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Summary. In  this paper some theory of linear multistep methods for y(r) (x) = 1 (x, y) 
is extended to include smooth, stepsize-dependent coefficients. Treated in particular is 
the case where exact integration of a given set of functions is desired. 

1. Introduction 

For the init iai-value problem 

yC'}(x) =l(x,  y), ym(a) = 0 ,  / ' = 0 ,  1 . . . . .  r - - I  (t.1) 

consider the mul t i s tep  me thod  

k k 

i = o  / = o  
(t .2) 

or, equivalent ly,  the opera tor  

k k 

L EY] (x) ---- Y, ~iY (x +ih) --h" Y, fl,yC,I (x +ih). (t.3) 
i ~ O  i = 0  

B y  definition, (t.2) or (1.3) is of order p if the opera tor  L integrates  the set of 
functions {t, x . . . . .  x p+ ' - I }  exactly,  i.e. L Ex ~] = 0 ,  i : 0 ,  t ,  . . . ,  p + r  - - t .  

For  m a n y  initial-vMue problems ( t . t ) ,  where the solution is of periodic or 
exponent ia l  character ,  the choice of the set  {l, x . . . . .  x ~+'-1} might  not  be the 
best.  An example  is the  harmonic  oscillation y" (x) :--coSy(x) with y ( O ) = t ,  
y '  (0)----ico. Obviously the  solution is y ( x ) :  e i| The  solution obta ined by  using 
Cowell's me thod  yields an orbit  which spirals inwards ins tead of being circular, 
as is required for the exact  solution (Stiefel and  Bet t is  [6]). Be t te r  results are 
ob ta ined  in this case if we demand  tha t  the  opera tor  given b y  (t .3) integrates  
the  functions sin co x, cos co x exact ly,  i.e. L Esin co x] = L  Ecos co x] = 0 identically 
in x for all h. Note  t h a t  one loses the advan tage  of s tepsize-independent  coeffi- 
cients. However ,  the coefficients can normal ly  be  given in a form which allows 
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fast recomputation when a change in stepsize is necessary (see Sec. 6 for an 
example). 

The purpose of this paper is to extend some of the theory for linear multistep 
methods to include stepsize-dependent coefficients. In particular we treat the 
case where we demand exact integration of a given set of linearly independent 
functions. Some theory in the trigonometric case has been developed by Gaut- 
schi [3], and integration formulas have been proposed by various authors. See 
e.g. Salzer [5], Gautschi [3], Stiefel and Bettis [6], and Bettis [t]. 

2. The Order of a Chebyshevian Multistep Method 

Let k>- - r>t ,  ho>0 ,  H = (0, ho], and H :  [0, h0]. For h ~ R ,  define the linear 
operator L : C" [a, b] -+C [a, b ] by 

where 

k k 

L [y] (x) = 12 a, (h) y (x + ih) -- h' 12 fit (h) yl') (x + ih) (2.t) 
i = o  i=o  

o~i, fli:l~---~lR., i = 0 , 1  . . . . .  k, otk:H-+]R\{0 }, (2.2) 

a n d  for some m _--> r 
~, /~cm(I7) ,  i = 0 ,  1 . . . . .  k. (2.3) 

Using (2.3) we write 
m - - 1  m - - 1  

~,(h) = I2 ~,jh~+O(h'~), ~(h) = F, ~ , . ;h%O(h '~) (2.4) 
i=o i=o  

where cq,i and fli,i are constants independent of h. If we expand y (x + i  h) and 
y(O(x + ih )  in Taylor's series around x, substitute ~i(h) and fit(h) given by (2.4) 
in the expression (2.t), and do some rearranging we find for all yEC '~ [a, b] 

L E y l =  Y, c,,._~y('~ h"+O(h") 
tt~O 

(2.5) 

where for n =O, 1, 2, . . . ,  m - - I  

k 

C~,, --  s! is~i,, s =0 ,  t ,  . . . ,  r --1, (2.6a) 

k 

t i~=o{i%q,~_r! fl,,n}, (2.6b) C*, n -  rl 

k 

Cs, , - -  st {iso~,,--s(r)is-'fl~,,}, s - - - - r + l , r + 2  . . . . .  (2.6c) 1 

Definition 2.1. An operator L of the form (2A) is said to be of order p < m - - r  
if in (2.5) C , ,~=0  for O < = s + n < p + r - - t  and C , , ,4 :0  for some s, n > 0  such 
that  s + n  = p  + r .  

From (2.5) we immediately have the following result. 

t s ( ' )=s ( s - t ) . . .  ( s - r + 1 ) .  
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Theorem 2.1. An operator L of the form (2A) is of order q < m - - r  if and only 
if there exists a differential operator Tq+, such that for all yEC q+" [a, b] 

Tq+, [y] (x) = aq+,ylq+O (x) + . . .  + aoy (x) (2.7) 

and for all h sufficiently small 

L [y] (x) = Tq+, [y] (x)M+'+ 0 (M+'+~). (2.8) 

Here a 0 . . . . .  aq+, are constants which depend on L, but not on h, x or y. 

3. Null Space and Order 

Let M z denote the nullspace of L 

W ={yEC'n [a, b~: L[y]  = 0  all hEH}. (3.t) 

Observe that by definition JV" does not depend on h. 

We have the following theorem. 

Theorem 3.1. Suppose the operator L given by (2.t)-(2.3) is of order q < m  --r .  
Then Mz( Ker Tq+,. Here JV" is given by (3.1) and Tq+, is the differential operator 
in Theorem 2.1. 

Proo]. Suppose g E Jff. Then L [g] -~ 0 for all h E H. Therefore by (2.8) Tq+, [g] --0. | 

Corollary 3.1. If L is of order q < m - - r ,  and dim W = p  + r  then p ~q .  

Remark 8.1. The null space of the operator Tq+, given by (2.7) consists of sums 
of products of polynomials and exponential functions. Hence by Theorem 3.1 
they are the only type of functions we can hope to integrate exactly. 

Remark 3.2. Suppose the order of L is p, and the dimension of its nullspace 
JV" is p + r .  Then by  Theorem 3.tM z -- Ker Tp+,, and moreover ap+, 4:0 in (2.7). 
Hence the functions integrated exactly are precisely the solutions of the differ- 
ential equation Tp+r [y ] = 0 .  Consider (2.7) with p = q  and define the polynomial 
[ by 

p+r q 
(I (z -o i )"  (z -~j)'~. (3.2) /(x) = X a / = a p + , H  (z-~i)";=q+, 

i=0 "= 

Here a 0 . . . . .  ap+, are the coefficients in (2.7). Also ~o o . . . . .  eoq are the real roots, 
and ~oq+ 1 . . . . .  co, the complex roots of /. In this case L exactly integrates the 
functions given by  the formulas 

e~*, x e ~  . . . . .  xn-Xe~*, i = 0 ,  t . . . . .  s 
(3.3) 

e ~l*, xe ~l* . . . .  , x "J-le~*, i = q  + t  . . . . .  s 

~ . r j + 2  ~. r i = p + r .  Conversely if L exactly integrates the functions 
i=o i=q+x 

where 

given by (3.3), then from (2.6) we have 

t iP+'~ o -  (P + r) c') iPfl~,o 
ap + r -  ( p + r ) l  t,~o , .= 

(3.4) 

5* 



68 T. Lyche: 

and a o . . . . .  ap+,_ I can be found by comparing coefficients in (3.2). Hence we 
have an expression for the leading term in the truncation error. 

The following example shows that  it is possible to have a null space of dimension 
p + r, yet the exponent of h in the leading term of the truncation error is greater 
than p + r .  

Example 3.1. Let r = k = t, m = 3, and consider the following variant of the 
Euler method: 

r. [y ]  (x) = y (x + h) - ( t  - h,)  y (x) - h ( t  - h) y '  (x).  

For h sufficiently small and for all yEC 3 [a, b] we obtain 

L [y] = ( i  Y" +Y'  +Y) h*+O (h3). 

So the method is of order t. However, the null space of L as defined in (3.1) 
is empty. To verify this suppose, on the contrary, that  ~4z=[= 0. Then by Remark 3.1 

,#" contains a function gp of the form gp(x) =xPe *'' for some p and w. For p =O 
we find 

L [go] (x) = e " ( * + ~ ) -  (1 - -  h~) e " ~ -  w h  (1 - -  h) e '~* 

= e ' *  [ ( [w2+w +t)h2+~waha+O(h4)] 

where we have expanded e ~ in powers of h. Clearly this expression is not zero 
identically in h for any w. Similarly, for any p > t,  we have that  L [gp] (x) is not 
zero identically in x and h. 

Remark 3.3. The form (2.8) of the truncation error tells us that  the global 
error analysis of Henrici [4] will be valid also for Chebyshevian multistep 
methods with minor modifications. In particular, if dim M f =  p + r ,  then the 
global error will be of order 0 (h p) under the usual stability and continuity assump- 
tions. The error constant (Henrici [4, p. 223]) is given by at,+,/~.fl~,o. 

Corollary 3.2 (Consistency condition). If L is of order p => 0 then 

q(")O) = 0 ( h p + ' - " )  n = o ,  1 . . . . .  r - t .  (3.5) 

Moreover, if p > t ,  then 
~(') (1) = r ! a ( t )  + O (hP). (3.6) 

Here the polynomials e and a are given by  

k k 

q(~) = 22 ~ , (h)r  ~(~) = Y, ~ , (h)r  0 .7)  
i = 0  i = 0  

Proo/. We have from (2.4) 

p+r- -n - - I  f k e'.)= ;x 
But C,,, = 0 ,  0 ~ n  + s  < p  + r  - - t .  So from (2.6) 

k 

X i ' ~ i , i = O ,  n < r - - l , i < p + r - - n - - l .  (3.9) 
i=O 

I t  follows that  the double sum in (3.8) vanishes and (3.5) is proved. 
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Similarly, using (2.4), (2.5), (2.6), and (3.9) 

0 ( ' ) ( t ) - r ! ~ 0 ) -  r h i - r !  y, y: ~.jhi+O(hP) 
1=o ~=o 

p_.t k 

~' {i~o ("~162 hi +O(h ' )  (~.t0) j=o = 
p--1 

=r! Y, c,,~+o(hP)=o(hP). 
i=0  

Remark 8.g. The discussion of Sections 2 and 3 can easily be extended to 
operators where the coefficients depend on x. For hEH, define the linear operator 
L: C" [a, b]---~C [a, b] by 

h It 

L [ y ] ( x ) = ~ , ~ ( x + i h ) y ( x + i h ) - - h ' ~ f l , ( x + i h ) y ~ ~  (3.tl) 
i = 0  i = 0  

where 
~ ,  fl~: [a, b + k ho] -+ ~ ,  

and for some m > r 

r = o, 1 . . . . .  k a , :  [a, b + k ho] -~ R\{0}, 

~, fli~C" [a, b k ho]. 

Then, expanding ai and fli in Taylor's series around x, the analog of (2-4) reads 

m--1 m--1 

~, (x+ih)=  Y. ~,,;(x)h~+O(hm), t h ( ~ + / h ) =  Y, ~ , ; ( ~ ) h J + O ( h ' )  
i=o i=o 

where ~i,i(x), fl~,i(x) does not depend on h. Proceeding as in Section 2 we find 

m - i f .  "1 

Here C,,~_,(x) is given by (2.6) with a~, i and fl~,i replaced by Gq,i(x ) and fl~,i(x), 
respectively. Hence all functions integrated exactly by L given by (3At) are 
solutios of some linear, homogeneous, ordinary differential equation 

a,, (x) y('O (x) + . . .  + a o (x) y (x) = 0 

where aiECr~-n+i[a, b] i-----0, 1 . . . . .  n. 

4. An  Existence  Theorem 

Lemma 4.1 (see Henrici [4], Lemma 5.3 and 6.3). Suppose h is fixed, hEH, 
and to E C. Let n > r if co = 0, and n > t otherwise. Then 

L[x~'e~XJ=O,m=O, t . . . . .  n - - t  and L[x"e~ 

e (~) if and only if the function ~b given by ~b ( ~ ) = ~ - $ - - - a ( ~ )  has a zero of exact 

multiplicity s at ~ = a  = e  ~h, where s = n  if to 4=0 and s----n--r if to =0 .  
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Proo]. B y  Leibniz '  rule 
rain (m, ~) 

E 
i=o \J/ 

So 

L [x 'e  ~'*] 

= ~ Z 
1=0 

k rain (m, r) 
=e~ {~ (x + i h)rn (e~'h)i-- fli (h) 

Hence 

(~) mO)o'-i (x + ih)ra-i e ~'Cx+'h)} 

L [d"] = d ' %  (~), 

L [x"d'*] = e ~  h), m = t ,  2 . . . .  

(4.1 a) 

(4.t b) 

for some a o . . . . . . .  a,,,_l,,, ,. From (4A) L[xmd'"]=O, m = 0 ,  t . . . . .  n - - I  and 
L[x% ~'*] 4:0, if and  only if ]m has a zero a t  ~ = a  for m = 0 ,  t . . . . .  n - - t  and 
],~(a, h)4:0. B y  (4.4), since a 4=0, this is equivalent  to saying t ha t  ]o has a zero 
exact  mult ipl ic i ty  n a t  $ = a. Finally,  it follows f rom (4.2a) t ha t  this is equivalent  
to the  s t a t emen t  t h a t  $ has  a zero of exac t  mult ipl ic i ty  n a t  ~ = a 4= t ,  and a 
zero of exact  mult ipl ic i ty  n - -  r a t  a if a = t .  | 

We nex t  prove  a theorem which in effect says tha t  for any  polynomial  Q 
sat isfying (4.5) wi th  real smooth  coefficients, we can find a polynomial  a with 
real  smooth  coefficients such tha t  the  corresponding opera tor  L exac t ly  integrates  
the  polynomials  t ,  x . . . . .  x ' - 1  as well as any  set of k + t  functions of the form (3.3) 
sat isfying (4.6). 

Theorem 4.1. Le t  0 <_k'~k and suppose Q is given b y  (2.7) wi th  coefficients 
satisfying (2.2) and (2.3). Fur thermore ,  assume 

q~')( l)=o,  n = o , t  . . . . .  r - l ,  an h e n .  (4.5) 

Let  a set of funct ions of the  form (3.3) be given where 

(i) p = k ' + t  

(fi) o~o = 0 ,  r o a r  (4.6) 

(iii) I I m ( o j h 0 ) l < n ,  / ' = t , 2  . . . . .  s. 

I m--1 1 L [ x ' e " ]  = e  •" h"a"l~o ") (a) + Y. a~.,. l~ 0 (a) (4.4) 
i=0 

where 
]o (~) = e ($) - -  (log $) 'a  (~e) = (log $ ) ' r  (~) (4.2 a) 

and  for m = t ,  2, 3 . . .  

k min(m, r ) / r  \ . , 

B u t  (see Appendix) 
et,.(~, k) 

t,,,+x($, h) =xt, ,($, h) + k S  a~ (4.3) 

so we can write 
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Then there is a unique polynomial a of degree g k '  satisfying (2.2) and (2.3) 
such that  L integrates the functions (3.3) exactly. 

Proof. By Lemma 4.t, L integrates the functions given by (3-3) exactly if 
and only if the function r has zeros of multiplicity r i at ~ ---- e ~h, e ~J~k, ~ = 1, 2 . . . . .  s 
and a zero of multiplicity r o -  r at ~----1. Hence we want to find a polynomial a 
of degree _<_ k' such that  

a('O (1) = ~p(") (1), n = O ,  t . . . . .  r o - - r - - l ,  (4.7a) 

a(n)(e ~'~h) =~p(~) (e~h), n = 0 ,  t . . . . .  r j - - t ,  i - : 0 ,  t . . . . .  s (4.7b) 

a(~)(e ~h) =~(")(e~h), n = 0 ,  t . . . . .  r j - - l ,  j = q + l  . . . . .  s, (4.7c) 

q 
r o - - r +  ~ . r i + 2  ~ r i = k ' + l  

i=1 ]=qq-1 

r (~) = q (~) / log ~. 

where 

and 

This Hermite like interpolation problem has a unique solution a of degree _~ k'. 
By Lemma 4.t, the corresponding L will integrate the functions given by (3.3) 
exactly. 

To see that  the coefficients fli(h) of a are real, we define the polynomial 

by ~ (~) = a (~). Then 

d"~ (e ~ =~("~ (e ~'h) =~(-~ ( e ~,~) = ~c.) (e ~h) 

where n and f take on the values given by (4.7). Hence by the uniqueness of 
the interpolation problem considered, ~ = a  and the fli(h)s are real. I t  remains 
to show that  fliECm(H). But q(i)(l) = 0 ,  i = 0 ,  t ,  . . . ,  r - - t  implies ~o is analytic 
at ~ = I. (We let log t = 0 ,  and cut the complex plane along the negative real 
axis.) By (4.6), ~p is analytic in an open, simply connected set containing e ~ e =sh, 
i = 0, l . . . . .  s all h E H. Since ai E C m (/7) it follows that Xi,  ~ E C m (/7) where Xi,  ~ (h) = 
~flin) (e~h), and / ,  n takes on the values in (4.7). But, by Cramer's rule, the unique 
solution fli (h), /" = 0, t ,  . . . ,  k, to the interpolation problem (4.7) can be written 
as a rational expression in the Xi,  n and e ~ with denominator bounded away 
from zero. I t  follows chat fliEC"(/7). | 

Remark 4.2. In general, it is not possible to construct an L which is exact 
for more than p = k  q-t linearly independent functions of the form (3.3) with 
all o9 i 4 0 ,  without imposing conditions on p. Since the part of L consisting of 

h 

h" ~. fl~(h)y('l(xq-ih) annihilates all polynomials of degree --<r--t for any fli(h), 
iffi0 

the conditions to be satisfied by ~ when o~ 0 = 0  and p = k  q-I takes on the simple 
form (4.5). When all o~i40 it follows from Lemma 4.t that  a similar condition 
on ~ alone does not exist. 

Remark 4.3. The coefficients in the interpolation polynomial of the type 
considered in the proof of Theorem 4.t can be given explicitly. Thus the method 
of proof provides us with an algorithm for finding a. However, since the formulas 



72 T. Lyche: 

are rather complicated and involve calculation with complex numbers, it is not 
recommended. More powerful algorithms should be (and to some extent have 
been) developed. See e.g. Bettis Ill. 

5. The Maximum Order of a Stable Method 

Definition S.1. The operator L given by (2A)-(2.3) is called stable if for all 
hEH the polynomial 0 given by (3.7) has all its roots on the unit disc and all 
roots of modulus one are of multiplicity at most r. 

For r----t let L be the operator with constant coefficients given by (t.3). 
For this operator Cs, . in (2.6) vanish for all n > 1. Hence the definition of order 
as given in Definition 2A and the definition of order as given by Henrici E4] 
p. 221 coincide. 

We need the following lemma. 

Lemma 5.1. Let the operator L given by  (t.3) be such that  no roots of the 
k 

polynomial Q(~)= ~. ,q~  exceed one in modulus. Moreover assume 0 (1 )=0 .  
i=@ 

Then the order of L is at most k + 2. 

Remark 5.1. The following is proved in [4] p. 229-232. Suppose no roots 
of 0 exceed one in modulus and 0 has a simple root at ~ = t (see footnote in [4] 
p. 229). Then the order p of L is at most k + 2 .  Thus Lemma 5.t claims that  even 
if we allow multiple roots at ~ = 1 the order cannot exceed k + 2. See also DaM- 
quist [2]. 

Proo/o] Lemma 6.1. We need only make a few changes in the development 
given by  Henrici [4] p. 230-232. Suppose ~ has a root of multiplicity s at ~ = t.  
Then (5-t t4)  in [4] should read a s > 0 .  Using (5-12t) and arguing with bk+t 
and bk+ ~ as done in [4] the lemma follows. | 

Theorem S.1. Suppose L given by  (2A)-(2.4) with r ~ 2  is of order p, and 
suppose L satisfies the condition of stability. Then p ~ k + 2. 

Proof. We give a proof for r = t.  (The proof for r = 2 is quite similar.) Let the 
operator/~ be defined by 

k k 
i, [y] (x) ---- ~ ~i (0) y (x + i h) - -  h ~ fll (0) y '  (x + ih).  

i=0 i=O 

Here ~ (k) and/~(h)  are the coefficients in L. Since L is of order p, it follows 
from (2.6) that  

Cn,0 

,•0• (0) n = 0 

k k 

k k } 

=0 ,  n =0 ,  1 . . . . .  p. 
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Hence the operator L is of order p. If p>k  +2 ,  it follows from Lemma 5.t that 

the polynomial Oo(~)= ~ ei(O)~ ~ has a root of modulus greater than one. The 

coefficients ei(h) are continuous functions of h. Then for h sufficiently small, 
k 

~ (~) = ~, ~i (h)~4 will have a root of modulus greater than one. | 
i=O 

6. Example Two-Step Method of Order 4 

Consider the two-step method 

y (x + 2 h) -- (~ + ,~ (h))y (x + h) + ,~ (h)y (x) = h{fl, (,~)y' (x + 2 h) 
(6.0 

+ill (h)y' (x +h) +rio (h)y' (x)} 

where we have assumed that  ~ (1 )=0 .  We desire that  (6A) exactly integrates 
e +| where co i i = 1 ,  2 are real or imaginary. Let ui=e ~h, t,=ohh, v=o~sh. 
From Lemma 4A we have the four equations 

q(u# 1) = log (upl)a(upl), i =1, 2. 

Solving this system we find 

30 (h) = fl~ (h) = 

s i n h v  s i n h #  

v p 

c o s h  v - -  c o s h  p 

s i n h p  . c o s h ~  - -  sinh__~v c o s h p  (6 .2)  
p v 

~ (h) = 2 
cosh v - -  cosh p 

aCh) = - t .  

For small h, numerically more convenient expressions are found using the series 
expansions 

1 h s 4 r a 2_~ _ _ t , . . ,  4A t ~ h  4 ~ a # 0 = # ~ =  3 90 , ~ 1 7 6 1 7 6 1 7 6 1 7 6  
(6.3) 4 h z h 4 

31 = -~ + ~ (o~i +o~)  - ~ (o,'~ - a 3 ~ o l  + ~ )  + o  (h,). 

The truncation error is given by 

h a L[yJ(x)=---66{y"(x)--(o~ +o~)y"'(x) +oJ~o~y'(x)} +O(M ). (6.4) 

Table t shows the expressions that  are integrated exactly for various choices 
of o l  and oJs. 

Table 1 

o)t, co a r e a l  

col, co a i m a g i n a r y  

COl ~ r ~ fo 

col - -co ,  ~ a  ~ 0 

OJl ~COa ~ 0 

i, e 4"t~ e~Z 

i, sinmlx, coscolx, sino)ax, cosc%x 

I ,  e +mz ,  x e  -I-~ 

1, x,  x a, e •  

I ,  x,  x 2, x s, x t ( S i m p s o n ' s  m e t h o d )  
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7. Appendix 

We derive the recurrence relation (4.3). From (4.2) we have 

/ .  (~, h) = ~ (h) (x + i h ) ~ r  m(~ (log ~ ) ' - ~ h ~  (h) (x + i h ) ~ - ~  ~ . 
i=O 

Hence 

minim, r) ~r" �9 �9 . 
- ;~0 (/,,,~'~h'(log~/'-',h~,(h/(~+ih/'-~r 

rain(m, r} "r" 

- ~7 { .)m(;)h j+~(log r (~ + i h ) ' - ~ d  �9 / 
So 

at,.(~, h) o~(h) (x + / h ) " + ~  ' xt,.(#, h) + h #  ~ - 

rain (m, ,) . . 
- ~, (r]m~ ~)'-Jfl,(h)(x +ih)m+l-Jr (7.1) 

i=o J/ 

~ ' ( ' / ' ,+1"  r " ( x + i h ) ' + 1 - i ~ } .  - -  i~=1 ( j - - , ) ( r - - i + t ) m l i - 1 ) h i ( l ~  '(h) 

Note that the expression rain(m, r ) + t  in the last sum can be replaced by 
min(m + t ,  r) since r - - i  + t  vanish whenever they are different. Now collecting 
terms in the last two sums we find 

(i) i --<__.i --<-- min (m, r). 

We have a common factor (log ~ ) ' - i f l i ( h ) ( x  + i h ) ' n + x - i ~  ~ which is multiplied by 

('/~,,, + G -" ,) ~'-J +'~ ~"-"--(;) m"-" E~ -J +' +~--(;)/~ +'>'" 2 

(ii) i = 0 .  We have m {i} = (m + t )  {i} = t. 

(iii) i = m i n ( m + l ,  r). If m + t  = r  then i = m + ~  and we have 

(3,=t) (r--~--]-'l)m (i-1, =(;)fro(i-:))= (;)(m +t) (i-,,. 

If r < m + t ,  then since r --1" +1 = 0 we have the same upper limit in the two sums. 

Thus the whole expression given by (7A) reduces to/~+x (~:, h). 
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