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1. Introduction 

In recent years, a number of efficient algorithms, known as fast direct methods, 
have been proposed for solving elliptic partial difference equations [1-3, 7]. The 
algorithms are usually discussed in terms of solving the linear systems associated 
with 5-point finite difference equations, and require O(n 2) to O(nZlogn) arith- 
metic operations to solve a problem on an n x n grid. Most of these methods can 
be extended to cover the finite element matrices arising from the use of tensor 
product C o linear finite elements, since these matrices can be viewed in terms of 
9-point finite difference matrices [12]. 

In this work, we develop both direct and iterative methods for solving the 
linear systems arising from the use of tensor product C o quadratic and C 1 cubic 
finite elements. These methods rely heavily on the techniques developed for 
finite difference equations. We consider the solution of the model problem 

- A u = f  in f2 =(0, 1) x (0,1) (1.1) 

u = 0  on ~2. 

1 
h =  ~ characterize a uniform mesh on • and let (xl, yi)=(ih,jh), Let n + 1 

O<i,j<n+ l. Let 

p l (x )=  + x  - l__<x<O; 

otherwise ; 
(1.2) 

p z ( X ) = { ; ( 1 - x ) / 2  0 < x < l  
otherwise ; 
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and define dA(x ), l < i < 2 _ n + |  by 

x --Xi~ 
02i(x)=Pl \ h ]' 

~)21+ l (x)-= -h2 p2 ~hXi  ), 

l <_i<_n; 

O<_i<_n. 

Then a basis for the tensor product 
relevant to the solution of (1.1) is 

2n+1 2n+1 {~,(x)},=l •162 �9 

Let 

[(1-x)Z(l+2x) O_<x_<l 
p3(x)=l~l+x)Z(1-2x ) -l__<x<O 

otherwise, 

[x(1-x)  2 0 < x < l  

P4(X)=l;(l+x)Z otherwise-1 = x < 0  

and define Oi(x), 1 <i_<2n+2 by 

01(X) = hp4 , x>=O 

tO, otherwise; 

(1.3) 

C O quadratic finite element subspace 

(1.4) 

(1.5) 

(1.6) 

iX --Xi~ 
021(x)=p3 ~ h ] '  1 <i<n 

Ix-x,  
~2i+l(X)=hp,, \ ~ ] ,  l <i<n; 

~,2n+z(X)=[hP4~), x>l 
tO, otherwise. 

Then a basis for the tensor product C 1 cubic finite element subspace relevant to 
(1.1) is 

2 n + 2  2 n + 2  {d/i(x)li= 1 x {~bj(y)/j=l �9 (1.7) 

The application of the finite element method to (1.1) leads to a linear system 
of equations 

Mx=b (1.8) 

where M is large and sparse (of order (2n+ 1) 2 for the C O quadratic subspace 
and (2n+2) 2 for the C 1 cubic subspace). In either case the matrix M is 
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symmetric, positive definite, and is characterized by the tensor product structure 

M= T.,| ~ +  r.| T,. (1.9) 

where T m and T~ are 1-dimensional mass and stiffness matrices respectively and 
| denotes matrix tensor product. 

In Section 2, we consider the direct solution of (1.8) using methods based on 
the fast Fourier transform. These algorithms require O(nZlog n) operations to 
solve the linear system. In Section 3, we discuss several block iterative methods 
employing fast algorithms developed tor 9-point finite difference equations. The 
spectral radii of these iterations is shown to be independent of n; thus they 
require O(n21og l/e) to O(n21ogn log l/z) operations, depending on which fast 
method used, to reduce the initial error by a factor of e. 

In Section 4, we describe enhancements to the iterative methods which allow 
the use of software appropriate to 5-point finite difference equations. We make 
some concluding remarks in Section 5. 

2. Direct Methods Based on the Fast Fourier Transform 

In this section we develop fast algorithms for solving (1.8) for both C O quadratic 
and C 1 cubic finite element subspaces described in Section 1. Our methods 
employ the fast sine and fast cosine transforms, both computable using standard 
FFT routines [6, 13]. We define the sine transform of an m-vector v as the 
matrix-vector product ~ = S v, where 

S ~ m ~  [ i n j  ~ l<__i,j<=m. (2.1) u = sin \m + 1} 

The cosine transform of an m + 2  vector w is defined as the matrix-vector 
product ~ =  Cw, where 

Ci+lj+l: e~cos \re+l!  O<i , j<m+l,  (2.2) 

where ej = 1/2 for j = 0, m + 1 and e j =  1 otherwise. It is straightforward to verify 
S-1 =S, and C - 1 =  C, so that the inverse (synthesis) transforms are the same as 
the analysis transforms. 

We first consider the C o quadratic finite element space of Section 1. The 
mass and stiffness matrices are ( 2 n + l ) x ( 2 n + l ) ,  penta-diagonal, and of the 
form 

-d e 0 

b a b c 0 
0 e d e 0 

c b a b c 
T =  "....]]]]..iil..j~il.ii~...." (2.3) 

0 "e d "e "0 
0 c b a b 

0 e d 
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For the mass matrix T,,, a=2h/3, b=e= -h3/24,  c=h/6, and d=hS/120. For the 
stiffness matrix T~, a=2/h, b = e = 0 ,  c =  -1 /h ,  and d=h3/12. 

We apply the sine transform of order 2n+  1 to the matrix T; that is, we form 
the product T = S T S - 1 .  From (2.1), it is easily verified that 

~ . =  1 2n+12n+l tiKk ~ (l'l'[j] 
J n + l  ~ ~ sin TklSin 

~=1 k=l \ 2 n + 2 ]  \ 2 n + 2 !  

1{ jr~ j n  
(2�9 

jTc 

where 6ij is the Kronecker delta�9 
From (2�9 it follows that the matrix T can be recordered to become block 

diagonal with n 2 x 2 blocks and a single 1 x 1 block�9 It is convenient to apply 

the orthogonal transformation Q = ~  to each of the 2 x 2 blocks. This 

yields the final transformed matrix T given by 

a+2ccos( ) 2bcos( ) 
2e cos d 

%~ 

�9149 

%�9 

I HT~ g/7~ 

o 

�9 M 

(2.5) 

In the C 1 cubic case, the mass and stiffness matrices are of order 2n+2 ,  
block tridiagonal, with 2 x 2 blocks, and have the form 
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T= 

d/2 e f 
b a O c  - b  

f O d e  f 
c b a 0 c - b  

- e f O  d e f 
~176176 ~176176176 "''~ 

t b a 0 c 
" ' " " - ~  f 0 d e 

c b a 

- e  f 0 

m e 

�9 

- b  

f 
0 - b  

d f 

f d/2 

(2.6) 

For the mass matrix Tin, a=26h/35, b=e= 13h2/420, c=9h/70, d=2h3/105, 
and f =  - h3/140. For the stiffness matrix T~, a = 12/5h, b = e  = - 1/10, c = -6 /5h ,  d 
= 4h/15 and f =  -h /30.  For our present purpose, it is convenient to multiply the 
first and last rows of T by 2, and then recorder to form the matrix T' given by 

T ' =  

a c 

r a C 

Q C a c 

c a 

2 e  

0 

- - e  

e �9 

Q) -e  

b 

e 

0 

- - 2 e  

0 - b  

b 0 - b  O 

b 0 

d 2 f  

f d f . ~ .  

2f d 

- b  
(2.7) 

Consistent with the partitioning of T', we define the matrix 

o] 

where S is n x n and C is (n+2) x (n +2), as defined in (2.1)-(2.2). Clearly Q-  l =Q. 
We form the product QT'Q-1 and recorder, yielding the transformed matrix 
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given by 

o+2ccos( ) 2bsin ) O 

o+2ccos( ) 2bsln 

With the transformed matrices (2.5) and (2.9) it is straightforward to describe 
FFT methods for solving (1.8). Let M be defined as in (1.9). Then to solve (1.8), take 
appropriate Fourier trnn~forms in both directions, yieldifig tll~ ltrl~r ~y~tem 

-M = ?, , |  ~ +  ~ |  T,,. (2.10) 

For both finite element subspaces under consideration,/~r can be recorded to 
become block diagonal; for the C o quadratics, there are n 2 4 x 4 blocks, 2n 2 x 2 
blocks and a single 1 x 1 block. For the C a cubits, there a re  n 2 4 x 4 blocks, 4n 2 x 2 
blocks, and 4 1 x 1 blocks. 

The FFT algorithm can be summarized as 
(1) Take appropriate FFT's in both directions; 
(2) Solve the block diagonal system (2.10); 
(3) Take inverse FFT's in both directions. 
Steps (1) and (3) both require O(n) calls to standard FFT routines. Since the FFT 

requires O(n log n) operations, these steps require O(n 2 log n) operations. Solving n2 
4 x 4 systems requires O(n 2) operations; the remaining diagonal blocks in (2.10) can 
be handled in O(n) operations. Thus step (2) requires O(n 2) operations, for an 
overall operation count of O(n 2 logn). 

The matrix decomposition algorithm [-3, 7] can be extended to cover (1.7). In 
this algorithm, FFT's are applied in only one space dimension. We must therefore 
solve a linear system involving the matrix 

For both subspaces, the matrix M can be permuted to be block diagonal, with 
O(n) diagonal blocks of fixed bandwidth, i.e., independent of n. Thus the linear 
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m 

system involving M can be solved in O(n 2) operations. The matrix decomposi- 
tion is asymptotically faster than the first FFT  algorithm, since only half as many 
FFT's  are required. 

3. Block lterative Methods 

Consider the linear system M U  =B, recorded and partitioned such that 

E~2 D2 E23 E2"]  U2 B2 (3.1) 
MU=IET3 EL U3 : B3 " 

L E  T , E T,  E T,  D , A  U ,  B ,  

In the case of C o quadratics, the unknowns U 1 can be associated with 
approximations of the function u of(1.1), U 2 corresponds to uxx, U 3 to u~y and U4 to 
uxxrr. For the C 1 cubic elements, U 1 corresponds to u, U 2 to ux, U a to u. and U, to 
u~y. Viewing (3.1) as a system o f  f i n i t e  d i f f e r e n c e  equations, in both the C 6 quadratic 
and C 1 cubic cases, D 1 arises from a 9-point approximation of - c A ,  c a constant. 
For C o quadratic elements, D E and D 3 result from 3-point approximations of a 
scalar constant, and D 4 from a one-point approximation of a constant. For C 1 
cubic elements, Di, i = 2, 3, 4 result from 9-point approximations of scalar constants. 
This is seen by formally taking the limit of the difference equations as h ~ 0 and 
applying Taylor 's theorem. 

All linear systems of the form D~x = y  can be efficiently solved, using fast direct 
methods for finite difference equations i f D  i arises from a 9-point discretization, and 
the well-known algorithm for tridiagonal matrices [9] if D~ arises from a 3-point 
approximation, thus we are led to the study of block iterative methods based on this 
partitioning of the matrix M. Let 

M = - E T + D  - E  (3.2) 

where D = Diag [Di]  is block diagonal and E is block upper triangular. Let x 0 be a 
given initial vector, and consider the solution of (1.8) using the following block 
iterative methods [14]. 

Block Jacobi: D ( x  k § 1 - x , )  = b - M Xk, k = O, 1 . . . .  

Block Gauss Seidel: ( D - E T) ( x k + 1 - x , )  = b - M Xk, k = O, 1 . . . .  

Block Successive Over-Relaxation (SOR): 

( D - - a ~ E T ) ( X k + I  - - X k ) = ~ ( b - - M X k ) ,  k=0 ,  1 . . . . .  (3.3) 

Theorem 3.1. Let M denote the tensor product matrix in (3.1) for either C O 
quadratic or C ~ cubic tensor product finite element subspaces defined in (1.2)-(1.7). 
Then the block iterative methods (3.3) are all convergent (the block SOR for 
0 < o~ < 2). In particular, the spectral radii of the iteration matrices are essentially 
independent of n, and are given in Table 3.1. 
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Table 3.1. Spectral radii for the block iterative methods (3.3) 

C ~ Quadratics C 1 Cubics 

Block Jacobi 1/5/6 + O(h 2) 1 1 ~  + O(h 2) 

Block Gauss Seidel ~ + O(h 2) ~ + O(h 2) 

Block SOR (at (/)opt) 0.4202... + O(h 2) 0.0455... + O(h 2) 
(/)opt 1.4202... + O(h 2 ) 1.0455... + O(h 2) 

Proof  The convergence of the methods is readily established using standard results 
[14, Section3.4], since the matrix M is real, symmetric, and positive definite 
[11,12]. To compute the spectral radii, we apply the appropriate Fourier 
transforms described in Section 2 to the iterations (3.3). After recording, we find 
that in the transformed coordinates, the problem is reduced to the study of n 2 4 x 4 
iterations and O(n) 2 x 2  iterations. The results of Tab|e3.1 follow from the 
evaluation of the relevant 4 x 4 determinants. 

As an illustration, consider the block Jacobi iteration for C O quadratics. In this 
case we seek 2 satisfying 

aOb - b  - b  i l  Det r2 0 - 
0 r2 - 
- g  - g  f 2  

= 0  (3.4) 

where a = 8 S2(3 --  2S2)/3,  b = h z s c/3, r = h4(15 - 4 sZ)/180, g = h 6 c/144, f =  h8/720, c 

= cos , and s = sin . Standard algebraic manipulations reduce (3.4) 

to 

Det 0 - 2  2 

k0 0 1 2 

=0 (3.5) 

where p =2b2/(a r) and q =2g2/( fr) .  From (3.5) we have 

24 - 22(p + q) = 0. (3.6) 

The of 34,aret us0and   q 

The computations in the remaining cases follow a similar pattern. In the case of C O 
quadratics, the 4 • 4 matrix is a consistently ordered 2-cyclic Stieltjes matrix [14], 
so much of the established theory for iterative methods is applicable. This is not 
true in the C ~ cubic case, except in the limit as h --* 0, when the relevant 4 x 4 matrix 
becomes reducible, yielding 3 x 3 and 1 x 1 irreducible blocks to which the standard 



Efficient Algorithms for Solving Tensor Product Finite Element Equations 57 

theory applies. For the C ~ cubics, perturbation theory for polynomial zeroes [15] 
appears to be more useful in establishing the results of Theorem 3.1. 

The importance of Theorem 3.1 lies in the fact that the spectral radii for these 
block iterations are essentially independent of n; thus the number of iterations 
required to reduce the initial error by a factor of e is also independent of n, being 
proportional to - l o g  e. This is in contrast to the corresponding "point"  iterations, 
where the number of iterations is proportional to - n l o g e .  Since solving linear 
systems of the form DI x = y requires O(n 2) to O(n 2 logn) operations, depending on 
which fast direct methods are employed, the overall costs of these iterative schemes 
is O(F/2 log l/e) to  O(n 2 logn log l/e) computations. 

We make one final remark on implementation. Often in practice one scales the 
basis functions by appropriate powers of h, such that the matrix elements are all of 
the same order of magnitude. In this event, the unknowns do not correspond 
identically to function and derivative values but rather to scalar multiples of them. 
Scalings of this type do not alter the results of Theorem 3.1. 

4. Inner Iterations 

To motivate our discussion of inner iterations, we first consider the tensor product 
matrices arising from finite difference approximations of - c .  A, c a scalar. Let Tbe 
the n x n tridiagonal matrix with diagonal entries 2 and off-diagonal entries - 1, 
which we denote T=  [ -  1 2 - 1], and let T'  be the n x n tridiagonal matrix T' 

= ~ a+b ~], a>O, b>O. Define D~ by 

D x = T |  T' + T ' |  T. (4.1) 

The matrix D~ arises from 9-point finite difference approximations of -cA, for 
example, the matrices D 1 of (3.1). Define G 1 by 

G~ = ( a + b )  T|174 (4.2) 

where I is the identity matrix of order n. The matrix G~ results from standard 5- 
point difference approximations of - c A .  We wish to solve the linear system D~ x 
= y  using the iteration 

Gl(xk+ 1 --Xk)=Og(y--D1Xk), X o given, k=0 ,  1 . . . . .  (4.3) 

It is convenient to analyze the iteration (4.3) in its transformed coordinates; in 
this case, sine transforms are used in both directions. The transformed matrices/)~ 
and ~ are diagonal. The values of 2 satisfying 

Det(2 G1 - G1 + o9/)~) = 0 (4.4a) 
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are given by 

1 o cos( ) 

(4.4b) 

l < i , j < n .  

From (4.4), we find the opt imum value of 09 is 1, and that the spectral radius is 

b c~ (n- -~)  b 
a + b = a + b + O(h2). For the matrix D 1 associated with C O quadratics, a = b 

= 1/3, yielding a spectral radius o f { +  O(h2). For the matrix D1 associated with the 
C 1 cubics, a =  102/175, b=54/175, giving a spectral radius of 9 / 2 6 + 0 ( h 2 ) .  

We now consider the enhancement of the iterative methods (3.3) in the following 
fashion: for both C O quadratic and C ~ cubic elements, solve linear systems of the 
form D 1 x = y  using (4.3). Additionally, in the case of C ~ cubic elements, solve D~x 
= y, i = 2, 3, 4, using iterative methods of the form (4.3) but employing 1-point rather 
than 5-point difference formulate to determine G i. 

The appropriate diagonal matrices for the C ~ cubic case are G z = G  3 
= 119h2/525I  and G 4 = 19h4/1575I .  These iterations can be analyzed in the same 
fashion as that for G1, i.e., in the appropriate transformed coordinates,/5 i and (~ are 
diagonal. The scalar multiples in Gi were chosen such that the optimum o) was 1 in 
all cases. The spectral radii are 56/119 + O(h z) for i =  2, 3, and 16/19 + O(h 2) for i=  4. 

Since all of the iterations occur inside the outer iteration (3.3), we do not expect 
to solve systems to full accuracy, but only to reduce the initial error by a factor e 
which is somewhat smaller than the spectral radius of the outer iteration. Any 
additional accuracy would be largely wasted, since such digits are generally 
inaccurate in the context of the outer iteration. Thus we anticipate that a relatively 
small number of inner iterations will suffice. 

To illustrate, we estimate the effect of inner iterations on the block SOR 
iteration. Let M, D, E be defined as in (3.2) and let 

L = D - 1 E T ;  U = D - a E  

D i = G i - N i ; Hi  = G i-  1Ni ; 

H = Diag [Ha'(I  - H a ' ) -  1], 

1 < i < 4 :  

Pi an integer, 1 < i < 4 .  (4.5) 

It is easy to verify by induction that solving D i v = z  using the pi step iteration 

Givk =Nit)k_l'[-Z; k =  l , 2 , . . . , p i ;  v o given, 

is equivalent mathematically to solving the linear system 

D i ( I -  H~")- a vp, = DiHa' ( I  - Hag-  1 Vo + z 

(4.6) 

(4.7) 
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once. If the current best estimate for the solution is taken as the initial guess for the 
inner iterations, then block SOR with inner iterations can be written as 

[D(I + H) - co E] (x k + 1 - -  "Yk) = c o ( b  = M X k), (4.8 a) 

or more conveniently, using (3.2) and (4.5) 

(I + H - c o L ) X k +  a = (H + (1 -co)  I +coU)Xk +coD -1 b, (4.8b) 

k=0 ,  1, . . . ;x  0 given. 
To find the spectral radius, we look at the iteration (4.8b) in transformed 

coordinates. For the particular form of the inner iterations we have chosen, H, the 
reordered transform of H, is diagonal. In particular, for the 4 x 4 matrix of interest, 
H, we have H =Diag[61/(1-61) ] where 6~ is the spectral radius of the i-th block 
raised to the p~-th power. To find the overall spectral radius, we seek 2 satisfying 

Det [-2- 1) H + (2 - 1 + co) I - co(U + 2L)] = 0 (4.9) 

where H, L, and U are the appropriate 4 • 4 matrices. (From Theorem 3.1, we know 
the solution when H - 0 . )  Now suppose H=Diag[ -5 / (1 -6 ) ] ,  0 < 6 < 1 .  This 
approximation allows the trivial solution of (4.9), yielding a qualitative picture of 
the actual situation. In particular, let e~= coo - 6); then (4.9) is equivalent to finding 
2 such that 

Det [(2 - 1 + o5) I - oS(U + 2 L)] = 0. (4.10) 

This is precisely (4.9) with H -  0 and o~ replacing ~o. Thus (4.10) gives an optimum 
spectral radius which is equal to the opt imum spectral radius without inner 
iterations, and an opt imum co which is larger by a factor of 1/(1 - 6). Qualitatively, 
we expect the effect of inner iterations to be small provided that the 6 i are 
sufficiently small. This has been verified by preliminary numerical experiments. 
These experiments also indicate that when the 6~ are large compared to the spectral 
radius of the outer iteration (for example, in the C 1 cubic case with P4--1, ~4 
= 16/19 + O(h2)), then the rate of convergence of the overall iteration is dominated 
by the rate of convergence of the inner iterations. 

We conclude with several remarks. First, in the case of C a cubic elements, one 
could improve the performance of the inner iterations for i = 2, 3, 4, by using G~ 
which are derived from 3- or 5-point difference formulae. The analysis of such cases 
can be carried out as above. For  example, in the case i = 2 or 3, an optimal 3-point 
difference scheme reduces the spectral radius of that inner iteration from 56/119 
+ O(h 2) to 1/4+ O(h2). The question of selecting the type and number of inner 
iterations in a manner which minimizes the total cost of solving the problem is a 
matter for future research. Second, as was the case in Section 3, rescaling the basis 
functions does not affect the rate of convergence; however, some of the constants 
would be altered. 

5. Concluding Remarks 

(A) The results of Sections 2-4 can be extended in reasonably straightforward 
fashion to other boundary condition combinations, similar to the analogous 
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extensions for 5-point finite difference formulae [3, 13]. The appropriate Fourier 
transforms vary from case to case, as do several other details. In [16], several of the 
results of Sections 3-4 are extended, within the framework of "multi-level" 
schemes, to cover more general elliptic operators, irregular regions and meshes, and 
a broader class of finite element methods. For  this general class ofiterative schemes, 
the rate of convergence can be shown to be independent of h under reasonably weak 
hypotheses. In the more general setting, however, general sparse elimination 
algorithms surplant the use of fast direct methods. 

(B) The spectral radii given in Table 3.1 are basis dependent. For example, 
suppose we use the Lagrange interpolating basis [12] for the C o quadratic space 
rather than (1.4). In the partitioning corresponding to (3.1) all the U i would 
correspond to u. The spectral radii of the iterations (3.3) are not essentially 
independent of n in this case, and O(n log l/z) iterations are required to reduce the 
error by e. Another open question is whether there exist other convenient bases for 
these subspaces, which reduce the spectral radii of the iterative methods. 

(C) These methods extend readily to variable coefficient problems. For 
example, consider 

- V .  a V u = f  in O=(O, 1) x(O, 1); 

u = 0  on ~f2; 

O < a o < a ( x , y ) < a l ,  (x,y)~f2. (5.1) 

To compute an approximate solution of(5.1) using either C o quadratic or C 1 cubic 
finite elements, we must solve a linear system M x  = b. Let M denote the tensor 
product matrix corresponding to the operator - A  on the same grid. We solve M x  
= b using 

M(Xk+I--Xk)=~o(b--MXk);  x o given, k=0 ,1  . . . . .  (5.2) 

It is convenient to analyze the convergence of the iteration (5.2) using 

Theorem 5.1. Let M and M be symmetric, real, and positive definite. Let #1 and/[/2 
be positive numbers such that, for all x + 0  we have 

xr M x/xr Mxe[#l, ]A2]. 

Then for 0 < e) < 2/r 2 the sequence x k defined in (5.2) converges to M -  1 b. Further, 
for c0=2/(pl +#2), the M-norm of the error is reduced by a factor of at least (/~2 
- P 0 / ( P 2 + # 0  in each iteration. (The M-norm of a vector x is given by [Jxp[ M 
= [[ml/2x[[2 =(xTmx) l /2 . )  

Theorem 5.1 is proved in [10] among others. For the finite element matrices 

v r M y  = a(~b, qS)= S a17c~ V49 dx  (5.3) 
12 

where q~ is an element of the finite dimensional subspace, and is characterized by the 
coefficient vector v. Since 

vr M v  = I V(a 17 0 dx  (5.4) 
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it fo l lows tha t  

v T M v  

a o < ~ <- a ,  (5.5) 
- v J  M v  - -  �9 

for all v 4=0. T h u s  (5.2) conve rges  wi th  spec t ra l  r ad ius  b o u n d e d  i n d e p e n d e n t  o f  n. 
Th is  spect ra l  rad ius  can  of ten be  subs tan t ia l ly  r e d u c e d  by an a p p r o p r i a t e  change  of  
var iab les  in the  o r ig ina l  p r o b l e m  [2, 4]. It  is a lso a d v a n t a g e o u s  to app ly  s o m e  
acce l e ra t ion  p r o c e d u r e  to (5.2), for example ,  C h e b y s h e v  [4],  o r  p r e c o n d i t i o n e d  
c o n j u g a t e  g r ad i en t  [5, 8]. In  e i ther  event ,  effect ive m e t h o d s  for so lv ing  M x  = b play  

a cen t ra l  role. 
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