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Conditions of stability with respect to finite perturbations of a steady transport 
state are derived on the basis of a statistical theory for a very general type of equations 
of motion for the state change. Infinitesimal perturbations yield the stability condition 
of Glansdorff and Prigogine. 

1. Introduction 

In this paper the question shall be discussed under which conditions 
a steady state of a physical system is stable with respect to finite per- 
turbations. The steady state shall be a state of transport which can be 
described by means of thermodynamic variables and includes thermo- 
dynamic fluxes such as heat flow and electrical current. The steady state 
may be far away from thermodynamic equilibrium. 

Recently a criterion was given by Glansdorff and Prigogine 1 for the 
stability of a steady state with respect to small perturbations. These per- 
turbations were considered up to the second order. As is well known 
from stability problems in other fields, such criteria for small perturba- 
tions can totally fail with respect to larger perturbations. It is of great 
practical importance to know whether a state is stable against a finite 
perturbation of a certain given extent. 

The starting point is a statistical theory, as the microscopic basis of 
phenomenological macroscopic thermodynamics. The transport states, 
of which the steady state is a special one, are described by stochastic 
processes. Stability criteria in this description are criteria for the steady 
stochastic process. In the following stochastic processes are considered 
which can be described by differential equations for the probability 
distribution of first order in time. That means that no memory effects 
are included. 

The stability condition obtained in the following leads to the condi- 
tion of Glansdorff and Prigogine in the special case that the deviations 
from the steady state become infinitesimal small. Thus a special result 
of the following consideration is a statistical foundation of the Glans- 
dorff-Prigogine condition, too. 

1 Glansdorff, P., Prigogine, I.: Physica 46, 344 (1970). 
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2. Liapunov's Theorem in a Special Case 
Let the different transport states of a physical system be uniquely 

characterized by a set of parameters 

4=(~1, 42, .-., 4f). (2.1) 

They shall be chosen in such a way that the origin of this parameter 
space corresponds to the steady state the stability of which is investigated. 
The change of states with time may be described by a set of differential 
equations of the type 

~k =fk({) �9 (2.2) 

Let be L({) a real function, existing in the whole parameter space 4 and 
being positive definite 

L(4)>O (2.3) 

such that it vanishes in the origin only. If, moreover, it is concave so 
that the second variation is positive 

6 ~k 6 ~t (2.4) 
a 2 L a(2'L= Zk, a ka4, 

in any point {, then we can state the following: 

If there exists a region in the parameter space which contains the 
origin in its interior and if 

L ( 4 ) < o ,  (2.5) 

then the motion is stable whenever it starts in the interior of this region. 
"Stable"  means that the motion does not lead out of a certain limited 
neighbourhood of the origin. If, moreover, the equality sign in (2.5) is 
valid in the origin only, then the motion is "asymptotically stable" and 
leads finally into the origin. If (2.3) and (2.5) are valid in this region, then 
L is called a Liapunov function. 

The proof is nearly obvious. (2.3) and (2.4) grant that L(4) is monot- 
onous such that any surface on which L has constant value encloses all 
surfaces with smaller value of L. (2.5) means that the motion can go 
only into the interior of the surface on which it starts, or at least remain 
on it. It never can go out of this region. 

The general theorem of Liapunov 2 requires (2.3) only in a certain 
region round the origin. Then (2.4) is fulfilled at least in the neighbourhood 
of the origin. In the following we give a function L which has the features 
(2.3), and (2.4) in the whole parameter space 4. In this case, we can 

2 Lasalle, J., Lefschetz, S. : Stability by Liapunov's direct method. New York: Acad. 
Press Inc. 1961. German translation: Die Stabilitfitstheorie yon Ljapunoff. Mann- 
heim: B. I. Hoehsehultaschenbficher 194. 
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apply the theorem in a special form and can give the limits of the sta- 
bility region: 

The steady state is stable if there exists a region which includes the 
origin and in which (2.5) is valid. The steady state is stable with respect 
to all deviations which lie in this region. The region of stability is limited 
by the surface with largest possible constant value of L which includes 
points only where (2.5) is fulfilled. 

3. Gain of Information as Liapunov Function 

The microstates of the physical system may be characterized by an 
index i, which can be the symbol of a whole set of numbers. The assump- 
tion that the microstates are denumerable is not essential for the follow- 
ing and can be dropped without real difficulty. The assumption, however, 
which always can be fulfilled in arbitrarily good approximation by di- 
viding the state space in small cells, facilitates the notation. 

A macrostate corresponds to a probability distribution 

P = (Pl, P2 . . . .  ) = (p,). (3.1) 

A macroscopic change of states with temporal evolution corresponds 
to a change of the distribution p with time. 

The name "microstate" is used in a very general way. The physical 
system can be defined e.g. by all particles in a fixed volume. Such a 
system does not have a fixed phase space but a multiplicity of phase 
spaces with different particle numbers as it is used e.g. by defining a 
grand canonical distribution. The generalisation can go even into another 
direction. The so called microstates need not be given by all dynamical 
variables of the particles. They can be given by variables the number of 
which is smaller than that of all dynamical variables, however large 
compared to the number of macroscopic variables which are used to 
describe the transport states in view. An example are the particle veloc- 
ities in the velocity distribution of the Boltzmann equation. Another 
example would be variables to describe detailed thermal fluctuations in 
small parts of a system. 

We can assume that the "microstates" in this sense are chosen such 
that the probability distribution p' which corresponds to the steady 
state is time independent. 

In the following we restrict the considerations to stochastic laws of 
the form 

/~i= q~(p). (3.2) 

This restriction excludes memory effects, for which the function ~0 i of 
the distribution p had to be replaced by a functional of the time function 
p(t). In the special case of a Marcovian process q~i becomes linear inp. 

21" 
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We shall consider non Marcovian processes, as well, for which ~o~ is non 
linear in p. 

The probabilities p~ fulfil the relation 

~ p i = l  (3.3) 

and therefore are not independent one from another. We can, however, 
always find independent parameters ~k which are linearly connected with 
the probabilities p~ and characterize, uniquely, the distribution p. We 
can moreover choose the ~k in such a manner that the steady state p' 
corresponds to the origin of the i-space. (3.2) leads to differential equa- 
tions of the form (2.2). 

The quantity 

K(p, p ' ) = ~ p ,  ln P-~ (3.4) 
�9 Pi 

is positive definite and vanishes only if the distributions p and p' are 
identical. 

Moreover, in an expansion of K in powers of a small change 6p of p 

~K=K(p+fp, p')-K(p,p') 

=E p, ln + Y +. . .  
(3.5) 

i Pi 2 i Pi 

the second order variation is positive, 

6(2)K= 1,, ~ (6P')2 >0 .  (3.6) 
z -  T P~ 

If we express K as function of the parameters ~k 

K(p, p') = L(~), (3.7) 

it has the features (2.3) and (2.4). Therefore stability condition (2.5) is 

- ~2 (p, p') = - 2L(4) > O. (3.8) 

4. Stability Condition Expressed by Thermodynamic Quantities 
The entropy of the state p is 

S(p)= -~p~lnpi. (4.1) 
i 

Boltzmann's constant k is made equal to unity by adequate choice of 
units. 
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In the following we shall denote the deviation from the steady state by 

t p i= p~ -  p~ . (4.2) 
Then 

and 

K (p' + ,~ p, p ' )  = - ~ S -  ~_, 6 p~ In p~ (4.3) 
i 

- - k ( p '  + g p ,  p ' ) = r & +  ~ t~pilnp~ 
i 

�9 P i  

�9 Pi 

If 8S and ~S are expanded in powers of ~p, ~/~, then it is to be seen that 
the left side of (4.3) is equal to the non linear part --tNLS of --8S and 
that the left side of (4.4) is equal to the non linear part of 8S: 

K(p '  + t p, p') = - tin. S (4.5) 

- / ( ( p '  + t p, p') = tNL S. (4.6) 

We state, moreover, that the linear part of ~S contains t/i only and 
not tip. 

Let be M a macroscopic variable which is the mean value of a 
variable Mi in the microstates i: 

M = 2  Pi Mi. (4.7) 

Then its derivative with respect to time is 

/~/= E/~ M~. (4.8) 

Macroscopic variables of this kind are called extensive variables in con- 
trast to intensive variables. The latter are parameters of a canonical 
distribution. If p' is canonical and the M are thermostatic quantities, 
then In p~ is linear in M~. 

We always can characterize macroscopic transport states by an ap- 
propriate set of extensive variables including nonstatic quantities like 
flows. In the following we assume that also for a steady state lnp~ is 
linear in M~. If we expand iS, tS in powers of ~M, tJ~/, then the non 
linear part of these expansions is identical with the non linear part of 
the expansion in powers of tip, c5/~, as K , / (  have no linear parts. More- 
over, the linear part of t;~ contains ~ r  only, and not tiM. 
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In that way we get the result that the non linear parts with respect 
to the extensive variables are connected with L(~): 

L(~)= --~nLS (4.9) 

-- L ( r  = ~NL ~" (4.10) 

Finally we can state the following: 

For all deviations from the steady state there is valid 

--SNLS>O. (4.11) 

The equality sign is fulfilled for vanishing deviation only. 

A stability region, if it exists, is the largest region round the steady 
state in the space of the extensive parameters which is limited by a sur- 
face with constant value of 8NLS and in which everywhere is fulfilled: 

fiNL S > O. (4.12) 

5. Relation to Stability Theory of Glansdorff and Prigogine 
Glansdorff and Prigogine 1 derived a stability criterion for small 

deviations from the steady state by thermodynamic arguments. This 
criterion states that the steady is stable with respect to small deviations 
if the second order variation of S is positive: 

6 (2) S=_~0. (5.1) 

This criterion is a special result of the more general one given above 
because it is concerned with infinitesimal small perturbations only. 

If, in special cases, the stability region is very small, the practical 
value of stability with respect to infinitesimal perturbations can be rela- 
tively small. The general criterion, however, gives the answer to the 
question relevant for practice, how large perturbations may be without 
leading to instability. 

Some relations should be given to the well known Glansdorff-Prigo- 
gine variation of entropy production, which was introduced 1964 in the 
theory of stationary states 3. 

In an earlier paper # it was pointed out that 

P' (5.2) - K (p, pO) = _ ~ Pi In pO 

3 Glansdorff, P., Prigogine, I. : Physica 30, 351 (1964). -- Prigogine, I., Glansdorff, P.: 
Physiea 31, 1242 (1965). 

4 Schl6gl, F. : Z. Physik 198, 559 (1967). 
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is the entropy produced in the interior of a system by a process in which 
the state p changes spontaneously into the equilibrium state pO. That  
suggests to define 

P= - K ( p ,  p~ (5.3) 

as entropy production in the interior of the system. For  the deviation 
of P from the state p'  to p we get 

6 1 " = - ~  6ibiln p~+6pi 
�9 ! )  0 

Pi 
=~NLS--V6ihlnp~-  i 

(5.4) 

6NL P = 6NL S. (5.5) 

Moreover the linear part of 6P contains 6i6 only, but not 6p. It, therefore, 
does not contain 6M. 

Entropy production is most generally a bilinear form 

P = X , I  v (5.6) 

of "f luxes"  I V and " forces"  Xv. The forces Xv are dependent on static 
thermodynamic quantities M only, but not on the At. Therefore the 
linear part of 6P does not contain 6X~ and we get 

61vL t" = I ~ 6X~. (5.7) 

This is the well known Glansdorff-Prigogine variation 3 

6. Interpretation of the Result 

The quantity K in (3.4) was defined by R6nyi 5 as "gain of informa- 
t ion"  which is necessary to come from p'  to p. In earlier papers it was 
shown 6 that this quantity has an important meaning in thermodynamic 
statistics, especially in non equilibrium theory, in different respects. 

The meaning of K gives an interpretation of the stability conditions 
which were derived above. This interpretation is not necessary for the 
derivation. It, however, gives a better insight. 

A steady state is a state of the system in which the knowledge of the 
observer about the system does not change with time. This is true be- 
cause the probability distribution p '  describing this state does not change 

5 R6nyi, A.: Wahrscheinlichkeitsrechnung. Berlin: VEB Deutscher Verlag der Wissen- 
schaften t966. 

6 Schl~Sgl, F.: Z. Physik 191, 81 (1966). -- Schl~gl, F.: Ann. Physics 45, 155 (1967). 
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with time. If p'  is a stable steady state, and the observer does not know 
more than that the system initially once was in some unknown state of 
the stability region, then an unbiased estimate for the momentary state 
would lead to p'.  If the observer, however, knows e.g. by observation 
the momentary state p, then his excess knowledge is measured by K of 
(3.4). The spontaneous development of the states after the last observa- 
tion can only go such that this knowledge does not increase. 
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