
f2 

+ (co -- (Oh)(0" -- co*) + (CO* -- 0)~) (0 -- (2)) + COO -- (Oh) (co*-- co~)} d x .  

(6.24) 

Proof .  Using (6.2), (6.9) and (6.17), it is an easy mat te r  to check that  the following 
proper t ies  hold: 

(i) ~ V (co -- OOh). V q~ d x  = 0  
a 

for all q)eq~h, 
(ii) ~ V (co* --(Of)" V q ) d x  = 0 

(6.25) 
(iii) ~ V (tp - Oh)" V O d x  = ~ ( ~  -coh)  Odx  

for all 0 ~ 0  h. 
(iv) [. v ( ~,* - ~ ) .  V Odx  = ~ (co* - ~ * )  Odx  

We have 

(t~ - 0h, g*)  = -- ( ~  -- 0h, d cO*) = S r ( ~  - 0 h )  V~o* d x  
a 

so that  we obtain  for all 0*e6) n 

( ~ , - - ~ h , g * ) = S U ( ~ , - - O h ) . U ( c o * - - O * ) d x + S U ( ~ , - - ~ O . r O * d x .  (6.26) 
f /  f /  

Next,  using (6.25) (iii) with 0 = 0", we get 

5 v ( o  - O0. vo* dx = 5(~o-coO O* dx 

~ a (6.27) 
= ~ (co - Oh) (0" -- ~0") d x  + ~ (co -- cob) co* d x .  

s s 

Using (6.25) (i) with (o = ~p* gives 

S (co-  ~oh) co* dx = S v (co-  coO v o* dx = ~ V (~o- coO V (O* - ~,*) d~. 
s 

Hence, by (6.25) (iv), we obtain  for all 0 ~ 0  h 

(co - (Oh) CO* d x  = ~ V(co - 0).  V( t )*  - 0* )  d x  + ~ (0 - Oh)(CO* -- COt) d x .  (6.28) 
f2 f2 F~ 

Now,  (6.24) follows trivially f rom (6.26), (6.27) and (6.28). �9 
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We can now state 

Theorem 9. Assume the hypotheses of  Theorem 8. Assume in addition that (2o, ~o) 
is a nondegenerate turning point o f  the Navier-Stokes problem. Then, the approxi- 
mate problem (6.18) has a unique nondegenerate turning point o o o ('~h, u~ =(g'h,  co~ ~ 
x V h in a suitable neighbourhood o f  (2o,Uo)=(2o,(@o,a)o=-A@o)) in l R x  V. 

Moreover, we have 

lim {12~ 2o1 + [t~j~ ~jo][ w+,,~o) + lifo~ CoollL2~a)} = 0. (6.29) 
h+O 

If, in addition, c~--+t~(~) is a C 1 function from [ - a o ,  C%] into 
Hk+}(f2)caWk+ l"~176 for  some kelP., with 1 <_k<_l, we get the estimate 

I~t'O - -  ]q'01+ II ~jO __ ~J0 t1 w 1' 4(~,~)+ il ~ 0  _ (J)0 l[ L2(O)~  C hk - ~lln h I e, (6.30) 

where fl is defined as in Theorem 8. Furthermore, we obtain if  the functions ~o, X* 
belong to H k + 2 (f2) m W k + 1, ~ (f2) 

f Ch 2k-1 if  l>=2 (6.31) 
12~176 if I=1" 

Proof  The first part of the theorem together with the bound (6.30) follow 
immediately from Theorem 4 and Lemmata 8 and 9. It remains only to check 
the bound (6.31). 

For the sake of simplicity, we restrict ourselves to the case l=  2. 
Then (6.31) will be a consequence of Theorem 5 and Lemma 9 if we show 

that the two following estimates hold: 

}((T-- Th)G ~ cr Ch 2k- 1 (6.32) 

11 [ (T-  Th)D . GO] * qg* I1 v, < Chk-~,  (6.33) 

where r = # r ~ ,  qS~ being given by (6.12) and (6.13) and kt being a normalizing 
factor. We first notice that 

}l[(T-  Th)O.G~ qo*llv ,= sup I((Z-- Th)O.G~ 
VEV 

Ilvl[v= 1 

Hence, in order to prove (6,32) and (6,33), we need to estimate expressions of 
the form 

Given gEW, we set: 

( (T -Th)g ,~o*) ,  g6W. 

Tg = (0, co), T~ g--  (0h, ,oh) 

Using (6.13) and the regularity hypotheses on the functions ~o and X~, we have 
tl*eHk(t2). Thus, we may write 

( ( T -  T~) g, ,5"> = (~,  - g'h, ~* - A 'I~) + ( 0  - 0~, A'Ta> + (co - a,h, ,1"). (6.34) 
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Let  us first derive a bound for ] (4 ' -4 'h ,  ( ~ - A r / ~ ) t .  We set: 

g* = ~ * - A q ~ ,  Tg* = (4'*, co*), Thg --(4'h,(A)h). 

Using (6.15), we have 4,*=X*,  c o * = - A X ~ .  Moreover ,  by L emma  10, we 
have, for all 0, 0 " ~ 0  h 

+ II co - COb 11L=t~ll CO* -- 0*ll Z~l~ + It CO* -- CO~" II L ~  II CO -- 0 II Z~(~) 

+ Ilco--COhll * * I~=(~)ll CO -- CO~ II ~=~1- (6.35) 

On the other  hand, using (6.17) and CO=--AO, we may write for all ~ 0  h 

( 4, - 4,~, A ~ ) + ( c o -  co~, ~ > = - ~ V(4, - 4'~). V(~* - ()  d~ 

+ 5 ( c o -  CO~)(~ - ~) d~, 
0 

so that 

1(4, - 4 ' h ,  A ~ )  + ( c o - c o b ,  ~ ) 1  _-< 114, - 4'hll H ~ I I  ~ -~11 ~ 1 ~  

+ [[co- coh][ L2t~)t[ t/~ -- ([] L2ta)- (6.36) 

Thus, combining (6.34)-(6.36), we get for all 0, 0", ( ~ O  h 

]((T--Th)g,(o{)l  < 114'-4'~,l l .~t~)(llco*- 0* I{ H ~ +  lit/* - r162 

+ 114'* -4'~,'11 m l ~ l l c o - 0 l l  mr + I l co -  COhlIL=r 

+ (11 CO* -- 0* II L~I~) + II r/~ -- (tl L=tr~t) (6.37) 

+ I[ CO* -- CO~" II L=(~)tl CO -- 0 II L ~  

+ It CO -- % II L~t~lll CO* -- CO* II L ~ ) "  

Were are now able to obtain (6.32) and (6.33). First, we choose in (6.37) g = 
- G  o so that 4, =4,o, c o = - A 4 ' o -  Since the functions 4 '=4 '0 and 4'* =X*  belong 
to Hk(f2), we have by [4, Remark  6.1] 

t l 4 ' - 4 ' h l l m t ~ +  114'* -- 4 '~ '11 . ,~  < Chk. 

Thus, it follows from (6.37) that we have for all 0, 0", ( ~ O  h 

I((T-Th)G~ < Ch k ~ { h l l c o - 0 1 1 , ~ +  Ilco-011L2~r~ 

Since co, co*,r/~eHk(f2), the bound (6.32) is a consequence of the previous 
inequality and standard approximat ion  results. 

In order  to derive (6.33), we choose in (6.37) g = D , G ~  veV. We observe 
that  Tg~H3((2)x H1((2). Then using Lemma  9 and the same technique as above 
gives the desired estimate. �9 
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