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The response of a "Lorentz gas" to a pulsed a.c. electric field and its relaxation after 
the cessation of this field has been studied by solving the Boltzmann's transfer equa- 
tion. Explicit expressions for the electron distribution function and the current den- 
sity are obtained under the assumption that the collision frequency is independent 
of the electron velocity. 

Introduction 

In this communica t ion  we have studied the response of a Lorentz  
gas ** to an applied a.c. electric pulse by solving the Bol tzmann 's  transfer 
equation under  the assumption that  the collision frequency is indepen- 
dent of velocity. After the cessation of the pulse, the discrete modes 
describing the relaxation of the velocity distribution to the equilibrium 
Maxwellian distribution are shown to be product  of the Maxwellian 
distribution and associated Laguerre polynomials.  The corresponding 
discrete relaxation constants have also been obtained. 

Boltzmann's Transfer Equation and its Solutions 

The Bol tzmann 's  transfer equation for  electrons in a homogeneous  
plasma may be written as 

~f .t-a. Vof=( df) a~- --F: c' (1) 

where f(v, t) is the distribution function of electron velocities, t is time, 
~t is the acceleration of electrons; F v represents the gradient in the 
velocity space and (gf/Ot)c is the rate of change o f f  due to collisions. 

* Work partially supported by Environmental Science Services Administration, 
U.S.A. 

** By a Lorentz gas we imply that the electric field is not disturbed by the plasma 
itself and electrons interact only with neutral gas molecules and not with electrons 
or ions. 
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The acceleration e of electrons in the presence of an electric field E(t) 
is given by 

eE(t) 
= - - - ,  (2 )  

m 

where e is the electronic charge and m is the electronic mass. In the 
present investigation we will consider the electric field acting along the 
x-axis. Further, we will assume the time dependence of the electric 
field to be of the form1:  

E(t) = A (t) Cos co t ,  (3) 

where A(t) is a slowly varying function of t (except for certain points 
where A(t) may vary rapidly). In the simplest case of the "cu t  off 
sinusoid" 

A(t)=Eo for 0 < t < z  
(4 )  

= 0  for t < 0  and t>~, 

i.e. the electric field is E 0 exp(icot) in the interval 0 < t < z  and zero 
outside the interval. The transfer equation thus becomes: 

. ~ O f  [ Of~ Ofot eE~ C~ t ~-~-v~ = [-ff{-}c' O < t < z  (5) 

Of (Of) 
0 t = - ~ - c '  t < 0  and t > z .  (6) 

The distribution function is expanded as 

f=fo(v, t)+v~ g(v, t). (7) 

Further, for a slightly ionized gas consisting of neutral molecules and 
electrons, the rate of change of the electron Velocity distribution func- 
tion due to collisions can be shown to be of the form 2 

m 0 3 kT c3 

where v = l v l  denotes the speed of the electron, v(v) is the electron 
collision frequency, M is the mass of molecules, k is the Boltzmann 
constant and T the temperature of the gas. 

Let us first obtain the solution of the transfer equation for 0 < t < 
subject to the boundary condition that before the pulse the electron 

1. GINZBURG, V.L.: Propagation of electromagnetic waves in plasma, chap. IV. 
New York: Gordon and Breach 1961. 

2. DESLOGE, E. A., and S. W. MATaYSEE: Am. 3. Phys. 28, 1 (1960). 
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distribution was in thermal equilibrium and therefore given by 

f(v)=fo(v)=Cexp \--~-k-f ], t<O. 

The above represents a Maxwellian distribution; C being an arbitrary 
constant. Substituting Eqs. (7) and (8) in Eq. (5), and equating the 
terms having v x and the remaining terms on both sides of the equation, 
we obtain 

ag eE(t) Ofo 
- -  - - v g ( 9 )  Ot my Ov 

and 

Ofo_8t eE(t_____))mv [ g(v't)-t v3 ag(v,t)]Ov 

m ~ [vv fo]+-M--~v vv z --~vZ ~ 

where in Eq. (10), Vx z has been replaced by vz/3. Since g(v, t )=0  at t =0 
the solution of Eq. (9) is immediately obtained: 

g(v,t)= e e _ ~ t i e ~ E ( t ) ~ d t .  (11) 
/7"/V 0 

From now on we will assume that the duration of the pulse is so short 
that the isotropic part of the distribution function, fo,  does not change 
appreciably during the interval 0 < t < z*. Thus we will take Ofo/~V out- 
side the integral in Eq. (11) and neglect Ofo/Ot in Eq. (10). Substituting 
the expression for E(t) in Eq. (11) we obtain 

g(v, t)= ~ e  af~ t) K(v, t) O<t<z  (12) 
m Y  OV 

where 

K(v, t ) = - - - r - ~  E~ [ogSino)t+vCosogt-ve TM]. (13) 

Next, in order to calculate the isotropic part of the velocity distribution 
we neglect afo/Ot in Eq. (10) and rewrite it in the following form: 

m Sfo [ e 3 @  vS g(v, t)] 0 [ v v  " kT 2 Ofo] c3 

* As will be shown later, this will be true if 

Me z Eg cos cot 
3m 2 kTv(co2+ v2 ) [co sin cot+ v cos cot--ve-Vtl ,~[ 

for all values of t lying between 0 and ~. 
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Integrating, we obtain 

0fo m v 
Ov t -kT  - f~  

eE(t)  M 
3 v k T  m 

v g(v, t), 

where we have put the constant of integration to be zero by using the 
boundary condition at v=0. The above equation can be written in the 
form 

afo [1 +L(t,  v)] +fo =0 0~ 2 

where we have used Eq. (11) and 

rl= [ 2kTJ  v, (14) 

M e  z E ( t ) K ( t , v )  
(15) L(t, v)= 3 m 2 k T  v 

The solution of the above equation, subject to Eq. (8) is given by 

n2 d~/2 ] 
f o = C e x p  [-o~ l+L( t ,  qz)j . (16) 

The velocity dependence of the functions K and L come through the 
velocity dependence of the collision frequency v. Therefore, if we assume 
the collision frequency to be velocity independent, the trivial integra- 
tion in Eq. (16) gives 

qa 
f ~  l-~L(t)] for 0< t< ' c .  (17) 

This corresponds to a Maxwellian distribution with effective tempera- 
ture, Te, given by 

Te = T[1 + L(t)]. (18) 

At t =0, obviously L( t )=0.  

Thus, during the duration of the pulse the isotropic part of the 
velocity distribution is approximately a Maxwellian distribution with 
an effective temperature changing with time. 

Next, let us consider the approach to the equilibrium distribution 
when the electric field is no more there, i.e. for t>z .  For this we have 
to solve Eq. (6) subject to the continuity of the distribution function 
at t =z. Substituting Eq. (7) in Eq. (6) and equating the terms having 
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V~ and the remaining terms on both sides of the resulting equation we 
obtain: 

Oogt+v g--0 (19) 

and 

Ofo m 0 [v v fo] + - ~  - ~  v v 2 . (20) 
Ot M92 09 

The solution of Eq. (19) subject to its continuity at t =-c is 

e Ofo(v,z) Eo [coSincoz+vCoscoz_ve_V~]e-V(t-,) 
g(9, t)= m~ 09 ~ (21) 

for t > z ,  

showing the exponential decay of the nonisotropic component of the 
velocity distribution. 

In order to solve Eq. (20) we try the method of separation of variables 
and therefore look for solutions of the form: 

fo (v, t)-- F o (v) T o (t), 

On substitution we obtain 

1 dTo 1 m d [vv aFo]-~ 1 kT d [vv 2 dFo]= 
T O dt =-~o M 92 dv V o M-~-d-v[ dv J - 2  

indicating the variables have indeed separated out. Therefore 

To(t ) = Constant x e x p ( - 2  t) (22) 
and 

m d Iv 3F ~ kT d [vv2 dr o] 
My  2 d9 v ~  [ d9 J +2F~  (23) 

We introduce 
[mY 2 ] 

7/(9) = Fo (v) exp [--fk-~-], 

which gives us 

+ - - ~ f  v exp 7J(v)=0 
dv \ 2kT ] \ 2kT  ] 

Assuming v to be independent of velocity and using the dimensionless 
variable ~/we obtain 

d 2~_q.r_ + ~_ ( 2 ~ P  1 _q2) ~ Z - +  4x ~ = 0 ,  (24) 
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where 
M 2  K---- 
2vm " 

A further change of variable to ~=t/2 leads to the following confluent 
hypergeometric equation 

d 2 7t -3 d y + ~  ~ = 0  (25) z --d-e~ + ~2-  e) a~ 

We will use the standard Frobenius method to solve the above equation. 
One of the solutions is singular at v=0.  If we exclude such solutions, 
the solution of Eq. (25) is a confluent hypergeometric function 

k~ =FI(--to,  3, ~). 

The only solutions to Eq. (25) with a satisfactory behaviour as e approa- 
ches infinity occur for x equal to zero or positive integer. Thus, the 
corresponding values of 2 are given by 

2vm 
2 , ,=-~- -  n 

where 
n=0 ,  1, 2 . . . .  

For  these values of to, the function F 1 ( -  ~, 2, ~) becomes a polynomial a. 
The solutions of Eq. (23) are thus 

Fo(v)=exp [ -  toO2 ] L~.(e). (26) 
[ 2kTJ 

The associated Laguerre polynomials are orthogonal in the sense that a 

oo 

I e~ e-" L~, (e) L~ (~) d ~ = 6,., [C(n + 3)] 3 (27) 
o r (n  + 1) 

The complete solution of Eq. (20) is therefore 

fo(v, t )=[ZA,  L~(e)e -~'"t] e -'v~/zkr, t>T. (28) 
t l  

The constants, A,, are to be determined from the initial conditions (i.e. 
from the value of fo  at t =~). 

We can rewrite Eq. (28) as 
oo 

fo(v, t )=  Z B,,L~(e) e-~ e-a"('-*) 
n = 0  

3. MORSE, P. M., and H. FEsrmacH: Methods of theoretical physics, part. I. p. 784, Lon- 
don, New York: McGraw-Hill 1953. 

32 z. Physik, Bd. 226 
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where 
Bn=Ane -~"~ 

From the above equation we get 

fo(v, v ) = ~  B.L~.(8)e -~. 

Using Eq. (27) we obtain 

F (n+ l )  7 § . . . .  
B. = [r(n +k)]3 Joe L.te)yotV, ~) de. (29) 

Substituting Eq. (17) we get 

F (n+ l )  7 ~ r~ - -  1+-~(~) 
B . = C  rT/=~_~S~Je L.te)e de. (30) 

L-- 'k '~ T "21J 0 

Since L.~(e) are polynomials the evaluation of the integrals is quite 
straightforward. The result is in terms of the gamma functions. The 
explicit forms of the first few polynomials are 

L~o(~) =r(~) 
L~ (Q = F(s) [~ - e] (31) 

L~2 (e)=�89 F(~) [-~- - 5e+e 2] 
in general 

L~(e)= r(n+-~) e" d" 
F ( n + l )  e ~ de" [a"+~e-~]" 

Expression for Current Density 
The current density in a plasma is given by: 

+oo  

J = - e ~ vf(v,  t) d v~ d v r d Vz. 
- - c o  

Since 
f (v, t )= f  o (v, t) + v~ g(v, t) 

+ o o  

Jy=J==0 and SSSVxfo(v,t)dv~,dvydvz=O 
--O0 

+O0 

.'. &= -e~.IIv~ g(v, t)dvxdv, dVz 
- -  0 0  

4roe o~ 
- ! 3 v'~g(v, t )dv .  

(32) 
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2 In writing the above expression we have, by symmetry, replaced vx by 
v2/3, dye, dry dG has been replaced by 4re vZdv and the triple integral 
has been replaced by a single integral extending from 0 to ~ .  

For t<z  we use Eq. (12) to obtain 

2 4roe . . . . .  e Ofo 3 
J~=- 3m ~U)]o07 -v dv 

4ne 2 
- K(t)Ifov2dv ['." fovZly=O]. 

in  o 

We use Eq. (17) for fo(v, t) and obtain after simple manipulations 

[ 2zck T 1~ Jx=CeZK(t)m ~ ( l + L ( t ) )  t<z .  (33) 

For t>'c we use Eq. (21) for g(v, t) and obtain in an identical manner 

e 2 } 

We now summarize our results 

(i) For t<0  (i.e. before the pulse) 
{ rrt v2 ~ 

f@, t) = C exp \ -  2---kT-} 

J = 0 .  
0i) For 0 < t < r  

_ 1 fo(v,t)=Cexp [ 2kr(l+L(t))J 
e Ofo(v,t) g(v, t)= K(t) my Ov 

e K(t) [ my 2 ] 
- C kT l+L( t )  exp 2kT(l+L(t)) 

e2 [ _ ~ ( 1  +L(t))] ~" L=c-~-K(t) 
(iii) For t_-> z 

fo(v, t)=Z B, l~(e)e-* e -~"0-') 

g(v , t )=-C e K(z) [ my 2 ]e_~(t_,) 
kT  I+L(z)  exp 2kT-~L(T)) 'I  

e~ [2~km T (l + L(z))]}exp(_v(t_.c)). 

32* 
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which on substi tution gives 
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Now,  the total  electron density, AT, i s  given by:  

O9 

N = ~SSf(r, t) d r = S fo  (v, t) 4 n v 2 d v. 
o 

Fo r  0 < t < z a s t ra ightforward calculation gives 

where 

(35) 

The author is grateful to Prof. M. S. SODHA for suggesting the problem and for 
many stimulating discussions. 

AJov K. GHATAK 
Department of Physics 
Indian Institute of Technology 
New Delhi-29/India 

2 4~zN(t) e2 
m 

is a slowly varying funct ion of time. 

For  t > z ,  we have to use the or thogonal i ty  relation (Eq. (27)) to 
obtain 

N=-~- Bo. 

Substituting the expression for  B o (Eq. (30)) we obtain 

showing tha t  the total  electron density remains  constant  for  t>__~. 
Eliminating the constant  c we get 

2 
J x - - ~ K ( z ) e x p [ - v ( t - z ) ]  (t>=z) 

where the p lasma frequency 
2 4nNe2 

03p-- 
m 


