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Sur,,mal, y. Collocation at Gaussian points for a scalar m-th order ordinary differ- 
ential equation has been studied by C. de Boor and B. Swartz. J. Douglas, Jr. and 
T. Dupont, using collocation at Gaussian points, and a combination of "energy 
estimates" and approximation theory have given a comprehensive theory for parabolic 
problems in a single space variable. While the results of this report parallel those of 
Douglas and Dupout, the approach is basically different. The Laplace transform is 
used to "lift" the results of de Boor and Swartz to linear parabolic problems. This 
indicates a general procedure that may be used to "lift" schemes for elliptic problems 
to schemes for parabolic problems. Additionally there is a section on longtime inte- 
gration and A-stability. 

1. Introduction 

Let T > 0 be given and let 

~T-----{(x.t); 0<x<t .  0<t__T}. (t.t) 
and let ~ denote its closure. Consider the mixed initial value-boundary value 
problem for a function u (x, t) EC (~a') c~ C 2 (~a,) which satisfies 

c(x) at - ~-,~ +b(x)-Ux + q ( x ) u + / ( x . O .  (t.2a) 
(X, l) E]R T 

u(x,O)=Uo(X), 0 < x ~ l ,  (1.2b) 

u(O,t)=u(t , t )=O, O < t ~ T .  (1.2c) 

We assume tha t  equation (t.2 a) is parabolic and tha t  

0 <  m ~ c ( x ) < M ,  0 < x < t  

Ib(x)l <B 0.2d) 
lq(,)] <Q 

for appropriate positive constants m, M, B and Q. 

Several authors, Douglas and Dupont  [5-7], and Archer [1] in particular, have 
been concerned with numerical methods for this problem based on collocation in 
the space of piecewise polynomials of order k + 2 in the  x variable. 
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Douglas and Dupont consider collocation at Gaussian points and using a 
combination of "Energy Estimates" and approximation theory arrive at a rather 
comprehensive study for non-linear problems. 

At about the same time, de Boor and Swartz [2] developed an extensive theory 
for collocation at Gaussian points in general boundary value problems for a 
scalar, m-th order, ordinary differential equation. These results have been extended 
by  Wittenbrink [i3] to include nonlinear boundary conditions and by Russell [t0] 
and Cerutti [4] for systems of equations. 

In this report we consider collocation at the Gaussian points for the problem 
(t.2a)-(t .2d).  While our results parallel the results of Dupont and Douglas, our 
approach is basically different. Our purpose is to "lift" the results of de Boor and 
Swartz [2] to this parabolic problem via the Laplace transform. This discussion 
indicates a general procedure for "lifting" results for elliptic problems to results 
for parabolic problems. While the Laplace transform has been used by Strang and 
Fix [ t t  ] in connection with Galerkin's method for parabolic problems, the exten- 
sion to collocation methods is not completely straightforward. For one thing, the 
location of the spectrum of the discrete operators is not immediately apparent as 
i t  is in many Ritz-Galerkin methods. Moreover the results of de Boor and Swartz 
[2] and Dupont and Douglas are so strikingly similar we felt it particularly in- 
triguing to " t ie"  them together in complete detail. 

Finally, it should be mentioned that many of our results are of intrinsic 
interest, e.g. the results on A-stability of Section 6. 

In Section 2 we develop some fundamental concepts. Section 3 is concerned 
with some basic estimates including the aforementioned results on the spectrum 
of the discrete operators. In Section 4 we obtain global error estimates and in 
Section 5 we obtain the "superconvergence" results at the knots. Section 6 is 
concerned with longtime integration, the approach to the "steady state" and 
A-stability. 

2. Fundamental Concepts 
In this section we describe the space Sj of piecewise polynomials and the 

numerical method used to find the approximate solution V(x ,  t; A ) E S  a. Our 
notation will be consistent with the notation of [2] and [6] wherever possible. 

As in the discussion in [2], let A = {xi}~ be a strict partition of the interval 
[o, t], 

O = X o < X l <  ... < X N = !  
and set 

I i  ==- [xi -  1, xi], 

C,, = C (11) x C (12) x . . .  x C (IN). 

An element /EC a consists of N pieces/1, / ,  . . . . .  /N, with/ iEC(I j ) ,  j = t ,  2 . . . . .  N 
and has two values at  the interior breakpoints {xi} N-1. 

C a is a Banach space with respect to the norm 

[]/[[| max max[/~.(t)[= [I/i[[ o0.max 
�9 t < i < N  tes 1 < i < N  

Let ~1, ~ . . . . .  Sk be the Gaussian points on the interval [0, t ] with associated 
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quadrature weights wt, w~ . . . . .  w~. That  is 

p~= H (x-~i) 
/ '=1 

satisfies 

and 

(2.~) 

1 

f pk(x) q(x) d x=-O Vq(x)fi~k[O, l] (2.2) 
@ 

1 k 

: q(x) d x= Y. w/q(~/) Vq(x)e~',,[o, ~] (2.3) 
0 7"=1 

where ~k  IO, t ] denotes the set of polynomials of order k (degree less than k) on 
[o, t]. 

With A~=x~--xi_l, i = t ,  2 . . . . .  N let 

wi/=Aiwi,  i=1 ,2  . . . . .  N, ?'----t,2 . . . . .  k, (2.4) 
thus 

x~ k 

f H ( x - ~ i i )  q(x) - -o  Vq(x)e~[x ,_ l ,  xi], i=1, 2 . . . . .  N. (2.5) 
zi_~ i = 1  

Let 
S~ ~{]EC~ [0, I]; /[zfiF~+~, i=l, 2 ..... N; /(0)=/(I) =0} (2.6) 

Lemma 2.1. Given real numbers Yij i----- I, 2 ..... N,/= I, 2 ..... k there exists 
a unique/ES~ such that/(~i/) = Yi/- 

Proo/. This result follows from well known results on interpolation by piecewise 
polynomials. See e.g. [3]. 0 

We seek a function U(x, t, A) which is an element of Sa for each t_~0 and 
satisfies the collocation equations 

~U OsU OU 
c(~ii) ~ (~i/, t, A)= ~ (~i/, t, A)+b(~ii ) ~ (~i/, t; A) 

+ q (~;) u (~,. t, A) + t (~., 0 (2.Z) 
O<t~_T, i = t , . . . , N ,  / '=1 . . . . .  k, 

U(x, 0; A)= Uo(x; A)~S~, 
where the initial data  Uo(x; A) are suitably chosen. There are several ways to 
choose U o (x; A) to obtain optimum error estimates and we discuss this question in 
Sections 4 and 5. 

Collocation is a spatial operator and hence commutes with the Laplace trans- 
form (with respect to t) of equation (t.2). However, for the sake of completeness 
we give a detailed discussion of this fact. 

Let ~ ~ {~n}.ffil be a real basis for S~. If we let 

u(~, t; A)= Z ~(t)r (2.8) 

16" 
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then the collocation equations (2.7) become the following ordinary differential 
equations for the functions ~, (t), 

2vk d 

Nk 
I t  b s 

= Z ~,(0 Er (~.) + (~.) r +q(~.) r (~.)] 
.=t  (2.9) 
+/(~ ; , t ) ;  i = 1 , 2  . . . . .  N; j = 1 , 2  . . . . .  k; 
Nk 

Z ~ (o ) r  u0(~; ~). 

The Laplace transform of (2.9) with respect to t is 

Nk 

s c(~H) Z ~.(s) r  Uo(r 

Nk 

= X ~,(s)[r  r ~b,(~,i)] (2A0) 

+ ] ( ~ . , s ) ;  r  . . . . . .  N; i = ~ , 2  . . . . .  k; 
where 

and 

&,, (s) = f e-*'  at,, (t) dt 
0 

oo 

] (~, # s) = f e - "  / (,,;, t) at. 
0 

The Laplace transform of (t .2) is 

s c(x) a(x, s)-c(x)  uo(x)=r s)+b(x) ~,(x, s) 
(2.tt) 

+ q (x) a (x, s) + ]  (x, s). 

The collocation equations for this ordinary differential equation (depending on the 
parameter s) are 

s c(r O(~ii, s ) -c(r  u0(r 

= l~'x* (~' i' s)+ b (~ i) ~ (~i i" s) (2.12) 

+ q (~ )  0 (~# s) + ]  (~ # s). 
By (2.8) 

N K  

0(=,  s ; / t ) =  X: ~(s) r 
n = " l  

Thus (2.t2) is the same as (2.9), hence collocation commutes with the Laplace 
transform. 

3. Basic Est imates  

We begin this section with two fundamental lemmas which are the basis of the 
"energy estimates" of Douglas and Dupont [5-7]. These estimates give relations 
between the discrete inner product described below and the usual L 2 inner product. 
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Let  (-, .) be the usual L" inner product  ; 

1 

(u, v) = f u (x) ~ (x) dx, 
0 

and let (- ,  -) be the quadrat ic  form 

N k 

<l, g ) =  X X w .  1(~.)~(~.), 
i~1 j = l  

Lemma 3.1. For a l l / ,  g ES a 
N 

IlulP = (,,, ,,). 

II/1~= < / , / > .  

(3.t) 

(3.2) 

f /~,, (2k)Ik(k+l) ak+ibk+ x (t,g")i= dx. (2 k)! .x- -~i ,  d 
irl ,gl-t 

With the change of variable x =  x i_ l + t A i  w e  see tha t  

1 g 

xl-x 0 0 

], 
Let t ing  P k =  [ (k+O! ]2  (t--~i) d~ 

0 j = l  

and integrat ing once by  par ts  we obtain 

~, A I k + l  (l,g ) ,= - f t ' ~ , ' + /~ ' l~_ ,  - - [ ( k+~ ) ! ] 'Pkak+~+~ '  �9 
I t  

Hence 

<t, g") = - ( r ,  g') -  P, x 1~+~? +' (a~) 'k+~ (3.3) 

t k + t  where ,i is the constant  (k + ]) s t derivat ive of lj on I j  and Pk is a positive 
constant  depending only on k. 

Prool. First  consider ( . , . )  on an interval  I i i. e. 

k 

(1, g"),= ~ w~j I(~:,) ~" (//,). 
i=X 

Since on I i / ,  gEPk+~ we have 

k + l  k + l  

h=l  I,, = z~ a..e', g ,=g l , , =  X b, x'. 
r ~ O  r~O 

The error te rm in the Gaussian quadra ture  formula 

k 

f l~= X wiil~(~,j)+Ek(/) 
It  j = l  

is given by  (see, e.g., Isaacson and Keller [9], pp. 550) 

(2k), f (x-e.) dx. 
It j = l  
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Since 1, g e C  1 [0, t ] ,  and satisfy zero boundary  conditions, the terms /~ '  I.~,_, can- 
cel upon summation and we have 

N N 

< / , g , , ) =  ~,, < / , g , , ) i = _ ( / , , g , ) _ [ ( k + t ) ! ] 2 p k  ~,, _ 7: ..t2k+l U k +  1 o k +  1 zJi  
i--1 i - -1  

Since ak+ 1, bk+ x depend on the interval  Ii,  (3.3) follows. [] 

Corollary 3.1. For all / E Sa 
At 

<l, l ">  = <l", 1> = --(1', 1')-- Pk -~. I/, (k+t) I ~ A~ k+~ (3.4) 
i = l  

and 

where 

d 
=- <v**, v>=<v.~, v , )+<v, ,  v ,D  dt 

Nk 
v (x, t; A)= Z ~,(t) r {r 

i ~ l  

is a basis for S n and r (t)6 C 1 [0, T]. 

Proo/. (3.4) follows immediately from Lemma 3A with g = / .  Moreover 

and by  Lemma 3.1 

d ~ <v.x, v )=<v.x ,  v,>+ <v,-7-.-.-.-.-.-.-.-/~) 

(3.5) 

N 

= <v.. ,  v , > -  (v,.,  v . ) - P ~  Z (v,)! k+'~ V? +1) 
i = 1  

=<v~,  v,>+ <v,, v , , )  
and we have (3.5). [] 

Lemrrm 3.2. There exists a constant A depending only on k+2 such that for 

l~PA+~,4={l l l l , ,eF~., ,  i = t ,  2 . . . . .  N} 

[[1~ ~ A  111[[. (%6) 

Proo/. On P,+2,  n, a finite dimensional linear space, [[. ]l is a norm. Since ][-[h is a 
semi-norm on this space it follows tha t  such a constant  A exists, and by  homo- 
genei ty in A is independent  of the part i t ion A. [3 

Since Pk+ l , a  ~ $ 4  the relation (3.6) holds f o r / E S  d. Moreover derivatives of 
functions in P k+2, ~ are in this same space so for l E IPk+ ~, a 

[f  I~ < AU/'I[. (3.7) 

Actual ly the inequali ty (3.7) holds for some constant  smaller than  A (depending on 
k + t),  but  we do not  make use of this fact. 

We now consider the discrete eigenvalue problem associated with 

u" + ~ c(x) u=o ,  u(o)=u(t)=o, (3.8) 

where 0 < m < c (x) < M. Let  {4~i}x Nk be a real basis for Sn and let 

Nk 

" =  Z ~ t r { # , .  
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The collocation version of (3.8) is 

Nk Nk 

Y ~, 4,, (~e) + ~ c (~,1 Y. o:, 4,,(~e) = o, 
r =  1 r = l  

where 

Let  

l = t ,  2 . . . . .  N k (3.9) 

~(i--1) k+:/=--~i':/ i = ] ,  2, . . . ,  N;  / ' = t ,  2 . . . .  , k. (3Ao) 

hence 
(A r W B ) o , =  (4,o, 4,~'). (3.t2) 

Thus by  L e m m a  3.1 
N 

(A r W B),,=--(4,;, 4,')-- P~ Z 4,L~+~)~c,+~(A,)-+~. (3-~3) 
i=l  

Since the {4,:/}fk form a real basis 

' ' ' ,h k+z ig k+z and ,h k+z iKk+x (4,0, 4, ' ,)=(4,-4,0), ~-, =~- ,  , , 0  =~-o �9 

Thus (3A2) shows tha t  A r w  B is real and symmetric .  Therefore the  eigenvalues 
of the problem (3A 1) (and hence of (3.9)) are real, the associated eigenvectors are 
complete, and m a y  be chosen or thonormal  with respect to ( . ,  c . ) .  

Le t  lp be a discrete eigentunction associated with the discrete eigenvalue 2, 
tha t  is 

r"(8:/)+2c(Si)~o(8:/)=O j = t , 2  . . . . .  N k .  (3A4) 

Multiplying (3A4) by  w:/Vp(Si) and the conjugate of (3A4) by  w:/w(8:/), summing on 
?', and recalling tha t  2 is real, we see tha t  

2 = - ( ~ '  ~ ' ' ) -  (v, V ' )  
Nk I' (3A 5) 2 y. w:/c (~:/) I~ (~:/) 
: i=1  

Bi,=4,','(*i), AT.,----- 4,,(~i), 

Cs,----- diag (c (~:/)) , W:/, = diag (w:/) 

w h e r e  w(t_l)k+:/==-z~i ,: / ,  and 0t=(~x, as . . . . .  oqvk) r. 
With this notat ion we rewrite equat ion (3.9) in mat r ix  form as 

B a + 2  C A ~ = 0 .  (3.9') 

Thus 
A r W B o ~ + 2 A r W C A  ~ = 0 .  (3.1t) 

Applying L e m m a  2.1 we see tha t  the mat r ix  A is non-singular. Obviously W and 
C are positive definite and commute,  hence A r w  C A is positive definite. We 
observe tha t  

NA 

( A r W  ~ ~)o= Z A ~ ( W B  ~:):/ 

Nk Nh 

= Z 4,. (~:/) ~_ o:, w:/4,','(~j) 
i"=1 r=1 

Nk Nk 

= Y. o:, Y. 4,o(~i) w~ 4," (~i), 
r = l  i=1 
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Thus by  Corollary 3.t 

and 

Moreover by Lemma 3.2 

1 N 

f Iw' P+Pk Z I #  +'' I,(a~),.+~ 
NA 

2] ~(@ ~ilw(;;)  I * 

IIv/ll* 
~ ' ~  ~ IIv, O " 

~.~ IIv/U * 
- -  mAS IIv, ll* " 

We combine (3.9'), (3.t 5), and (3.t6) to verify that 

~ T  ( __ B {x) 0tP ' IP 
o~T CA~ > - ~ A ,  II~olP' 

where 
NA 

'p = Y, ~i r 

We summarize the above as 

(3A6) 

(3.17) 

Lemma 3.3. The eigenvalues of the discrete problem (3.9) are real and positive; 
the eigenfunctions {~i}~k are complete and may be chosen orthonormal with 
respect to the norm (., e-). If '~n is the n-th eigenvalue of the discrete problem then 

1 n) ~'~ . . . ,  2 , >  ~ n = t ,  2, Nk. 0 (3.t8) 

Remark. (3.t7) actually shows ~ >  t R R 2m where ~m is the Rayleigh-Ritz- 

Galerkin approximate to the n-th eigenvalue of problem (3.8) when c (x) ~ 1. 

Lemma 3.4. Let V--- V(x,  s; A) ESa be the solution of 

V" (~i) -- s c (~i) V (8i) = / (~J) i = t, 2 . . . . .  N k (3.t 9) 

where s E~ ----- {a + b i[[ b[ > t -- a}. Then 

II v I1, -~ ~ II/11,, (3.20) 
and 

K, K~ 
U Vll~o _~-TE-II111,, (3.2~) 

where K x depends only on the bounds on c (x), and K a depends on the partition A. 

Proof. s E ~  implies (by Lemma 3.3) that  --s is not an eigenvalue of (3.8), 
hence (3.t9) has a unique solution. Let {~0,}~ k be a basis of eigenvectors ortho- 
normal with respect to (., c . )  as in Lemma 3-3. Let 

N k  

v =  Z ~ ,v , .  (3.22) 

Using (3.22) we  rewrite (3.t9) as 

N k  Nk 

[~,W;'(~i)--sc(~r Y./,c(~i)W,(~i), i = t ,  2 . . . .  , N k ,  (3.23) 
r m l  r ~ l  

w h e r e / , - - :  ( / ,  ~v,). 
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Nk 

Remark. Observe that ~ [,W,(x) is the S n interpolant of/(x)/c(x).  Hence the 
r = l  

right hand side of (3.23) is [ (~i)" Thus 
Nk Nk 

Z [a, c(~i) (~t,--s) v/,(~i)] = Z/,c(~i)v2,(~i)  i = t ,  2, . . . ,  N ,  (3.24) 
r = l  r = l  

where 2, is the (negative) eigenvalue associated with ~,. 

Let a + b i = s E~. To obtain a bound on 

1o,,l=ll, l / l ~ , -a -U l  
we ~onsider two cases. When a < 0, we have I b l > ~ - -  a > l a I" Hence 2 b' > 
a * + b ' = I s  I' or ~llal _~ V~II~I.  Thus 

l ~ , l ~ I / , l l l U l - ~ 2 1 l ,  ll lsl for . < o .  

When a_>0, I Z , - - a - - b i l  > l-a-bil---Isi o_,,d 

1o',l----<21l, l / l~l for a ~ 0 .  
Thus 

Hvl[~= <v, v> 
I ~_~(V, eV) 

Nk Nk Nk 

N~ 

Nk 
_-__~- 4 ll,  l ' I ls 

4 
- ' ~ I s l '  (I,~I) 

4 I 
-~ t,l= m' II/1!~ 

2 
and (3.20) follows with K I -  m " 

Since S~ is a finite dimensional space all norms on S~ are equivalent. In partic- 
ular there existslj a constant K~ such that [lVI[oo ~ K ~  IIV[~ for all VESA. Hence 
(3.21) follows from (3.20). 

Lemma 3.5. If V E S~ is the solution of (3.19) with s E ~ ~ {a + bi I I b I ~-- I --  a} 
then 

Ks 
II v,  II < ~ T r  IIr II,. (3.2s) 

Prool. Multiplying (3.t9) by V(~i) w i and summing on ] shows 

(V,  V " ) = ( V , / ) + ( V ,  s c  V) .  

Multiplying the conjugate of (3A9) by V(~i) w i and summing on j shows 

(V", V)=(I, V)+(sc  V, V). 
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Adding these equations and applying Lemma 3.2 gives 

N 

(V', V')+ P k Z [ V/(k+x) lS(Ai)~k+x------Re ( V , / ) - - R e ( V ,  s cV). 

Hence 
[I v, IP - I1 v II, lit [I, + I s I M il V il~ 

and by Lemma (%4) 
K|  M s 

IIv'IP_ ~-It/11,' + -VV/I,;. 
0 

Lernrna 3.6. Let 

2 s = { a + b i [  [b[ 2 1 - - a }  c~ {s[ [ s [ t ~ 2 [ B A + Q A ]  Ks}. 

If sE~2 and V= V(x, s; A) ~S a is a solution of 

V" (~i) + b (~i) V' (~i) + q (~i) V (~i) (3.26) 
- -  s c (~j) V (~i) = - -1  (~i,  s) - -  c (~i) Uo (~i) i =  1 . . . . .  N k 

then 
K s  

llV'(., s; A)II_~ T; i i  II/(., s )+c( . )  uo(-)l~, (3.27) 
and 

K8 IIV(., s; A)IL < ~ V I ~  111(-, s )+c( . )  vo(.)t•. (3.28) 

Proo]. We rewrite (3.26) as 

v "  ( ~ j ) -  s c (~;) v (~;) - -  - b  (~;) V' (@ --  q (~j) V (~;) 
(3.29) 

- / ( ~ ; ,  s ) -  c (~j) u0 (~i) i =  t, 2, . . . ,  N k. 

Thus, applying Lemma 3.5, 

II v'll-~ T~i- {lib v'lb+llq Vll,+tl/+~ UolG} 

< I ~  {(B A+QA)IIV'II+III+~ Uolh] 

where s~{,,+bil I bl _~-~} .  
If we choose sE~,  then [K,(BA+OA)]/]sp<=�89 and (3.27) follows with 

K s = 2 Ks. Since 
1 

I V (x, s; a) l =U�89 f sgn(x-y ) V' (y, s; A) d y] 
0 

-<_�89 IlV'(., s;,~)ll 
(3.28) follows from (3.27). FI 

Corollary 3.1. The transformed discrete Equations (2A2) have a unique 
solution for.  s E~s. 

Proo]. The Equations (2.t 2) form a finite dimensional linear system, hence the 
corollary follows immediately from the a priori estimate (3-28). [J 
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Lemma 3.7. Let  

�9 ~ 3 = ~ ,  ~ (s IIs I _>_2 Ka Q} n {s[I slJ >A Ka}. 
I f s e~a  and V = V (x, s; A)e S n is the solution of (2.t 2) or (3.29) then 

Kt 
II v (., ~)iG --< ] ~  I[/(., s) + c (.) u0 (.)Jh. (3.3o) 

Proo]. Apply Lemma 3.4 to (3.29). 

Thus 

[I v[~ _ ~ (lib v'[~+ flq y[~+ [It+c uo[~} 

and by  (3.27), since [I V' I~ ~ A  ]] V' I], 

AK3 
II v IL, < ~K' {_~__ [If +cuA,+QtlVlL,+tl/+~ u0 IL,} 

Since s e ~  3 (3.30) follows with K 4 = 4  K r D 

Since we are concerned with problem (!.2) for finite time, 0 < t  < T < 0% we 
can modify /(x, t) smoothly so tha t  /(x, t)=--O for t > 2  T. This modification 
leaves the solution u(x, t) unchanged on [0, T] and shows that  the Laplace 
transform of l (x, t) 

oo 2 T  

](x, s)= f e-~t/(x, t) dr= f e-n/(x, t) dt 
0 O 

is, for each fixed x, an entire function of s. 

Lemma 3.8. Let  problem (1.2) have homogeneous initial data, i.e. u 0 (x) - - 0  in 
(l.2b). Let  U(x, t, A) be the solution of the associated collocation equations (2.7) 
with U o (x) ~ 0. If U t (x, t, A) is absolutely continuous on finite intervals of [0, ~ ]  
and I Utt( x, t; A)[ < K  eUa.e, on [0, ~ )  then 

a +  ie~  

U(x , t ;A)= 2:tti f e~tt)(x,s;A)ds (3.3t) 

where O is the solution of transformed collocation equations and a is sufficiently 
large. 

Proo/. Formally, (3.3t) follows from the inversion theorem for the Laplace 
transform. It  is sufficient to show tha t  the integral in (3-3t) converges. After 
integrating 

~ (x, s; A)= f e -n U (x, t; A) dt 
0 

twice by  parts we obtain 
oo 

, f  I Ut(x , t ;A)[ t -o+-~ e -nU, (x , t ;A)  dr. O(x, s; A)= -- 
0 

Thus 
K 

~O(x,s;A)ll~ ts t, 

for {s ] Re  (s) > b 0 > b} and (3-3 t) follows for a e~a  n {a 1 a ~ b o > b}. D 
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Obviously we can obtain analogs of Lemmas 3.4-3.7 for d(x,  s), the Laplace 
transform of the  solution u (x, t) of (t .2). The  proofs are essentially the same. Also 
for homogeneous initial data, we have Lemma 3.8 for u (x, t). 

3~ Lemma 3.9. Let ](x,  t) =---0 in problem (1.2). For  fixed 0, ~ -  < 0 =< - ~ - ,  and 
cr --21 (specified below) let 

_/'={s[ s = o ~ + r  e •176 if Re s < a ;  rE [0, co)} 

u {s ] Re s = a, --A ~ Im s ~ A, A ---- (a--  a) tan 0} 

(see Fig. l). If  U (x, t; A) is the  solution of the associated collocation equations (2.7) 

a + i A  

a - i A  

Gt 

Fig. t. 
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then 
~ +  ~oo 

f ' f (3.32) t e~tO(x ' s ;A)  ds= 2z~i U(x, t; A)= 2~ i 

where 0 is the solution of the transformed collocation equations and 7 >- g. 

Proo/. For each fixed x, 0Ix ,  s; A) is analytic for sE~s. If we choose ~ suffi- 
ciently large so that  F ( ~ s  the estimate (from (3.29) and (3.21)) 

Kt Ka 
II~ i~r IIUo(.,s)lb 

shows that the integral over F converges. It remains to show that the two integrals 
in (3.32) are equal. By Cauchy's theorem the integral over P1 P ,  Ps P ,  P~ is zero 
(see Fig. t). Thus it suffices to show that the integrals over the lines P ,  P3, and 
P4 P1 go to zero as P , / o o  and Pl"x -- oo. We consider P2 Ps, the integral over 
P4 Px is treated similarly. Let Im P,  = p. Hence 

o ~ -pt~  (0- {-) 
f e"O(x,s;A)ds=f + f e"O(,~,s;A)ds. 

Pt  P t  y 0 

However, with s----- x + i p 

and 

o I r  
f e'tO(x, s; A) ds < e a -g -R = . I~T  dx < 7 r  (e'*- ~) 

1, 0 

{ / ~-,tan/O- ~)e,,O(x,s;A)as < e"7~ax<= -g " ptK . 
o 

Thus as p / o o  the integral over the line P2 Ps goes to zero. 0 

Under the hypothesis of Lemma 3.9 we obtain a similar result for u (x, t). Thus 
when / (x, t) =--- 0 we have 

1 V(x, ,l= f +'(O (x, s; s)) ds. (3.33) 
r 

Deforming the contour in Lemma 3.9 depends on knowing an a priori bound 

of the form ] ~ - o n  the Laplace transform of U (x, t; 4) (or u (x, t)). The proof given 

when a bound of the form ~ (some p > 0) is known. In particular if applies 
# 

/(x,  t ) = F ( x ) ~ . t ( k  a positive integer), and we have a bound on F(x) (e.g. 

iIF (~)L - c), then 
Ii(. ,s)l s �9 

This remark gives the more general 

Lemma 3.10. Suppose /(x, t) is a polynomial in t with bounded coefficients 
that  are functions of x. Then the results of Lemma 3.9 hold. In particular, Equa- 
tion (3-33) is valid. B 
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4. G l o b a l  E s t i m a t e s  

In this section we obtain global error estimates for the continuous time collo- 
cation method for problem (1.2). In order to obtain optimal order error estimates 
for tE [0, T] (see Theorem 4.1) we let Uo(x; A), the initial data for the collocation 
equations, be the "elliptic interpolant" of u o (x). That is 

(V'o'+b Vo+q Uo) (~j) = (u'o'+b uo+q Uo) (~j) i = l ,  2 . . . . .  N k. 

In general, the differential operator L defined by 

L g2 u Ou u - -  - ~ -  + b (x) - ~  + q (x) u 

is not invertible. However, we may shift the problem (t .2) by letting 

v(x, O=eUu(x, t). 
Equation (I .2) becomes 

c v,= (L--k) v + e - u /  

v (x, o) = u0 (x) o -< x < 1 ( t .2s )  

v (o , t )=v ( t , t )=o  o<t<_T.  

For suitable 4, L - - 2  is invertible and the elliptic interpolant, V o (x; A), of v (x, 0) 
exists for ]A I sufficiently small. A short computation shows that the shifted 
collocation equations of problem (t .2) are the same as the collocation equations 
for the shifted analytic problem, i.e., let 

V(x, t ;A)=eUU(x, t ;A) ,  O < t ~ T ,  

where V(x, t; A) is the solution of the collocation equations associated with 
problem (t.2s). With Uo(x; A ) -  Vo(x; A) the collocation equations (2.7) have a 
solution. Thus, all results obtained for V (x, t; A), (V (x, t; A)--v(x, t)) apply 
mutatis mutandis to U (x, t; A), (U (x, t; A)--u(x, t)) with an appropriate factor 
e T~" 

Thus we assume the elliptic interpolant of u o exists (for if not we apply the 
above shifting procedure) and now prove 

Theorem 4.1. Let u(x, t) be the solution of (1.2). Assume that  the coefficients 
b (x), q (x), c (x) have bounded derivatives through order k + 2 and 

u, u~, uttEL ~ [0, T; Wk+4'~176 

Let Uo, the initial data for the collocation equations (2.7), be the elliptic inter- 
polant of u 0 (x) ; i.e. 

(Uo'+bUo+qUo)(~i)-~(uo'+buo+quo)(~i), ] = 1 , 2  . . . . .  Nk .  

Then the collocation equations (2.7) have a unique solution U (x, t; A) and 

II u -  ~, I1,-- to, ~-; ,-.. ~o. ~ < c I A 1 ~+'  . {ll" Ik-' co,~'; w~+,. -~ + 11", Ik-Eo, ~; w,+,, - j  

I1-,,1!~[o. T; ~ , + , , - ] }  (4A) 

where C is a constant that depends on the coefficients of the differential equation 
but is independent of the partition A. 
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Proo/. A solution to the collocation equations (2.7) or (2.9) exists locally in 
time. This fact, coupled with the uniform bound proved below, gives global 
existence and  uniqueness of a solution to the collocation equations. 

With  the differential operator  L defined above we rewrite (t .2) as 

c u t - -L  u = / ( x ,  t) 
(4.2) 

u(x, o)=.o(X). 
Let  r (x, t )=u(x ,  t)--uo(x), then (4.2) becomes 

c @t--L r  Uo+/(x, t) ------g(x, t) 
r (x, 0) - 0. (4.3) 

We denote by  q~ (x, t; A) the solution of the collocation equations 

c(di/) ~ (8 i i ,  t; A ) - - L  q~(di/, t; A)----L uo(dii)+/(8~i, t) q~(x, 0; A) = 0  (4.4) 

associated with (4.3). Tha t  is, if we choose U o, the initial da ta  of the collocation 
equations (2.7), so tha t  

L U o (8i) ----- L u o (8~) i---- i, 2 . . . . .  k N (4.5) 

(i. e. U o is the elliptic interpolant  of uo) then (2.7), and (4.2)-(4.4) show 

U - - u =  ~ b - - r  Uo--U o. (4.6) 

We use the Laplace t ransform with the problem (4.3) to est imate the te rm 
~b-- 4. Let  s ---- a o + b i and L o = L - -  a o c. The Laplace t ransform of (4.3) is 

o r  

Lod-i~c~=~(x,s). 
Let W (x, s; zl) denote the solution of the collocation equations 

LoW(8~)=Lo~(8,) i = L  2 . . . . . .  k N .  (4.7) 

At the collocation points kN {8i}~=1 we have 

L(#-W)-~  c($-W)=$(~,, ~)--L W+s ~ W=r b ~(W--$). 

If a o is sufficiently large then L e m m a  3.6 and the est imate 

115- wlL ~ll($-w)'tl 
imply  

Klbl  II~-WIL ~-i~-IIw-~IL- 
Thus 

II - llo zll -wll + l - ll z  )lIw- lt . 
Since W satisfies (4.7) the results of de Boor and Swartz [2] show tha t  

ii w -  ~^1t~ ___ c I15(-, ~)I[w~ | ~+' 
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and hence 

Recall 
11'~-~11~ ~ ( 1 +  ~ l b l / .  i,,+== _ - i~--2~11~,(. .  s)ll~,-+,,~lA �9 (4.9) 

However, 

II II 1 es t ~ 
I1r162 ~ (r 

a ,  - -  t;O0 

and by (4.t3) 

I1r < K~I  A I '+" 

�9 {11" ~= to. ~; ~,+,. =~+ b ' , k =  to. ~; ~,+~ =1+ ll",,ll~=co. ~; ~,+,. =a. 

For the elliptic interpolant, U o, the results of de Boor and Swartz [2] show 

It u o - - o l l  < c ,  II-d,,~+, - Ia I *§ 
Combining (4.6), (4A4), and (4.15) we obtain the result (4.t). 0 

(4.t4) 

(4.t 5) 

ap 
~ ( x , t )  dt p = t  . . . . .  k + 4 .  (4.10) 

0 

We integrate (4.t0) by parts twice to obtain 

Ox~e' t=o o 
(4.11) 

1 0 ~ I f - s t  O= 8P = ~  a-~ ~-~u(x,t) + 7  J e ~ ~ - u ( x , t )  tit, 
t=O 0 

p = 1 , 2  . . . . .  k + 4 .  

Since we are concerned with finite T we may assume that  /(x, t) decays smoothly 
and rapidly to 0 on IT, T +  t] in such a way that 

~-[ U = [ T , T + t ; W ~ + , , = ] ~ K  ~ U T;W~+4,% i=0,1,2 

(see, e.g., A. Friedman [8]). For t >  T + I ,  u(x, t) and all its derivatives decay 
exponentially. This observation, coupled with the assumption 

W ' [0, I ] ]  u, us, ustEL ~ [0, T; k+4 oo 

and Equation (4. t t), shows that 

t1r (', ~)ll.,,+,. ~0 (4.i 2) 

--< I , ~  {I[" I1~ Eo. ~; w,+,. =~ +lt",ll~=to. ~; ,,,+,. =~ + 11", ,11~= to. ~; ~*+,. ~176 �9 

From (4.9), since I bl =o(Isl), 
^ ^ K, i,,,+,, II r -~ T ~  IA (4.t3) 

�9 {11" II,-- to, 1., ..,,+,. =j + It", IlL= to, ~; ..-,,+,. ,~j + I1",, Ik=, Eo. ~; ,,,.,-+,. = ~}. 
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Theorem 4.2. Let  u (x, t) be the solution of (t.2). Assume that  the coefficients 
b (x), q (x), c (x) have bounded derivatives through order k + 2 and let 

u, u t, u, tEL~[O, T; Wk+*'~ [0, t]]. 

Let U o, the initial data for the collocation equations (2.7), be the interpolant of u 
at the collocation points, i. e. 

U0 (~i) = uo (~i) i = t, 2 . . . . .  N k. 

Then the collocation equations (2.7) have a unique solution U(x,  t, A) and for 
t~[~, T], 3 > 0 ,  

I I u - " l k ~ E . ,  ~, ~ Eo,~< c lA I *+ '  
(4.t6) 

�9 {11" II,--co, ~; w~-,, ~ + II",II,.oEo, ~; .,.+,...~ + II",,Ik~ ~; ,,,~,, . , }  

where C is a constant that depends on T and the coefficients of the differential 
equation, but is independent of the partition A. 

Proo]. We break problem (t .2) into two problems: 

C(X) U l t - - L  u l = l ( x ,  l) 
u,  (x, o) = o (I) 

c(x) u , , - -  L u2=O 
61) 

u ,  (x, o) = uo (x). 

Thus u = u l + u  ~. Since the elliptic interpolant of ux(x, 0)(=0)  is simply 0 the 
estimate (4.t6) for problem (I) follows from Theorem 4.t. In fact, for problem (I), 
the estimate (4.t6) holds for all t, 0 ~ t  < T. 

I t  remains to consider problem II and the effect of using the values of uo (x) at 
the collocation points as initial data. 

Let W (x, s; A) be the solution of the collocation equations 

W,,(~i)+b(~i)  . . . .  ., W (~i) = u, (~i, s) + b (~i) r (~i, s) i =  t , . .  N k, 

where *is(x, s) is the Laplace transform of us(x, t). The results of de Boor and 
Swartz [2] show 

Ilw(., s; A ) - a ,  (., s)!L __ C, [[as(-, s)Ilw,+,.. I A I *+' (4.t 7) 

where C x is independent of A. 

With U, denoting the solution of the collocation equations associated with 
problem (II) we have, at the collocation points, 

[(Os--W)" +b(Os--W)' +q(Os--W)--s c(O,--W)] (~) 
= [q ( a ~ -  w)  - s c ( a s -  w)]  (~). 

Hence by Lemma 3.6, for s E~s 

Ks IlOs- wIL ---- 1 ~  [Q+lsl M] ItW-a, ll| (4A8) 
17 Numer. Math., Bd. 26 
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Let F be the curve described in Lemma 3.9. Then Lemma 3.9 and (3.32) show 

II(u~- ua) (', t) l~| [o, ,] =< -~-  le"l [[O~-~l~| (4.t9) 
F 

From (4.t7) and (4.t9) 

II 0 , - a ~  II~o < It 0 ~ -  WLo + I [W- a,  L~ 

isl  ,} c , l : . (  . I .  I '+' < 

Thus 
I[ (u,-- Ua) (., t)[1~o ~ Ca f ]est ]l s [ t II a2 Ilw'+'. | I A },+ads. (4.20) 

P 

However, II~(', s)l[~,+, ~ grows at  worst as a polynomial in Is [t of degree k +  2 
whose coefficients depend on the coefficients of the differential equation and %. 

Thus when t ~ z > 0 the integral on the fight side of (4.20) converges and we 
obtain (4.16) for problem (II). Combining the results for problems (I) and (II) 
completes the proof. [] 

5. E s t i m a t e s  a t  t h e  K n o t s  

Lemma 5.1. Let g(t)have p - - t  continuous derivatives on (0, oo), let g (~-11 be 
absolutely continuous on finite intervals of (0, oo) and [g(P)(t)[ < K  e bt a.e. on 
(0, oo). Further suppose that  

lim gJ ( t )=0 i----0, t . . . . .  p - - t .  
f---}0 + 

Then for Re (s) ___ ~ > max [0, b], there exists a constant M = M (~) so that 

M 
Ig(s)l < is : �9 (5.t) 

Proof. This lemma follows immediately from the well known (see e.g. Widder 
[t2]) formula 

p 
~P(s)----s p ~(s)-- ~, sP-i g{i-1)(O+). D (5.2) 

iffix 

Theorem S.1. Let u(x,  t) be the solution of (1.2). Assume that the coefficients 
b(x), c(x), q(x) EC~k+s [0, t], and Uo(X ), [(., t) EC~k+~ [0, l]. Let 

/ ~ + t  / even. 
R 0") = [1'/2] + t (S.3) 

{ ~  § iodd 

Assume u (x, -) and its first 2 k § 2 derivatives with respect to x are in C R {k) [0, T] 
with 

I ̀ ~176  [ i = o , t  . . . . .  2 k + 2  

- -  l = 0 ,  t . . . . .  R(k) 
for some M > 0, fl > 0. Let U o, the initial data of the collocation equations (2.7) be 
the "'super-elliptic" interpolant for the problem (t.2). That is, let the differential 
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operator L be defined by 

01 u Ou L u ~  ~ + b ( x ) ~  +q(x) u 

and assume L is invertible. 

We choose p so that 

p=[k]2]. (5.4) 

Let 

Uo(x; A)= Co(X; ,4). (5.7) 
Then the collocation equations have a unique solution U(x, t, A), and at the 
knots {xj}~=~'. 

I (U-u)  (% t)[ < c (T) IA I ~ (5.8) 

where C (T) is a constant that is independent of the partition A and depends only 
on the coefficients of the differential equation and on the quantities 

~--~-u(x,t) Jw~+j+,.| i = 0 ,  t . . . . .  k; i = 0 ,  t . . . . .  R(k--i). (5.9) 

Proo]. As in the proof of Theorem 4A we rewrite (t.2) as 

c ut--L u=l(x,  t) 
u(x, o)=uo(X). (5.1o) 

P ti 
r __u(x, t ) -  Y, r H (5.tl) 

i=O 
where {$i (x)} po is defined by (5.5). 

Thus 

p = l  ~b ] ti r ~r162 Y kC;+,(~)-L j~+~ .LCI (x )  
;=o (5.t2) 

=1(" '1- ,, , _ o  + 

where F(x, t) is determined by the Taylor series expansion for ](x, t) and L ~p. 

Moreover, 
~(x, o)=o. 

t7" 

Set 

Let {~bi(x)}o p be given by 

r (x) -= Uo(X) 
(5.5) 0i-t t=o c(x)Oi(x)=--Lc~i_x(x)+o--E2-f/(x,t) 7"=t ,2  . . . . .  p. 

Let {#i (x; A)}oP be given by the system of collocation problems: 

L cp[ (~r Cpl (~j) i = ~ , 2  . . . . .  Nk.  

0~' t=o m = p - - t , p - - 2  . . . . .  O; {5.6) 
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From (5.t2) 
find tha t  

Let  # (x, t; A) satisfy the collocation equations 

tP c(~ i) q~,(~i,t;A)--L q~(~i,t;A)=-~F($i,t), i= t ,  2 ... . .  N k; 
(5.t3) 

�9 (x, o;A)=o.  

The collocations equations (2.7) and ( 5. t 1 )-( 5. t 3) show 

P 

U(x, t, A)--u(x, t)= ~(x, t, A)--4,(x, t)+ y. (q~j(x, A)--G.(x))~. (5.14) 
i=0  

We use the Laplace transform of problem (5.12) and its associated collocation 
equations (5.t3) to estimate the term ~b--$ at the knots {x i }~  1. Applying the 

results of de Boorand  Swartz [2] directly to q~--~b at  the knot  x i (J---- 1 . . . .  , N - - I )  
shows tha t  

k 

I (6-~)(~, , ) t_~IAI"  Y. Ic,,-;(s)l II~(., ~)ll.,,,,+,.- (5AS) 
i - o  

where G~. (s) depends on the Green's function associated with the operator  L - - s  c. 
A direct computat ion shows that  [Gi(s) l grows as a polynomial  of order i 
(degree < i) in the variable I s [�89 That  is 

na,<s)l=o(isl i - -o ,  t . . . . .  k. 

Choose I', 0 _~ 1" ~-- k, and consider the term 

I o,,_;(s)I I[~ (., s)I[,,,+,+.,.. 
(or (5.1t) and (5.5)) and our assumptions on u(x, t) and ](x, t) we 

( a ) t (  a)i t=o i = 0 ,  t . . . . .  2 k + 2 ;  
-~- ~ r = o ,  t = o , t  . . . . .  R(k). 

Thus $ (x, t) and its first k + j +  2 derivatives with respect to x satisfy the hypo- 
thesis of Lemma 5.t with p = R (k). Hence, for Re (s) sufficiently large, 

M 
ll8(., ~,)11,,,,-,-,+,,=- ~ I s l ~ ( * - J ) '  i = o ,  ~ . . . . .  k, 

and 

where 

const 
Io~-~(s)lll~ (., s)ll,~..+,, ~ _  f s l . ' ,  

{~ i even 
r'----- i odd " 

Since we have chosen p as in (5.4) we have 

I ( r162 (~" s)l <3 -~  IA I~"1--~ ..... N--~. 
Hence 

a +  ~oo 

I C i~" I ( r  f e ~ IA l~as~le" l  a 
a--ieo 

(5.t6) 
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From the results of Cerutti [4] the system (5.6) satisfies 

IO,(~:A)-O,(x~)l <c ,  lAI ~ i=1 . . . . .  N - - t ,  i = t  . . . . .  p. (5.t7) 
Hence, combining (5.t6), (5.t7) and (5.t2) we have 

P ~k t/ ]ak I (u-, , )(~; ,  t)l <CllA I~k-}- E c, lA <c~(T)IA 

which proves (5.8). 0 

Theorem S.2. Let u (x, t) be the solution of (t .2) and assume the hypothesis of 
Theorem 5.t. Let U o, the initial data for the collocation equation (2.7) be the 
interpolant of u at the collocation points, i.e. 

Uo (~i) = uo (~J) i-=- t, 2 . . . . .  N k. 

Then the collocation equations have a unique solution U(x, t; A) and at a knot 
xi, i = t ,  2, . . . ,  N - - l ,  

I ( u - , , , ) (~ , ,  01 _-<Cl,a 1'*. (5.t8) 
{11" I1~o~ Eo. ,-, w,+,. - j  + II u, I1~-co, ~-, ,,,+,. ~ I1",, IlL-Eo, ,-; w.+,, ~1} 

for 0 < �9 =< t ~ T, where C depends on ~ and T but is independent of the parti- 
tion A. 

Proof. Using linearity we rewrite problem (t .2) as two problems: 

c(x) ul ,--L u,=h(x,  t) 
u~ (x, o) = o (I) 

and 
c(x) u~t--L u~= P(x, t) 

u~ (x, o) = u0 (x) (II)  

where P (x, t) is a polynomial in t with coefficients depending on x; specifically 

,-x( 0)J ,=0 t-~-t p ( x , t ) = - Z  ~ /(, ,t) 
i=0 

and p is given by (5.4). With ]x(x, t)=](x, t ) - -P(x ,  t) we have 

u(x, t )=u,  (x, t) +u~(x, t). 
Furthermore 

0 i 
( v )  / ,  c,,  t) ,=o = O i = o , l  . . . . .  p - t .  

It  follows immediately from (5.5) and (5.6) that the super elliptic interpolant of 
problem (I) is U 1 (x, O; A) ~ 0. Thus, as a consequence of Theorem 5.t, the estimate 
(5A8) holds (in fact for all t, 0 ~ t  ~_ T) for problem (I). 

I t  remains to consider problem II and the effect of using the values of u 0 (x) at 
the collocation points as initial data. As in proof of Theorem 4.2 we apply the 
results of de Boor and Swartz [2] to the operator L, r162 u2+q as--s c ~2 
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to obtain an estimate for ] (/3"~-- ,/~) (xi, s) l. In particular we have 

k 

I ( G - a ~ ) ( ~ ,  s) l _~ I~ I ~* Y. IG- ; (s ) I  Iladw,+,+,. o (5.~9) 
i=o 

where [G i (s) [ is a polynomial of order i in the variable i s ]J. Moreover [[a s [[w,+,+,. | 
is bounded by a polynomial of degree k +/" in [ s[t. Since P (x, t) is a polynomial in t 
with bounded functions of x as coefficients we apply Lemma 3-10 to obtain 

( G - ~ )  (x, 0 = f ~"(O-a) (x, s) a~. 
1" 

Thus, using (5A9), 

Since this integral converges for t > ~ > 0 we combine problems (I) and (II) to 
obtain (Lt7). 0 

6. A-Stability 

We consider in more detail the special case when the eigenvalues of the opera- 
tor L, L v -~ v" + b (x) v' + q (x) v, are all strictly negative (i. e. L v :  ~ c v, 
v(0)=v(l)-----0, v ~ 0  implies , ~ - - ~ o < 0 ) .  This condition will be satisfied, for 
example, when q (x) ~ 0. From previous estimates (e.g. Lemma 3.7) we know that  
the eigenvalues, ~, of the discrete problem 

L V ( ~ i ; A ) = 2 c ( ~ i ) V ( ~ i ; A ) ,  i = t , 2  . . . . .  N k  
V~S4 (6.1) 

lie in C]~ 8 (see Fig. t). Recall that this fact is independent of the partition A. I t  
follows that for s on the p a t h / ' ( ~ 3  or to the right o f / '  (see Fig. 1, p. 238 or Fig. 2, 
p. 249) that the problem 

L v (~;) - s c (~;) v (~;) = g (r i = t ,  2 . . . . .  N k (6.2) 

has a unique solution V(x;  A)ES a. 

Such estimates also hold for v (x), the solution of the continuous problem, 

L v=,~ c v, v (0)=v( t )  = 0 .  (6.3) 

Hence 

L v- - s  c v = g  (6.4) 

has a unique solution for s on the p a t h / "  or to the right o f / ' .  Further if s E{s[ 
Res > --;to} then (6.4) also has a unique solution. In particular, for s in the 
closed trapezoid A B C D (see Fig. 2) (6.4) has a unique solution. The results of de 
Boor and Swartz [2] assure us that  for each soEA B C D there is a 6 (so)> 0 so 
that for all partitions with [ A [ < t~ (so), (6.2) has a unique solution. That is LA -- soc, 
the discrete operator associated with problem (6.2), is invertible for [ A [ < ~ (so). 
Since (La--s  c) -1 depends continuously on s and the invertible operators form an 
open set (in the uniform operator topology) (LA--s c) -x exists in some open 
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r I 

\ 
A 

~_~ -;-o I - ~ 0  

/ 

I 
I 
I 
I 

F i g .  2.  

Q, 

Q,, 

~(s,) 
neighborhood of s o for partit ions A with [ d [ ~ ~ .  In this manner  we construct 

an open cover of the compact  set A B C D. Thus there exists a 6 0 > 0 so that  (6.2) 
has a unique solution for all s with Re (s) > - -% and for all partit ions with [ A [ < 6 0. 

Using linearity we break problem (t.2) into three parts  

c ul t~-L u l + l l ( x ,  t) 
(I) 

Ul (x, O) = 0 

c u 2 t = L u~ + / o  (x) (II) 

u~(x, 0 ) = 0  

c u s , = L  us (III)  
u,  ( , ,  o) = - o  (x). 
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In addition to the assumption on the location of the eigenvalues of L we 
assume that 

Ilx(x,t)[ < M e  -~ 0 < ~ o < a < Q  (6.5) 

uniformly in x, where M is a positive constant. Thus, 71 (x, s), the Laplace trans- 
form of Ix (x, t), is analytic in the half plane {s] Re (s) > --a} for each fixed x. 

The Laplace transform of problem I is 

s c g l = L  a1+71(x, s), (6.6) 

and similarly the discrete problem associated with problem I has Laplace transform 

sc/~x(~i, s) =L/~'1 (~i, s)+]l(~i,s), ]=1, 2 . . . . .  N k. (6.7) 

Under the hypothesis of Theorem 4.1 

L t e" (01(., s: A)--al(x ,  s)) ds (6.8) 
~+i0o co" 

In this case, with zero initial data and /x(x, s) analytic in the half-plane 
{s IRes > - -a} ,  41 and 01 are also analytic in {siRes > - % } .  Since the integrals 
along QaQa and Q3Q4 (see Fig. 2) go to zero as Q1/*~+ioo and Q4'x9/-ioo, we 
have, by  Cauchy's theorem, 

- - ~ + i  0o ~,+i co 
f e s ' ( O l - - a l ) d s  = f e a ( ~ l - - a l ) d s .  

--g,--i 0o y--i 0o 

However, as in the proof of Theorem 4A, 

5-~ f < ~--y e-o~' f 77~- ds l [ .+,  
--q.r oo --a,--i 0o 

and hence 

lie1(., t; A) --Ul (., t)I[| < e-~"l A Ik+' K (u, u,, u,,). (6.9) 

Moreover, since Ilul (., t)]loo _~t M e -~* ~ C  e - ~ ,  we see that 

IIua(., t; A)II~ <C1 e - ~ .  (6.9b) 

The Laplace transforms of problem II and its discrete analog are 

s c a~=L a~+ l~ (6A0) s 
and 

s c(~i) 0~(~i) = L  0z(~i)+ /~ (~i) j = t ,  2 . . . .  N k. (6.1 t) 

In this case (6.8) also holds b u t / 0  has a simple pole at the origin. In order to 
replace the path (~--ioo, ~+ioo)  by  the path ( - -%-- ioo,  - - ~ + i o o )  it is neces- 
sary to compute the residues of az and 0z in the trapezoid A B C D. We observe 
that 0 z (x, s;z~) and u2 (x, s) are analytic except possibly at s = 0. Hence we need 
only consider the residue at s--0.  
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Lemma 6.1. For sEA B C D (see Fig. 2) the solution of 

L v - - s c v =  l~ s ' v ( O ) = v 0 ) = o  (6.t2) 

satisfies 
c 

IIv (., s ) L  =<-Itv' (., s)tl _~ ~ II/o(s)II. (6.13) 

Proo/. Since s is not in the spectrum of L there exists a constant K (s), which 
depends continuously on s so that 

[Ivt[ ~K(s)  II/oll (6.t4) 
- Isl " 

Multiplying (6.t 2) by v and integrating by parts gives 

--(v', v') + (b v', v)+ (q v, v) -- (s c v, v ) = - - ( ~ ,  v) 

and hence 
1 

II v'l[ * -~ B 11 ~'LI II ~ II + O I[ ~ II 3 + I s I M [[ v II 3 + j ~ ;  IW/o II II v II 
(6.15) 

I B a 
< ~ V' II ~ + ~ - I I ,  li 3 + (Q + I s  IM)IIv II 3 + IV0113+ I1~ I1'~ �9 

Since s is in the compact set A B C D, K(s) in (6.t4) is uniformly bounded. Using 
(6.14) in (6.t5) gives the result (6.t3). [J 

be the solution of the two-point boundary value Corollary 6.1. Let qS(x) 
problem 

Then 

and 

L r  (6.16) 
r 1 6 2  

lim s a3 (x, s) = r (x) (6.t7) 
s--cO 

Res (a 3, 0 ) = r  (x). (6.18) 

Proo/. Since u3 (x, s) is analytic in A B C D\{0} and has (at worst) a simple 
pole at s = 0 we compute the residue at s = 0 by the formula 

Re s (~,, 0) = lim s a 3 (x, s). 

Multiplying (6.t2) by s we have 

s3cd3----Ls~3--Lr 

and (6A 7), (6.18) follow from (6.t3) and the continuity of L -x. 0 

Lemma 6.2. For sEA B C D (see Fig. 2) the solution of 

satisfies 
{LV(~i;A)_sc(~i)V(~ 

;A )=  1o (*i) ] = 1 , 2 , .  N k  
S ~ " "~ 

VE S~ 
(6.t9) 

K A  
I[V(-, s; zl) [)~ ~ ~-H/o( ')t l~- (6.20) 
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Proo/. For s in the compact trapezoid A B C D the norm of the inverse of the 
discrete operator associated with L -- s c is bounded (for [ A [ < 8o). Since this norm 
depends continuously on s it is uniformly bounded i.e. 

KA 
fly(., s; ,J) ll/o(.)lL, s E A B C D .  [] 

Following the argument of the corollary to Lemma 6.1, we obtain 

Corollary 6.2. Let q~ (x; A) be the solution of the collocation equations, 

L r i = t , 2  . . . . .  N k, 

qb(x, A )eS  4. 
Then 

and 

(6.2t) 

lim s O,(x, s, A)=  ~ (x ;  A) (6.22) 

Thus 
Res  (02,0)=qS(x;A).  [7 (6.23) 

1 

2 ~ i  

y+ i  co --ao+i oo 

1 f f 
y--ioo --~--ioo 

--~+ioo 
, [ 2,~i . e '* (O' - -~ ' )ds+(~- - r  

--eZo-- i Oo 

Under the hypothesis of Theorem 4.t we conclude 

[[U,(.,t;a)-u2(.,t)Lo<e-~.'lAl*+*K(u,u,,u,,)+lJq~--CH~. (6.24) 

Thus, using the results of de Boor and Swartz [2] we obtain 

I]V~(.,t;A)--u~(.,t)l[~ ~e -~ t [A[k+2g(u ,u , , u , , )+g ' ( /o ) lA[  k+2. (6.245) 

Furthermore, since ][u~ (., t) -- $ (x)]]oo ~-- t Me -at ~ Ce -~~ we see that  

[[ U,. (., t; A) -- r (x; A)II~ ~ C, e - ~ .  (6.24 c) 

To treat problem I I I  let 

Za----.ua-- u 0 

and 

W = U a - U o ,  

where Ua(x, t; A) is the solution of the associated discrete problem, and U 0 is the 
elliptic interpotant of u 0. Thus we are led to 

c w t = L w + L u  o 
(6.2S) 

~ ( x , o ) = o  

and 

c (~j) w ,  (~) = L W (r + L Uo (~j) 

W ( x , o ; A ) = o .  

i = t , 2  . . . . .  N k  
(6.26) 
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With U0, the elliptic interpolant of u 0 (6.26) is the discrete version of (6.25) and 
the discussion of problem I I  applies. In particular, 

y + i  oo --o~ + i  oo 

f ' f e*'(l~--&)ds--Uo+u o. (6.27) t e" ( # -  ~) ds = 2 .  i W - - w =  2~---( 
~ - - i  oo - - o ~ - - i  oo 

Thus, 

[1 u3 (.,t; a)-~,~(.,t)l[oo = ]l w -  w + u 0 - - 0  L (6.28) 

= 1 e S , ( # _ ~ ) d s  <=e_~ . , [A[k+~ ,K(u ,u , ,u , , ) .  
- - a , - - i  co oo 

Moreover, since Ilu3(., 0 L < t  Me -~  ~_ Ce -~.' we see that 

[[Ua(., t; A)][~ ~ C  a e -~''. (6.28b) 

Combining (6.9), (6.24) and (6.28) gives 

Theorem 6.1. Let  U 0 be the elliptic interpolant of u 0 and in addition to the 
hypothesis of Theorem 4.t assume: 

t o the eigenvalues 2 of L satisfy 2 ~ --20 < 0; 

2~ where [/i(x,t)[ ~_Me -~t 0 < a 0 < a .  

Then the collocation equations (2.7) have a unique solution U (x, t; A). Moreover, 
let ~ (x) be the solution of the two-point boundary  value problem (6.16) and let 

(x; A) be the corresponding solution of the collocation equations (6.2t). Then 

[]U(.,t;A)--~(.;A)li| -~'' (6.29) 

and 

[IU(.,t;A)--u(.,Oll,~<giAl~'+~ e-~'.'+K'(to)[al ~'+~. (6.3O) 
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