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Summary. Let u denote the approximation produced by a finite-difference method
for solving an initial value problem for a given differential equation. Suppose the
finite-difference equation is perturbed by a quantity w, e.g. due to round-off or
truncation errors. Then, instead of «, one obtains a solution which we denote by #%.

In this paper a condition is presented which is necessary and sufficient for the
existence of a two-sided estimate of the error # — % in terms of the perturbation w. The
paper is concluded with applications in the fields of ordinary and partial parabolic
differential equations.

1. Introduction

In order to introduce the main problem that is treated in this paper we consider
the familiar example of an initial value problem

(14) £ UO=16UY) OSt<T), UO)=c

which is solved numerically by Euler’s method
(12) h’-l(un_un—l)=f(tn—1! un-l) (ﬂ=1, 2,... N)’ Ho=C.

In (1.2) %, denotes an approximation of U(f) at #=¢,=»nh and N is the greatest
integer with N A < T. Along with (1.2) we consider a perturbed version of Euler’s
method

(13) h-l(an_ﬁn—1)=f(tn—1- an—1)+wn (n=1’ 2, ..., N)' ﬂ0=0+wo

where 4, denotes the approximation of U(t,) obtained in the presence of some
perturbations wg, w,, ..., wy. For instance w», may represent a truncation error
arising in the computation of f(¢,_,,#, ;). Likewise, the local perturbations w,
may be caused by rounding-off. Finally w, may also be understood to be the local
discretization error {we use here the terminology of [14]) of Euler’s method, in
2
in which case we have w, = % . % U(z,) (with¢, ,<1,<t,, and n=1, 2, ..., N)
and %, = U(t,). Clearly, in each of these cases it is desirable to have an error bound
by means of which the effect of the perturbations w, on the differences #,—u,
can be estimated.
Suppose we have an error bound which can be written in the form

(14) olsrz'ast Iun”—unl gEl
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where E,=E, [w,, w,, ..., wy; 4] depends on the perturbations w, and on 2> 0.
Then (1.4) is of particular interest if the factor by which the actual quantity

o Jax, |, —u,| may be overestimated, is bounded uniformly for all w, and all
n
4> 0. Thus a basic requirement to be imposed on the error estimate (1.4) could

be that its right-hand member E, divided by0 max |%%, —u,] is bounded by some
=n

fixed constant § > 0. Clearly, this requirement is fulfilled if an only if there exists
a two-sided error bound
{1.5) E°§oénna§xzv |fiy—u,| S E,
with a left-hand member E, that can be written in the form E,= % E, where
B> 0 is independent of w,, w,, ..., wy and A.

We assume that the partial derivative with respect to x of the function f
appearing in the initial value problem (1.1), satisfies

(1.6) .

-—ax—f(t,x)l <L<w

uniformly for 0 <t £ T, — oo<< x < oo. Using (1.6) it can be proved {cf. [11, 14, 15])
that the error #,—u, caused by the local perturbations w,, w, ..., @, in (1.3)
admits the following two-sided error bound of type (1.5):

n ”
. 1< i, — . .
17) 70 o, ot By | =, mas sl - o £ )
b
(we use the convention D ..=0 for a>b). For y,, v, one may obtain the ex-
j=a

pressions yo=(14LT)™, yy=exp (LT). Further, if assumptions more refined
than (1.6) are made, (1.7) can be shown to hold with a constant y, smaller than the
exponential factor exp (LT). For instance, if, in addition to (1.6), it is assumed
that

2 j =M <0

(uniformly for 0S¢ = T, —oo<<x <o), then, for 4 sufficiently small, we may
put y,=min [1———;‘7, exp (LT)]. We note that the two-sided error estimate

{1.7) has the important property that, except for factors y,, 7, which are independ-
ent of w,, @y, ..., wy and &, the lower bound and upper bound foro;n"anN |y — 1|
do not depend on the function f. ==

The question arises whether results similar to the above still hold if the maxi-
mum-norm g}'alst |, —u,] is replaced throughout by some other seminorm, e.g.

by the Euclidean norm
N b
(1.8 h 2 =y}

n=0

or by the important seminorm

(1.9) |y —wn]-
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In this paper it will be shown that the answer to this question can be positive as
well as negative depending on the seminorm chosen. Using the theory of this
article e.g. the conclusion can be drawn that the two-sided error bound

Yo {h 'go(wo—{-h ié w,-)z}* < {h . ’é’:o (@, _.u”)z}i

(1.10)

=y - {h :Z::o (wo+h 721 wi)2}§

holds, with the same y,, y; as in (1.7). The lower bound and upper bound in (1.10)
are again independent of the function f, except for factors independent of
W, W@, ..., Wy and A. The results in this paper also imply that, on the other hand,
there exists no two-sided error bound for |y —uy| of the form

(1.11) Vo W, @y, ..., Wy B Sy —uy| Sy, ¢ [wo, w0y, ..., wy; k)

with constants y,, ¢, independent of wy, w,, ..., wy and &, and with a function ¢
independent of f.

We note that (1.11) is trivially fulfilled with y=9;=1 and ¢ defined by

¢[w0!w1’ RY) rih]zlaN"uNI

where #  is computed from (1.3) and |%y —uy| can thus be regarded as a function
of wy, w,, ..., wy and k. Clearly, with this choice of y,, y, and ¢ the error estimate
(1.11) is useless, since the values ¢ [w,, vy, ..., wy; £] depend on w,, w,, ..., wy
in a manner which in general is untransparent —due to the possibly complicated
structure of the (nonlinear) function f. It is in view of the existence of such trivial
and simultaneously untransparent error estimates that we focus on two-sided
estimates in which, apart from factors independent of w, and %, the lower bound
and upper bound are independent of f.

In Chapter 2 we introduce the class of finite-difference methods we shall deal
with in the rest of this paper. It consists of step-by-step methods for solving initial
value problems for semilinear (ordinary or partial) differential equations. Chapter 2
is concluded with Theorem 2 containing the main result of this article. This theo-
rem gives a very simple condition on the seminorm which is necessary and suffici-
ent for the existence of nontrivial two-sided error bounds.

In Chapter 3 we prove Theorem 2 using a series of lemmata proved at the
beginning of Chapter 3. At the end of Chapter 3 (Section 3.5) we touch on some
further applications of these lemmata, which have not been incorporated in
Theorem 2 of Chapter 2. We prove the above statement about the non-existence of
error bounds of type (1.11). Further, we indicate how the theorems which were
stated without proof in [13] follow from the theory of Chapter 3.

Chapter 4 contains illustrations to the material of the Chapters 2, 3 in the fields
of ordinary and partial differential equations. The error bounds (1.7), (1.10} as
well as the expressions for y,, 9, given above easily follow from the examples
treated in Section 4.2.

For further examples and applications of two-sided error bounds we refer to
the publications [11—16].
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2. A Theorem on the Existence of Two-Sided Error Bounds
© 2.1. The Finite-Difference Scheme

Let T and A, be given numbers with 0 <%, =T and let H denote some subset
of the interval (0, #,] with inf H=0. A number % belonging to H is called a
stepsize. We shall deal with finite-difference methods producing approximations
u,, to some solution U(f) of a given differential equation at the gridpoints t =1, for
#=0,1, ..., N. The points ¢, are defined by f,=# A (for n=0,1,2...) where %
is a given stepsize, and N is the largest integer with ¢, < T. The approximations
u,,, which depend on the stepsize % that is chosen, are assumed to belong to a real
Banach space R, not necessarily of finite dimension. The norm in R, is denoted
by |a|, or simply by |a| for a€ R,. It is assumed that R, contains a vector e 0.

We assume that the approximations #, are obtained by solving the finite-
difference equation

k
24.2) ALY A, () =F, (g, vy, ..., 4} ) (n=E, k+1,..., N)

=0
using starting values ¢,e R,:
(2.1.b) #u,=¢, m=01,...,k—1).

In (2.4) % denotes a fixed integer =1 and it is assumed that %, is so small that
khy=T.Hence N z k for all k€ H. We assume that the operators 4, ,, F, satisfy
the following conditions.

Condition I. For each he H and i=0,1, ..., k, n=~k, k-+1,..., N the 4, ; are
linear operators from R, into itself and the operators 4, , are invertible. The
operators 4, ; are allowed to depend on % but in order to avoid cumbersome
notation we suppress a third index of 4,, ; indicating this dependence.

Condition II. For heH, k=n<N, z€®R, (0 =7=<#n) the element
y=F,(%,, %, ..., %, h) belongs to R®,. Further if x; and %; are arbitrary vectors
in §, then

lEt("EO! (AR ﬁn; h)_El(xo» e Xy h)l = Z Ai"zn—i—xn—-il

where 29, 4, 4o, ... are constants independent of 4, #, x;, %;. It is assumed that
the constants A; vanish for all ¢ < ¢ and for all > 7. With ¢, » we denote arbitrary
fixed integers with 0S¢ =<k, ¢ <7.

Condition III. There is a constant a>0 such that whenever A€ H and
Zay Xpa1s -oor XNs Yoo Vi -+ o» YNE Ry satisfy

*
W2 Ay i(Ju-i)=% (R=n=N), y,=0 (0=nsk—1)

1==0

then
»
[a| S b X |%] (RS =N).
=k



Two-Sided Error Bounds 275

Condition IV. For any A€ H, R <n < N and any vectorsy, %y, %y, ..., %€ R,
the equation
Bt A, o(x)—=F, (%, %1, .-, %4yq, %, B)=Y

has a unique solution xe®R,.

It is clear that Euler’s method (1.2) is an example of thegeneral finite-differ-
ence scheme (2.1) with H=(0, T], R;=the set of real numbers R, 4, ,(») =%,
A, (%) =—x, F, (%9, %3, ..., %,; B) =f((n—1) h, %,,), k=1, a=1, g=r=1 and
M= L-assuming that a—axf satisfies the inequality (1.6). For further examples
of (2.1) we refer to the Sections 4.2, 4.3.

From the conditions I, I1 it is clear that the finite-difference equation (2.1.a)
consists of a linear part and a (nonlinear) part which is Lipschitz-continuous
uniformly in the stepsize A. Therefore (2.1.2) is a semilinear finite-difference
equation. We note that the right-hand member of the Lipschitz condition in condi-
tion II consists in a sum of at most (r—g+1) terms.

Condition IIT requires that the linear part of the finite-difference equation
(2.1.a) has a property which by many authors has been called stability.

Condition IV implies that for given u,, #,, ..., #,_ there is a unique u, satisfy-
ing (2.1.a). Consequently there are unique vectors u,, #%,, ..., #y satisfying (2.1).

2.2. The Perturbed Finite-Difference Scheme

Assume the finite-difference scheme is perturbed by quantities w,,, e.g. due to
errors occurring in the actual calculation of F, and ¢, on a computer. Then instead
of the », satisfying (2.1) we obtain vectors #, satisfying

k
(2.2a) A3 A, (@, )=F, (4, %, ..., 4, k) +w, m=k k+1,...,N),

s=0
(2.2.b) i,=c,+w, (#r=0,1,...,k—1).

We note that condition IV ensures that for any w,, w,, ..., wy€R, there are
unique %, %, ..., iyeR, satisfying (2.2).

Most methods of type (2.1) that are of practical value satisfy, in addition to the
conditions I-1V, the following condition on the size of |&,—u,|.

Condition V. There is a constant y >0 such that whenever k€ H and ,, 4,,
w,ER,; satisfy (2.1}, (2.2) and wy=1w;=--- =w; ;=0 then

”
j=k

This condition has a structure which is similar to that of the stability condi-
tion III. In fact, if E, would vanish, condition V would reduce to condition III.

In the following theorem we formulate a simple condition under which
condition V (and condition IV) is fulfilled. Although the proof of the theorem
does not deviate substantially from proofs of related theorems to be found in the
literature (see e.g. (14, p.85]) we have included it, mainly because the proof
reveals an inequality that is used in the subsequent.

19 Numer. Math., Bd. 26
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Theorem 1. Assume the finite-difference scheme (2.1) satisfies the conditions
I, I1, I1I. Let Ay be so small that

(2.3) o Ay By <1.
Then the conditions IV, V are satisfied as well.

Proof. 1. In order to prove that condition IV is satisfied we rewrite the equa-
tion
(2.4) WA, o(x)=F (%, %1, ..., %1,%; B)+y
in the form x=G(x) where G(x) denotes the element into which the right-hand
member of (2.4) is transformed by the operator % (4, ,)-'. From condition III it
follows that the norm of the operator (4, ,)-* induced by the norm in R,, satisfies
the inequality |(4, o)| =«. Hence by using the Lipschitz condition appearing
in condition II we obtain |G(%)—G(x)| Shady:|E—x| Zalghy-|%—x| for
arbitrary x, ZeR,. In view of (2.3) G is a contraction from %, into itself and the
equation x=Gx has a unique solution in R, (cf. [7]). It follows that condition IV
is fulfilled.

2. In order to prove that condition V is satisfied we subtract the relations
appearing in (2.1} from the corresponding ones in (2.2). Writing d, =4, —u, and
using that wy=w,=-.. =w,_; =0 we thus have

B

A Z An,i(dn-—i)=[Et<ﬁ0» coes By B)—E, (4o, ..., %,; B) ]+, (k=n=N),

=0
d,=0 (0=n=k—1)

By virtue of the conditions III, IT we obtain

g sah {ala)+28 4]+ 5 lw)} G=nsm

where

(2.5) =3 .

f=g
Since h < hy and Ay, is so small that (2.3) holds, we have

n-1 "

|| <pa-hZ |4 +6-h Zw] (kSn<N)
with ’ 4
(2:6) B=a(l—a Ay hg) L.

From this inequality there follows, by induction with respect to # and by noting
that |4, —u,|=|d,|,

(2.7) |68, — ] <B - hijh (1+BA-hP-ilw| (R<n<N).
S

1t follows that condition V is fulfilled with
(2.8) y=B-exp (BAT).
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We note that the assumption (2.3) of the theorem can always be fulfilled by
restricting our considerations to stepsizes £ which are small enough. Moreover, if
¢ =1, we have 4,=0 and condition (2.3) is trivially fulfilled, independently of the
values a, A,. This is the case e.g. for Euler’s method (1.2).

On the other hand, in the numerical solution of so-called stiff initial value
problems (cf. [14]) the assumption (2.3) may be nonrealistic as well as super-
fluous—see [5] for a finite-difference method satisfying the conditions I-V while
(2.3) is violated.

2.3. Two-Sided Ervor Bounds

In order to derive and to investigate bounds for the errors %, —#,, caused by
the local perturbations w, in (2.2), it is appropriate to introduce the vectorspace

Xy= R ={x] x= (%, %y, ..., xy) withall x,eR,}

in which addition and multiplication with real numbers are defined coordinate-
wise. We define the vectors w=(w,, w,, ..., wy), w=_(4, %, ..., %y) and
#h=(fy, %, ..., #y), which belong to the space X,. For each hc H we denote by
| %[, or simply by | x|, an arbitrary seminorm on X,,.

Definition. Let ¢, be a real functional defined on X, (for each k€ H) and let
¥, 1 be positive constants (independent of 4). If for all A6 H and all
Wy, Wy, ..., WyEN, the relations (2.1), (2.2) imply that

(2.9) Yo Pplw] Sfa—uly <y, - ¢y (w),

then (2.9) is called a two-sided error bound for the finite-difference scheme (2.1).

(1.7) provides an example of a two-sided error bound of type (2.9) with
X,=R"*!and

(2.10) [#lh =, max |x|.
(2.11) oy [w]= , max !wo+hz il

for x={(x,, ,, ..., xy), w=(w,, @y, ..., wy)€ X,. Similarly (1.10) is an example
of (2.9) with

(2.42) [xh= { ﬁ:; }
(2.43) fulw1= f:(wo+h2w)2}*-

Finally, it is clear that (1.11) corresponds to the case where
(2.14) Ixlh=|%xl
and ¢h[w]=¢[w0: wlr ceey wN; h]‘

Definition. The seminorm | x|}, on X, is absolute if for all x= (%, %y, ..., *y),
¥= %, %1, ---» Yn)€ X;, with |5,|=|y,| (=0, 1, ..., N) we have [x[,=|y ;-

19*
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In the rest of this paper we shall confine ourselves mainly to absolute semi-
norms |x}}, on X,. Note that (2.10), (2.12) and (2.14) are examples of absolute
seminorms.

We conclude this section with the remark that the concept of a two-sided
error bound, as defined above, is closely related to the concept of a minimal
stability functional defined in [11]. To see this, associate with (2.1) the operator
C,, mapping X, into itself, defined by

(Cy X)y=2%x,—c, (m=0,1,...,k—1),

(Cy %)= “IZA,, X)) —E, (%, %1, ..., %3 B) (n=Fk, k+1, ..., N),

where x={(x,, x,, ..., ) denotes an arbitrary vector in X,. It is easily verified
that, given a finite-difference scheme (2.1) and a functional ¢,, we have a two-
sided error bound (2.9) if an only if ¢, is a minimal stability functional for the
operator C, associated with the given finite-difference scheme.

2.4. Formulation of the Main Result

In the introduction we showed that two-sided error bounds for Euler’s method
with a functional ¢, which is allowed to depend on the right-hand member f of
the finite-difference method (1.2) can be simultaneously trivial and useless. In
order to avoid such trivialities in the investigation of the more general finite-
difference scheme (2.1) we focus on error bounds for (2.1) with a functional ¢,
which is independent of the function F, appearing in the right-hand member of
(2.1.a). The following theorem gives a condition on the seminorm | %[}, (viz. state-
ment 3 in Theorem 2) which is necessary and sufficient in order that such non-
trivial two-sided error bounds exist for all fmlte-dlfference schemes belonging
to a specific class ",

In order to define the class #” we assume that {®,} is a fixed family of Banach-
spaces (k varies through H) and that 2=1, ¢ 20 are fixed integers with ¢ <#.
With ¢ we denote the class of all finite-difference schemes of type (2.1) satisfying
the conditions I-V of the Sections 2.1, 2.2 with the given %, ¢ and {,}. It should
be understood that two finite-difference schemes belonging to X" are considered
to be different from each other if an only if for some A€ H their corresponding
operators C,, as introduced in Section 2.3, are not identical.

Theorem 2. Let |z, be an absolute seminorm on X,,. Then the three following
statements are equivalent.

1. For each finite-difference scheme of the class ¢ there exists a two-sided
error bound of type (2.9) with a functional ¢, that is independent of the function
F, appearing in (2.1.a).

2. For each finite-difference scheme of the class )¢ there exists a two-sided
error bound of the form

(2.15) vo- ol li—uh <y - ol

where y,,y; are positive constants independent of %, w, and where
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v={vg, 3, ..., vy) is defined by

k
B Y A, 0,-)=w, (k=n=N), v,=w, (0Sn<k-—1)

$=0
3. There is a constant § >0 such that for all i€ H and x=(x,, x,, ..., ¥y)€ X},
y=%, %1, ---, yn)€ X, with ‘
n=g
y”=0 (‘n=0, 1,...,k‘—1), yn=h2x1 (n:k'k+1’“.'N)

j=0

the following inequality holds
lyls <6 - [=]s-

In order to illustrate Theorem 2 we consider again Euler’s method (1.2). A
little calculation shows that the seminorms (2.10), (2.12) satisfy condition 3 of the
above theorem with X,= R¥*!, k=¢=1, 6="T. Consequently, in case (2.10) or
(2.12) is used, the statements 1 and 2 of the theorem hold and the functional
¢, [w]=|v], appearing in statement 2 equals (2.11) or (2.13), respectively. How-
ever, if the seminorm (2.14) is chosen, condition 3 of the above theorem is violated.

3. Necessary and Sufficient Conditions for the
Existence of Two-Sided Error Bounds

3.1. Introduction

The main purpose of the present chapter is to prove Theorem 2. Before turning
to the proof proper we present conditions for the existence of a two-sided error
bound of the special form (2.15). In Section 3.2 we give sufficient conditions and
in Section 3.3 there are given two necessary conditions for the existence of such an
error bound. Then using these results we prove in Section 3.4 a key lemma from
which Theorem 2 easily follows.

The following simple lemma will be used repeatedly in the following sections.
Lemma 1. Let the seminorm |x{; on X, be absolute. Let
x(m)=(%(m), x,(m), ..., 2y (m))€ X,
denote vectors (for m =0, 1, ..., M) with
M
| %, (0)] = lex,,(m)l (n=0,1,...,N).
"=

Then we have

M
2O = 2 .

Proof. 1. Let x(m)=(x4(m), %, (m)}, ..., xy(m))e X, (m=0,1,..., M) and
M
|%,(0)| = X |#,(m)| (n=0,1, ..., N). Define vectors
Ml
a?(m):(y‘c’o(m), fl(M), tece j\-71\1(‘”"‘))€‘Xh

by
%, (my=|x,(m)] -¢ (O=n=N,0=m=M),
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where ¢ is some vector in #, with norm |¢| =1. We have

M M
5 Ol=1%,0] and 3 fnl=| 3 50 .
Consequently
M
|%,(0)] = Zlmm)l (0=n<N)

M
y=%x(0), z= glf(m)

we thus have
(3.1) Iy <] (O<n<N).

It will be shown below that
(3.2) Iyl < |z

M
§m§1 |Z(m)|. Since |Z(m)|=|x(m)| (0=m<M)

M
Hence |£(0)|= “ mél % (m) ‘
M

we thus have |£(0)| < X |x(m)].
2. Now we shall pr:: (3.2). Define v==(v,, vy, ..., vy} with
Uy =0 * 2,1y - (—2,)
where the coefficients «,, 8, are chosen in such a way that
%, 20, B, 20, &, +F,=1, (0, —pB,) - |2/=|]

(this is possible in view of (3.1)). It is easily verified that for arbitrary »,€ R, we
have
[ AP PRI o0 ] - [ (AR AT AN SRR Ju 1 §
Applying this inequality successively with #=0,1,..., N and r;=z2; (t<n),
r;=v, {i >n) we obtain
lol=Il.
By definition of v, we have |v,| =|(«,—8,) 2, =|¥,|. Consequently

lef=lyl

It follows that (3.2) holds and the lemma has thus been proved.

The above lemma is a slight extension of a result contained in [1] on absolute
norms in finite-dimensional vector spaces. The above proof is more elementary
than the one in [1]. ‘

3.2. Sufficient Conditions for the Existence of Two-Sided Error Bounds

We shall first derive error bounds for finite-difference schemes (2.1) that
satisfy conditions which are a bit more general than the conditions III, V of
Chapter 2. Assume v, ;[%] is a given absolute seminorm on X, (for each k€ H,
k =<n < N). Then our generalized conditions are as follows.
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Condition I1I'. Whenever hcH and x, %4y, ..., Xn, Yo, Yis---» YNERs

satisfy
k

BT A, (i) =%, (R<n=N), 3,=0 (0=n=<k—1),
then =
| ¥l =9.,4 (%] (R =n < N) where x¢ X, is defined by
2=(0,...,0, Xy, Xpp1, ---» Tp).

Condition V'. Whenever he H and u,,1,, w,eR, satisfy (2.1), (2.2) and
Wy=wy=--- =w, , =0, then

i, —u,| Sy, 4 [w] (RSn<=N) where w=(0,...,0, Wy, Wy, ..., wy).

Clearly the conditions III’, V' reduce to the conditions III, V if

(3.3.2) Youlx]=0a- h_Zk ||
P
or
(3.3.b) Y al2]=y - th %],
-~

respectively, for x={(x,, %, ..., 2y)€ X},.
In order to formulate concisely a basic assumption that will be made in the
subsequent, we introduce the notations

(E'x),=x,,; ({Hor0=Sn<N,0=<n+i<N),
(E*x),=0 (for 0Sn<N,n+i<0orn+i>N),
E'x=((E*x)g, (E* %)y, ..., (E*%)y)
for x={(%,, %1, ..., ¥y)€ X, and arbitrary integers 7. In the subsequent lemma

we make the following assumption about the seminorm | .

(3.4) There is a constant g >0 such that whenever ¢ <i<r, h€ H and the
vectors x={%g, %1, ---, ¥x), ¥= (Yo, Y1, ---, Yn) € X, satisfy

Yu=0 (O—S—nék—”' Iynl g'pn,h[ _ix] (kgn_S_N);
then: |yl < - |
Lemma 2. Consider a finite-difference scheme of type (2.1) satisfying the
conditions I, II, IV of Chapter 2 and define

(3-5) A=A

It

12

Let y, ,[x] be an absolute seminorm on X, and let | %[, be an arbitrary seminorm
on X,. Suppose u >0 is a constant with the properties required in (3.4).
Let «,, 4%,, w,€ R, satisfy (2.1), (2.2) and put v==(v,, vy, ..., vy) where

k
(36) h—lZAn,i(vn-i)=wn (kgnéN)’ Uy =W, (0§_n§k—1)
=0
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a) If condition III' holds, then y, - |v[, < ||it— ], with yo= (14 Ap)2.
b) If condition V' holds, then |[&—ul), <y, - [}, with y,=(1+1p).
Proof. a. By subtracting (3.6) from (2.2) we obtain for vectors 7, defined by
¥n =dn Uy

the following relations
3

(4.7) W13 4,0 )=E (... %K) (kS#sN), r=c, (OSn<k—1).
0

By subtracting (2.1) from (3.7) we obtain

X
W23 Ay () =Fy (g, -+ s H)— Ey(t, ooy B) (RS N),
(3.8) =0
2,=0 (0=n=<k—1),

where the vectors z, are defined by
Z,=¥,—U,.
We define the vector p=(p,, #1, ..., Pn)€ X, by
Po=0 (0=n<k—1), p,=F gy, ..., 0%,;h—Fuy,...,u,:h (k<n=<N).
By applying condition III’ (with y,=2z,, x,=7,) to (3.8) we obtain
-9 5l Sy alp] (RS N).

In view of condition II we have
”»
Ipnl é Zo }'ilan-i_un—il (O g"’ éN)
g
We define the vector d=(dg, 4;, ..., dy)€ X, by

d,=h,—u,.

Since A,=0 for ¢ < ¢ and ¢ > 7 (cf. condition II) it thus follows that

|2l é.Z' |(4;- E~*d),] (0<n<N).

=g

An application of Lemma 1 (with ||x[}; replaced by y, , [%]) yields

4 .
via[B]= 2y;alA - E7d)
i
Defining
%,=0 (0S/Sk—1,¢=<i=7), o ,=y;,[E*d] (R<jSN,¢<i=<y)

we get, in view of (3.9), the inequalities

r
|7 < X Ae;,; (0=7=N).
i=g
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We put
r
0;=2 Aa;; (0SJ<N)
i=q

and define vectors g(t) = (go(¢), & (), ..., gn(?)) by

g ()= “;-j"-z, (if 0;+0), g(i)=0 (if 0;=0).

Since |z;| <o; there follows |g;(i)| Sa; ; (0=7<N, ¢<i=<r). In view of the
definition of «; ; we may apply condition (3.4) with y=g(z), x=d. It follows that

le@)sp- 4| @sisr)
From the definition of g(¢) we have for the vector z defined by

2=(29, 2, .-+, ZN)
the representation

1= 4 g(0).
1=q

14 14
Hence |z} 2 4;-Jg@)| = 2 4, - u|d]|=2An - |d| Since v=d—z there follows
. .

t=gq i=
ol<lal-HI S 0420 - [A]= (1 + 4) - Ja—ul. This proves part a) of the
lemma.
b. In order to prove part b) of the lemma we define the vector
S$={(Sg, Sys ---+ SN)E X,
by
5,=0 (0=n<k—1), s,=F(#y,.... % —F,(ry,....7:;Hk (k=Zn=<N)

and rewrite (3.7) in the form

k
h—IZAn i(rn—i)=Fn(70'""rn;h)+sn (k§ﬂ§N),
(3-10) =0

r,=c,+s, (0=n<k—1).

An application of condition V' (with #,, w, replaced by 7, and s,, respectively)
shows that the vectors », form (3.10) satisfy the inequalities

|7;—ul Sp; 4[s] (R=j=N).
Since z;=7;—u; we thus have
|| Sp,als] (RSN,

By arguments similar to those following (3.9) and by noting that 4,—7,=uv, we
arrive at the inequality
HER i
Consequently [l —u[=|v-+z[| < (1+Au) - Jv|, which proves part b) of the lemma.
We next turn to the case where the finite-difference scheme (2.1) satisfies the
original conditions III, V of Chapter 2. For such a finite-difference scheme we

shall obtain a two-sided error bound under a condition on the seminorm ]]x[[,,
which is more transparent than (3.4). It is assumed that
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(3.11) There is a constant d > 0 such that for all € H and
x=(%g, %y, ..., Zn),  Y=(Y0, Y1, ---, YNEX,
with
n—q
Yo=0 (0=n<k—1), |y|SrX|x] (RE<n<N)
j=0

the following inequality holds: [y[, <4 - | x],.

Condition (3.11) is slightly stronger than the requirement that statement 3 (of
Theorem 2) holds. On the other hand in the following lemma it is not required
that the seminorm ||, be absolute.

Lemma 3. Let |x], be an arbitrary seminorm on X, satisfying condition
{3.11) and consider a finite-differenice scheme of type (2.1) satisfying conditions
I-V of Chapter 2. Let u, and 4, satisfy (2.1}, (2.2), respectively. Then

(3-12) vo- lol=li—ul =y ol

where v=(vq, vy, ..., vy) is defined by (3.6). Further, if A is defined by (3.5) and
a, v, d are as in the conditions III, V, (3.11), respectively, then y, and y, are
given by

(3.13.a) Yo=(1+add)7,
(3.13.b) n=(1+y19).

Proof. a. In order to prove the first of the two inequalities in (3.12) we define
¥, 5[x] by (3.3.a). From (3.11) it easily follows that (3.4) holds with y=ad.

Further condition IIT is fulfilled since it is equivalent to condition III. By virtue
of Lemma 2 (part a)) we have the first inequality in (3.12) with

Yo={1+Ap) = {1+4add)™

b. In order to prove the second inequality in (3.12) we define y, ,{x] by
(3.3.b). Now (3.4) holds with y=y4 and the proof is again completed by an
application of Lemma 2 (part b)).

We end this section with the remark that Lemma 3 will be essential in our
proof of Theorem 2, while (the more general) Lemma 2 will be used later on in
Section 4.2.3.

3.8. Necessary Conditions for the Existence of Two-Sided Error Bounds

In this section we denote by A, ; arbitrary but fixed operators satisfying the
conditions I, ITI of Chapter 2. The function F, is defined by

Fn (xo, Xrsoees Xy h) =ﬂ : (xn—k+xn—k+1+ e xn—q)'
The finite-difference scheme (2.1) thus reduces to
k
(3'14) bt ‘20 An,i(un-i) =ﬂ * (un—k+un—k+l+ T +un—q) (k == N)'

u,=c, (0Sn<k—1),

"
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and the perturbed version (2.2) takes the form

k
A1 Z An,i(ﬁn—i) :ﬂ N (ﬁ'n—k+ -—k+l+ + -—q)+w (k gn §N)!
(3.15) i=0

#,=c,+w, 0=n=<k-—1).

Throughout this section the constant 8 4=0 is assumed to be chosen in such a way
that the finite-difference scheme (3.14) satisfies all of the conditions I-V of
Chapter 2. In view of Theorem 1 this can be achieved by choosing § sufficiently
close to zero.

The following Lemma’s 4, 5 show that a condition on the seminorm |z,
similar to (3.11) must be fulfilled when the following statement (3.16) about a
(one-sided) error bound holds for our finite-difference scheme (3.14).

(3.16) There is a constant y, > 0 such that whenever #¢ H and u,, 4,, w, satisfy
(3.14), (3-15) then
vo vl = | —ul,
where v={(v,, v;, ..., vy) is defined by

k
k1 Z An,i(vn—i)=wn (kgngN)! V=, (0§n§k—1)
=0

Lemma 4. Let |x|, be an arbitrary seminorm on X,. Assume that (3.16)
holds. Then the seminorm |z}, has the following property (3.17).
(3.17) There is a constant 8, > 0 such that for all A€ H and x=(%,, %, ..., ¥,),

y=(y0’ y1. ""yN)EXh with
k
h.‘l Z An,t’(yn—i)=(xn—k+xn—k+1+"' +xn.-q) (k g% éN),
1=0

¥,=0 (0=n <k —1), the following inequality holds:

Iyl =0, - [

Proof. 1. Using the notations introduced in the proof of Lemma 2 and apply-
ing formula (3.8) to the finite-difference scheme (3.14) under consideration we
obtain

k n—q
(348) A2 A4, (5 )=F- X d; (ksn=N), =0 (0=nzk—1)
i=0 i=n—k
Assumption (3.16) implies the inequality |v], < (yo) |4, for some y4>0. Since
lzl=ld—v=]ali+[v]s we have

(319) lzh < [+ (o)1 - |-
2. Let x and y satisfy the relations

(3-20) "ZA,..y,.-. 3 % (ksnsN), p=0 (Oénék—i),

i=n—Fk

occurrmg in (3.17). We define u, by (3.14) and 4, by #,=u,+ & ﬂ - %,. Further w,
is defined by

k n—gq
w,,=ﬁ,,——c,, (0§ﬂ§k—-1), wn=h_l Z An,i(an—i)_ﬂ : Z 17,- (kén—S-N)'
=0

j=n—Fk
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Since §-d=x it follows in view of {3.18), (3.20) that y,=z, (0<#<N). By
virtue of (3.19) we have

Iyh=0+00™ |5 4|

and (3.17) thus holds with & = [14(y,)™*] - | 8| . The lemma has thus been proved.

In the next lemma it is assumed that the operators 4,, ; occurring in (3.14) are
such that the following condition (3.21) is fulfilled.

L]

(3.21) For each ke H there exists a vector e€ R, with norm |e|=1 such that for
each j with 2 <7 < N the solution y,=y, ; of

&
ZoAn,s'(yn—i)zo (f<n=N), yy=ym=-=y1=0y=(4;q7"¢
is of the form y, ;=|y, ;| - ¢ and
6=inf{|y, ;|: he H; j=Fk, k+1, ..., N; n=j,j+1, ..., N} >0.

In order to illustrate condition (3.21) we consider the case where R,= IR,
k=1, A, ¢=—4, =the identity I, which corresponds to Euler’s method (1.2).
It is easily verified that (3.21) holds with e=1 and ¥, ;=0 (n <j), ¥, ;=1 (n 27),
0=1. For further examples cf. [13] and Section 3.5, note a.

Lemma 5. Let |z, be an absolute seminorm on X,. Assume the operators
A, ; appearing in (3.14) satisfy condition (3.21). Then statement (3.16) implies
statement 3 of Theorem 2.

Proof. 1. Assuming (3.16) we may conclude from Lemma 4 that the seminorm
| %[l satisfies (3.17).
Let &,, &, ..., &y be arbitrary real numbers =0 and define

(3.22) z,=£, ¢ (n=0,1,...,N).

Let £=(%,, %, ..., £y) and define §=(¥,, #;, ..., ¥5) by requiring that

(3.23) h'1‘§ Ap,i(Fnei) = (Zpop+ Fppn+ -+ %) E=n<N),
Jo=0 (0=n=<k—1).

Applying (3.17) with x=%, y=7 we obtain

(3:24) I7h=<d:- |2

Since the vectors y, ; (=%, k41, ..., N) appearing in (3.21) satisfy

®
2 Ay, i(Ymi,)=0,,-¢ (R=n=N), 9,,=0 (0=n=k-—1)
=0

(8,,; denoting the Kronecker delta), the solution J, of (3.23) can be written in the
form

N
5;»=,Zkai'yn.i (n=0’1""'N)
i= :
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with
o;=h- (& +Epnt +E) G=k k+1,...,N).
Hence for £ <#n <N we have

|7l =

”n ” ” n—yq
20 Yni| =2 0jlyai| 20 2 0,208 T &
i=k i=k i=k i=0

Since &;=|%,] (cf. (3.22)) we thus obtain

n—g
(325)  |Fl=0 (O=n=<k—1), [7./20-% 2 |%| R=n=N)
=0

2. In order to prove statement 3 of Theorem 2 we assume that

x=(%, %1, .-, Zn),  Y={¥o, %1, .-, ¥n)
are given vectors in X, with
n—q
Y=0 (0=nZk—1), y,=hXx (k<nsN).
j=0
We define numbers £, by
&,=|x%,| (®=0,1,...,N).
Defining %, and 7, by (3.22), (3.23) we may apply the results (3.24), (3.25) of part 1.
Since

(3.26) |%,|=|%,| (r=0,1,...,N)
we have for A =n &N

”n—

4
sk 2 1%
1=0

n—g
|ynl —___—-h‘ ’;o ]
Using (3.25) there follows
[yal <0117 (k=n=N).
Since |y,| =|0 7,/ =0 (0 <# < £—1) we obtain in view of Lemma 1 the inequality

Iylh=6-- (7}
An application of (3.24) and (3.26) now shows that

lyh =67 - &%,
which proves statement 3 with §=0-1¢,.

3.4. The Proof of Theorem 2

We first state a lemma which is much similar to Theorem 2, the only difference
being that the class " appearing in Theorem 2 is replaced here by an arbitrary
class & satisfying the conditions i), ii), iii) listed below. The proof of the lemma
is based on the Lemmata 1, 3, 5. Next Theorem 2 is proved by verifying that the
class o itself satisfies the conditions i), ii), iii) and by applying the lemma with
A=,

The conditions i), ii), iili) are as follows:

i) X" is a subset of the set ) defined in Section 2.4,
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ii) o™ contains a finite-difference scheme of the form (3.14) with 30 and
with 4, ; satisfying (3.21),

iii) If (2.1) is any given finite-difference scheme in K’, then there also is a
scheme in K’ with the same operators 4, ; as in the given scheme but with
E, (%9, %1, ..., %,; B) =0.

Lemma 6. Let | x|}, be an absolute seminorm on X),,. Let #” denote an arbitrary
class of finite-difference schemes (2.1) which satisfies the conditions i), ii), iii).
Then the following three propositions are equivalent.

1. For each finite-difference scheme of the class /¢~ there exists a two-sided
error bound of the general type (2.9) with a functional ¢, that is independent of
the function F, appearing in (2.1.a).

2. For each finite-difference scheme of the class ¢ there exists a two-sided
error bound of the special form

vo: Pl sla—ul =y - ol
where v==(v,, vy, ..., vy) is defined by

k
h_len,i(vn—i)zwn (kgn—S—N)a Up=1UW, (O§n§k°1)
§=0

1
3. There is a constant 6 > 0 such that for all € H and x=(x,, x,, ..., xy)€ X},
y=(y0: M ~--,yN)€X,, with
n—q
¥,=0 (n=0,1,...,k—1), y,,:hz, x; (m=Fk k+1,...,N)

§=0
the following inequality holds

Iyl =6 - =]

Proof. We shall prove the lemma by showing successively that statement m
of the lemma implies statement m 1 (for m=1, 2) and that statement 3 implies
statement 1.

1. Let statement 1 hold. Consider an arbitrary finite-difference scheme,
denoted by C, which belongs to the class#™ and let C, denote the operator from
X, into itself associated with C as indicated in Section 2.3. Denote by 4 the
scheme, referred to in condition iii), with the same operators 4, ; as in C but with
F, =0 and let 4, denote the operator associated with 4, i. e.

%—c, 0=n=k—1),

(Ay %)= h“i/in,i(xn—e) (k=n<N)
=0

for x={(x,, %, ..., £y5)€ X,. In view of statement 1 and property iii) there exist
two-sided error bounds of type (2.9) for C and 4, respectively in which one and
the same functional, say y,, occurs.
Let he H, we X, and assume
Cu=0, Cyhi=w,
dyx=0, A4d,i=w.
Then we have
Bo - yu[w] < ai—uly <P, - pulw),
% P[] S|E—xf) S0y - ya [0]
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for some positive constants f, 8, @, ¢;, which are independent of 4 and w.
There follows

bo Je—rhsla—ul< B Ja—s,.

e e
Since £ — x=1v we thus have the two-sided error estimate appearing in statement 2
with yo=PBy/ay, y1=P1/e.
2. Let statement 2 hold. Then, in view of property ii), there exists a finite-

difference scheme of the form (3.14) for which <0 and (3.21), (3.16) hold. An
application of Lemma 5 proves statement 3.

3. Let statement 3 hold. The proof of statement 1 is given in two steps.

a. We shall prove that condition (3.11) is fulfilled. Let x=(x,, %, ..., 2y),
y=(¥o, Y1, ..., ¥n) be given vectors with

n—gq
Y=0 (0=n=<k—1), [y|shX|y] (k=n=<N)
j=0

Assume ¢ is a vector in %, with norm || =1. Define
£,=|x,|-e¢ (n=0,1,...,N),
n—g
5,=0 (0sn<k—1), F=hX% (R<nsN).
=0
In view of statement 3 we have for the vectors
E=(%y, %1, ..., En),  F=(Fo. Tr, -1 In)
the inequality
17l <o- |}
Since |%,|=|x,] (0 =7 =<N) we have

12 = -

From the equality
n—g
A =h'zo || (R=n<N)
=

there follows |y,| =<|#,| (0 <% < N), which shows that

Iy b =170

(cf. Lemma 1). Hence |y, <6 - | x|}, and (3.11) has thus been proved.

b. Consider any finite-difference scheme belonging to ™. In view of property
i) the scheme satisfies the conditions I-V of Chapter 2 and Lemma 3 can be
applied. It follows that statement 1 holds with

o [@] =[x
where v=(v,, vy, ..., vy)is defined by (3.6). This completes the proof of Lemma 6.
We finally turn to the proof of Theorem 2.

Proof of Theorem 2. In view of Lemma 6 it is sufficient to show that #™ ="
satisfies the conditions i), ii), iii). Condition i) is trivially fulfilled.
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In order to prove ii) we define 4, (=1, 4, ,=—1,4, ;=0 (1 <i Sk) I denot-
ing the identity and 0 the zero-operator. The factor g is defined by § = ——=. With
these definitions the scheme (3.14) satlsfles the conditions I, II, I11 of Chapter 2
with a=1, ;= 2[ Since alyhy < - 2T <

Theorem 1 our scheme (3.14) thus belongs to . Further it satisfies (3.21) with
f=1. Consequently condition ii) is fulfilled.

Finally, an inspection of the conditions I-V of Chapter 2 shows that condition
iii) is fulfilled.

=< 1 the inequality (2.3) is valid. By

3.5. Notes
) We mention two applications of Lemma 6 where )™ =%

Suppose first that the class ™ consists of all finite-difference schemes of the
form (1.2) where f(¢, x) is a real function defined and differentiable with respect
to x on [0, T] X R and where % f (¢, x) satisfies (1.6) (for some L > 0). Clearly,
A" satisfies the conditions i), ii), iii) of Section 3.4. Defining ||z, by | x|, =|xy] it
follows that statement3 (with k=¢=1) of Lemma 6 is violated. Hence by
Lemma 6 we may conclude that statement 1 is violated as well. This proves the
statement made in Chapter 1 about the non-existence of error bounds of type
(1.11).

In a similar fashion Lemma 6 can be used to prove a result contained in
[13, Theorem 1]. (Note that assumption 3 of section 2.1 in [13] ensures that
condition (3.21) of the present article is fulfilled with 4, =1, 4, ;=—K).

b) Assume statement 3 of Theorem 2 is true.

Using Lemma 3 and the result contained in part 3.a of the proof of Lemma 6
we find the values yy=(1+ad2)?, yy={(1+y64) for the coefficients appearing
in statement 2 of Theorem 2. Here 1 is defined by (3.5), d is as in statement 3
and «, y are from the conditions III, V, respectively.

Combining these expressions for y,, v, with (2.8), (2.6) we obtain a proof of a
two-sided error bound stated in [13, Theorem 2].

¢) Let g=0 and let x|, denote an absolute seminorm satisfying condition 3
of Theorem 2.

Let (2.1) be a finite—difference scheme satisfying the conditions I-V of Chap-

ter 2. Then for the errors 4, , caused by arbitrary perturbations w, in (2.2)
with wy=w,=-.- —wk_,—o we have the estimate
(3.27) la—ulh=yd- vl

of | — ul, in terms of |wl,. The estimate (3.27) follows by combining the inequality
from condition V with the fact, proved in part 3.a of the proof of Lemma 6, that
(3.11) holds.
4. Examples and Applications
4.1. Weighted !,-norms

In this chapter we deal with seminorms ||x [}, = | x|, ) for x= (%, %, ..., )€ X,
that are given by

N 1/p
(4.1.2) = {h 2 0007 - 5}
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for 1 £p <o, and by

(4.1.b) 1S ,,—orSnanNé,- (h) - |,

for p=oc. In (4. 1) the 0, (k) are arbitrary given weights =0. For instance in case
Ri=IR, 8;(h)=0 (0=i<N—1), dy(h)=hr""?, the seminorms (4.1) reduce to
(2.14). We use the conventions
®xfoo=0, af/0=o0 (fora>0), «/0=0 (for a=0).
The following theorem gives conditions on the weights §,{k) under which the
crucial condition 3 (appearing in Theorem 2) is fulfilled by the seminorm (4.1).
Theorem 3. 1. For p=1 condition 3 of Theorem 2 is fulfilled if and only if
(4.2) There is a constant ¢ < co such that
N
h 8;(h)f6;(h) =<6 (for all he H).
oLmax i=ma£,i+q) i(#)[0;(h) =6 (fora )
2. For p=o0 condition 3 of Theorem 2 is fulfilled if and only if
(4.3) There is a constant § < oo such that
max hZ 0;(h)[6;(h) <6 (for all k€ H).

RSISN ;5o -

3. For 1 <p < oo condition 3 of Theorem 2 is fulfilled if (4.2), (4.3) hold.

Proof. 1. Let $ be any given number, 1 < < oo, and let (k) =0 be given
weights.

Suppose condition 3 is fulfilled. Applying the inequality |y|, , <6 [*]s.s
(cf. condition 3) with x;=1, - ¢, where ¢ is a vector with norm |¢|=1 and 7; =0,
we easily obtain

N i—g py/p N 1/p

(4.4.a) {h > [6,- (B) - B Y r,] } <é- {h Zo [6;(h) t,-]”} (for all 7, =0)
i=k j=0 =

if 1 £p<<oo, and

(4.4.1) max &;(k hgor <4 max §;(k) 7; (for all ;20)

if p=no0. Conversely, by applying (4.4) with ;=|x,|, it follows that (4.4) implies
condition 3.

We denote by #=n(h) the largest integer < N such that §,{h) =0 (0 <i=n)
and we put M =min (N, n-+g).

If M <N, we have §,,,(h)=0 and, applying (4.4) with 7,=0 (F=n-1),
7,=1 (i=n-+1), there follows

(4.5) 8,(h)==0 (for k=i, M4+1<i<N)
and consequently

(4.6.2) { 515 [ )by r] }”’ ga.{ﬁo 8, (h) T,.]p}”’ (for all 7,=0)

i=k =0 =

20 Numer, Math., Bd. 26
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if 1 <p<<oo, and
(4.6.b) ,Jax 6 8;(h) - h Z 7,56 omax é;(h) 7, (for all 7, =0)

§=0
if p=o0. Conversely, (4.6) in combination with (4.5) yields (4.4). Hence condition 3
is equivalent to the requirements (4.5}, (4.6}.
2. Let &, &4, ..., &y be arbitrary real numbers. Applying {4.6) with
t=l6]/8,(h) (0=i=m), 7,=0 (i>n)

there follows

Py 1/p M 1/p
(4.7.) {Z15 vommmn &l so-{Z 1e0)
if 1 Sp < o0, and
(4.7.b) glax Z [hé;(R))8;(R)] - &;| =6 - OISnanM]ﬂ

if p=co. Defining the operator D from R¥*? into itself by D&=1 where
§=(o, &0 by =00s s -, Mu)s

i—gq

n=0 (0=i<k—1), 75,= Z: (R, (R)[6; ()] - & (k<i<M)
the relations (4.7) can be written as
(4.8) |D&[P <6 - &
where || - | stands for the usual J,-norm in R*** (cf. [7]). Since (4.8) holds for all
EeRM*! there follows
(4.9) Ipf# <9

where |D|f* denotes the norm of D induced by the norm in R¥*% Conversely,
(4.9) implies (4.6). Hence we may conclude that condition 3 is equivalent to

(4.5), (4.9).

3. Using standard expressions for |D|# if =1 or p=occ we have

M
. hé;(h)}5;(h)=| D",
(4.10) osrpsag_“:mxz(mﬂ) i (1)[8; () =|D|
(4.41) ,Jnax Z ko, (k)]0 (B)=|D|*.

Applying the conventions for a division by zero stated above it thus follows that
(4.2) is equivalent to (4.5), (4.9) (with p=1) and that (4.3) is equivalent to (4.5),
(4.9) (with p==o0).
Since condition 3 is equivalent to (4.5), (4.9), the statements 1, 2 of Theorem 3
have thus been proved.

Let 1 <p < o0 and assume (4.2), (4.3) hold. It follows that (4.5) and (4.9) (with
p=1 and with p=o0) hold. By virtue of the Riesz convexity theorem (cf. [10])
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we have
IDIP <{ID|VY - D=y =
and consequently
Ip|» <s.

Hence (4.5), (4.9) (with the given p, 1 <\p < o0} hold. Thus condition 3 is fulfilled
and the theorem has been proved.

4.2. Systems of Ordinary Differential Equations
4.2.1. General Multistep Methods

Let there be given an initial value problem for a system of s ordinary differen-
tial equations which, by using vector notation, can be written in the form

(4.12) L UW=1UE) OstsT), U@O=c

In (4.12) ¢ denotes a given vector in the s-dimensional real vectorspace R* and f
is a given mapping from [0, 7] X R’ into R®. Assume the Jacobian matrix of the

function f({¢, ), denoted by J{z, x)=~~£— f(¢ x), exists and is continuous on

[0, T] x RR®. Let | ] (¢, )| denote the norm of the matrix J (¢, x) subordinate to
some given vector norm |#| in R® and assume

(4.13) |[J@& x| =L (0=t<T, zcR’),

where L denotes a given positive constant.

We consider the approximation of a solution U (¢} to (4.12) by the general
multistep method

A (ak un+“k—1 Uy g+ +% un—k)

4.14.
(414.2) =f Uy py oo, Uy, U B) (m=Rk, R+1,..., N),

(4.14.b) #,=¢, (r=0,1,...,k—1).

The ¢, are starting vectors in R® found e.g. by a Taylor expansion of U {f) at
t=0. In (4.14.a) the «; denote real constants with a«, #=0 and the vectorvalued
function f, (x4, %, ..., %;; A)—which depends on the given function f—is defined
for x,€ R®, he H=(0, hy] < (0, T|k], n=F, k41, ..., N and is assumed to satisfy
a Lipschitz condition

&
(4.15) Fu(Zos Zysovvs By B)— (%0, 21, -, Zas 1) é,Z}) Ai| Bei— 254

where A,, 4,, ..., 4, are constants independent of %, #, %; and «,.

1t is easily verified that many well known methods (general linear multistep
methods, Runge-Kutta methods as well as generalizations of these methods,
cf. [14]) are step-by-step methods of the form (4.14) satisfying the Lipschitz
condition (4.15).

Clearly (4.14) is an example of the general finite-difference scheme (2.1) with
R=NR’ 4, ;(x) =07,

E;(xo: Xyy oees Xy, h) E/n(xn—kt cees X1y Xy h‘)
20.
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The general conditions I, II of Chapter 2 are satisfied here with ¢=0, r==% and
in order also to ensure that condition III is fulfilled we assume that all (complex)
roots { of the equation

o Ct - oyl tag=0

have a modulus |{| <1 and that the roots with || =1 are simple (cf. [14]). Finally
we assume that the conditions IV, V of Chapter 2 are satisfied as well. By Theorem
1 this last assumption doesn’t impose any new requirements on the multistep
method (4.14) whenever A,=0 or, in case A4=0, the maximal stepsize %, is
sufficiently small.

4.2.2. The Existence of Two-Sided Error Bounds
Since the conditions I-V are satisfied the multistep method {4.14) belongs to
the class " introduced in Section 2.4 with ®,= IR®, H=(0, 4,], g==0.

With the above definitions of 4, ,, F, the perturbed finite-difference scheme
(2.2) reduces to the following perturbed version of (4.14):

b1 (ak ﬁn + 01 an—-l +e + %y ﬁn—k)

(4.16.a) . L
=f Ty -ovy gy, By B)+w, (n=Fk, k4+1,...,N),

(4.16.b) f,=c,+w, #n=0,1,...,k—1).

An application of Theorem 2 to the step-by-step method (4.14) yields in
combination with Theorem 3 the following

Theorem 4. Let 1 <p <oco and let x|, , be defined by (4.1). Assume the
weights 6, (k) satisfy (4.2) or (4.3) (with ¢=0) if p=1 or p=rco, respectively and
assume both (4.2) and (4.3) hold (with ¢g==0) if 1 < <C co. Then the errors #,—u,
caused by perturbations w, occurring in (4.16) satisfy

(417) Vo [olp s slia—ulp s =ni- Jolp

where v=(vy, vy, ..., vy) is defined by the relations

(448) % Uyt g U1t T+ Uy =h @, (R=n=N),
v,=w, (0=nsk—1)

and y,, 7, are positive constants independent of » and w,, @y, ..., wy.

Example 1. With 1<p <o, 6;(h)=1 the assumptions of Theorem 4 are
fulfilled and (4.17) provides a straightforward generalization to general /,-norms
with 1 < < oo of a result for p=oc contained in [11].

Example 2. Let a,=1, a_y=—1, a;=0 (1 <k—1), which is the case e.g. if
(4.14) stands for a Runge-Kutta method or for a predictor-corrector scheme with
an Adams-Moulton corrector formula. Now (4.17) takes on a very attractive form
since v, (cf. (4.18)) is simply given by the expressions

(4.19) v,=w, OsSn<k—1), vy=w,+s2w; (R<n=N).

j=Fk
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If the coefficients «; are not of the simple form indicated, there are still cases
where (4.18) may be replaced by (4.19) (cf. [11] where this is done for the case
p=o0, 0,(k) =1).

Example 3. Let p=o0, d;(h)=h"*TY where ¢ is a real parameter. It may be
verified that (4.3) holds if an only if ¢ 1. Applying theorem 4 with any ¢ <1
and observing that |#y—uy| gm’?x (8, (B)[On ()] - |, —,| there follows

N — <w . e-[1/(n+1)—1/(N+1)]
(4.20) IMN uN| =7 ogl’?,gNh l,v”|_
For =1 the estimate (4.20) is essentially more refined than for =0, since the

factors
h[ll(n+1)— 1/(N+1)]

tend to zero if A—0 while »# remains sufficiently small. As the choice é=0 corre-
sponds to the standard /-norm, this example clearly shows that weights §, (%) %=1
in (4.1) can lead to an improved estimate of |iy—uy]|.

4.2.3. The Constants y,, 3
In this section we indicate how expressions can be obtained for the constants

7o, ¥1 appearing in (4.17). We confine our considerations to the norm |x[,= |}, »

defined by
N i/p
eloa={b 2 15} G15p<o0),

l%h 4= jmax [#] (f p=co),
which, according to Example 1 of Section 4.2.2, satisfies the assumptions of
Theorem 4.

From Lemma 3 it is clear that expressions easily follow from (3.13) by comput-
ing a number § with the properties required in (3.11) (cf. also Section 3.5, note b).
However, it turns out that in general better values for y,, ), are obtained by
using Lemma 2.

We first consider the computation of y,. We shall apply Lemma 2 (part a))
with y, , (] defined by (3.3.a) so as to ensure that condition III" is fulfilled. In
order to find a number y with the properties required in (3.4), we define for
0<i =<k, 0<h=<h, the operator S, , from RY** into itself by S, , [§]=2 where
E= (&0, &1s -, En) =0, M, ---, My) and s

7,=0 (0=n=<k—1), n=a-h % & (k=n<N).
j=R~1t
It is easily verified that a number g is consistent with the requirements of (3.4)
whenever
pzsup |54
ih

Here ||S|® denotes the norm of S induced by the usual /,-norm in R +1 (cf. [7]).
Since [S; [ <« T, |S;4|" <a T, we obtain by using the Riesz convexity
theorem (cf. [10]),

(4.21 ) p=a T.
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From Lemma 2 we thus have
(4.22) yo={+aAT)? (for1<p <o),

where

}':}'0+z’l+"'+lk

and « is the constant appearing in condition III.

We next turn to the computation of y;. Let us first assume that adoh, <<1.
From (2.7) it then follows that condition V' holds with

(4.23) Boals]=fh 2 B4 |x| (nSN).

It may be shown, by an argument similar to the one leading to (4.21), that the
requirements of (3.4) are fulfilled with ), ,[x] from (4.23) and

(4.24) ,u=—;.~- exp (BAT)—1].
By Lemma 2 (part b)) we thus have
(4.25) yy=exp(BAT) (for 1 =p <o),

where f=o - (1 —a Ay 4,)* and «, 4 are as in (4.22).

In order to illustrate (4.22), (4.25), we assume (4.14) stands for Euler’s method,
ie. k=1, ay=1, ag=—1, [, (%, ;A =F{(n—1) h, z,}. We then have A;=0,
A=2,=L, f=a=1 and (4.22), {4.25) reduce to

(4.26) yo={(1+LT)Y, ypy=exp(LT) (for1=p=o0).

For p=1 and p= oo the expressions (4.26) have also been derived in [6]. Further
it has been shown in [6] that, if p=1 or p=oco, there exist no constants
yo=yo(L, T), py=p1 (L, T) which are larger or smaller, respectively than those
given in {4.26) and for which, at the same time, the corresponding two-sided error
bound (4.17) remains valid for @/ initial value problems (4.12) satisfying (4.13).

On the other hand, if one is willing to make more assumptions about the
initial-value problem (4.12) or the multistep method (4.14) than were made in
deriving (4.25) one can easily obtain expressions for y, that are smaller than (4.25).
In fact, for many actual initial value problems of type (4.12) and corresponding
multistep methods (4.14) condition V' is known to be fulfilled with a seminorm
¥, [%] that is essentially smaller than the one defined in (4.23) (cf. [2—5, 8, 9]).
For such seminorms it may be possible to satisfy the requirements of (3.4) witha
constant g which is smaller than (4.24). In these cases an application of Lemma 2
(part b)) obviously yields a smaller constant ¢, than (4.25).

As an illustration of such an improvement on (4.25) we first consider the
application of Euler’s method to the initial value problem (4.12) where the Jacob-
ian matrix satisfies, in addition to (4.13),

(4.27) plJ@E xISM (0t<T, xcR°).
Here M is any constant (which may be negative) and u.{4]-= 1;51(1’ Bt {|I+RA|—1}
stands for the logarithmic norm of the matrix 4 (cf. [3], [5]). Condition V' is
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fulfilled with
(4.28) Vuu[#]=h 2 [1+h- (M+e]" 7|2 (1=n<N)
j=1

where e=¢(h) is a quantity satisfying (k) |0 (for & |0) (see [9], [3, p. 11]). It
follows that the requirements in (3.4) are fulfilled with

1
u=0 - {exp (MT)—1}
where @=06 (h,) depends on 4, in such a way that
}.lrﬁ O (hy) =1.
An application of Lemma 2 (part b)} yields
(4.29) =140 - fexp (MT)—1} (for 1 Sp < oo).

In case M =0, we have to replace the expression 7:2— -{exp (MT)—1} by T.

Clearly, for M <<L and &, sufficiently small, the present value for y, is smaller
than the one in (4.26).

We state a similar result for the backward Euler method (i.e. (4.14) with k=1,
o =1, ag=—1, f, (%, ¥1; A}=F (nh, %,)). Using the error bound of type V' derived
in [5] we obtain, for M <0, the expression

(4.30) =1+ {exp (MT)—1}  (for 1 Sp S o).

We note that in the derivation of (4.30} we have not assumed that « 4y A, =Lk <1,
as was necessary in obtaining (4.25).

We end this section by indicating how Lemma 2 can be applied to the error
bounds derived in {3, 4]. In these error bounds a #, ,[x] occurs that is generally
smaller than (4.23), but these bounds do not fit in the framework of our condition
V’. The fact is that they do not apply to the difference #,—u, but to 4,—4,
instead. Here 4, denotes the value of (a smooth function closely related to) U ()
at the point ¢=¢,. This formal difficulty in the application of Lemma 2 can be
overcome e.g. by defining f, (%o, %1, .-+, % B) =1, (%, %y, ..., %; ) +B, where
w, equals the perturbation occurring if %, is substituted into (4.14.2). A combina-
tion of the results in [3], [4] with Lemma 2 (where now 4, f, are to be replaced
by 4,, f,) then yields two-sided error bounds for | — | in terms of w, — 1w, with a
constant y, which is smaller than ({4.25).

4.3. A Parabolic Differential Equation

In this section we briefly indicate how the concepts of the preceding chapters
can be applied in the numerical solution of partial differential equations.

We consider the numerical solution of the simple semilinear parabolic initial-
value problem

L UG ) —g(s0) 5 U ) =F(5,, UGS, 1),

(4.31) U(s, 0)=c(s),
—o<Cs<oo, 0=t=T
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by the finite-difference scheme
B (14, (8) =ty ()] — (A8) 2 £ (S, bya) - [Wha (s — A ) — 204, (5)
(4.32) + Uy (S+AS)] =ﬂn ' f(S, bu1s Wua(5)),
Uy (5) = o (5)-

h and As denote positive increments of the variables ¢ and s, respectively such
that 0<A =T, h/(4ds)?=p, p denoting some positive constant. In (4.32) the
integer # takes the values 1, 2, ..., N, the number s varies through the grid

Gy={s|s=mds; m=0, +1, +2,...}

and ¢, denotes the restriction of the given function ¢ to G,. With §, we denote
coefficients, to be specified below, with

B=sup |8,|< .
”

Further u, (s) denotes an approximation of U (s, ) at the point
(s, 5)=(s,8,)=(mAds, nh).

With %, we denote the vectorspace consisting of all real functions defined and
bounded on G, and for ac R, we define the norm

(4.33) |a| =sup {|a(s)|: s€ G,}.

Assuming that the given functions ¢, g, f (cf. (4.31)) are bounded we may write
the scheme (4.32) in the general form (2.1) with £=1, A4, ,=the identity I and
with operators 4, ;, F, defined by
(An,1[a]) (5)=—0&(s, tya) - @ (s —A5)— (1 —208(s, £,-1)) - a(s)
—eg(s, tyy) - a(s+4s),
E (%9, %y, <o, X3 B) ()=P, - F(S, ty1, 2,1 (5))

for s€ G, and a, %,, xq, ..., x,€ R,. Further we assume

0<og=g(s,t)=o,
and

F(s,8, E)—f(s, 8, &)| <L - |E—¢]

for some constants a,, o, L independent of s, ¢, 5", &. It is easily verified that the
general conditions I, II, IV are now satisfied with ¢=r=1, A4,=BL, 1,=0.
Finally we require the ratio g to satisfy

0 =1/(20y),

so as to ensure that condition III is fulfilled (with a=1). In view of Theorem 1,
condition V is fulfilled as well.



Two-Sided Error Bounds 299

With the above definitions (4.32) thus provides an example of the general
scheme (2.1) satisfying the conditions I-V of Chapter 2. In our example the
perturbed scheme (2.2) takes the form

B[, (8) — B ($)] — (A) 2 £ (5, 8ys) - [yn (s —AS) — 28,4 (5)
(4.34) +y 3 (sH+A8)]=P, - [(s, by, Fya (5)) + 1, (),
Gig($) = o (3) +wp (5).
Applying the Theorems 2, 3 (with p=o0, §, (k) =1) we obtain the estimate

(435) Vo Tiylnl = max, ol <1 max, o

for the errors #,(s) —u,(s) caused by the perturbations w, in (4.34). Proceeding
as in Section 4.2 (see (4.22), (4.25)) we have

yo==(1+BLT)?, wy =exp (BLT).
Using the definition of v, (in statement 2 of Theorem 2} it follows easily that
(4.36) v,=h- (w,+A,w, 1 +A, A, 1@, s+ +A, A, ... Ayw))+A, A, ... A w,
where 4, stands for 4,=—4,, ;.

We conclude this section with two applications of (4.35). It will be assumed
that all functions appearing in (4.31) have bounded partial derivatives of suffi-
ciently high order.

Application 1. Let §,=1. It is well known that
(4.37) sup {|U (s, t) —u,(s)]: 0=t=t, =T, s€G} <y - h

for some constant y mdependent of ke (0, T]. We assume that the expression
1 1
2 V)80 354 )

(which after a multiplication by % stands for a first order approximation of the
truncation error of method (4.32)) does not vanish identically for —oo<s < o0,
0<t¢<T. Then, by using the inequality max |, —u,| 2y, - max |u,| (cf. (4.33),

(4.35), (4.36)) with 4, defined by &,(s)="U (s, ¢,), it can be proved that also
(4.38) sup {|U(s, ) —u,(s)|: 0=t=t, =T, s€G} =y" - h
(for & sufficiently small). In (4.38) 3’ denotes some positive constant independent

of k. The inequality (4.38) proves that in general the error estimate (4.37) cannot
essentially be improved.

Application 2. Let f,=0 (if # is odd), §,=2 (if » is even). An application of
the upper bound for max |, —u,| appearing in (4.35), with 4, again defined by

#,(s)="U (s, t,), shows that still with this choice of g, the estimate
(439) sup {l U(S, t) —U, (S), 10 gt:tn = T: s€ Gh} :0(}})

holds. We note that the number of evaluations of the function f in the finite-
difference scheme (4.32) now has been redunced by a factor 1/2.
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More generally, using (4.35), 1t can be proved that (4.39) holds whenever the
coefficients f, appearing in (4.32) satisfy

”

3 1-p)| <o

j=1

sup
n
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