
Numer. Math. 34, 125-141 (1980) Numerische 
MathemaUk 
�9 by Springer-Verlag 1980 

Handbook Series Approximations* 

Procedures for Kernel Approximation and Solution 
of Fredholm Integral Equations of the Second Kind 
Gtinther H~immerlin 1 and Larry L. Schumaker 2 

Mathematisches Institut der Ludwig-Maximilians-Universitat, 
Theresienstral3e 39, 8000 Mtinchen 2, Germany (Fed. Rep.) 
2 Department of Mathematics and Center for Numerical Analysis, 
The University of Texas at Austin, Austin, TX 78712, U.S.A. 

Summary. The purpose of this paper is to present explicit ALGOL procedures 
for (1) the approximation of a kernel (surface) by tensor products of splines, 
and (2) the computation of approximate eigenvalues and eigenfunctions for 
Fredholm integral equations of the second kind. 

Subject Classifications: AMS(MOS): 41A15, 65R05, 68A10; CR: 5.13, 5.18. 

1. Introduction 

In this paper we combine a method of approximating a kernel in two dimensions 
by tensor product splines with the application of computing approximate solu- 
tions for homogeneous Fredholm integral equations of the second kind. The 
procedure for approximating a kernel is based on a specific spline approximation 
operator whose precise definition is given in Sect. 2. The method is a particular 
example of a general class of such operators studied by Lyche and Schumaker [6], 
and has the advantage that it is extremely fast, is local, and satisfies optimal 
order error bounds. In addition to being a key ingredient in the package for 
solving Fredholm integral equations, this procedure can also be used for the 
general problem of fitting a surface to a given function on a rectangle. Thus, for 
the convenience of users who wish to fit surfaces, we include two associated 
procedures for the evaluation of the spline surface at a given point or at all the 
points of a given grid. 

The procedure for solving Fredholm integral equations is based on the use 
of the kernel approximation as a degenerate kernel, thus reducing the problem 
to a matrix eigenvalue problem. This approach is reviewed in Sect. 3; see also 
H~immerlin [3]. 

Formal parameter lists and descriptions of the procedures presented here 
can be found in Sect. 4. Section 5 contains their listings. Finally, in Sect. 6 we 
give some numerical examples. 

* Editor's Note. In this fascile, prepublication of algorithms from the Approximations series of 
the Handbook for Automatic Computation is continued. Algorithms are published in ALGOL 60 
reference language as approved by the IFIP, Contributions in this series should be styled after the 
most recently published ones 

0029-599X/80/0034/0125/$03.40 



126 G. H~immerlin and L.L. Schumaker 

2. The Kernel Approximation Method 

As a first step towards defining our kernel approximation method, we introduce 
the classical B-splines. Let m__>l and k > 0  be integers, and set h=l/(k+l). 
Now let 

y~=(i-m)h, i = 1 , 2  . . . .  ,2m+k 

and 

N,  m ( x )  = m (  - 1)  ~ h [Yi . . . . .  y~ +~3 (y - x)"2- ~, 

(2.1) 

i = I, 2 . . . . .  m + k. (2.2) 

m+k  

We have normalized the B-splines so that ~ N'~(x)=l  for all 0_<_x_<l. 
i=1 

Their values (as well as those of their derivatives) can be computed by con- 
venient stable recursion relations (cf. deBoor [1]). 

For  each i = 1, 2 . . . .  , m + k let 

tiv=Yi+ph-h/2, p = l , 2  . . . . .  m . . . .  (2.3) 

These points lie in the interior of the support of N~ Let el l)= 1 and the { @~)}~'= i 
be defined as in Table 1 in [5] or in procedure eker in Sect. 5.1 of this article. 

We are now ready to define our approximation operator. Suppose that 
K is a function defined on the square (s I+mh-3h/2]x 
[ -mh+ 3h/2, 1 +mh- 3h/2]. Then we set 

m + k m + k  

QK(x,y)= ~ y" (2ijK)N"(x)Nf"(y), (2.4) 
i=1 j = l  

where 

2 , i K =  ~ ~ er 'e~" 'K(t i~,  t,q). (2.5) 
p = l  q = l  

Q defines an operator mapping any function K defined on U into a tensor 
product spline QK in 6e=span{N/m(x)Nf'(y)}~,f~l. In fact, QK can be defined 
as soon as we know all of the values {K(tip, tjq)} appearing in (2.5). It is clear 
that QK can be computed directly without any matrix inversion. Since the 
B-splines have local support, it also follows that the value of QK(x, y) at any 
given (x, y) depends only on the behavior of K in a relatively small neighbor- 
hood of (x, y). 

Operators of the form (2.4) are studied in great detail in Lyche and Schumaker 
[6]. It is shown there that 

Qp(x,y)-p(x,y), 

where 

g = [0, 1] x [0, 1] 

and 

j=O 

all (x, y)e U and all peg~,.| (2.6) 



Kernel Approximation and Solution of Integral Equations 12"/ 

The paper of Lyche and Schumaker [6] contains an extensive collection of 
error bounds [ IK-QKIILqw~,  l < = q < ~ ,  under various assumptions about the 
smoothness of K. Error bounds for the case where K is smooth except across 
the diagonal x = y (as is often the case with the Green's kernels arising in integral 
equations) are given in HS.mmerlin and Schumaker [5]. 

In closing this section we emphasize that the spline approximation operator 
Q provides approximations of the kernel K on the unit square U, but assumes 
that values of K can be computed at the points {tip, tjq} of the sl ight ly  larger 
square 0. The design of Q in this way results in some substantial programming 
savings. There are related operators which require values of K only in U - see 
e.g. Lyche and Schumaker [6]. If it is desired to approximate a function K 
defined on a general rectangle [a, b] • [c, d], then by a simple change of variable 
the problem can be recast to one on the unit square. 

3. The Integral Equation Method 

Given a kernel in L 2 [U], we desire to find numbers •j and functions ~0je L a [0, 1], 
(j = 1, 2 . . . .  ) which solve the equation 

1 
q~(x) = ~ K ( x ,  y) q~(y) dy .  (3.1) 

0 

Equation (3.1) is a Fredholm integral equation of the second kind, and Kj 
and ~0~ are eigenvalues and eigenfunctions, respectively. Generally, there will be 
an infinite sequence {~} and corresponding {~0j} solving (3.1). 

Now, given an approximation 

/s  ~ ~cuBi(x)Bj(y  ) (3.2) 
i=lj=l 

of K, where {Bi} ~' are any linearly independent functions on [0, 1], then the 
n eigenvalues {~}7 of the matrix 

1 n 

E = C P ,  C - (clj)i ' j= 1, P = Bi 
", . =  t d 1 

may be regarded as approximations to n of the eigenvalues of (3.1) (cf. H~tmmerlin 
[4]). Moreover, if v i=(v i l  . . . . .  vl,) T is an eigenvector of E corresponding to the 
eigenvalue ~i, then 

q~i(x)= ~ vii B~(x) (3.4) 
j = l  

will be an approximate eigenfunction of (3.t) corresponding to ~i. 
This method can be realized with any choice {B~}~, and with any convenient 

approximation scheme to produce /<. Piecewise constant and bilinear splines 
were used in H~mmerlin [3], and B-splines coupled with interpolation were 
suggested in H~immerlin [4]. In view of the many desirable properties of the 



128 G. Hiimmerlin and L.L. Schumaker 

method suggested in Sect. 2 (in particular its considerable savings in computa-  
tional effort over interpolation methods while still producing best order approxi- 
mations), it would seem natural to use Q to produce/~.  Thus, we choose n = m + k 
and Bi = N~", i=  1, 2 . . . .  , m+k. Since the N~" have support  on [Yi, Yi+m], it follows 
that P is a matrix with 2 m - 1  bands. In fact, because we have used equally 
spaced knots, the matrix P will not only be symmetric but will have the follow- 
ing special form: 

. . .  I o . . .  

. . . . . . .  , o 

, , - .  ~ 

where each element on the diagonals indicated by lines is constant along that 
diagonal. It follows that P will be completely determined by the uppertriangular 
part  of the m-by-m (i.e. by the principal) matrix in the upper lefthand corner. 
Because of this special structure, the product CP can also be computed efficiently. 

For m =  1 the matrix P is the identity matrix. Tables 1-4 contain the values 
of the P/j for m = 2, 3, 4, 5. 

Table 1. Inner-products for m = 2 

h[2 14] 
Table 2. Inner-products for m = 3 

h [6 13 1 1 
i ~  60 26 

66 

Table 3. Inner-products for m = 4 

[ 2 0 1 2 9 6 0 1 ]  
h 1,208 1,062 120 

5,1)40 [ 2,396 2,416.] 1'191/ 

Table 4. Inner-products for m = 5 

70 1,121 1,581 251 
h 22,880 44,117 13,027 

362.880[ 133,310 87,113 
156,120 

I] 
502 

14,608 / 
88,234 / 

156,190 A 



Kerne l  A p p r o x i m a t i o n  a n d  So lu t ion  of  In t eg ra l  E q u a t i o n s  129 

These inner-products of B-splines have been hand-computed. The values for 
higher m could also be done, but the values given here suffice in most cases. We 
also mention that these inner-products can be computed numerically by the 
programs in deBoor, Lyche, and Schumaker 1-2]. 

We conclude this section with some remarks on how well the eigenvalues 
~1 . . . . .  ~n of the matrix E approximate the true eigenvalues ~q, ..., ~c . . . . .  of the 
integral equation (3.1). Although our scheme can be used for any kernel, it is 
particularly well suited to symmetric kernels K. In this case, the eigenvalues 
of K are real, and the degenerate kernel /< is symmetric as well. The approxi- 
mating integral equation with kernel /( is equivalent to the matrix equation 
with matrix E, and as a consequence the eigenvalues of E will be real. Thus, 
to compare the eigenvalues in this case, we suppose that they have been ordered 
according to their absolute values; i.e., 

I~:~1>__1~c21_>..._>0 and 1~,l>=t~21>__...>=l~nl__>0, 

where multiple eigenvalues are repeated as often as their multiplicity dictates. 
Then, as pointed out in [3, 4], a theorem of H. Weyl assures that 

[Kj-~j[_- <lIK-/<llLqEvl, (j--1 . . . . .  n), (3.5) 

for any 1 __< q = or. (In general we get the best bounds by choosing q = 1.) 
We can couple (3.5) with the error bounds for the spline approximation 

method/< = QK to predict the performance of the procedures presented in Sects. 4 
and 5. The rate of convergence of the eigenvalues depends on the smoothness 
of K. Table 5 shows the expected rates of convergence using splines of order 
m=  1, 2, ..., 5 under the assumption that KsC~ or= 1 . . . .  ,4  (cf. Theorem 2.1 
of I-5]). Table 6 gives expected rates of convergence for the case where K e Ca1, U] 

Table  5. R a t e  of  c o n v e r g e n c e  o f  e igen-  
va lues  for  K e  C ' [ [ ? ]  

1 2 3 4 5 

1 h h h h h 
2 h h 2 h 2 h 2 h 2 

3 h h 2 h 3 h a h a 
4 h h 2 h 3 h 4 h 4 

Tab le  6. R a t e  of  c o n v e r g e n c e  o f  e igen-  
values  for  G r e e n ' s  kernels  in C ~ [ / ) ]  c~ 

a ~  1 2 3 4 5 

0 h h 2 h 2 h 2 h 2 
1 h h 2 h 3 h 3 h 3 
2 h h 2 h 3 h 4 h 4 
3 h h 2 h 3 h 4 h 5 
4 h h 2 h 3 h 4 h 5 



130 G. H~immerlin and L.L. Schumaker 

C~+217"1]r~C"+2[T2], where 7"l={(x,y)eU:  y<x} and T2=U\7"l  (cf. The- 
orem 2.2 of [5]). This kind of smoothness assumption usually holds for the 
Green's kernels arising from ordinary differential equations. 

4. Formal Parameter Lists and Description of the Program 

4.1. General Organization of the Program. 
Procedures for Surface Approximation 

The procedure eker constructs an approximation Q to a kernel ker defined on 
the square U. The user must supply a real procedure ker (x, y) with real para- 
meters x, y which should be in the v a l u e  list. If the user wants to evaluate (2 only 
at one point (x, y) in the unit square, the procedure kval should be used. It is, 
however, not the most efficient way of producing all values of Q(x, y) on a grid 
as is required in many applications. For such applications the procedure grid 
should be used. Both grid and kval call the procedure ebspl which computes 
the values of the m B-splines of order m with knot spacing h=l / (k+l )  at a 
given point x in [0, 1/(k+ 1)]. 

Procedures for Fredholm Integral Equations. The procedure fred computes ap- 
proximate eigenvalues of the Fredholm integral equation (3.1) using a tensor 
product degenerate kernel. It calls the procedure eker which computes the B-spline 
coefficients of the spline approximation. At the end of fred the user must insert 
a call to a procedure which computes eigenvalues of an (n x n)-matrix. It should 
output the complex vector eigval or the two vectors reigval and ieigval consist- 
ing of the real and imaginary parts, respectively. 

4.2. Formal Parameter List and Description of the Procedure eker 

procedure eker(m, k, ker, c); 
value m, k; integer rn, k; 
real procedure ker; 
array c; 

Parameter list: 

m integer input parameter with m>  1 defining the order of the spline. 
k integer input parameter with k > 0 giving the number of equispaced knots 

in (0, 1~. 
ker real procedure parameter defining a function ker(x,y) on - m h < x , y <  l+mh, 

where h=  1/(k+ 1). The two parameters of ker must be real and should be 
in the va lue  list of ker. 
array [ l : m  + k, l :m  + k] output parameter. After the call of eker, c contains 
the evaluated spline coefficients. 



Kernel Approximation and Solution of Integral Equations 131 

4.3. Formal Parameter List and Description of the Procedure ebspl 

procedure ebspl(m, x, k, bx); 
value m, x, k; integer m, k; 
real x; 
array bx; 

Paramete r  list: 

k as in eker. 

x real input  parameter ,  O=<x__< l / k +  1. 
bx array [ l : m + l ] ,  ou tpu t  parameter .  The componen t s  1 to m contain the 

values of the B-splines at x. The  componen t  m + 1 is for workspace.  

4.4. Formal Parameter List and Description of the Procedure kval 

real procedure kval(m, i,j, k, x, y, c); 
value m, i, k, x, y; 
integer  m, i, k,j; 
real x, y; 
array c; 

Pa rame te r  list" 

k as in eker 

i,j integer input. See x, y. 
x, y real input  pa ramete r s  giving the coordinates  of  the poin t  where the spline 

is to be evaluated.  It is assumed that  
i) O < x , y < l  

ii) i f x < l  then i h < x < ( i + l ) h  
if x = 1 then i = k 

iii) if y <  1 t h e n j h < y < ( j +  1)h 
if y = 1 then j = k. 

c array [ 1 : m + k, 1 : m + k] input  pa ramete rs  giving the coefficient of  the spline. 
Norma l ly  c is ou tpu t  of the procedure  eker. 

kval real outpu t  giving the value of the spline at the point  (x, y). 

4.5. Formal Parameter List and Description of the Procedure grid 

p r o c e d u r e  grid(m, n, k, c, g); 
value m, n, k; 
integer  m, n, k; 
array c, g; 



132 G. H~immerlin and L.L. Schumaker 

Parameter list: 

k as in eker. 

n integer input parameter describing how fine the grid should be. 
c array [ l :m+k,  l :m+k]  input parameter giving the coefficients of the spline. 

Normally c is output of the procedure eker. 
g array [0:n(k+l),  0 :n(k+l)]  output parameter giving the values of the 

spline at the grid points. 

4.6. Formal Parameter List and Description of  the Procedure fred 

procedure fred(m, k, ker, eigval); 
o r  

procedure fred(m, k, ker, reigval, ieigval) ; 
value m, k; 
integer m, k; 
real procedure ker; 
complex array eigval; 

or 
array reigval, ieigval; (if complex arrays are not supported.) 

Parameter list: 

m 

k 
ker 
eigval 

reigval 

ieigval 

as in eker. 

complex  array [ l :m+k] ,  output array. It contains m + k  approxima- 
tions to the eigenvalues of the integral equation respectively. 
real array [ l : m + k ]  containing m+k  approximations to the real part 
of the eigenvalues of the integral equation. 
real array [1 :re+k] containing m+ k approximations to the imaginary 
part of the eigenvalues of the integral equation. 

5. ALGOL Programs 

5.1. The ALGOL Procedures for Kernel Approximation 

procedure'eker(m, k, ker, c); 
value m, k; integer m, k; 
real procedure ker; array c; 
begin 
c o m m e n t  purpose: The procedure constructs an approximation Q(x,y)= 

Y'. cij N["(x)NT(y ) to a kernel ker. The coefficients are computed as el j= 
2ij ker, where 2ij are defined in (2.5); 



Kernel Approximation and Solution of Integral Equations 133 

comment  input:  
m, an integer with rn > 1 defining the order  of  the spline, 
k, an integer with k > 0  giving the number  of equispaced knots in (0, 1), 
ker, a real procedure defining a function ker(x, y) on - m h < x, y < 1 + m h, 

where h = 1/(k+ 1); 
c o m m e n t  output :  

e, the array of  spline coefficients cij, i , j= 1, 2 . . . . .  re+k; 
i n t e g e r  i,j, ml, kml, km, p, q, ip, jq; 
real sum, h, h2, v, w; 
m l : = m - 1 ;  k m l : = k + m l ;  h :=l / (k+l ) ;  h2:=h/2; km:=k+m;  
begin 

array k v [ - m l  :kml, - m l  :kml], a l l :m-I ;  
s w i t c h  s : =  II, 12, 13, 14, 15; 
go to s [m];  
12: a [ 1 ] . ' = a [ 2 ] : =  .5; go to next; 
13: a [ 1 ] : = a [ 3 ] : = - -  .125; 

a t 2 ] : =  1.25; g o  t o  next; 
14: a [ 1 ] : = a [ 4 ] : = -  .14583333; 

a [ 2 ] : = a [ 3 ] :  = .64583333; g o  t o  next; 
15 : a [1] :  = a [5] :  = .04079861; 

a [2] :  = a [41: = -- .3715277; a [3] :  = 1.6614583; 
next: 
11: v : = h 2 - h , m l ;  

c o m m e n t :  We now sample the kernel; 
for i . '= - m l  step 1 until kml do 
begin 

w : = h 2 - h * m l ;  
for  j : =  - m l  s t e p  1 until  kml do 

b e g i n  
kv[i,j] :=ker(v, w); w: = w + h ;  
e n d  j ;  

v:=v+h;  
end i; 
if m > 1 then go to 16; 
comment:  If m =  1 we compute  the B-spline coefficients; 
for i: = 1 step 1 until km do 
for j . '=  1 step 1 until km do 

c[i,j]: = k v [ i -  1 , j -  1]; 
go to fin; 
16:; comment:  If m > 1, we compute  the B-spline coefficients here; 

for i : =  1 step 1 until km do 
begin 

i p : = i - m - 1 ;  
for j : =  1 step 1 until km do 
begin 

sum:=O; j q = = j - - m -  1; 
for p : =  1 step 1 until m do 



134 G. Hiimmerlin and L.L. Schumaker 

for q: = 1 step 1 until m do 
sum= = sum + a[p] *a[q] * kv[ip + p, jq + q]; 

c [i, j ] :  = sum; 
end j; 

end i; 
fin: end; 
end eker; 

Procedure eker can be used in the degenerate kernel approach to numerical 
solution of integral equations as discussed in the following section. For appli- 
cations of eker to surface fitting, it is desirable to have evaluation procedures 
to produce the value of the spline. 

Suppose we wish to evaluate the spline 

m+k ra+k 

s(x ,y)= ~ ~ coB,(x)Bi(y ). (4.1) 
i=1 i=1 

If we know that the point (x, y) lies in the rectangle U~j = [i h, (i + 1) h) • [j h, (j + 1) h), 
then by the support properties of the B-splines it follows that at most {Bv(x)}iv=i_m+l 
and {B,(y)}{=j+l_m can have non-zero values. The values of the B-splines can 
be computed by the well-known recursions (cf. [1]). Since we are using equally 
spaced points, the standard algorithm can be made somewhat more efficient. 

procedure ebspl(m, x, k, bx); 
value m, x, k; integer m, k; real x; array bx; 
b e g i n  
c o m m e n t  purpose: To compute the values of the m B-splines of order m with 

knot spacing h=  1/(k+ 1) which have value at a given point; 
c o m m e n t  input: 

m, an integer with m__> 1 defining the order of the spline, 
k, an integer with k > 0 giving the number of equispaced knots in (0, 1), 
x, a real number satisfying 0 < x <  1/(k+ 1); 

comment output: 
bx, an array of m real numbers containing the values of the B-splines at x. 

The array bx must be dimensioned as bx [ l :rn + 1] in the calling sequence. 
The extra component is for workspace; 

in teger  i,j, j l ,  mpl ; 
real t, tl, prod; 
t l ' . = x * ( k +  l); prod:=l;  mpl==m+ l; 
for i: = 1 s tep 1 until mpl d o  

bx[i],=O; 
bx[m]:= 1; 
for j ;=2  step 1 until m do 
begin 

j l : = j - 1 ;  t : = t l + j l ;  
for i: =m-j1 step 1 until m do 
b e g i n  

bx [i]." = bx [i] * t + bx [i + 1] * ( j -  t); 
t . ' = t -  1; 



Kernel Approximation and Solution of Integral Equations 135 

e n d  i; 
prod, = prod/jl ; 

e n d  j ;  
for i: = 1 step 1 until m do 

bx [i]: = bx [i] * prod; 
e n d  ebspl; 

real procedure kval(m, i, j, k, x, y, c); 
value m, i , j ,  k, x, y; integer m, i ,j ,  k; real x, y; array c; 
b e g i n  
c o m m e n t  purpose:  To compu te  the value of a spline s as in (4.1); 
c o m m e n t  input:  

m, an integer with m > 1, defining the order  of  the spline, 
i,j, integers with O<i,j<__k, 
x, y, real numbers .  It is assumed that  if x <  1 and y <  1, then ih<_x<_(i+ 1)h 

and j h < = y < ( j + l ) h ,  where h = l / ( k + l ) .  If  x = l ,  then i should be k and 
if y = 1, then j should have value k. 

c, an array dimensioned as c [ l : m  + k, l :m  + k] giving the coefficients of  the 
spline; 

c o m m e n t  output :  
kval, a real number  giving the value of the spline at the point  (x, y); 

in teger  nu, mu; real sum, temp, h; 
array bx, by [1 : m + 1]; 
h : =  1/(k+ 1); 
ebspl(m, x - i ,  h, k, bx); ebspl(m, y - j *  h, k, by); sum,= 0; 
for mu: = 1 s t e p  1 until  m d o  
b e g i n  

temp: = 0; 
for nu'.= 1 step 1 until m do 

temp, = c [i + nu, j + mu] * bx [nu] + temp; 
sum, = sum + temp * by [ mu ] ; 

e n d  mu ; 
kval: =sum; 
e n d  kval; 

Procedure  kvat can be used to evaluate  the spline s(x, y) of (4.1) at  any (x, y) 
in the unit square. It is, however ,  not  the most  efficient way of producing  all 
of the values of s(x, y) on a grid, as is required in m a n y  applications.  The  follow- 
ing more  efficient procedure  is designed for such applications.  

procedure grid(m, n, k, c, g); 
value m, n, k; integer m, n, k; array c, g; 
b e g i n  
c o m m e n t  purpose:  To produce  the values of  a spline s defined as in (4.1) by a 

coefficient a r ray  c at all points  of  the form (i/nk, j /nk),  i , j = 0 ,  1 . . . . .  nk, where 
n k = n ( k  + l); 



136 G. H~immerlin and L.L. Schumaker 

comment input:  
m, an integer with m > 1 defining the order  of  the spline, 
k, an integer with k>O giving the number  of  knots  in (0, 1), 
n, an integer with n > 1 describing how fine the grid should be, 
c, an array dimensioned as c [1: m + k, 1: m + k] giving the coefficients of s; 

c o m m e n t  output :  
g, an array giving the values of  the spline on the grid points. This ar ray  

should be dimensioned as g [O:n(k + 1), O:n(k + 1)] in the call; 
integer i, i l ,  inl , j ,  j l , j n l ,  mu, nu, nl, km, kpl,  nkpl ; 
real sum, h; 
array b[O:n, l : m +  1], i s u m [ l : k + m ] ,  bx, by[ l : rn+ 1]; 
n I : = n - l ;  k m : = k + m ;  k p 1 : = k + l ;  n k p l : = n , k p l ;  h ' .= l /nkp l ;  
for i, =0  step 1 until n do 
begin 

ebspl(m, i . h ,  k, bx); 
for  j : =  1 s t e p  1 until m d o  b [ i , j ] : = b x [ j ] ;  

end i; 
for i1= =0  step 1 until nl do 
begin 

for nu: = 1 step 1 until m d o  bx [nu]:  = b [il ,  nu] ; 
for/ . -=0 step 1 until k do 
begin 
i n l : = i . n + i l ;  
for mu'. = 1 step 1 until km do 
begin 

sum: = 0 ;  
for nu'. = 1 s t e p  1 until m d o  sum: = sum + c [ i + nu, mu] �9 bx [nu] ; 
isum [mu]:  = sum; 

end mu ; 
for j t  : = 0  step 1 until n l  do 
begin 

for nu:= 1 step 1 until m do by[nu]:= b [ j l ,  nu]; 
forj:=O step 1 until k do 
begin 

sum:=O; 
for mu = = 1 s t e p  1 until  m d o  sum: = sum + isu m [j  + mu ] * by [ mu ] ; 
g [in 1, j *  n + j l  ] :  = sum; 

end j; 
end j l  ; 
sum: =O; 
for  mu:= 1 s t e p  1 until m d o  s u m : = s u m + i s u m [ m u + k ] * b [ n ,  mu]; 
g [inl, nkpl]: = sum; 
end i; 

end i l ; 
for m u : =  i step 1 until km do 
begin 

sum: = 0 ;  



Kernel Approximation and Solution of Integral Equations 137 

for nu'. = 1 step 1 until m do sum: = s u m + c [ k + n u ,  mu] *b[n, nu]; 
isum [mu] : = sum; 

end mu ; 
forj l . '=O step 1 until n do 
forj: =0  step 1 until k do 
begin 

sum'. =0;  jnl:  = j * n + j l  ; 
for mu'. = 1 s tep 1 until m do sum: = sum + isum [mu +j]  * b [jl ,  mu] ; 
g [nkpl, j n l l :  = sum; 

end  j, j l  ; 
end grid; 

5.2. ALGOL Procedure for Fredholm Integral Equations 

procedure fred(m, k, ker, eigval); 
value m, k; integer m, k; 
real procedure ker; 

complex array eigval; 
begin 
comment  purpose: To compute approximate eigenvalues of the Fredholm 

integral equation (3.1), using a tensor product degenerate kernel as in Sect. 3; 
c o m m e n t  input: 

m, an integer with m ~ 1, defining the order of the spline, 
k, an integer with k~0,  giving the number of equispaced knots in (0, 1), 
ker, a real procedure which defines a function ker(x ,y)  for all -mh~= 

k, y~=l +mh, where h=  1/(k+ 1); 
c o m m e n t  output: 

eigval, a c ompl e x  array containing m + k  approximations to m + k  of the 
eigenvalues of the integral equation; 

c o m m e n t :  The procedure can be easily modified to output the coefficients of 
the corresponding eigenfunctions: 

integer up, ml,  kin, mkj, m21, kmpl, kp I , j l ,  m2, i,j,n; 
real d, h; 
k p l : = k +  1 ;km ' .=m+k;kmpl ' .=km+ 1 ; m 2 1 : = m + m -  1 ; m l : = m -  1;h . '=I /kpl ;  
begin 
array e, el l :k in ,  l:km], a[l:m21, l:m], ad[l:m21]; 
complex  array evec [1: kin, i : kin] ; 
swi tch  s := l I ,  12, 13, 14, 15; 
go to s l-m]; 
ll : eker(m, k, ker, c); 

for i:= 1 step 1 until km do 
for j : =  1 step 1 until km do 

e[i , j]:  =h*c[ i , j ] ;  
go to fin; 

12: d:=h/6; a l l ,  1]. '=2*d; a[1 ,2] . '=d;  
a[2, 2]." =4*d ;  g o  to next; 



138 G. Hiimmerlin and L.L. Schumaker 

13: d:=h/120; a[1 ,1] :=6*d;  a[-1,2]:=13.d; 
a [1 ,3] :=d;  a[2 ,2] :=60*d;  a[2,3] :=26*d;  
aF3,3]:=66*d; go to next; 

14: d:=h/5040; al l ,  1]:=20*d; a[1 ,2] := 129.d; 
a[-1,3]:=60*d; a [1 ,4] :=d;  a[2,2] :=1208.d;  
a[2, 3]:= 1062.d; a[-2,4]:= 120.d; 
a[3, 3]:=2396.d;  a[3, 4] := 1191 *d; 
a [4, 4]: = 2416 * d; go to next; 

15: d:=h/362880; al l ,  1]. '=70.d; a[1,2] :=l121*d;  
aEI, 3]:=1581*d; a [1 ,4] :=25t*d;  a [ I , 5 ] :=d ;  
a[2, 2]:=22880.d; a[-2, 3]:=44117.d; a[2 ,4] :=  13027.d; 
a[2, 5] :=502.d;  a [3 ,3] :=  133310,d; a[3,4]:=87113*d; 
a[-3, 5]:= 14608.d; a[4, 4] := 156120.d; a[4, 5]:= 88234.d; 
a[-5, 5]:= 156190.d; go to next; 

nex t :  for j : =  1 step 1 until m do 
for i: = j  step 1 until m do 

a[ i , j ] :=a[ j ,  i]; 
for i: = 1 step 1 until ml do 
f o r j : =  1 step 1 until m - i  do 

a [ m + j , j + i ] : = a [ m , i ] ;  
for i: = 1 step 1 until m21 do 

ad [i]: = a [i, m] ; 
comment :  We now call eker to approximate the kernel; 

eker(m, k, ker, c); 
comment :  We are ready to compute e = a . c ;  
for i= = 1 step 1 until km do 
begin 

for j : =  1 step 1 until ml do 
begin 
sum:=O; up:=ml  +j; 
for n: = 1 step 1 until up do 
sum: =sum+c[i ,  n] *a[n,j];  
e[ i , j]:=sum; sum:=O; m k j : = k m p l - j ;  
for n : =  1 step 1 until up do 
sum: = sum + e[i, kmpl - n] * a [n, j] ; 
e[i, mkj]: = sum; 

e n d  j ;  
f o r j : = m  step 1 unt i l  kpl do 
begin 

sum. =0; j I  : = j - m ;  
for n: = 1 step 1 until m21 do 
sum:=sum+c[i ,  j l  +n]*ad[n];  
e [i,j]: = sum; 

end j ;  
end i; 
fin:; 



Kernel Approximation and Solution of Integral Equations 139 

c o m m e n t :  At this point one must insert a procedure call which computes the 
km complex eigenvalues of the km by km matrix e. These should be output 
in the array eigval; 

end ;  end  fred; 

6. Numerical Examples 

In this section we give two numerical examples to illustrate the performance 
of the method for computing eigenvalues of Fredholm integral equations. The 
computations were done on the DEC-10 at The University of Texas at Austin 
and on the TR440 and CD-Cyber  t75 at the Leibniz-Rechenzentrum, Munich. 

Example 6.1. Let K(s, t)=sin (2 (s + t)) (cf. [3]). 

Discussion. This kernel is in C(U). It is clearly symmetric, so its eigenvalues 
are real. The largest true eigenvalue of the homogeneous problem (3.1) is given 

1+1=0.81830989 .  The absolute error in approximating this first by eigenvalue 

using the spline method with m = 1 . . . .  ,5, and k = 3, 6, 12, 24 is shown in Table 7. 
In addition, estimates of the rate of convergence of the method for these 
choices of m are shown in Table 8. These were computed by finding the ratio 
ln(ek+Jek)/ln(1/(k+4)/1/(k+l)) for k= 3 ,6 ,  . . . ,27, where e k denotes the error 
using k equally spaced knots. 

We observe that for m = 2 and 4, the algorithm performed as expected, giving 
quadratic and quartic convergence. What  is remarkable, however, is that for 
odd m, the convergence was observed to be of order m +  1 rather than order m 
as expected (at least for m = 1, 3, 5). Because of this unexpected super-convergence 
for the odd splines, we also computed discrete L 1- and L2-error bounds for the 
error in the approximation of the kernel itself. The rates of convergence agreed 
with those in Table 8. The reason for this super-convergence - which does not 
contradict our estimates - is given in the paper [7-] by E. Sch~ifer. What is also 
remarkable is that the absolute errors for m =  1 seem to be better than those for 
m = 2  with the same k. The same holds for m = 3  as compared with m=4.  

~, (s(1 - t), s<=t 
Example 6.2. Let K(s, 

r)=~t(l" - s ) ,  t=<s. 

Discussion. This is the well-known Green's function associated with the string 
problem. It is in C(U), and C ~ in each of the triangular parts defined by the 
diagonal s =  t. This kernel is also symmetric, and the largest eigenvalue of the 
problem (3.1) is known to be approximately 0.10132118. The absolute error in 
approximating this eigenvalue using the spline method with m =  1, . . . ,4  and 
k = 3, 6, 12, 24 is shown in Table 9. Estimates of the rate of convergence for these 
values of m are shown in Table 10. For  m = 2, 3, 4 the convergence was quadratic 
as predicted by Table 6. Again, for m =  1, we observed super-convergence, ob- 
taining quadratic convergence rather than the expected linear. �9 



140 G. H~immerlin and L.L. Schumaker 

Table 7. Errors in the first eigenvalue for Example 6.1 

m ~ 3  6 12 24 

1 2 .0@-3 6 .2@-4  1.8@-4 4 .7@-5 
2 5,1@-2 t .7@-2  5.0@-3 1.3@-3 
3 6.9@-4 7.5@-5 6.3@-6 4.2@-7 
4 2.8@-4 3.0@-4 2.6@-5 1.8@-6 
5 4.7@-5 1.6@-6 2.2@-8 3.7@-8 

Table 8. Rates of convergence in Example 6.1 

m ~ 3  6 9 12 15 18 21 24 27 

1 2.1 2.0 2.0 2,0 2.0 2,0 2.0 2.0 2,0 
2 1.97 1.99 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
3 3.97 3.99 4.0 4.03 3.99 3.80 5.0 4.67 398 
4 3.96 3.99 3.99 4.02 3.99 3.98 4.21 4.41 385 

Table 9. Errors in the first eigenvalue for Example 6.2 

m ~ 3  6 12 24 

1 1.3@ - 2  4.5@-3 1.3@-3 3.7@ - 4  
2 1.9@ - 2 6.6@ - 3 2.0@ - 3 5.3@ - 4 
3 4.1@-3 1.6@-3 4.8@-4 1.3@-4 
4 1.5@-3 1.2@-3 4.4@-4 1.3@-4 

Table 10. Rates of convergence in Example 6.2 

k 3 6 9 12 15 18 21 24 27 
m 

i t.89 1.96 i.~8 t.99 1.99 t.99 2.0 2.0 2.0 
2 1.92 1.96 1.98 1.99 1.99 1.99 2.0 Z0 2,0 
3 1.72 1.89 1.94 1,96 1.97 1.98 1.98 1.99 2.0 
4 0.39 1.51 1.75 1.84 1.89 1.92 1.94 1.95 1,96 

The m e t h o d  was also tested on a number  of  other  kernels. These  included 
the symmetr ic  kernels  s in(5rc(s+t)) ,  s in(grc(s+t)) ,  l + e x p ( - s - t ) ,  and the un- 
symmetr ic  kernels 1 + t exp (s + t), t + sin 3 t exp (s + sin 3 t), sin (2 ~z s ) -  s sin (2 r~ t). 
It was further tested on  the Green's  kernel 

, ~'s3(t3- 1), s<=t, 
K(s,  t)='~t3(s3" -- t) ,  t<=s, 



Kernel Approximation and Solution of Integral Equations 141 

and on the Green's functions of the differential operators 

dZq) 
L ~ 0 : = ~ - -  ~0 with ~0(0)= ~0(1)=0 

and 
d4~p dZq~ 

L q~ . '=d~- -2  ~ + ~ o  with q~ (0) = q/(0) = q~ (1) = q)'(1) = 0, 

the latter ones possessing discontinuities in the first and third derivative, re- 
spectively. 

For even m the rates of convergence agreed with those given in Tables 5 
and 6, while for odd m we often but not always observed one higher-order con- 
vergence than expected from the lower estimates for the order of convergence 
given in the Theorems 2.1 and 2.2, combined with (3.5), when the kernel was 
smooth enough to allow it. 

7. Remarks 

1. It is also possible to construct simple procedures to find the (partial) deriv- 
atives of the tensor-product spline (2.4) at any point (x,y) in the unit square 
(cf. deBoor [1] for the one-dimensional case). 

2. If it is desired to integrate the kernel against some other function, it will 
probably be most efficient to make use of the fact that it is a piecewise polynomial. 
Thus, a sufficiently accurate Gauss quadrature formula may be useful. The 
procedure grid can be modified easily to produce the values of the kernel at 
Gauss points in each subrectangle. 

Acknowledgements. We would like to thank Ms. Ellin Wilson, Austin, and Mr. W. Liickemann, 
MiJnchen, for programming assistance; also H.J. Oberle, Technische Universitiit Mtinchen, and W. 
Busch, Universit~it Oldenburg, for performing additional test runs. 
This work was supported in part by AFOSR grant 77-3150. 

References 

1. deBoor, C.: On calculating with B-splines, J. Approximation Theory 6, 50-62 (1972) 
2. deBoor, C., Lyche, T., Schumaker, L.L.: On calculating with B-splines, II. Integration. In: Numeri- 

sche Methoden der Approximations-Theorie, ISNM Vol. 30, pp. 123-146. Basel: Birkhauser 1976 
3. H~immerlin, G.: Ein Ersatzkernverfahren zur numerischen Behandlung von Integralgleichungen 

2. Art, Z. Angew. Math. Mech. 42, 439-463 (1962) 
4. H~immerlin, G.: Zur numerischen Behandlung von homogenen Fredholmschen Integralgleichungen 

2. Art mit Splines. In: Spline Functions KarIsruhe 1975, Lecture Notes in Mathematics 501, 
pp. 92-98. Berlin Heidelberg New York: Springer 1976 

5. Hiimmerlin, G., Schumaker, L.L.: Error bounds for the approximation of Green's kernels by 
splines. Numer. Math. 33, 17-22 (1979) 

6. Lyche, T., Schumaker, L.L.: Local spline approximation methods, J. Approximation Theory 15, 
294-325 (1975) 

7. Sch~ifer, E.: Fehlerabscbiitzungen f'tir Eigenwertn~herungen nach der Ersatzkernmethode bei Inte- 
gralgleichungen. Numer. Math. 32, 281-290 (1979) 

Received February 1, 1978 


