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Summary. Let u denote the approximation produced by a finite-difference method 
for solving an initial value problem for a given differential equation. Suppose the 
finite-difference equation is perturbed by  a quant i ty  w, e.g. due to round-off or 
truncation errors. Then, instead of u, one obtains a solution which we denote by ~. 

In  this paper a condition is presented which is necessary and sufficient for the 
existence of a two-sided estimate of the error ~ -- u in terms of the perturbation w. The 
paper is concluded with applications in the fields of ordinary and part ial  parabolic 
differential equations. 

1. Introduction 

In  order  to in t roduce  the main  problem tha t  is t r ea t ed  in this  paper  we consider 
the  famil iar  example  of an ini t ia l  value problem 

d U(t)=]( t ,  U(t)) (O<t<_T) ,  U ( 0 ) = c  ( t . t )  d - T  - -  - -  

which is solved numerica l ly  b y  Euler ' s  me thod  

0.2) h-l(u.-u._l)=/(t._l, u._~) (~=1, 2, . . . ,  N), ~o=C. 
In  (1.2) u n denotes an approx imat ion  of U(t) at  t = t . = n h  and N is the  greates t  
integer  wi th  N h =< T. Along with  (1.2) we consider a per tu rbed  version of Euler ' s  
me thod  

(t.3) h-~(~,.-~._O=/(t._~, a._l)+w. (n=l, 2 ..... N), ~0=C+Wo 
where un denotes  the  app rox ima t ion  of U(tn) obta ined  in the  presence of some 
pe r tu rba t ions  w0, wx, . . . ,  w N. F o r  ins tance wn m a y  represent  a t runca t ion  error  
ar is ing in the  computa t ion  of /( t ._l ,  u~-x). Likewise, the  local pe r tu rba t ions  w~ 
m a y  be caused b y  rounding-off.  F ina l ly  w. m a y  also be unders tood to be the local 
d iscre t iza t ion error  (we use here the  te rminology  of Et4]) of Euler ' s  method,  in 

h d ~ 
in which case we have w . - -  2 d t ~ U(~.) (with t~_ x < t~ < t n, and  n = 1, 2 . . . . .  N) 

and ~ = U(tn). Clearly, in each of these cases i t  is desirable to have an error  bound  
b y  means  of which the  effect of the  pe r tu rba t ions  w n on the  differences ~ . - - u ~  
can be es t imated.  

Suppose we have an error bound  which can be wr i t t en  in the  form 

(t.4) m a x  la . -u.  I ___e~ 
O ~ n ~ N  
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where E 1 = E 1 [w0, w 1 . . . . .  w N ; h/ depends on the perturbations w~ and on h > 0. 
Then (t.4) is of particular interest if the factor  by  which the actual quant i ty  

max  ~.--u~[ may  be overestimated, is bounded uniformly for all w. and all 
O ~ n < N  

h > 0. Thus a basic requirement to be imposed on the error estimate (t.4) could 
be that  its r ight-hand member  E 1 divided by  max ]~--u~l  is bounded by some 

O < n < N  

fixed constant  fl > O. Clearly, this requirement is fulfilled if an only if there exists 
a two-sided error bound 

(t.5) E o ~  max I~--u,I-%_E1 
O < n < N  

t 
with a left-hand member  E o tha t  can be written in the form E o = ~ .  E1 where 
fl > 0 is independent of wo, w 1 . . . . .  w N and h. 

We assume that  the partial  derivative with respect to x of the function / 
appearing in the initial value problem (t A), satisfies 

(t.6) I O--~/(t,x) l ~ L  <co  

uniformly for 0 < t  ~ T, --  oo<  x < oo. Using (t .6) it can be proved (cf. [t 1, t4, t 5]) 
tha t  the error a , - - u ,  caused by  the local perturbations w 0, wl . . . . .  w, in (t.3) 
admits  the following two-sided error bound of type (1.5): 

I "1 I I (t.7) Yo' m a x  . w o + h  2 wi <- m a x  I~,,,--unl ~ Y l "  max wo+h --  w i 
O < n s  1=1 - - O < n < N  O<n~_N i=1 

we use the convention ~ .. = 0 for a > b . For  Yo, 7~ one m a y  obtain the ex- 
j~a  

pressions 7o = (t + L T )  -1, 7 1 = e x p  (LT).  Further,  if assumptions more refined 
than (1.6) are made, (1.7) can be shown to hold with a constant  7t smaller than the 
exponential  factor exp (LT).  For instance, if, in addition to (t.6), it is assumed 
tha t  

0 
Ox/ ( t ,  x) ~ M < 0  

(uniformly for 0 ~ t  ~ T, - - o o <  x < oo), then, for h sufficiently small, we m a y  

[ ' ] put  7x----min t -  ~ - ,  exp ( L T ) .  We note tha t  the two-sided error estimate 

(1.7) has the impor tan t  proper ty  that,  except for factors Y0, 71 which are independ- 
ent  of w o, w 1, w N and h, the lower bound and upper  bound for max  I~n--u,I 

" ' ' '  O ~ n < N  
do not depend on the /unct ion/ .  

The question arises whether results similar to the above still hold if the maxi-  
mum-norm max  I .-u l is replaced throughout  by  some other seminorm, e.g. 

O~n~:N 
by  the Euclidean norm 

(1.8) 

or by the important seminorm 

(1.9) 

~v s} } h Y, u.) 
tl.~O 
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In this paper it will be shown that  the answer to this question can be positive as 
well as negative depending on the seminorm chosen. Using the theory of this 
aiticle e.g. the conclusion can be drawn that  the two-sided error bound 

( ~ . t o )  

--<rl �9 {h ~0 (Wo+h/Z1 w;)' } ' 
holds, with the same 70, 71 as in (1.7). The lower bound and upper bound in (t .t0) 
are again independent of the function /, except for factors independent of 
w o ,  w l  . . . . .  W N  and h. The results in this paper also imply that, on the other hand, 
there exists no two-sided error bound for ]~N--UN[ of the form 

(t.~ t) 70. r E~o, w~ . . . . .  ~ , . ;  h3 < la~,-uNI =< 71. r EWo, ~ . . . . .  ~N; hi 

with constants 70, 71 independent of w o ,  w 1 . . . . .  w g and h, and with a function r 
independent of / .  

We note that  (1.tt) is trivially fulfilled with 7 o = 7 1 =  t and r defined by 

r [~o, ~, . . . . .  ,,.,~; hl = I~- , , , , , , I  

where UN is computed from (t .3) and [ ~ tN- -UN[  can thus be regarded as a function 
of w o,  w 1 . . . . .  W N  and h. Clearly, with this choice of 70, 71 and ~ the error estimate 
( t . t l )  is useless, since the values r [wo, w I . . . . .  W N ;  h i  depend on w o ,  w 1 . . . . .  w N 

in a manner which in general is untransparent--due to the possibly complicated 
structure of the (nonlinear) function/.  I t  is in view of the existence of such trivial 
and simultaneously untransparent error estimates that  we focus on two-sided 
estimates in which, apart  from factors independent of w~ and h, the lower bound 
and upper bound are independent of / .  

In Chapter 2 we introduce the class of finite-difference methods we shall deal 
with in the rest of this paper. I t  consists of step-by-step methods for solving initial 
value problems for semilinear (ordinary or partial) differential equations. Chapter 2 
is concluded with Theorem 2 containing the main result of this article. This theo- 
rem gives a very simple condition on the seminorm which is necessary and suffici- 
ent for the existence of nontrivial two-sided error bounds. 

In Chapter 3 we prove Theorem 2 using a series of lemmata proved at the 
beginning of Chapter 3. At the end of Chapter 3 (Section 3.5) we touch on some 
further applications of these lemmata, which have not been incorporated in 
Theorem 2 of Chapter 2. We prove the above statement about the non-existence of 
error bounds of type ( t . t t ) .  Further, we indicate how the theorems which were 
stated without proof in [13] follow from the theory of Chapter 3. 

Chapter 4 contains illustrations to the material of the Chapters 2, 3 in the fields 
of ordinary and partial differential equations. The error bounds (t.7), (t.t0) as 
well as the expressions for 7o, 71 given above easily follow from the examples 
treated in Section 4.2. 

For further examples and applications of two-sided error bounds we refer to 
the publications [t I - - I  6]. 
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2. A Theorem on the Existence of Two-Sided Error Bounds 

2.1. The Finite-Di//erence Scheme 

Let T and h 0 be given numbers with 0 < h o _~ T and let H denote some subset 
of the interval (0, h 0] with inf H = 0 .  A number h belonging to H is called a 
stepsize. We shall deal with finite-difference methods producing approximations 
u, to some solution U(t) of a given differential equation at the gridpoints t = t~ for 
n = 0 ,  t . . . . .  N. The points t~ are defined by t , = n  h (for n-----0, 1, 2 ...) where h 
is a given stepsize, and N is the largest integer with t N ~_ T. The approximations 
u~, which depend on the stepsize h that  is chosen, are assumed to belong to a real 
Banach space ~h, not necessarily of finite dimension. The norm in ~h is denoted 
by [alh or simply by [al for a E ~ ,  I t  is assumed that  9t h contains a vector e 4=0. 

We assume that  the approximations u. are obtained by  solving the finite- 
difference equation 

k 
(2A.a) h - 1 Z  A,, , i(u,,-~)=F.(uo, ul . . . . .  u,,; h) ( n = k ,  k + l  . . . . .  N)  

using starting values c.E ~R h: 

(2A.b) u~=c~ (n=0A . . . . .  k - - l ) .  

In (2A) k denotes a fixed integer _~t and it is assumed that  h o is so small that  
k h 0 ~ T. Hence N ~ k for all h E H. We assume that  the operators As, ~, F~ satisfy 
the following conditions. 

Condition I.  For each hE H and i = 0 ,  t . . . . .  k, n = k, k + t . . . . .  N the A,, i are 
linear operators from ~R, into itself and the operators A~, 0 are invertible. The 
operators A,, i are allowed to depend on h but in order to avoid cumbersome 
notation we suppress a third index of A~, ~ indicating this dependence. 

Condition l I .  For hE H, k ~ n  ~ N ,  x/E ~R h (O ~_j <=n) the element 
y = F , ( x  0, x x . . . . .  x~; h) belongs to ~R h. Further if x i and :7 i are arbitrary vectors 
in ~h then 

i=0 

where 20, 21, 29 . . . .  are constants independent of h, n, x i, ~j. I t  is assumed tha t  
the constants 2~ vanish for all i < q and for all i > r. With q, r we denote arbitrary 
fixed integers with 0 < q --<__ k, q ~ r. 

Condition 111. There is a constant ~ t>0  such that  whenever h E H and 
xk, xk+a . . . . .  XN, YO, YX . . . . .  yNE ~h satisfy 

k 
k-l ~ .A, ,~(y , ,_~)=x~ ( k ~ n ~ _ N ) ,  y ~ = 0  ( O < _ n < k - - t )  

i --O 

then 

IY.I ='hZ I ,I 
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Condition I V .  For any he H,  k g n  g N  and any vectorsy, xo, x x . . . . .  x~_le ~h 
the equation 

h -x A . , o ( x ) - - F . ( x  o, x a . . . . .  x._ x, x; h ) = y  

has a unique solution xe~h. 

It  is clear that Euler's method (t.2) is an example of thegeneral finite-differ- 
ence scheme (2.1) with H----(0, T], ~th=the set of real numbers ~ ,  A . ,o (x  ) - - x ,  
A. ,x(x)  ~ - - x ,  F,,(x o, x~ . . . . .  x.; h) --=/((n--t) h, x._x), k = t ,  ~ = t ,  q = r = t  and 

0 
;tx----L-assuming that ~X- / satisfies the inequality (1.6). For further examples 

of (2.t) we refer to the Sections 4.2, 4.3. 

From the conditions I, II it is clear that the finite-difference equation (2A.a) 
consists of a linear part  and a (nonlinear) part which is Lipschitz-continuous 
uniformly in the stepsize h. Therefore (2.t.a) is a semilinear ]inite-diHerence 
equation. We note that the right-hand member of the Lipschitz eondition in condi- 
tion II consists in a sum of at most ( r - - q + t )  terms. 

Condition III  requires that the linear part of the finite-difference equation 
(2.t .a) has a property which by many authors has been called stability. 

Condition IV implies that for given u o, u a . . . . .  u._ 1 there is a unique u.  satisfy- 
ing (2A.a). Consequently there are unique vectors u o, u x . . . . .  un  satisfying (2A). 

2.2. The Perturbed Finite-Di//erence Scheme 

Assume the finite-difference scheme is perturbed by quantities w.,  e.g. due to 
errors occurring in the actual calculation of F. and c. on a computer. Then instead 
of the u. satisfying (2.t) we obtain vectors f .  satisfying 

k 

(2.2.a) h -x Z A . , , ( f . - , ) = F . ( f o , a x  . . . . .  f . ;  h)+w,,  ( n = k ,  k + t  . . . . .  N) ,  
i=O 

(2.2.b) f . = r  (n=O, 1 , . . . ,  k - - t ) .  

We note that condition IV ensures that  for any w o, wx . . . . .  WNe ~h there are 
unique Uo, fix . . . . .  fNe~R h satisfying (2.2). 

Most methods of type (2.1) that are of practical value satisfy, in addition to the 
conditions I-IV, the following condition on the size of [f . --u.I .  

Condition V. There is a constant y > 0 such that  whenever he H and u.,  f . ,  
w.E~R n satisfy (2A), (2.2) and Wo=W 1 . . . . .  wk_l=O then 

If.-u.l_ y.h  
4ffik 

This condition has a structure which is similar to that of the stability condi- 
tion III.  In fact, if/7. would vanish, condition V would reduce to condition III. 

In the following theorem we formulate a simple condition under which 
condition V (and condition IV) is fulfilled. Although the proof of the theorem 
does not deviate substantially from proofs of related theorems to be found in the 
literature (see e.g. [t4, p. 85]) we have included it, mainly because the proof 
reveals an inequality that  is used in the subsequent. 

t9  NtmxeaL Math.~ Bd. 26 
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Theorem 1. Assume the finite-difference scheme (2.t) satisfies the conditions 
I, II, III. Let  h 0 be so small that 

(2.3) ~ & ho < 1. 

Then the conditions IV, V are satisfied as well. 

Proo[. t .  In order to prove that condition IV is satisfied we rewrite the equa- 
tion 

(2.4) h -a A , , o ( x ) = F ~ ( x  o, x 1 . . . . .  zn_x,x; h ) + y  

in the form x = G ( x )  where G(x) denotes the dement  into which the right-hand 
member of (2.4) is transformed by the operator h (An,0) q. From condition III  it 
follows that the norm of the operator (A~,0) -1 induced by the norm in 0t h, satisfies 
the inequality I(a~,0)-ll ~_~. Hence by using the Lipschitz condition appearing 
in condition II we obtain IC(~)--C(x)l _~h~,ao. l e -x l -_< ,~aoho- I~ -x l  for 
arbitrary x, ~E~h. In view of (2.3) G is a contraction from ~Rh into itself and the 
equation x = G x  has a unique solution in ~h (cf. [7]). I t  follows that condition IV 
is fulfilled. 

2. In order to prove that  condition V is satisfied we subtract the relations 
appearing in (2.1) from the corresponding ones in (2.2). Writing d~=~n--u  n and 
using that ~o = wl . . . . .  wk_ 1 = 0 we thus have 

k 

h -a Y, Am~(d,-~)=[F~(ao . . . . .  ~n; h)--F~(uo . . . .  , u~; h)]+wn ( k ~ n < N ) ,  
i-- O 

a . = o  ( o < n < k - t ) .  

By virtue of the conditions III, II  we obtain 

{ --, } 
where  

(2.5) ~= Y. ~. 
i i q  

Since h ~ h  o and h o is so small that  (2.3) holds, we have 

Id,~l - ~  ~. hX~laJl +:- h ~ I~/I (k ~,,_<N) i -k  j -k  
with 

(2.6) /~=~(t  - -~ 20 ho)q. 

From this inequality there follows, by induction with respect to n and by noting 
that  [~ - -  u~] = ]d~[, 

(2.7) h +p a. (k <_N). 
ilk 

I t  follows that  condition V is fulfilled with 

(2.8) y =/~. exp (/~ g T). 
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We note tha t  the assumption (2.3) of the theorem can always be fulfilled by 
restricting our considerations to stepsizes h which are small enough. Moreover, if 
q ~ t, we have 20 = 0 and condition (2.3) is tr ivial ly fulfilled, independent ly  of the 
values ~, h o. This is the case e.g. for Euler 's  method  (t .2). 

On the other hand, in the numerical  solution of so-called stiff initial value 
problems (cf. II4]) the assumpt ion (2.3) m a y  be nonrealistic as well as super- 
f l u o u s - s e e  [5] for a finite-difference method satisfying the conditions I - V  while 
(2.3) is violated. 

2.3. Two-Sided  Error Bounds  

In  order to derive and to invest igate bounds for the errors fn - -u~ ,  caused by  
the local per turbat ions  w, in (2.2), it is appropr ia te  to introduce the vectorspace 

X h = ( ~ h ) N + l = { x l  X = ( X  o, X 1 . . . . .  XN) with all xnE~h} 

in which addition and mult ipl icat ion with real numbers  are defined coordinate-  
wise. We define the vectors w = ( w o ,  w 1 . . . . .  WN), U=(Uo,  Ul . . . . .  UN) and 
u :  (uo, ~ . . . . .  fiN), which belong to the space X h. For  each hE H we denote by  
[[ x Hh, or s imply by  I[ x U, an arb i t ra ry  seminorm on X h . 

Definition. Let  qbh be a real functional defined on X h (for each hE H) and let 
Y0, Vl be positive constants  (independent of h). If  for all hE H and all 
Wo, wl . . . . .  WNE ~h the relations (2A), (2.2) imply  tha t  

(2.9) Yo" ~h [w] ------- It f -  u I~ < ~1" r [w], 

then (2.9) is called a two-sided error bound for the finite-difference scheme (2.t). 

0.7) provides an example  of a two-sided error bound of type  (2.9) with 
X h =  IR N+x and 

(2.10) Hxl[h= m a x  [x~], 
O < n < N  

(2.tt) max lwo+h 2: w,I 
O~_n<N' j ~ t  

for x=(Xo ,  xl, . . . ,  x~), w = ( w  0, wl  . . . . .  w N ) E X  h. Similarly (1.t0) is an example  
of (2.9) with 

Finally, it is clear tha t  (1.1t) corresponds to the case where 

(2.t4) I IxlN=l '~l  

and ~b h [w] = ~b [w o, w 1 . . . . .  WN; hJ. 

Definition. The  seminorm [[x[~ on X h is absolute if for all x =  (x o, x x . . . . .  xu) ,  

Y = (Yo, Y~ . . . . .  YN) E X~, with I'.l = l y ,  I (n= o, t . . . . .  N) we have  ~ x[~ = Ily 1~- 

t9" 
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In the rest of this paper  we shall confine ourselves mainly to absolute semi- 
norms ~xt~ on X h. Note that  (2A0), (2.t2) and (2.t4) are examples of absolute 
seminorms. 

We conclude this section with the remark that  the concept of a two-sided 
error bound, as defined above, is closely related to the concept of a minimal 
stability functional defined in [1 t ]. To see this, associate with (2.1) the operator 
C h, mapping X h into itself, defined by  

(C~x)n=x~-c~ ( n = o ,  t . . . . .  k - t ) ,  
k 

(C A x )n=h -1 ~ A. , i (x ._ i ) - -F~(xo,  x 1 . . . . .  x~; h) ( n = k ,  k + l  . . . . .  N), 

where x =  (x o, x x . . . . .  XN) denotes an arbitrary vector in X h. I t  is easily verified 
that, given a finite-difference scheme (2.t) and a functional ~bh, we have a two- 
sided error bound (2.9) if an only if Ch is a minimal stability functional for the 
operator C h associated with the given finite-difference scheme. 

2.4. Formulation o/ the  Main Result 

In the introduction we showed that  two-sided error bounds for Euler's method 
with a functional Ch which is allowed to depend on the right-hand member / of 
the finite-difference method (t.2) can be simultaneously trivial and useless. In 
order to avoid such trivialities in the investigation of the more general finite- 
difference scheme (2.t) we focus on error bounds for (2.t) with a functional Ch 
which is independent of the function F~ appearing in the right-hand member of 
(2.t .a). The following theorem gives a condition on the seminorm ]] x[~ (viz. state- 
ment 3 in Theorem 2) which is necessary and sufficient in order that  such non- 
trivial two-sided error bounds exist for all finite-difference schemes belonging 
to a specific class ~Y'. 

In order to define the class 9/r we assume that  {~Rh} is a fixed family of Banach- 
spaces (h varies through H) and that  k>- t ,  q _>--0 are fixed integers with q ~ k. 
With 3C we denote the class of all finite-difference schemes of type (2. t) satisfying 
the conditions I - V  of the Sections 2.t, 2.2 with the given k, q and {~h}- I t  should 
be understood that  two finite-difference schemes belonging to 3f" are considered 
to be different from each other if an only if for some hE H their corresponding 
operators C h, as introduced in Section 2.3, are not identical. 

Theorem 2. Let [I x [~ be an absolute seminorm on X k. Then the three following 
statements are equivalent. 

1. For each finite-difference scheme of the class ~ there exists a two-sided 
error bound of type (2.9) with a functional ~b h that  is independent of the function 
F~ appearing in (2.t.a). 

2. For each finite-difference scheme of the class ~ there exists a two-sided 
error bound of the form 

(2.t5) <ll -ul  < r ,  

where Yo, Yt are positive constants independent of h, ~v, and where 
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v = (Vo, v x . . . . .  vN) is defined by 
k 

h-X~,A, , i (v ,_i )=w,  ( k ~ n g N ) ,  vn=w n ( 0 ~ n ~ k - - t ) .  
i=O 

3. There is a constant 6 > 0 such that  for all hE H and x = (xe, x a . . . . .  xn)E Xh, 
Y = (Yo, Yl . . . . .  yN)E Xh with 

y .=O (n=0 ,  t . . . . .  k - - t ) ,  y . = h ~ x j  ( n = k , k + t  . . . . .  N) 

the following inequality holds 

HyU~ ~,~. Ilxll,,. 
In order to illustrate Theorem 2 we consider again Euler's method (t.2). A 

l ittle calculation shows that  the seminorms (2A0), (2.t2) satisfy condition 3 of the 
above theorem with Xh-----~n+t k = q = t ,  ~-~ T. Consequently, in case (2.t0) or 
(2.t2) is used, the statements t and 2 of the theorem hold and the functional 
Ch [w] = [{vII h appearing in statement 2 equals (2.t t ) o r  (2.13), respectively. How- 
ever, if the seminorm (2.t4) is chosen, condition 3 of the above theorem is violated. 

3. Necessary and Sufficient Conditions for the 
Existence of Two-Sided Error Bounds 

3.1. Introduction 

The main purpose of the present chapter is to prove Theorem 2. Before turning 
to the proof proper we present conditions for the existence of a two-sided error 
bound of the special form (2.t 5). In Section 3.2 we give sufficient conditions and 
in Section 3.3 there are given two necessary conditions for the existence of such an 
error bound. Then using these results we prove in Section 3.4 a key lemma from 
which Theorem 2 easily follows. 

The following simple lemma will be used repeatedly in the following sections. 

Lemtrm 1. Let the seminorm I[x [~ on Xh be absolute. Let 

x (,n) = ( xo (m), xl (m) . . . . .  x ~, (m) )~ x ,  

denote vectors (for m = O, t . . . . .  M) with 

M 

lx.(o){ _~ X {,.(")l ( , = 0 ,  t . . . . .  N). 

Then we have 
M 

II �9 (o)1{~ =< X II �9 (,,o lE. 

Proo]. t. Let x(m)=(xo(m ), xx(m ) . . . . .  xN(m))EX h (m=0 ,  1 . . . . .  M) and 
M 

{x.(O)[ _~ ~, {x.(m)[ (n=O, t . . . . .  N). Define vectors 
m u l  

~(,n) = (~0 (,n), ~(,n) . . . . .  ~N (,n))e x~ 
by 

~.(m)=[x.(m){ .e (O~_n<_N, O < m < M ) ,  
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where e is some vector  in ~t h with norm le[ = t .  We have 

I~.(o)l--I~.(o)l and 
m ~ l  

Consequently 

I~,,(o) 1 < ~, ~.(m) 

Defining the vectors y = (Yo, Yl  . . . . .  y~r z =  (z o, z 1 . . . . .  ZN)E X h by  

I 
( O ~ n ~ N ) .  

we thus have 

(3.~) 

I t  will be shown below tha t  

(3.2) 

M 

y = ~ (0), z - -  ~, ~ (m) 

ty.t--<t*~t (o<~<N).  

Ilyll ~ 114 

I Sr (m,, 
M 

we thus have  J] x (0)H < ~, ]] x (m)]]. 
r a = l  

2. Now we shah prove (3.2). Define v =  (v o, v t . . . . .  VN) with 

where the coefficients %,/5 .  are chosen in such a way  t h a t  

(this is possible in view of (3.t)). I t  is easily verified tha t  for a rb i t ra ry  r,E ~h we 
have  

U (to . . . . .  , ._1.  v~. r . 1  . . . . .  r~) II -----It (r0, . . . .  , ._1. z . ,  r.+l . . . . .  r~) II- 

Applying this inequali ty successively with n = 0 ,  t . . . . .  N and r~=z~ (i < n ) ,  
r~ = vi (i > n) we obtain  

INI z bll. 

B y  definition of v~ we have  I~1 = I ( ~ - ~ , )  ~1--ly, I. Consequently 

M =llyll 
I t  follows tha t  (3.2) holds and  the l emma  has thus  been proved. 

The  above  l e m m a  is a slight extension of a result  contained in [t J on absolute 
norms  in finite-dimensional vector  spaces. The above proof  is more  e lementary  
t han  the one in Eli. 

3.2. Suf f ic ient  Condi t ions /or  the Existence of Two-Sided Error Bounds 

We shah first derive error bounds for finite-difference schemes (2A) tha t  
sat isfy conditions which are a bi t  more  general than  the  conditions I I I ,  V of 
Chapter  2. Assume ~Pn,h [x] is a given absolute seminorm on Xk (for each hE H, 
k ~ n ~ N). Then our  generalized conditions are as follows. 
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Condition l I I ' .  Whenever hE H and xk, xk+ t . . . . .  XN, Yo, Y l  . . . . .  Y N E ~ h  
satisfy 

k 

h - ~ A ~ , i ( y €  ~ (k<--n<--N), y . = O  ( O ~ n ~ _ k - - t ) ,  

then 

ly.I =<w~,~ ix] (k < n  ~N) where xE Xh is defined by 

x = (0 . . . . .  O, xk, x,+x . . . . .  XN). 

Condition V'. Whenever h E H  and u , , ~ , , w , E ~  h satisfy (2.3), (2.2) and 
Wo= re'x . . . . .  wh_ 1 = 0, then 

I~- -u . I  <~?~.h[w] ( k < n ~ N )  where w = ( 0  . . . . .  O, wk, wk+ 1, . . . ,  WN). 

Clearly the conditions III', V' reduce to the conditions III,  V if 

(3.3.a) ~.,~[x]=~ ~ ~ Ix, I 
or 

(3.3 .b) v,~.,Exl--r, h ~ I~;I, 
j ~k  

respectively, for x =  (x o, x 1 . . . . .  XN)E Xh .  

In order to formulate concisely a basic assumption that will be made in the 
subsequent, we introduce the notations 

(E~x)~=x~+~ (for O ~ n ~ N ,  O ~ n + i ~ N ) ,  

(E~x) .=O ( f o r O ~ _ n < = N , n + i < O o r n + i > N ) ,  

E%= ((E'x)o, (E%)1 ..... (E%)N) 

for x =  (x o, xl . . . . .  XN)E X h and arbitrary integers i. In the subsequent lemma 
we make the following assumption about the seminorm Ilxl~. 

(3.4) There is a constant p > 0  such that whenever q ~ i ~ _ r ,  h E H  and the 
vectors x = (x o, x 1 . . . .  , XN), y = (Yo, Yl  . . . . .  YN) E Xh satisfy 

y . = 0  ( O ~ n < - - k - - t ) ,  lY.l<~0.,h[E-%] ( k < n < N ) ,  

then: Ilyl~ <l ,"  II~IK. 

Lemma 2. Consider a finite-difference scheme of type (2A) satisfying the 
conditions I, II, IV of Chapter 2 and define 

(3.5) ~t= ~ 2~. 
i=q 

Let ~0.,h [x] be an absolute seminorm on Xh and let I1~t~ be an arbitrary seminorm 
on X h. Suppose p > 0 is a constant with the properties required in (3.4). 

Let u~, ~., w.E ~h satisfy (2A), (2.2) and put v =  (v o, vl . . . . .  VN) where 

k 

(3.6) h -~ ~. A~ . i ( v~_ i )=w ~ ( k ~ n ~ N ) ,  v . = w ~  ( O ~ n ~ k - - t ) .  
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a) If condition III '  holds, then to" Jlv ~ < JJa-- u ~ with ro = (1 + a~)-l. 
b) If condition V' holds, then H,2-u[k <Tt-[]vUh with 71= (1 +A/a). 

Proo]. a. By subtracting (3.6) from (2.2) we obtain for vectors r, defined by 

r . = ~ . - v .  

the following relations 

k 
(3.7) h-lZA,,,~(vn-i)-=F~(~o . . . . .  ~.;h) ( k ~ n g N ) ,  r . = e .  ( 0 ~ n ~ k - - t ) .  

i--O 

By subtracting (2.t) from (3,7) we obtain 
k 

h-X Z A.,~(z.-i)=F.(uo . . . . .  ~.; h)--F.(u o . . . . .  u.; h) (k g n  <-N), 
(3.8) i -o  

z . = 0  ( 0 ~ n  ~ k - - t ) ,  

where the vectors z. are defined by 

z ,=%--u. .  

We define the vector p = (P0, Pl . . . . .  p~c)E X h by 

p . = 0  ( O ~ n ~ k - - t ) ,  p. - -  F. (a o . . . . .  a.;h)--F.(u o . . . . .  u.;h) (k~n<--N). 

By applying condition III '  (with y .=z . ,  x.=p.) to (3.8) we obtain 

(3.9) ]zi[ ~o/ ,h[p]  ( k ~ i ~ N ) .  

In view of condition II we have 

Ip.I-~ X a, la._,-,,._,l (O~n~N). 
iffiO 

We define the vector d--  (do, da . . . . .  dy)e X ,  by 

a.=a.-u. .  

Since 2 i = 0  for i < q and i > r (el. condition II) it thus follows that 

I~.l--- X I(a,'E-'d).] ( 0 < n < N ) .  

An application of Lemma I (with []x]~ replaced by ~0j, h Ix]) yields 

%',h [P] < ~, ~oi,h [~" E-~ d]. 

(O~_i~_k--l ,q~i~_r),  ~i,~=~oj,h[E-~d] ( k < f ~ N , q ~ i ~ r )  

Defining 

O~i,i=O 
we get, in view of (3.9), the inequalities 

I=;I- ,~ a,~i., 
iffiq 

(O<=i <N). 
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We put 

ai = ~ ,~j, ,  (O < i < N)  
i=q 

and define vectors g (i) = (go (i), gx (i) . . . . .  g~ (i)) by 

gi(i) = xi, i (if ai4=O), gi(i)=O (if a i=0) .  --~i"  gi 

Since [zi[ <a i there follows ]gj(i)[ ~ t i ,  , ( O ~ i < N ,  r  In view of the 
definition of ~ti, ~ we may apply condition (3.4) with y=g( i ) ,  x=d.  I t  follows that 

[[g(i)n--</,- Nil (q___i__,). 
From the definition of g (i) we have for the vector z defined by 

z =  (zo, 21 . . . . .  zN) 
the representation 

z=  ~ hi g(i). 
i=q 

Hence Hz][_~ 2 hi. ]lg(i)l[_ -< 2 h,.  #[Id[l=h/z. UdU. Since v = d - - z  there follows 
i~q i=q 

Ilvll--Udll+llztl--< ( '  +h/ , ) .  IId[l= 0 + h ~ ) .  Ila-"[I. This proves part a) of the 
lemma. 

b. In order to prove part b) of the lemma we define the vector 

s = (so, sl . . . . .  sN)e Xh 
by 

sn=0 (O~n<--k--i) ,  &=F~(fi o . . . . .  ~.;h)- -F~(ro , . . . , r . ;h  ) ( k ~ n < N )  

and rewrite (3.7) in the form 
k 

h - t  ~, An,i(rn_i)=F.(r o . . . . .  rn; h)+s n (k<_n~N) ,  
(3Ao) ~=o 

An application of condition V' (with fin, w. replaced by r n and &. respectively) 
shows that the vectors r n form (3AO) satisfy the inequalities 

I",--~t--<~;,,[*] (k ~i<=N).  

Since zj= r i - -u  j we thus have 

Izi[ _<~0L,[s ] ( k _ ~ j ~ Y ) .  

By arguments similar to those following (3-9) and by noting that ~ - - %  = v~ we 
arrive at the inequality 

Ilzll ~,~," I1,,11. 
Consequently Ila- ~ ~= 11, + ~ H < 0 + h a )  II ~ II, which proves part b) of the lemma. 

We next turn to the case where the finite-difference scheme (2A) satisfies the 
original conditions III,  V of Chapter 2. For such a finite-difference scheme we 
shall obtain a two-sided error bound under a condition on the seminorm IIx~ 
which is more transparent than (3.4). I t  is assumed that 
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(3.t t) There is a constant ~ > O such that for all hE H and 

x =  (Xo, xl . . . . .  xN), Y = ( Y o .  Yl . . . . .  yN)E Xh 
with 

t t - -q  

y.--o (o_<n~k-a) ,  lY.I---hY, lx~l (k~n~U) 
i=0 

the following inequality holds: IlYI[~ --~ ~" IlxlL~. 
Condition (3.11) is slightly stronger than the requirement that statement 3 (of 
Theorem 2) holds. On the other hand in the following lemma it is not required 
that the seminorm [Ix[Ih be absolute. 

Lemma 3. Let Ilxl~ be an arbitrary seminorrn on X h satisfying condition 
(3.tl) and consider a finite-difference scheme of type (2.1) satisfying conditions 
I-V of Chapter 2. Let u, and ~, satisfy (2A), (2.2), respectively. Then 

(3.12) Yo" II ~ I1~ -~ I ~ -  u I1~ - y~- II ~ II~ 

where v =  (v o, v x . . . . .  VN) is defined by (3.6). Further, if ,~ is defined by (3.5) and 
a,y,  ~ are as in the conditions III,  V, (3.tt), respectively, then Y0 and ~1 are 
given by 

(3A3.a) yo = (1 +r  q, 

(3A3.b) Yx= (! + ~  X~). 

Proo]. a. In order to prove the first of the two inequalities in (3.12) we define 
~o,,h[x ] by (3.3.a). From (3.1t) it easily follows that  (3.4) holds with p=at~5. 
Further condition III '  is fulfilled since it is equivalent to condition III. By virtue 
of Lemma 2 (part a)) we have the first inequality in (3.t2) with 

~,o = (t + ~/~)-~= (t +=~) -~ .  

b. In order to prove the second inequality in (3A2) we define ~o,,h [x] by 
(3.3.b). Now (3.4) holds with p = y O  and the proof is again completed by an 
application of Lemma 2 (part b)). 

We end this section with the remark that  Lemma 3 will be essential in our 
proof of Theorem 2, while (the more general) Lemma 2 will be used later on in 
Section 4.2.3. 

3.3. Necessary Condit ions/or the Existence o /Two-S ided  Error Bounds 

In this section we denote by A., i arbitrary but fixed operators satisfying the 
conditions I, I I I  of Chapter 2. The function F. is defined by 

F.(xo,  xx . . . . .  x .;  h ) = f l  . (x._h+ x._k+l+...  + x . m  ). 

The finite-difference scheme (2.t) thus reduces to 

k 

(3.14) h a ~, A.,~(u._~)=fl. (u._k+u._k+x+'" + u . m  ) (k ~ n  < N ) ,  

u,,=c. (O~_ n<k-- t ) ,  
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and the perturbed version (2.2) takes the form 
k 

h -x ~, A,,,i(~,,_~)=/3- (~._k+~._k+l+...  +~._q)+W. (k ~ n  ~ N ) ,  
(3.t 5) ~=o 

a . = c . + w .  (O<n<k-t). 
Throughout this section the constant/3 @ 0 is assumed to be chosen in such a way 
that the finite-difference scheme (3.t4) satisfies all of the conditions I-V of 
Chapter 2. In view of Theorem I this can be achieved by choosing fl sufficiently 
close to zero. 

The following Lemma's 4, 5 show that a condition on the seminorm []xl~ 
similar to (3.11) must be fulfilled when the following statement (3.16) about a 
(one-sided) error bound holds for our finite-difference scheme (3A4). 

(3.16) There is a constant 7o > 0 such that whenever hE H and u.,  ~., w. satisfy 
(3.t4), (3.t5) then 

7 o  Ilvll~ < II~-~l l ,  
where v = (v o, v a . . . . .  vn) is defined by 

k 

h-' Z A,,,i(v,,-i)=w,, ( k ~ n ~ N ) ,  v . = w .  ( O ~ n ~ k - - l ) ,  
/ = 0  

Lemma 4. Let t[x[~ be an arbitrary seminorm on X h. Assume that (3.16) 
holds. Then the seminorm ~x lk has the following property (3.t 7). 
(3.t7) There is a constant 6x>0  such that for all h 6 H  and x = ( x  o, x 1 . . . . .  xr~), 

Y = (Yo, Yx . . . . .  YN)r Xh with 
k 

h -a ~,, A,,, i (Y.-~) = (x._~ + x._k+ 1 + . . .  + x._q) (k ~ n < N),  
~=0 

y .  = 0 (0 ~ n ~ k--  1), the following inequality holds: 

tiY Ih < ~," [I x [[~" 

Pro# .  t .  Using the notations introduced in the proof of Lemma 2 and apply- 
ing formula (3.8) to the finite-difference scheme (3A4) under consideration we 
obtain 

n--q 

(3.i8) h - l ~ A . , i ( z , , _ i ) = f l  �9 ~,, di ( k ~ n ~ N ) ,  z . = 0  ( 0 ~ n ~ k - - l ) .  

Assumption (3A6) implies the inequality []vt~ <(yo)-lllal~ for some 70>0.  Since 

U ~ IK = II a -  v IK < II a IK + II ~ 1~ we have 

(3A9) tl~lg < [~ + (~o)-q  Ilal~. 

2. Let x and y satisfy the relations 

k n--q 

(3.20) h-*~A , , , i ( y , , - i )  = Y,, xi  ( k ~ n ~ N ) ,  y . - - 0  ( O ~ n K k - - l ) ,  
iffiO i f f in- -k  

t 
occurring in (3A7). We define u. by (3A4) and ~. by ~.-----u.+ -~ �9 x..  Further w. 
is defined by 

k n--q 

w,,=~,,--c,, ( O ~ n ~ k - - t ) ,  w , ,=h-~ZA, , , i (~ ,~-~)- - f l  �9 Z a~ ( k ~ n ~ N ) .  
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Since f l . d = x  it follows in view of (3.18), (3.20) that y,,=z,, ( O ~ n ~ N ) .  By 
virtue of (3.t9) we have 

Ilyl~---[1 + (r0)-l]. t ~-" x 
and (3.t7) thns holds with 'h---- [t + (~,0)-11 �9 1/31-1. The lemma has thus been proved. 

In the next lemma it is assumed that the operators A., i occurring in (3.14) are 
such that the following condition (3.21) is fulfilled. 

(3.2t) For each hEH there exists a vector eEgt h with norm lel--t such that for 
each/" with k < j  ~ N  the solution Y,,=Y.,i of 

k 
~, A. , i (y ._ i )=0 ( ] ' < n < N ) ,  Yo=Yl . . . . .  y / - l = 0 ,  yi=(Ai,o)qe 

is of the form y. , j=ly. , ; I"  e and 

0= in f  {ly.,;I: h~ H; i---k, k + t  . . . . .  i v ;  n = i ,  i +  t . . . .  , N }  > O. 

In order to illustrate condition (3.2t) we consider the case where ~tih= IR, 
k = t ,  A, ,o=- -A~,x=the  identity I, which corresponds to Euler's method (t.2). 
It  is easily verified that (3.21) holds with e =  1 and y~ , i=0  (n <i ) ,  Y,;,i= 1 (n >i) ,  
0 = t .  For further examples ef. [t3] and Section 3.5, note a. 

L , ~  s. Let  I1~1~ be an absolute seminorm on J~ .  Assume the operators 
A.,~ appearing in (3.t4) satisfy condition (3.2t). Then statement (3.t6) implies 
statement 3 of Theorem 2. 

Proo/. 1. Assuming (3.t6) we may conclude from Lemma 4 that the seminorm 
II �9 I1~ satisfies (3.17). 

Let ~o, ~x . . . . .  ~ be arbitrary real numbers ~ 0 and define 

(3.22) ~ . = ~ . .  e (n=0,  t . . . . .  N). 

Let ~ = (xo, a~l . . . . .  ~N) and define y = (P0, Yx . . . . .  yN) by requiring that 
;b 

(3.23) h -I ~ A.,i(yn_i)=(a~,,_k+:~._~+t+...+s k <--n <--N), 
i=0 

y . = 0  (o<n~k--O. 

Applying (3A7) with x =  ~, y = y  we obtain 

(3.24) IlYlI~ < ,h  I1~11,. 
Since the vectors y~, i (i = k, k + t . . . . .  N) appearing in (3.21) satisfy 

k 
ZA., i (y ._i , i )=d, , , i .e  (k'<n<~N), y . , i = 0  (0--___n--<k--l) 

(~.,i denoting the Kronecker delta), the solution 37. of (3.23) can be written in the 
form 

N 
y . =  Y, ~ ; .y . , ;  (n=o, t . . . . .  N) 
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with 
aj=h.  ( ~ / - , + ~ i - k + l + " "  +~/-~) (]=k, k + t  . . . . .  N). 

Hence for k ~ n  ~ N  we have 

19,,I = ~;.y~,j ; = , a i l y , , j l >  = a;>O.hi=oE r 

Since ~:i= le;I (cf. (3.22)) we thus obtain 

(3.25) lY~l=o ( O < n < k - a ) ,  [f'~l >o 'h  Z I~;I (k<,~<N). 
I"=o 

2. In order to prove s ta tement  3 of Theorem 2 we assume tha t  

x = (x o, xl . . . . .  XN), Y = (Y0, Yl . . . . .  YN) 

are given vectors in X h with 

y , : 0  ( 0 _ < n ~ k - - t ) ,  y , , = h ~ , x  i ( k ~ n ~ N ) .  
]=0 

We define numbers  ~, by  
~- = I x.[ ( n :  0, t . . . . .  N). 

Defining s and y. by  (3.22), (3.23) we m a y  apply  the results (3.24), (5.25) of par t  t .  
Since 

(3.26) 

we have  for k < n --< N 

Using (3.25) there follows 

I~nl =1~1 (,~=o, a . . . . .  N) 

lY~l=h x i < h  __Z ~ I~jl. 
i= 

ly~l<0-1"l~l  (k<,~<N). 

Since ]Y.I = [ 0q  Y.I = 0 (0 ~ n ~ k - -  1) we obtain in view of L e m m a  t the inequali ty 

Ily lib < 0-,. II;llk. 
An applicat ion of (3.24} and (3.26) now shows tha t  

which proves s ta tement  5 with 6 =  0 -~ 6x- 

3.4. The Proo/ o/ Theorem 2 
We first s ta te  a l emma  which is much  similar to Theorem 2, the only difference 

being tha t  the class ~ appear ing in Theorem 2 is replaced here by  an arb i t ra ry  
class ~ '  satisfying the conditions i), it), iii) listed below. The proof of the l emma 
is based on the L e m m a t a  t ,  3, 5. Next  Theorem 2 is proved  by  verifying tha t  the  
class ~ itself satisfies the conditions i), it), iii) and by  applying the l emma with 
: ~ '  =:)tL 

The  conditions i), it), iii) are as follows: 

i) :~ff' is a subset of the set ~ defined in Section 2.4, 
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ii) JT" contains a finite-difference scheme of the form (3.14) with f l # 0  and 
with A~, ~ satisfying (3.21), 

iii) If  (2.1) is any  given finite-difference scheme in K ' ,  then there also is a 
scheme in K '  with the s ame  operators A,,. i as in the given scheme but  with 
F.(xo, xl . . . . .  x.; h) ----0. 

Lemma 6. Let  II x lib be an absolute seminorm on Xh. Let  OF' denote  an a rb i t ra ry  
class of finite-difference schemes (2.t) which satisfies the conditions i), ii), iii). 
Then the following three proposit ions are equivalent.  

t .  For  each finite-difference scheme of the class ~d'  there exists a two-sided 
error bound of the general type  (2.9) with a functional ~bh tha t  is independent  of 
the function F, appear ing in (2.1 .a). 

2. For  each finite-difference scheme of the class ~u there exists a two-sided 
error bound of the special form 

~ o  Ilvl~ ~ II~-ul~ <~1,  Ilvl~ 
where v = (v 0, v 1 . . . . .  VN) is defined by  

k 

h -~ ~ A,~,~(v._~)=w,, ( k < n ~ N ) ,  v.=w. (O<~n~k--t). 
d=o 

3. There  is a constant  6 > 0 such tha t  for all hE H and x =  (x 0, xa . . . . .  xn)E X h, 
Y =  (Yo, Ya . . . . .  yN)E Xh wi th  

n--q 

y ~ = O  (n=O,  t . . . . .  k - - t ) ,  y~=h ~_a xj (n=k, k + t  . . . . .  N) 
i=0  

the following inequali ty holds 

Ilyll~-<-~" I I~ .  
Proo]. We shall prove the l emma  by  showing successively tha t  s t a tement  m 

of the l emma implies s ta tement  m + t (for m = 1, 2) and tha t  s t a tement  3 implies 
s t a tement  1. 

t. Le t  s ta tement  t hold. Consider an a rb i t ra ry  finite-difference scheme, 
denoted b y  C, which belongs to the class Jt  ~' and let Ch denote the operator  f rom 
X h into itself associated with C as indicated in Section 2.3. Denote b y  A the  
scheme, referred to in condition iii), with the  same operators A.,  i as in C but  with 
F .  = 0  and  let A h denote the  opera tor  associated with A, i. e. 

(A, X)n [h-~ ,_Z ~ A.., (~._,) (k __. ~ N) 

for x =  (x o, x x . . . . .  xn)E Xh. In  view of s t a tement  t and p roper ty  iii) there exist  
two-sided error bounds of type  (2.9) for C and A, respectively in which one and 
the same functional,  say ~0h, occurs. 

Le t  hE H, wE X h and assume 

Chu=O, Ch~=~v, 
Ahx=O, Ah~=w. 

Then we have 

Po . ~  [,.3 < lla-,~ II~ < A  . ~  [~3, 
�9 ~,~ [,~] __< I1~-xll~ < ~ , .  ~ [~] 
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for some positive constants rio, flu, %, al, which are independent of h and w. 
There follows 

8 0 .  i1~_ xllh ~ II~-ul~ < & .  II~- xl~. 
~ 1  - -  ~ ~ 0  

Since ~ - -  x = v we thus have the two-sided error estimate appearing in s tatement  2 
with 7 o = f lo /~1,  ~ 1 =  fll/Or �9 

2. Let  s ta tement  2 hold. Then, in view of proper ty  ii), there exists a finite- 
difference scheme of the form (3.14) for which fl 4=0 and (3.21), (3.t6) hold. An 
application of Lemma 5 proves s ta tement  3. 

3. Let  s tatement  3 hold. The proof of s tatement  t is given in two steps. 

a. We shall prove tha t  condition (3.1t) is fulfilled. Let  x =  (x 0, x 1 . . . . .  xN), 
Y = (Yo, Yl . . . . .  YN) be given vectors with 

n - - q  

y , = 0  (O<--n<--k--t), ly.l<hY, lxil (k<n<N). 
i=o 

Assume e is a vector in ~h with norm [e I = !. Define 

~ . - - Ix . l '~  (~--o,  t . . . . .  N ) ,  
n - - q  

y , = 0  (0_<n_<k- - l ) ,  y , = h ~ i  (k<_n~N). 
j = 0  

In view of s tatement  3 we have for the vectors 

the inequality 

Since le.I--I~.l (o < ~  _<N) w e  have 

From the equality 
n - - q  

I~t = b y ,  I~sl (k<n<Y) 
i=0 

there follows ly.I-~1~1 (o_  ~ < N), which shows tha t  

Ily II, < It Y I~, 
(cf .  Lemma 1). Hence IlYlI* ------~ II~fl* and (3.ta) has thus been proved. 

b. Consider any  finite-difference scheme belonging to JC'. In  view of proper ty  
i) the scheme satisfies the conditions I -V  of Chapter 2 and Lemma 3 can be 
applied. I t  follows tha t  s ta tement  1 holds with 

where v = (v 0, v~ . . . . .  VN) is defined by  (3.6). This completes the proof of Lemma 6. 

We finally turn  to the proof of Theorem 2. 

Proo] o/Theorem 2. In  view of Lemma 6 it is sufficient to show that  3r = 
satisfies the conditions i), ii), iii). Condition i) is trivially fulfilled. 
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In order to prove ii) we define A., o ~ I, A., I = -- I,  A., i = 0 (i < i < k), I denot- 

ing the identity and 0 the zero-operator. The factor fl is defined by ~----- 2 ~ "  With 

these definitions the scheme (3A4) satisfies the conditions I, If, I l l  of Chapter 2 

with ~ = t ,  ~to_~ 2--~-" Since ~2oho<: - -  ~ ~ ~ the inequality (2.3) isvalid. By 

Theorem t our scheme (3A4) thus belongs to ~ .  Further it satisfies (3.2t) with 
0 = t. Consequently condition ii) is fulfilled. 

Finally, an inspection of the conditions I-V of Chapter 2 shows that condition 
iii) is fulfilled. 

3.5. Notes 
a) We mention two applications of Lemma 6 where X "  4=X'. 

Suppose first that  the class X '  consists of all finite-difference schemes of the 
form (t.2) where /(t, x) is a real function defined and differentiable with respect 

to x on [0, T] X ]P- and where -~x/(t, x) satisfies (1.6) (for some L > 0 ) .  Clearly, 

~t ~' satisfies the conditions i), ii), iii) of Section 3.4. Defining ][x[~ by [[xl~-----IXN[ it 
follows that  statement 3 (with k = q =  t) of Lemma 6 is violated. Hence by 
Lemma 6 we may conclude that statement t is violated as well. This proves the 
statement made in Chapter t about the non-existence of error bounds of type 
0.1t) .  

In a similar fashion Lemma 6 can be used to prove a result contained in 
[13, Theorem l]. (Note that assumption 3 of section 2.1 in [13] ensures that 
condition (3.2t) of the present article is fulfilled with A,,o=I, A,,x=--K). 

b) Assume statement 3 of Theorem 2 is true. 
Using Lemma 3 and the result contained in part 3.a of the proof of Lemma 6 

we find the values 70= (l + ~ ; t )  -x, Yt= (t +7~2)  for the coefficients appearing 
in statement 2 of Theorem 2. Here 2 is defined by (3.5), ~ is as in statement 3 
and r162 7 are from the conditions III, V, respectively. 

Combining these expressions for 70, 71 with (2.8), (2.6) we obtain a proof of a 
two-sided error bound stated in [t 3, Theorem 2]. 

c) Let q = 0 and let t} xl~ denote an absolute seminorm satisfying condition 3 
of Theorem 2. 

Let (2.1) be a finite-difference scheme satisfying the conditions I-V of Chap- 
ter 2. Then for the errors ~ , - -u , ,  caused by arbitrary perturbations w, in (2.2) 
with w 0 = wx . . . . .  w,-t = 0, we have the estimate 

(3.27) tl ll  
of fl~--u [[h in terms of {[ze lib- The estimate (3.27) follows by combining the inequality 
from condition V with the fact, proved in part 3.a of the proof of Lemma 6, that 
(3.1 t) holds. 

4. Examples and Applications 
4.1. Weighted lp-norms 

In this chapter we deal with seminorms IIx] --Ilxll ,  fo r  . . . . .  
that  are given by 

N 

(4.1.a) llxll,.,-- {hZ ~ (h)]'. 
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for I < p < co, and by  

(4.1.b) Ilxllp.h=om, NS,(h)" I x,I 
for p = co. In  (4.t) the 8~ (h) are a rb i t ra ry  given weights > 0. For instance in case 
~h=~,,  8i(h)=O (O<--i <--N--t), 8N(h)=h -l/p, the seminorms ( 4 . t ) r e d u c e  to 
(2.14). We use the conventions 

~/oo = 0, 0~/0 = oo (for 0~ > 0), a/O = 0 (for ,t = 0). 

The following theorem gives conditions on the weights 8i(h) under  which the 
crucial condition 3 (appearing in Theorem 2) is fulfilled by  the seminorm (4.t). 

Theorem 3. t .  For  p = 1 condition 3 of Theorem 2 is fulfiUed if and only if 

(4.2) There is a constant  8 < co such tha t  

N 
m a x  h ~ 8i(h)/Sj(h)<~ ( f o r a l l h E H ) .  

O<i<N--q i=max(k,i+q) 

2. For  p = co condition 3 of Theorem 2 is fulfilled if and only if 

(4.3) There is a constant  c~ < co such tha t  

i--q 
max  h ~. 8 i (h)/8 i (h) < 8 (for all h E H). 

k~i.<N jffi0 

3. For I < p < cr condition 3 of Theorem 2 is fulfilled if (4.2), (4.3) hold. 

Proof. t .  Let  p be any  given number,  t ~ p ~ co, and let ~i (h) ~ 0 be given 
weights. 

Suppose condi t ion3 is fulfilled. Applying the inequali ty ][yl[p,h~6" ][x]~,h 
(cf. condition 3) with x i = ,  j �9 e, where e is a vector  with norm le[ = t and 3 i > 0 ,  
we easily obtain 

(4.4.a) h i 8i(h ) �9 h ~ ~i < d -  h [(~i(h) vii ~ (for all ~ i>O)  
i = 0  

if t ~ p <  co, and  
i--q 

(4.4.b) max  8i(h) �9 h ~, zi --<-- 8 .  max  (~ (h) ~i (for all v~ > O) 
�9 _~ZN j=o O___~N 

if p = co. Conversely, by  applying (4.4) with ~ i =  l xil , i t  follows tha t  (4.4) implies 
condition 3- 

We denote by  n = n (h) the largest integer =< N such tha t  8i (h) 4= 0 (0 ~ i ~ n) 
and  we pu t  M = min  (N, n + q). 

I f  M < N ,  we have  tSn+l(h)=0 and, applying (4.4) with z i = 0  ( i 4 = n + t ) ,  
�9 i =  t ( i = n +  1), there follows 

(4.5) 8i(h)-----O (for k ~ i ,  M + t  ~i<--N) 

and consequently 

M I i--q ]PlllP p]t/p 

20 Numer. Math., Bd. 26 
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if t < p < oo, and 

i--q 
(4.6.b) max ~i(h) �9 h ~ t j  < ~.  max 8~(h) t i  (for all t i  > 0) 

k<i<M i~ 0 O~i<M 

if p = ~o. Conversely, (4.6) in combination with (4.5) yields (4.4). Hence condition 3 
is equivalent to the requirements (4.5), (4.6). 

2. Let ~o, ~ . . . . .  ~u be arbitrary real numbers. Applying (4.6) with 

Ti=[~i[/rgi(h) (O<i~_n), Ti=0 ( i>n )  

there follows 

(4.7.a) 
p}llp ~tlp 

if t < p < ~ ,  and 

(4.7.b) max [hdi(h)/di(h)]-~j _~d. max [~ 
kNi<M i~O O<iNM 

if p = oo. Defining the operator D from IR u+l  into itself by D~ = 7  where 

i--q 
~7~=0 ( O ~ i ~ k - - t ) ,  n , =  ~'. [hO~(h)/Oi(h)].~ j ( k ~ i ~ M )  

i=O 

the relations (4.7) can be written as 

(4.8) 119~lff ~ _~ ~ .  II~lff' 

where I1" I] I*) stands for the usual lp-norm in IR u+t  (cf. [7]). Since (4.8) holds for all 
8r  u+ t  there follows 

(4.9) lID [I (~) < O 

where llDlff~ denotes the norm of D induced by the norm in IR u+l. Conversely, 
(4.9) implies (4.6). Hence we may conclude that condition 3 is equivalent to 
(4.5), (4.9). 

3. Using standard expressions for IlOlff ~ if ~ =  a or  ~ = o o  we have  

M 

(4A 0) max Y. h ~, (h)/6j (h) = liD I1 Ix), 
O<i~M--q i =  max (k, i +  q) 

i--q 
(4A 4) max Y, h ~,(h)/,~;(h)-- lid F ~ 

k ~ M  i=O 

Applying the conventions for a division by zero stated above it thus follows that 
(4.2) is equivalent to (4.5), (4.9) (with p =  t) and that (4.3) is equivalent to (4.5), 
(4.9) (with p = ~ ) .  
Since condition 3 is equivalent to (4.5), (4.9), the statements 1, 2 of Theorem 3 
have thus been proved. 

Let 1 < p  < oo and assume (4.2), (4.3) hold. I t  follows that (4.5) and (4.9) (with 
p-----t and with p = ~ )  hold. By virtue of the Riesz convexity theorem (cf. [t0]) 
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we have 

liD II ~p~ ~ {lID IIt'Y t~" {lID lira') ' - ' tp 
and consequently 

lid I1 cp~ -~ ~. 

Hence (4-5), (4.9) (with the given p, t < p  < oo) hold. Thus condition 3 is fulfilled 
and the theorem has been proved. 

4.2. Systems o/Ordinary Differential Equations 
4.2.t. General Multistep Methods 

Let there be given an initial value problem for a system of s ordinary differen- 
tial equations which, by using vector notation, can be written in the form 

d 
(4.12) dt U(t)=l(t,  U(t)) (O<t<T) ,  U(0)=c.  

In (4.12) c denotes a given vector in the s-dimensional real vectorspace ~ '  and ] 
is a given mapping from [0, T] • St' into JR'. Assume the Jacobian matrix of the 

0 
function ](t, x), denoted by J(t, x )=-~ - ] ( t ,  x), exists and is continuous on 

[0, T] • St'. Let [J(t, x)l denote the norm of the matrix J(t, x) subordinate to 
some given vector norm Ix] in ]P," and assume 

(4.13) ]J(t, x)] < L  (O<=t<=T, xElRs), 

where L denotes a given positive constant. 

We consider the approximation of a solution U (t) to (4.12) by the general 
multistep method 

h-a(% Un'3UOCk_l Un_l ~ - ' ' '  -Jf-O~ 0 Un_k) 
(4A4.a) 

--/.(u._k . . . . .  u._l, u.; h) ( n = k ,  k + t  . . . . .  N), 

(4.14.b) u . : c ~  ( n = 0 ,  t . . . . .  k - - t ) .  

The c, are starting vectors in Sts found e.g. by a Taylor expansion of U(0 at 
t : 0 .  In (4A4.a) the ai denote real constants with %~=0 and the vectorvalued 
function/~ (x0, Xl . . . . .  x,; h)--which depends on the given funct ion/- - is  defined 
for xiE IR s, hE H = (0,/to] < (0, T/k], n = k, k + 1 . . . .  , N and is assumed to satisfy 
a Lipschitz condition 

h 

(gAs) 1/.(~o, ~1 . . . . .  ~ ;  h)--/.(Xo, xl . . . . .  ~k; h ) l -  Y, ;t,l~-,-x~-,I 
i = 0  

where ;to, ;tl . . . . .  ,~, are constants independent of h, n, s and x i. 

I t  is easily verified that  many well known methods (general linear multistep 
methods, Runge-Kutta methods as well as generalizations of these methods, 
cf. [14]) are step-by-step methods of the form (4.t4) satisfying the Lipschitz 
condition (4.t 5). 

Clearly (4.t4) is an example of the general finite-difference scheme (2.t) with 
~h= St', A,,i(x) ----o~k-ix, 

F. (~o, xl . . . . .  ~.;h)----/. (~._k . . . . .  x._l, x.; h). 
20* 
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The general conditions I, II of Chapter 2 are satisfied here with q=O, r=k and 
in order also to ensure that condition III is fulfilled we assume that all (complex) 
roots ~ of the equation 

~k~k+ "'" + ~ + ~ o = 0  

have a modulus ]r ~ t and that the roots with Ir = t are simple (cf. [14]). Finally 
we assume that  the conditions IV, V of Chapter 2 are satisfied as well. By Theorem 
I this last assumption doesn't impose any new requirements on the multistep 
method (4.14) whenever 2o=0  or, in case ~o4:0, the maximal stepsize h o is 
sufficiently small. 

4.2.2. The Existence of Two-Sided Error Bounds 

Since the conditions I-V are satisfied the multistep method (4.14) belongs to 
the class JYf introduced in Section 2.4 with ~h = ]R~, H = (0, ho], q = O. 

With the above definitions of A,, i, F, the perturbed finite-difference scheme 
(2.2) reduces to the following perturbed version of (4.t4): 

(4A6.a) 
=/,`(~.-k . . . . .  ~.-1, ~.; h ) + w .  ( n : k ,  k +  1 . . . . .  N), 

(4A6.b) ~,`~c,`+w, (n=0,  t . . . . .  k - - t ) .  

An application of Theorem 2 to the step-by-step method (4.t4) yields in 
combination with Theorem 3 the following 

Theorem 4. Let t ~ p ~ o o  and let tlxllp,h be defined by (4.1). Assume the 
weights 8~(h) satisfy (4.2) or (4.3) (with q=0)  if p = t  or p__-oo, respectively and 
assume both (4.2) and (4.3) hold (with q~0 )  if t < p  < oo. Then the errors ~ , - - u ,  
caused by perturbations w,̀  occurring in (4.t6) satisfy 

(4.t7) to. I1 - <n-IIv I1 ,, 
where v = (v 0, v, . . . . .  VN) is defined by the relations 

a, v,`+~,_~ V~_l+... +~o v ._ ,=h w. (k < n  <N) ,  
(4.18) 

v.=w.  ( o < n < k - t )  

and ~'o, 71 are positive constants independent of h and w 0, w x . . . . .  w~. 

Example 1. With 1 < p =< e~, 8~ (h) ~ t the assumptions of Theorem 4 are 
fulfilled and (4.1 7) provides a straightforward generalization to general/p-norms 
with 1 ~ p < oo of a result for p = oo contained in [t t ]. 

Example2. Let 0tk=l, ak_x=-- t ,  ~ : 0  ( / < k - - t ) ,  which is the case e.g. if 
(4A4) stands for a Runge-Kutta method or for a predictor-corrector scheme with 
an Adams-Moulton corrector formula. Now (4.1 7) takes on a very attractive form 
since v,̀  (cf. (4.]8)) is simply given by the expressions 

(4A9) v,=w,, (O~n~k- - t ) ,  v,`=wi_t+h ~ w i ( k~n<N) .  
i=k 
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If the coefficients ~i are not of the simple form indicated, there are still cases 
where (4.t8) may be replaced by (4A9) (cf. [ t l]  where this is done for the case 
p=~ ,  ~,(h) ~1). 

Example 3. Let p = ~ ,  ~)i(h)=M/(~+1) where e is a real parameter. It  may be 
verified that (4.3) holds if an only if e ~ t. Applying theorem 4 with any e ~ t 
and observing that laN - uul =< max [~  (h)/Ou (h)]- la~-- u-I there follows 

n 

(4.20) I ~ - . ~  I ~y~.  max h ''['/('+t)-'/(N+~)] �9 Iv~l. 
O < n < : N  

For e = t  the estimate (4.20) is essentially more refined than for e=0 ,  since the 
factors 

h[~/(n+l)- I/(N+l)] 

tend to zero if h--~0 while n remains sufficiently small. As the choice e = 0 corre- 
sponds to the standard loo-norm, this example clearly shows that weights (i# (h) ~ I 
in (4.1) can lead to an improved estimate of [@N--UNI. 

4.2.3. The Constants Yo, Yl 

In this section we indicate how expressions can be obtained for the constants 
Yo, 71 appearing in (4.17). We confine our considerations to the norm II z [[4 = II~ llp,~ 
defined by 

/'h N ./~ 
Hxk,= X__olx: / 
Iixltp 4= max. l~ , l  (if p=oo), 

which, according to Example 1 of Section 4.2.2, satisfies the assumptions of 
Theorem 4. 

From Lemma 3 it is clear that expressions easily follow from (3-t3) by comput- 
ing a number cl with the properties required in (3.11) (cf. also Section 3.5, note b). 
However, it turns out that in general better values for Y0, Yl are obtained by 
using Lemma 2. 

We first consider the computation of 70. We shall apply Lemma 2 (part a)) 
with ~P~.h Ix] defined by (3.3.a) so as to ensure that condition III '  is fulfilled. In 
order to find a number/~ with the properties required in (3.4), we define for 
0 ~ i ~ k, 0 < h =< h o the operator Si, h from F, n+l into itself by Si. h [2] =r] where 

= (~:0, e l  . . . . .  ~ N) ,  ~] = (~0 ,  ~]1 . . . .  ~ N )  and 

~.=o (0<n__<k--l), n .=~ .h  ~ 2; (k<n<N). 
i=k-i 

It  is easily verified that a number/z is consistent with the requirements of (3.4) 
whenever 

> sup U s, . ,  II <p~ 
i, h 

Here IIsl?, denotes the norm of S induced by the usual/p-norm in Nn+,  (cf. [7]). 
Since [[Si,h[[l~176 T, [IS,,h[[It)~ T, we obtain by using the Riesz convexity 
theorem (cf. [10]), 

(4.2i) # = ~  T. 
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From Lemma 2 we thus have 

(4.22) Yo= (t + ~ 2  T) -1 (for I ~ p  ~ oo), 

where 
2 = 2 0 + ~ + . . .  + 2 ,  

and ~r is the constant appearing in condition III. 

We next turn to the computation of 71. Let us first assume that ~2oh0 < I. 
From (2.7) it then follows that condition V' holds with 

(4.23) ~0, , , [x]=fl .  h ~ ( t + 8 2 .  h)~-ilx;I (k <=,, ~_N). 
j~k 

It may  be shown, by an argument similar to the one leading to (4.2t), that  the 
requirements of (3.4) are fulfilled with ~Pn,, Ix] from (4.23) and 

1 
(4.24) # =  ~-- [exp (fl2 T)--  l].  

By Lemma 2 (part b)) we thus have 

(4.25) yl=exp(fl2T) (for I =<p ~c~), 

where f l = x .  (t --~ 20 h0) -1 and ~r 2 are as in (4.22). 

In order to illustrate (4.22), (4.25), we assume (4.t4) stands for Euler's method, 
i.e. k = l ,  :r r162 [,,(xo, xl;h)=/((n--l)h,  Xo). We then have 20=0,  
2----21=L, f l= : r  and (4.22), (4.25) reduce to 

(4.26) 7o=(t4-LT)-1, 71=exp (LT) (for I ~p____oo). 

For p = t and p = ~ the expressions (4.26) have also been derived in [6]. Further 
it has been shown in [6] that, if p = l  or p = ~ ,  there exist no constants 
70=7o(L, T), 71=71(L, T) which are larger or smaller, respectively than those 
given in (4.26) and for which, at the same time, the corresponding two-sided error 
bound (4.17) remains valid for all initial value problems (4.t2) satisfying (4.13)- 

On the other hand, if one is willing to make more assumptions about the 
initial-value problem (4.12) or the multistep method (4.t4) than were made in 
deriving (4.25) one can easily obtain expressions for 71 that are smaller than (4.25). 
In fact, for many actual initial value problems of type (4.12) and corresponding 
multistep methods (4.t4) condition V' is known to be fulfilled with a seminorm 
~P,,h Ix] that is essentially smaller than the one defined in (4.23) (cf. [2 -- 5, 8, 9])- 
For such seminorms it may be possible to satisfy the requirements of (3.4) with a 
constant # which is smaller than (4.24). In these cases an application of Lemma 2 
(part b)) obviously yields a smaller constant 71 than (4.25). 

As an illustration of such an improvement on (4.25) we first consider the 
application of Euler's method to the initial value problem (4.12) where the Jacob- 
Jan matrix satisfies, in addition to (4.t3), 

(4.27) [z[J(t, x)] ~ M  (0~t=< T, xE ~ ' ) .  

Here M is any constant (which may be negative) and ~ [A ] ~- lim h -1- {114- h A I -- I} 
h~o 

stands for the logarithmic norm of the matrix A (cf. [3], [5]). Condition V' is 
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fulfilled with 

(4.28) ~v. ,h[x]=h ~, [ a + h .  (M+e)] ' - '~Jx; [  (1 < n _ _ N )  
i = 1  

where e = e (h) is a quant i ty  satisfying e (h) ~0 (for h ~ O) (see [9], [3, P. t t ]). I t  
follows tha t  the requirements in (3.4) are fulfilled with 

I {exp (M T) - -  t} 

where O = O (ho) depends on h o in such a way tha t  

lim O (ho) = t. 
h, ~0 

An applicat ion of L e m m a  2 (part  b)) yields 

L . {exp ( M T ) - - t }  (for t < :pNoo) .  (4.29) y~=  t + O  . ~ -  

�9 1 
In  case M = O ,  we have to replace the  express ion~r - .  {exp ( M T ) - - I  } b y  T. 

Clearly, for M < L and h o sufficiently small, the present value for Yx is smaller 
than  the one in (4.26). 

We s ta te  a similar result for the backward Euler  method (i.e. (4.14) with k =  t ,  
o h =  t ,  % = - -  t ,  [n ( xo , xx ; h ) = / (n h, xa) ). Using the error bound of type  V' derived 
in [5] we obtain, for M < 0 ,  the expression 

L . {exp ( M T ) -  t} (for t N p < oo). (4.30) 71 = t + ~ -  _ _ 

We note tha t  in the derivation of (4.30) we have not  assumed tha t  0t 40 ha = L h o < t ,  
as was necessary in obtaining (4.25). 

We end this section by indicating how L e m m a  2 can be applied to the error 
bounds derived in [3, 4]. In these error bounds a vA,h[x ] occurs t h a t  is generally 
smaller  than  (4.23), bu t  these bounds do not  fit in the f ramework of our  condition 
V'.  The fact  is tha t  they  do not  apply  to the difference ~ . - - u  n bu t  to ~ - - * i  n 
instead. Here  *i n denotes the value of (a smooth function closely related to) U (t) 
at  the  point  t = t  n. This formal difficulty in the application of L e m m a  2 can be 
overcome e.g. by  defining -[n(Xo, X 1 . . . . .  Xk; h ) = / n ( X  o, x 1 . . . . .  xk; h)+N~ where 
wn equals the per turbat ion occurring if ~i n is subst i tuted into (4. t4.@ A combina-  
t ion of the results in [3], [4] wi th  L e m m a  2 (where now u, , , /n are to be replaced 
by  ,i,,  L)  then yields two-sided error bounds for lid-all in terms of w . - - N ,  with a 
cons tant  71 which is smaller t h a n  (4.25). 

4.3. A Parabolic Dif ferent ial  Equation 

In  this section we briefly indicate how the concepts of the preceding chapters  
can be applied in the  numerical  solution of part ial  differential equations. 

We  consider the numerical  solution of the s imple semilinear parabolic initial- 
value problem 

o U ( s , t ) - g ( s , O .  a, a--i- ~ g (s, t )=I(s ,  t, U (s, t)), 

(4.31) U(s ,  O)=c(s) ,  
- - o o < s < o o ,  O < _ t ~ T  
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by  the finite-difference scheme 

h -x [u. (s) - -  u._ x (s)] - -  (A s)-2 g (s, t~_l) �9 [u._ 1 (s- -  A s) - -  2 Un_ 1 (S) 

(4.32) "}-u,~_l(s-}-As)] = ~  " 1($, tn_ 1, Un-1 (S)), 

.o(S) =co(s). 

h and A s denote  positive increments  of the variables t and s, respect ively such 
tha t  O < h ~ _ T ,  hi(As)*= o, e denoting some posit ive constant.  In  (4.32) the 
integer n takes  the values t ,  2 . . . . .  N,  the number  s varies through the grid 

c , = { s l s = m a s ; m = o ,  •  + 2  . . . .  } 

and c o denotes the restriction of the  given function c to G h. With  ft. we denote 
coefficients, to be specified below, with 

B - - s u p  I .1 < oo. 

Fur the r  u. (s) denotes an approximat ion  of U (s, t) at  the  point  

(s, 0 = (s, t . )= (mAs,  nh). 

With  ~h we denote the vectorspace consisting of all real functions defined and 
bounded on G h and for aE ~h we define the norm 

(4.33) sEGh}. 

Assuming t h a t  the given functions c, g, t (cf. (4.3t)) are bounded we m a y  write 
the scheme (4.32) in the general form (2A) with k = t ,  A . , o =  the ident i ty  I and 
with operators  A.,1, F.  defined by  

(An, 1 [a]) (s) = - -  ~g (s, tn_l) �9 a ( s - -  A s) - -  (1 - -  2 0g (s, t~_l) ) �9 a (s) 

- q g ( s ,  t._l) . a ( s + A  s), 

F. (Xo, x~ . . . . .  ~,,; h) (s) =3, ,"  / (s, t,,_,, x._, (s)) 

for sE G h and a, x o, xx . . . . .  x.~ ~h. Fur ther  we assume 

and 

I1(~, t, ~ ) - l ( s ,  t, ~)1 ____L. I~-~1 
for some constants  0~, al ,  L independent  of s, t, ~, ~. I t  is easily verified t ha t  the 
general conditions I,  I I ,  IV  are now satisfied with q = r = t ,  21=BL,  2 o = 0 .  
Final ly  we require the rat io 0 to sat isfy 

q _~ t/(2 ~1), 

so as to  ensure t ha t  condition I I I  is fulfilled (with ~ = t ) .  In  view of Theorem t ,  
condition V is fulfilled as well. 
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W i t h  the above definitions (4.32) thus provides an example of the general 
scheme (2.t) satisfying the conditions I -V of Chapter 2. In our example the 
per turbed scheme (2.2) takes the form 

h-1 jan (s) -~n-1  (s)] - (A s)-2 g (s, tn-d" Jan-1 ( s -  A s) - 2a~_~ (s) 

(4.34) + a n - x ( s + A s ) ]  = f i n " / ( s ,  tn_ 1, ~,_1 (s))+w,(s) ,  

ao (s) = co (s) + wo (s). 

Applying the Theorems 2, 3 (with p----oo, 6~ (h) ~ t) we obtain the estimate 

(4.35) ~,0. max  Ivnl < max lan--unl ~ e ~ .  max  Iv.I 
O ~ n < N  O<n~_N O~n '<N 

for the errors ~n(S)--Un(S) caused by the perturbat ions wn in (4.34). Proceeding 
as in Section 4.2 (see (4.22), (4.25)) we have 

y0=  (i + B L T )  -~, y~ = exp ( B L T ) .  

Using the definition of v n (in s ta tement  2 of Theorem 2) it follows easily tha t  

(4.36) v~ = h  . (wn + A ,w~_ l  + AnA~_l  wn_2 + . . . + A~An_I . . . A 2 wl) + AnAn_I . . . A l  Wo 

where A n stands for A n = - - A , ,  1. 

We conclude this section with two applications of (4.35). I t  will be assumed 
tha t  all functions appearing in (4.51) have bounded partial derivatives of suffi- 
ciently high order. 

Appl ica t ion  1. Let  fin ------ 1. I t  is well known that  

(4.)7) sup {I U (s, t ) - -un(s ) l  : 0 ~_t=tn  <= T,  sEGh} ~_~, . h 

for some constant ~ independent of hE (0, T]. We assume that  the expression 

1 a* 1 ~* 
2 et '  U(s, t) - -  g(s, t) t) - - .  ~ �9 ~ - ~  u (s ,  

(which after a multiplication by  h stands for a first order approximation of the 
truncation error of method (4.32)) does not vanish identically for - - o o <  s < 0% 
0__<t_< T. Then, by using the inequality max  lan--unl >Yo" max Ivnl (cf. (4.33), 

n n 

(4.35), (4.36)) with a n defined by  F* n (s) = U (s, tn), it can be proved tha t  also 

(4.38) sup {t U(s,  t ) - -un(s ) l  : 0 < t = t n  < T,  sEGh} >-~/ . h 

(for h sufficiently small). In (4.58) ~" denotes some positive constant  independent 
of h. The inequality (4.38) proves tha t  in general the error estimate (4.37) cannot 
essentially be improved. 

Appl ica t ion  2. Let  f in=0 (if n is odd), f t , = 2  (if n is even). An application of 
the upper  bound for max  lan--unl appearing in (4.35), with un again defined by  

un (s) = U (s, tn), shows tha t  still with this choice of fin the estimate 

(4.39) sup {I V (s, t) - -  u~ (s) l : 0 _---< t = t n < T, se Gh} = d7 (h) 

holds. We note  tha t  the number  of evaluations of the function / in the finite- 
difference scheme (4.32) now has been reduced by  a factor t/2. 
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More generally, using (4.35), it  can be proved tha t  (4.39) holds whenever the 
coefficients ft, appearing in (4.32) satisfy 

s u p l ~ ( t - - ~ ' ) l  < ~ ' ~  ,~1 
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