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Summary. We set up a framework for analyzing mixed finite element methods 
for the plate problem using a mesh dependent energy norm which applies 
both to the Kirchhoff and to the Mindlin-Reissner formulation of the prob- 
lem. The analysis techniques are applied to some low order finite element 
schemes where three degrees of freedom are associated to each vertex of 
a triangulation of the domain. The schemes proceed from the Mindlin- 
Reissner formulation with modified shear energy. 
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1. Introduction 

In the Mindlin-Reissner formulation, the total energy of the plate is expressed 
by the functional 

V(u, O)-a(O, 0)+(1/0 2 ~ IO-Vul2dx-2 ~ fudx,  (1.1) 
Q f~ 

where t is the thickness of the plate, u and 0 =(01, 0z) stand for the transverse 
deflection and rotations, respectively, f is proportional to the external load 
(with the constant of proportionali ty depending on t), and 

where 2 and # are positive constants. Physically, the first and the second term 
in functional (1.1) correspond to the bending energy and the shear energy, respec- 
tively. 

It is well-known that straightforward finite element methods of minimizing 
the energy (1.1) often give poor  results if t is small. The origin of the failure 
is in the shear energy term, which forces the Kirchhoff constraint 0 =  Vu in 
the limit t ~ 0. In low-order finite element spaces such a constraint may cause 
"locking". For example if both u and 0 are interpolated by continuous piecewise 
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linear functions on a triangulation of f2, then in the limit t - ' 0  the transverse 
deflection in the finite element model is " locked"  to be globally a polynomial 
of degree one. 

In this paper we consider some low-order finite element methods where 
locking is avoided and convergence preserved even in the limit t - "  0. The main 
principle in the methods to be considered is the following: Given a triangulation 
of s'2, interpolate the transverse deflection u by using reduced cubic Hermitean 
(or Zienkiewicz) triangles with continuity of u and gu imposed at the vertices 
of the triangulation, and let the rotations be continuous and piecewise linear 
on the same triangulation. Then impose the Kirchhoff constraint 0 =  Vu at all 
vertices of the triangulation (thus leaving three degrees of freedom per vertex) 
and minimize, over the resulting finite element space, a functional which agrees 
with (1.1) except for the shear energy term, which is modified in various ways 
so as to prevent locking. A scheme of this type was proposed first by Fried 
et al. [14]. Somewhat similar schemes may also be derived from the Kirchhoff 
formulation of the plate problem by relaxing the Kirchhoff constraint 0 =  Vu 
so that it is imposed only at discrete points. In such schemes the shear energy 
term in (1.t) is neglected altogether, cf. [21, 6, 16, 17]. 

The aim of this paper is to present a convergence analysis of schemes based 
on the above philosophy where the shear energy is not neglected, i.e., the Min- 
dlin-Reissner formulation is used, but with modified shear energy. For  previous 
error analyses of finite element methods proceeding from the Mindlin-Reissner 
formulation of the plate problem, or from the corresponding mixed formulation, 
the reader is referred to [-5, 9, 12, 13, 15, 17]; cf. also [1, 16] for closely related 
work. Our analysis is parallel with the previous ones in that we make use 
of a mixed variational formulation of the plate problem where shear stresses 
occur explicitly. The main new feature in our analysis is the use of a mesh 
dependent (energy) norm. The norm is chosen so as to make passing from 
the Mindlin-Reissner model to the Kirchhoff model (corresponding to the limit 
t - , 0 )  "sof t"  in the sense that no abrupt change of norm occurs at t=0 .  It 
turns out that once the norm is properly chosen, the analysis fits easily into 
the framework of Babugka [-2, 3] and Brezzi [8]. 

The analysis is carried out in two steps as follows. We denote by (u', 0') 
the exact solution of the plate problem for given t > 0 and let (u ~ 0 ~ = lim (u', 0'). 

t + O  

We then compare the finite element solution first to the Kirchhoff solution 
(u ~ 0~ and then estimate separately the difference between (u ~ 0 ~ and (u', 0'). 
This approach is natural here since discrete Kirchhoff constraints are imposed 
in the finite element scheme, and thus it is not clear whether the "exact"  solution 
is (u', 0') or (u ~ 0~ However, our approach is actually not based on the assumed 
Kirchhoff constraints but rather on the assumption that the thickness of the 
plate is not substantially larger than the smallest mesh spacing in the finite 
element model. It turns out that for such "numerically thin" plates the natural 
(mesh dependent) energy norm for finite element analysis is independent of t 
and thus in particular remains the same in the limit t -" 0. 

The plan of the paper is as follows. In Sect. 2 we introduce the basic notation 
and establish some estimates relating the Mindlin-Reissner and Kirchhoff solu- 
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tions of the plate problem.  In Sect. 3 we introduce the mesh dependent  norms  
and set up a basic f ramework  for the analysis of  mixed finite element methods  
for Mindt in-Reissner  equations.  Section 4 is denoted to the anaIysis of  four  
variants  of  the finite element scheme described above.  

T h r o u g h o u t  the paper,  we assume for simplicity that  the domain  f2 is a 
convex polygon and that  the plate is clamped,  i.e., u = 0 = 0 on c~2. The t rea tment  
of more  general domains  and boundary  condit ions is possible, though not  
s t raightforward,  see [19]. 

2. Preliminaries and Some Basic Estimates 

For  T c R  2 and s > 0  we let H"(T) and H ; ( T )  denote  the usual Sobolev spaces 
of index s. The seminorm and the norm of [H~(T)] ", n =  1, 2, are denoted by 
I ' ls . r  and ]l'H.+.r, respectively. The subscript  indicating domain  is omit ted  if 
T=~2. By H-*(T) we mean  the dual of H~o(T) and by ( - , - )  the inner product  
of either L2(~Q ) or  [L2((~)~ 2. 

Let V= H~(F2) and W= [H~(Q)] 2. Then the plate p rob lem to be considered 
is formula ted  for t > 0  as: Find (u t, O')eVx W which minimizes the energy (1.1) 
in V x W. We note  that, because of the wel l -known Korn  inequality 

a(+p,~p)~c[Iq~ll 2, ~o~W, c=const .>0,  (2.1) 

(u', 0') is uniquely determined for any t > 0  so far as .feH-~(f2). Moreover ,  one 
has the following equivalent  mixed variat ional  formulat ion of the problem : Find 
the triple (u', 0', ? ' )e  V x W x Q, where Q = rE2 (~"~)] 2, such that  

a(O', +a)+(/ ,  q~)= 0, q~e w 

- ( ? ' ,  Vv)=(L  v), ve V 

(Ot--VHt,~)=t2(yt,~), ~aeQ. 

(2.2) 

Here y'-(1/t)2(O ' -  Vu') has the physical meaning  of a shear stress. 
We consider  in parallel with (2.2) the cor responding  Kirchhoff  formulat ion 

of the plate p rob lem:  Find the triple (u ~ 0 ~ ?~ W x  [H-1(f2)]2 such 
that  

a(O ~ q)) + (7 ~ ~o) = 0, +peW, 

_(?o, Vv)=(.l; v), veH2(Q), (2.3) 

(O~176 ( e [ H  1 (Q)]2, 

or equivalently 
a(Vu ~ Vv)=(j~ v), v~H2(f2), 

0 o = Vu ~ 

(y0, qo)= - a(0~ q~), q0~W. 
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This system is obviously uniquely solvable if fell-2([,~) and one has the basic 
energy estimate 

llu~176176 f e l l -  2(f2). (2.4) 

We note  that in general (u ~ 0 ~ 7 ~ is not  a solution to (2.2) for t = 0 .  However ,  
if f e l l -1 (O)  and if one knows addit ionally that 7~  then H~(f2) can be re- 
placed by V in (2.3) by continuity,  and so in that  case (u ~ 0 ~ 7 ~ satisfies (2.2) 
for t = 0 .  The assumption that  7~  will be needed in the analysis below. Fo r  
fe l l - I([2) ,  this is assured by our  assumption that  f2 is a convex polygon,  for 
one has then the regularity estimate (cf. [7]) 

[lu~ + 110~ + Ib~ C Ilfll_ t, f e n - i  (f2). (2.5) 

Let  us write the above two plate problems more  compact ly  as follows: Given 
t > 0 ,  set Vt= V, Qt=Q if t > 0  or V'=H~(f2) ,  Qt=[H-I([2)]2 if t = 0 ,  and then 
find the triple (u t, 0 t, 7t)e V t x W x Qt such that  

~t(ut, Ot, Tt; v, ~p, ~)=(f, v), (v, cp, ~)e Vt x W • Q t, (2.6) 

where ~3 t is a bilinear form defined on IV t • W x  Qt]2 by 

St(u, O, 7; v, qg, ( ) = a ( 0 ,  ~p)- ( 0 -  Vu, ~)+(q~- Vv, 7)+ t2(7, (), 
(2.7) 

(u, 0, 7), (v, q~, ~)e V' x W x Q'. 

Then  if the space V t • W x Q' is supplied with the norm 

,~,,, f(ll~011z+(1/t) 2 I I~ -Vv t lg+ t  z ItCIIo2) 1/2, 
l i ly, ~o <,iii, = <t.(llvll 2 + ilml12 + 11~iI2 - 1 ) , /2 ,  

it is easy to see that  for all (u, 0, 7), (v, ~p, ~)e V t x W x Q', 

I~ , (u ,  0, 7; v, ~o, ~)1 _-< CIIlu, 0, 711h lily, m, gill,, 

and for all (u, 0, 7)e V' x W x Qt, 

sup ~,(u,  0, 7; v, m, ~)>clllu, 0, 7111,, 
(V, q~, ~ ) ~ V t  x W x Q t  

l i l y ,  ~.r 1 

if t > 0 ,  
(2.8) 

if t = 0 ,  

where C and c are positive constants  independent  of t. Thus the variat ional  
problem (2.6) is well posed in the usual sense [3]. In finite element analysis, 
however,  difficulties arise in this formulat ion,  first of all because the norm Iij" Nlo 
is ruled out  in finite element subspaces where only C~ is imposed, 
and secondly because the use of lit'lilt for small positive values of t leads to 
locking, i.e. no convergence rates are obta ined for simple schemes. Fo r  these 
reasons we choose to work below with a mesh dependent  norm which may 
be considered a compromise  between the two norms in (2.8). Fo r  other  
approaches,  cf. [9, 13, 17]. 
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We complete  this section by stating and proving some est imates relating 
the solut ion of (2.6) for t > 0 to that  cor responding  to t = 0 for given f e  H -  l(O). 
For  related estimates,  cf. [12]. 

Theorem 2.1. There is a constant C independent of  t and f such that if f e l l - 1 ( ( 2 ) ,  
the following estimates hold 

I10'- 0~ + t Ih" -y~  + I I / - y ~  2 < c t  ILfll- ~, 

Il u' - u~ ll 2 + Il O' - O~ {I o < C t2 Il f ll - 1, 

Proof. For  f e H - l ( ( 2 ) ,  (2.2) holds also at t = 0  (by our  assumpt ion  that  O is 
convex). Therefore  if t > 0, 

~ , ( u t - u ~ 1 7 6 1 7 6 1 7 6  (v, q o , ~ ) ~ V x W x Q .  (2.9) 

Setting here v = u t -  u ~ r = 0 ' - 0  ~ and ~ = y ' - 7  ~ we have 

a(O' -O ~ O'-O~ + t 2 I ly '-7~ 

= _ t 2 (yo, 7' - 7 0 ) < (t2/2) II yo II o 2 + ( t 2 / 2 ) I I / -  7 ~ II g 

and so by (2.1) and (2.5), 

I10'- 0~ + t I ] / - y ~  < Ct I l f l l - , -  

On the other  hand since by (2.9) 

a(O'-O ~ qo)+(o/-  y ~ r  qoeW, 

and since ]a(O,~o)l<C]lOlllllcpl[2 for 0,r it follows that  117'-7~ 
C l] 0 ' - 0  ~ 112. Hence,  the first par t  of  the assert ion follows. 

To  prove  the second par t  of the assertion we use a duali ty argument .  Fo r  
g e H-1((2)  and de  Q given, let (p, ~J, r/)e H~ (O)x  W x [ H - I ( ( 2 ) ]  2 be such that  

~o(V, ~o, ~; p, 4,, ~) 

=(v,  g) +((p, d), ( v ,~o ,~ )eH~(Q)xWx[H-2 (~2 ) ]  2 . (2.10) 

Then ~9 Vp and 

a(Vp, Vv)=(g, v)+(d, Vv), veH~(O), 

so by the regulari ty est imate (2.5) 

[ I P N 3 +  I t t / / l l 2~C( [ [g l l  1 + ][dHo)- 
Moreove r  

(,7, ~o)= -a(r ~)+(d, ~o), r W, 
s o  

Ilrlllo = sup [ - a ( O ,  ~o)+(d, (p)] 
~oEW 

!1~oll o = 1 

< C 11r + I!dllo (2.11) 

< C~(ltgll- 2 + Ildllo). 
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Choose now v=u' - -u  ~ tO = 0 ' - 0  ~ ~ = 7 ' - ?  ~ in (2.10) and apply (2.9) to obtain 

( u ' - u  ~ g)+ ( 0 ' -  0 ~ d)= --t2(~ 0, //]). 

By (2.11) and since I1~11o~ 11~~ Ilfll-~ ~C1 Ilfll i by (2.5) and by the first 
part of the theorem proved above, this implies that 

( u ' - u  ~ g)+(0 ' - 0 ~  d ) ~ C t  2 Ilfl1-2 (llgll-i 4-Ildll o), 

where C is independent of t, f g and d. Since this inequality holds for arbitrary 
geH-1(O)  and deQ, the second part of the assertion follows. []  

Remark. If ]l f l] - 1 is replace by Ilu ~ 3 in the first estimate of Theorem 2.1, then 
the assumption that u~ is sufficient for the validity of the estimate even 
on a non-convex polygonal domain. This is clear since we needed in fact 
only the assumption that the solution to (2.3) satisfies (2.2) at t=0 .  It is 
also clear that the second estimate of the theorem cannot be extended in this 
way. []  

3. FEM Approximation: The Basic Stability Conditions 

In this section we consider general finite element approximation of system (2.2). 
Let {cgh}o<h<ho be a family of subdivisions of ~2 into triangles T such that 
h=maxhr ,  hr=diam(T).  We assume the family {~h} to be locally regular in 

T e C  h 

the sense that if~ is any angle of any T r  h, then ~>~0,  where So is an absolute, 
positive constant. We make also the usual assumption that if TI, T2r ~h and 
if c~T~ c~T2 is non-empty, then c~T1 c~T2 is either a common side or a common 
vertex of T1 and 7"2. Finally, we assume that the parameter t, indicating the 
thickness of the plate, is related to h in such a way that 

t<=Chr, T6C( h, (3.1) 

where C is a constant. This means that the plates to be considered are "numeri- 
cally thin", see Remark 3.2 below. Below we let C, c, Ci and c i stand for positive 
constants independent of t and h. 

Assume now that to each cgh there are associated some finite element spaces 
V h c V, Whc W, Qh c Q, and S h c Vh X Wh in such a way that for all T ~  h, 0 < h < ho, 
and for some given k independent of h, V h l r c ~  k, W h t r c ~  2, and Q h l r c ~  2, 
where aM k stands for the space of polynomials of degree <k.  In analogy with 
(2.6) we may then define the finite element approximation of the solution to 
(2.2) as the triple (Uh, Oh, Yh)eSh X Qh which satisfies 

~t(Uh, Oh, 7h; V, (p, () =(f ,  V), (V, q~, ()eSh X Qh, (3.2) 

where ,N, is defined by (2.7). 
Equation (3.2) defines a mixed finite element scheme for solving the plate 

problem. Let us analyze this scheme following the lines of Babugka [2, 3] and 
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Brezzi [8] .  T o  this end, we supply first the space V x W x Q w i t h  a norm.  W e  
propose  here a mesh dependent  norm defined as 

�9 l . h j  

where ~]'13s. h, s e R ,  stands for a weighted L2-norm defined by 

rqCl3s.h={ ~ hfZSllffjl~,,r}~/2. 
T ~  h 

In order  to carry out  successful finite element error  analysis in this no rm we 
need in general the assumpt ion  that  the following two basic condit ions hold 
for some positive cons tants  C and c independent  of t and h [2, 3] : 

I~,(u,  0, 7; v, q~, Ol 
< C IHu, O, ~/G ljjv, q~, ~lIl~, (u, O, y), (v, ~o, Oe V x w x O, 

sup .~,(u, O, ~'; v, ~o, O> clllu, O, 7lIl~, V (u,  O, " / ) eSh  X Qh ,  
(l~, q~, ~)eSh x Qh 
Ill,,, e. ~I[lh = I 

(3.3) 

(3.4) 

We note  that  if y , ~ Q ,  then (7,0<I3?~l,h[qff~ ~,h and t2(7, if) 
<=CrqTS_ ~.h[3~[3-~,h by assumpt ion  (3.1). Therefore  condi t ion (3.3) holds, and 
we are thus left with condi t ion (3.4), which is the basic stability condi t ion for 
the finite element scheme (3.2). In general, the stability condi t ion (3.4) can be 
verified only after specifiying the finite element spaces in more  detail. However ,  
even wi thout  doing this we can split the stability condit ion into simpler condi- 
t ions in the spirit of  Brezzi [8]. The following splitting result turns out to be 
useful. 

Theorem 3.1. Suppose that for some positive constants c and C, the Jbllowing 
two conditions hold: 

a) For each (u, O)~S h, there is ~eQh such that 

D~lq2_l.h <C(llOllff +I-IO--VuI3~.h) and (O-Vu,  ~)>cl30-VuB~.h-CltOll ft. 

b) For each 7EQh, there is (v, q))eSh such that 

II~orl~ +B~o-Vvl3~,h <CByB~ l,h, and (q)--Vv, 7)> cDT[~2-l.h. 

Then (3.4) holds. 

Proof Let (u, 0, y)eS h • Qh be given. Then  by condi t ion a), there is peQh such 
that  

VlpVI2_a.n~C(IIOIL~+BO-VuB~.B, (O-Vu ,  p)>cBO-VuUt2 h-CllOIt ft. 

Similarly, by conduct ion  b), there is (w, ()eSh such that  

IJ~ll~ +~--Vw[~ff ,  h <C[37[?2-1.h, (~--Vw, y)>crlyD2-I,h . 
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Set now (v, ~p, {)=(u, 0, y)+a(v, ~, - p )  where 6 > 0  is so far unspecified. Then 

N,(u, O, ~; v, ~o, O>=a(O, 0)+ t  2 I1~'11~ 

+ c,51~0- Vurq~. h -  C,5 IION 1 ~ 

+ c,s[~yO 2- L h + ,sa(O, ~) 

--,5 t2 (~, p)- 

Upon using here the inequalities 

laa(O, ~)t < C, (3110111 {1~ llz <(c6 /2 )~0  2- ~. h + C2,5 IlOl]~ 

and 
1,5 t2(y, p)[ ~ C 3 ,5 Vlpgl_ 1, h t Ilyllo 

( t2/2) It y 1[ g + C4 ,52 D0 _ ~7u02" h -~- C4 ,52 [101[ 2 

it follows that 

~t(U, O, ~o; U, (p, ~)_~(C 1 -C,5-C2,5-C4,52) 110112 
+ , 5 ( c - C 4 a ) D O -  Vulq2 ~ 

+ (C ,5/2) ~y~2_ 1. h + (t 2/2) ]1 a/I] O 2 

and thus 
~,(u, o, ~; v, ~o, O >  c~lllu, o, 71ILL 

if 6 is small enough. Together with the fact that J I I v, q~, ~J]lh < (1 + C,5) I Ilu, 0, y I lib, 
this completes the proof. [] 

Remark 3.1. Condition a) of Theorem 3.1 holds in general if Qh is sufficiently 
large compared with V h. Assume for example that Qh={~eQ: ~ITEQ T, Te~h}, 
where for all T@(~ h, Q r ~ N z |  veVh}. Then if (u, O)eSh is given, once 
can choose (eQh so that (ir=hr2(rCh O-  VU)IT, Te~g h, where ~z h stands for the 
L2-projection into Qh. Then 13~D_l.h<[-lO--Vu~l,h+I-lO--~hO[-ll.h and 
(0-- Vu, ~ ) = ~ h 0 -  Vufl2 h>=(1/2)DO - VuO2 h--NO--TthOU2 h. On the other hand 
since Q r ~ 0 2  V TeCgh, standard approximation theory implies that 
IlO--~hOllo, r<ChrlOI1 ,  r V Te~g h. Thus ~O--rrhODl.h <=C 1011, and accordingly, 
condition a) holds. 

Regarding condition b), this holds in general if Sh is large enough compared 
with Qh. This is often not the case a priori. However, in practive it is easy 
to force the condition by enriching the space Wh with suitable "bubble" functions, 
see Sect. 4 below and cf. also [17] where similar techniques are proposed for 
a higher-order scheme. There is also a way of avoiding stability condition b) 
by modifying the bilinear form N,, see Sect. 4 below. [] 

We close this section by characterizing the norm [I]'[]lh in the finite element 
subspaces. We need here some additional mesh dependent (semi) norms analo- 
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gous to those introduced in [4]. Let ( e Q  be such that ~Ire[HI(T)]  2 for all 
T c ~  h and let vc V be such that VlTeH2(T) for all T c ~  h. Then set 

2 l ]C],.h= ~ {l~lJ.r+h~2 ~ l[~3[2ds}, 
Te~h (?T\Of) 

where [{] denotes the jump of ~ across c? T, and let 

tvl2,~=lVvl~,h, IIvlI2,~={[IvlI~+IVl2h} x/2- 

Then we have 

L e m m a  3.1. There is a positive constant c such that Jbr all (v, ~o, ~)~Sh x Qh, 
lily, q~, ( l l l~>c IIvl[2.h. 

Proos Since lilY, q), ~111~, > Ilq)[12+h~ 2 II~o-Vvl[o 2, it follows that lilY, ~0, ~ll[,, 
>cllv[[~. On the other hand, by simple local inverse estimates fq)--Vvl~.h 
<CUq~-  VvU~. n if(v, ~P)~Sh, so 

lVt2, h <i(o--~Tvll.h +tq)l~,h <Cfl~O--VV[31,~ +tq~i~, (V, q))eSh- 

Upon combining these estimates, the assertion follows. []  

Remark 3.2. Assume that the stability condition (3.4) holds and that 
(Uh, Oh, yh)eSh X Qh is the solution to (3.2). Then it follows from Lemma 3.1 that 

where 
II Uhll 2, h+  ll0hll 1 + 0~h~-, ,  h~  C Ilfl1-2, h, 

(J; v) 
: sup 

[Ifll-2,h cv.~0)~sh Ilvllz,,, 

This may be viewed as the discrete analogue of the basic energy estimate (2.4) 
corresponding to the Kirchhoff plate model. This confirms that so far as condi- 
tion (3.1) holds, the plate should be considered "numerically thin". On the other 
hand if (3.1) is violated, estimate (3.3) and Theorem 3.1 still remain valid provided 
that the underlying norm t3" fix�9 h is redefined by 

�9 IICIIo. T- FlU 12 h = ~ [max (hT, t)]-  2 s  2 

TE~h 

In particular in the "numerically thick" regime where hT< t V Tff~h, the norm 
[ll'tllh then reduces to the natural energy norm [[1" ][1~ of the continuous problem, 
as defined by (2.8). []  

4. S o m e  L o w - O r d e r  S c h e m e s  

We apply now the techniques of the previous section to analyze some relatively 
simple methods for solving the plate problem. The methods to be considered 
are all based on a single finite element which we first introduce. 
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If T~Co ~h, let 

{ 3 3 o} 
~uT= peY-~3:6p(a~ ~ p(al)+ ~ Vp(a i ) ' ( d - -a~  = , 

i=I  i=1 

where a ~ is the midpoint and {a 1, a 2, a 3} a r e  the vertices of T. Then ~ f ' r ~ z  
and for the degrees of freedom of ~ T  one can take the set {v(al), Vv(ai); i 
= 1, 2, 3}. The finite element so obtained is usually referred to as the Zienkiewicz 
triangle [11]. We construct now another element by setting 

0~ T =  {(p, q)e"V -T X ~ 2 :  q(a i) = Vp(ai), i=  1, 2, 3} 

and choosing for the degrees of freedom o f ~  r the set ar  = {p(ai), q(ai); i=  1, 2, 3}. 
The resulting element {T, y/r, aT } is similar to the Discrete Kirchhoff triangle 
discussed in [6]. Below we use this element as the basis of approximation 
schemes. 

To define our approximation schemes we need the following subspaces: 

Yh-~- {(?,), q))u=_ V x W: (D, (p)[Te@ IT V Tffc~h}, 

Q h = { ( e Q :  (iTeg~g V Te~h} ,  

Bh={~oeW:  q~ l rC~  d and pl0T=0, V TeC~a}. 

We note that if (~0, v)e Yh and if x is a vertex of triangulation cgh then Vv is 
continuous at x and the "discrete Kirchhoff condition" q~= Vv holds at x. In 
fact, we could define Yh alternatively as 

= {(v, q~)e V~ x G :  ~0(x)= Vv(x), xeZh}, 

where ~h is the set of vertices in triangulation cgh, and the subspaces V h c  V 
and Whc W are defined as 

Vh={ve V: r i t e #  r V T e ~  h and Vv is continuous at Xe~h},  

W h = { e f f W :  (,01Tff~ 2 VTffC'ffh}. 

Assuming that the space Ya is constructed in terms of the finite element 
{T, ~ r ,  aT}, the natural degrees of freedom of Ya are {v(x), q0(x): Xe~h\(?(2}. 

The "bubble"  space ~a is needed only in the formulation of the first finite 
element scheme below. As will be seen, the "bubbles"  have the effect of forcing 
the stability condition b) in Theorem 3.1. 

In the above notation, our first finite element scheme is the following: 

Scheme I. Set Sh= YhG{O} • Bh. Then find (Uh, Oh)•Sh which minimizes in Sh 
the functional 

F(v, ~p) = a((p, (p) + t - 2 ((nh(q) _ Vv), nn((p -- Vv)) - 2(f, v), 

where nh: Q ~ Qh is the L2-projection into Qh. 
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We note that if (Uh, Oh)=(Uh, tPh)+(0, Ch) where (Uh, Oh)e Yh and ~heBh, then 
Scheme 1 corresponds to solving the system 

a(4'h, ~o)+t-2(~h(4'h+~h - VU~), ~h(~0-- VV)) =(f ,  V), (V, q))e Yh, (4.1) 

a(~h, l ~ ) q - t - 2 ( 7 ~ h ( ~ l h - ~ h  - ~7Uh) , TCht'])=O , r] f fB  h. (4.2) 

Here we have taken into account the fact that for any rl~B h and ;s 

so in particular a(q0, r/)=0 whenever rlCBh and ~o~ Wis such that q)[rEJJ~, TEc( h. 
Let us solve (4.2) for ~z h ~hlr on a given T e ~  h. To this end, let (p~e W and 

q02~ W be defined on f2 so that q)~(x)= 0, i=  1, 2, if x e f 2 \ T  and (plr(x)=(p(x), O) 
and qo~'(x)=(O,p(x)) if x~T, where pe.~ 3 is such that Plor-O and ~ pdx  

r 
- a rea (T) .  Further let A be a symmetric 2 x 2 matrix defined by 

A = (a(q~-, tp~.))i.j= 1, a. (4.3) 

Then if ( T C h~ h) ( X ) ~ (~ l ,  ~2) and ~h(Oh--VUh)(X)--(ZL,Z2) on T, it follows from 
(4.2) that 

[ (~]=[- - I+t2(area(T) I+t2A)-~  A][~:] (4.4) 

where I denotes the 2 x 2 identity matrix. 
Upon collecting the local Eqs. (4.4) we obtained a global relationship of 

the form 
r~h ~h = -- rOb(Oh -- VUh) + t 2 Ah 7rh(Oh -- VUh), (4.5) 

where Ah: Qh ~ Qh is a linear operator. Inserting then this expression into (4.1) 
we obtain a scheme for computing (Uh, tPh) directly. Now, knowing (Uh, Oh) we 
may either compute ~h from (4.5), or simply ignore ~h and let (u,, Oh) take 
the role of the finite element solution. Noting that Ah is a symmetric operator 
in Q (since matrix A in (4.4) is symmetric), the latter simplified scheme is the 
following: 

Scheme 2. Take Sh = Yh. Then find (u~, Oh)~ Sh which minimizes in Sh the functional 

f (v, q))= a(q0, qO)+(Ah T~h(~O - Vv), rCh(qO-- Vv))-- 2(f, v), 

where Ah: Qh ~ Qh is defined as above. 
Let us now generalize Scheme 2. We note first that by (4.3) through (4.5) 

and by the assumption (3. I), operator Ah in (4.5) satisfies 

C~] .h>=(A~, ( ,  ()>- c ~ I ~ ,  h, ~ffQh- (4.6) 
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It turns out that Scheme 2 always works if Ah: Qh--~ Qh is a symmetric opera- 
tor satisfying (4.6). The simplest choice is then such that 

Ah~LT=CThT2 ~I T, T~c~ h, 

where c < CT_--< C for some fixed constants c and C. The resulting scheme then 
takes the following form: 

Scheme 3. Find (Uh, Oh)eSh := Yh which minimizes in Sh the functional 

F(v, ~o)=a(qo, q))+ ~ CTh~. 2 ~ I~h(q~-- Vv)f2 d x - 2 ( f ,  v), 
T e ~ h  T 

where 0 < c <= CT < C for some fixed constants c and C. 
We obtain still another  scheme by simply dropping the projection 7t h from 

the shear energy term of the functional in Scheme 3. This final " t r i ck"  in fact 
brings the scheme close to the original proposal by Fried et al. [14]. 

Scheme 4. Find (Uh, Oh)~Sh"= Yh which minimizes in Sh the functional 

F(v, q~)=a(q~, q))+ ~ c r h 7  2 ~ I~o-VvlZ d x - 2 ( f ,  v), 
Tf f~  h T 

where 0 < c < cr  < C, for some fixed constants c and C. 
We carry out below the error analysis of the above four schemes. Since 

we have imposed discrete Kirchhoff conditions in the finite element subspaces, 
it is natural to compare  the finite element solution (uh, Oh) first to the exact 
Kirchhoff solution (u ~ 0~ An estimate relating (Uh, Oh) and (u ~, 0 t) is then 
obtained applying Theorem 2.1. The main result of this section is the following, 

Theorem 4.1. Let (Uh, Oh) be defined by any of  the above .four schemes. Then 
we have the error bounds 

Ilu~ h + Il O0 -- Oh ll l ~ C h II.f II- t, 
and 

Ilu~ 1 + I lO~  2 I lf l l -  l- 

By combining these estimates with those of Theorem 2.1 we have: 

Corollary 4.1. Under the assumptions of  Theorem 4.1 one has the error estimates 

]lOt--Ohlll <=C(h+t) I l f l l -  1, 
and 

[lut--Uhl] l § I] O'--Ohllo < f (h2 + t2) I l f r l - l -  

The rest of this section is devoted to the proof  of Theorem 4.1. We start from 
the closely related Schemes 1 and 2. The first task here is to formulate Scheme 1 
as a mixed method of the type (3.2). This is in fact easy: If (Uh, Oh)=(Uh, Oh) 
+(0, ~h), where (Uh, I~h) e gh and ~hGB h satisfy (4.1) and (4.2), and if yh = t 2 ~T~h(O h 

-Vuh), then the triple (Uh, Oh, ?"h) satisfies (3.2). The main task is now to verify 
that the stability condition (3.4) holds. We apply here Theorem 3.1. 
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Let us show that condit ion a) of Theorem 3.1 holds. To  this and, let us 
split the local finite element subspace ~,r, for a given T c ~  h with vertices 
{a', a 2, a3}, as q~/r='?g]'| where 

q~4]'= {(p, q)e~,~lT: q = 0  or qe~0  z and p(a')=O, i =  1, 2, 3}, 

o~]'={(p, q)~.c~tT: p(ar i =  1, 2, 3, ~ qdx=O}.  
7" 

Further  set 
W f  ={w=q--17p:(p,q)er i = 1 , 2 .  

Then it is easy to see that W T is two-dimensional  and that  the mapping w 
]] ~T w ll 0. T, where nT denotes the local averaging operator :  

(~TW)(X)=(1/area(T)) ~ wdx,  xeT,  w~[Lz(T)] 2, (4.7) 
T 

defines a norm in W]. Thus in particular, 

II~TWJlo, T>CllWllo, T, weW1 r. (4.8) 

On the other  hand since the mapping (p, q)--*tq]l, T obviously defines a norm 
in ~T,  which is equivalent  to the norm 

3 "1 1/2 ( --~I ] I/2 
(P, q) ~ [Vp(ai)] z 

i= 1 i= 

it follows in part icular  that 

h r  ' I lq -  Vpllo, r<h~  1 Ilqllo. r +  h~ ' l! VpNo, r 
(4.9) 

<=Clqtl.r, (P,q)~q~/f- 

Let now (PT, qr) eqr be given and let (Pr, qr)=(P~ ), q~))+(P~, q~.2)), where 
,.(/) , , ( i ) ~ l r  i = 1 , 2 ,  and let ~ r = h ~ 2 n r ( q ~ ! - V p ~ ) ,  where n r is defined by FT~ r c "~i , 

(4.7). Then by (4.9) and since ]q~)ll, r = Iqr{1, r, 

h2 ]1 ( r  112 7" < 2 h r 2 {[I q r -  VPr [12 r + [I qP) - VP~ ~112 r} 

<= C { h r  2 I lqr-  V prll 2, r+ lqrl 2, r}, 

and by (4.8) and (4.9) 

( q r -  17pr)" ( r  dx 
T 

~ h r  2 ]]nr(q~!)-- 17p(7!))112 T--hT 2 Ilq~ !~- VP~!)Ho. 7 ][q~)-- VP~)][o, "r 

~chTr2 Hq~) - 17p(7!)N 2 2 o.r--CIqTIl ,r  
2 2 

>=Cl h r  2 I IqT- -  ~7p'rllo, T - - C 1  [qrlt, r .  
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Therefore  assuming that (PT, q r ) = (  u, ~)IT, Teeth, for a given (u, tp)eY h, and 
defining (eQh so that  ~IT = ~T, Teeth, we conclude summing the above inequali- 
ties over  T that  

003 ~- 1, h <= c(O~'-- V uO~,, h +]~'112) 
and 

(~-- Vu, O> cnO - VuO~.h--Cl~l~. 

Now if finally 0 = @ + ~ where ~ ~ Bh, these inequalities imply further that  

<= c1 (oo- rude, h+ 101~), 
and 

( 0 -  Vu, O> eOq,-  VUD~.h--CI~'I~--D~O,.hDO]_ ,.h 

> c2 00-  VuO~,h-C210112. 

Hence, condi t ion a) of Theorem 3.1 holds if Sh = Yh| {0} • B h. 
Condi t ion  b) is more  easily verified: Given ~eQh, let ~eBh be defined so 

that rc h ~IT = h2 (I r ,  Teeth. Then  the choice (v, q~)= (0, ~) yields the desired inequa- 
lities in condi t ion b). 

Having thus verified that  the stability condi t ion (3.4) holds, we can now 
prove the error  estimates of  Theorem 4.1 for Scheme 1. First, compar ing  (2.2) 
with t = 0 and (3.2) we have 

~t~t(Uh--uO , Oh--O O, ~)h--yO; V, q), ()= --t2(7 0, ~), (V, q ) ( ) e S  h • Qh, 

and therefore for any (~, ~, ~)eSh x Qh, 

~,(Uh--fi, Oh--O, 7h--~; V, q0, () (4.10) 

=~,(u~176176176 (v, ~o, 0~s~  x O~. 

Now since (3.4) holds, we may  choose here (v, ~o, 0 so that  lily, qo, ([1t~ = t and 

~,(ua-~, Oh-O, ~--'7, v, q~, 0 >  cllluh--~, 0h--0, ~'h--~7111h. 

To estimate the right side in (4.10), we take ~ = 0  (or ~ = n h y  ~ and let fieV~ 
and Oe W~ be the natural  interpolants  of u ~ and 0 ~ respectively. Since 0 ~ = Vu ~ 
this choice guarantees  that  (~, 0")e Yh. Applying then the s tandard  interpolat ion 
error  estimates (cf. [11, 4]): 

II0 ~  011o + h II 0 ~  Oil, ~ C h 2 10012, 

Ilu~ +h Ilu ~ -ulI2, h <= Ch2 lu~ 
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and recalling (3.3) and (2.5), we have 

ij~,(uO_t~, 0 o _ o ,  yo_oy; v, co, 01<  Cl l lu~  0 ~  y ~  Ftllh lily, ~o, ~lll~ 

= CII lu~  0 ~  ~7, 7~ 

< C ~ h l l f l l  ~. 
Finally by (3.1) and (2.5) 

t2 t(Y ~ ()t < C t Ity ~ tl o ~[3 - ~. h < C, h tl f It - ,. 

Combining now these inequalities, we see that 

tl[Uh -- ~, Oh--O, Yh -- ~ll[h ~ C h Il f ll - ~ , 

and thus by Lemma 3.1, 

]}Uh --lilt2, h+ ]]Oh-- (JIl i <= C h I1 fll - I - 

Using finally the triangle inequality and recalling the above interpolat ion error  
estimates, we obtain the first part  of Theorem 3.1. 

The second part  of Theorem 3.l follows, from the same type of duality 
argument  as that  used in the proof  Theorem 2.1. We omit the rather s tandard 
details here, and thus consider Theorem 4.1 to be proved so far as (uh, Oh) 
is determined by Scheme 1. 

To  see that Theorem 4.l covers also Scheme 2, let (u h, Oh)CSh and (tL 0")e Yh 
be defined as above  and let (uh, 0h)=(uh, tPh)+(0, (~), where (u~, Oh)e Yh and 
~hff Bh.  Then  

and 
II0h--0"112 > c(H4,h--0112 + IIGIl~)>c II0h-- 0"112, 

so the estimates obtained above remain valid if Oh is replaced by ~h, and thus, 
Theorem 4.1 holds also for Scheme 2. 

Consider  now Scheme 3. We may interpret also this scheme as a mixed 
method of the type (3.2) by defining Yh~Qh as follows: 

Y h l T = C r  h T  2 7~h(O h --  VHh)]-I, , T c ( ~  h. 

The triple (Uh, Oh, 7h) then satisfies 

where 
~h(Uh, Oh, ~'a; V, qO, () = ( f ,  V), (V, ~0, O~Sa x Qa, (4.11) 

~h(U, O, y; V, ~0, 0 = a ( 0 ,  ~o)--(0-- Vu, ~)+(r Vv, ~,) 
(4.12) 

+ ~ (1/cr) h~. ~ 7 ( d x .  
7"e~ h T 
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We now have to verify that the basic conditions (3.3) and (3.4) hold when 
N, is replaced by the bilinear form (4.12). First, it is obvious from (4.12) that 
so far as c[>c>O,  

[~h(U, 0, ?; V, ~0, ~)[ (4. t3) 
~Clllu, O, TI[Ihlllv, q~,~[tlh, (u,O, 7),(v, qo,~)~Vx WxQ,  

so the first condition holds. To prove the second condition, we argue as follows: 
Given (u, O, ?)eSh x Qa, pick first peQh so that lqpl3~ a.h < C(llOIt~ +130- Vul-lff ,,) 
and (0-17u, p)>c[30-VuD 2, h--C 1101112. We know the existence of such p from 
the analysis of Scheme 1 above. Then taking (v, q), ff)=(u, 0, ?)-15(0, 0, p), where 
15>0 is so far unspecified, we have lily, q), ffl]lh<(1 +C6) tltu, O, 7111h and 

~h(u, 0, 7; v, q~, ~) 

~(c-C15) ItOll~ +c15DO- VuDff h +cB702~ a.h-COBTI~- ~.hBP[~ ~.h 

(C - -  C 15 - -  C 1 152)II 0 N 2 _1_ 15 ( c  - C 115) ~ 0  - [7b/~ 2, h "-}- (c/2) 137132_ 1, h 

_>_c~ Illu, O, ?III 2, 

if 6 is small enough. Hence the desired condition holds: there is a positive 
constant c such that 

sup 
(v, q), OeSh  x Qh 

~ ( u ,  0, 7; v~0, ~) _-> cl[[u, 0, 7[rlh for all (u, O, 7)6Sh X Qh" (4.14) 

Having established the basic conditions (4.t3) and (4.14), the error analysis 
of Scheme 3 is simply a copy of that of Scheme 1. We omit repeating these 
details and consider instead Scheme 4. This scheme can also be written in the 
form of (4.11) by simply choosing Qh to be sufficiently large so that if 7hit 
=h~2(0h - VUh)jT, T~Cff h, then 7heQh. The triple (Uh, Oh, Yh) then satisfies (4.11). 
One can choose for example 

With these preparations, the error analysis of the scheme is identical with that 
of Scheme 3. The proof of Theorem 4.1 is now complete. 

Remark 4.1. We point out that Scheme 1 and Scheme 3 represent two different 
philosophies of stabilizing a finite element scheme: In Scheme 1 one forces 
the stability condition b) of Theorem 3.1 by supplying the finite element with 
"bubbles" (which have no role in the sense of approximation theory), while 
in Scheme 3 the stability of 7h is achieved by modifying the bilinear form. For  
further applications of these techniques of stabilization, cf. [10, 20] and the 
references therein. []  

Remark 4.2. As is clear from the analysis of Schemes 1 through 3, the discrete 
Kirchhoff conditions are required here for the stability condition a) of Theorem 
3.1 to hold. This is not the case in Scheme 4, however, since for sufficiently 
large Qh the condition is bound to hold for any choice of Sh (see Remark 3.1 
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above). Thus, Scheme 4 works also if one takes for example Sh= Vh X Wh. In 
fact, in case of Scheme 4 the error estimates of Theorem 4.1 hold for any choice 
of Sh such that the following approximability condition holds: Given 
ueH3(s'2)~ H2(f2), there exists (~, O)eSh such that 

and 
Ilu-~l12, h + II Vu-OlF1 ~ Ch Ilull3, 

Ilu-~ll x + IlVu-~llo~Ch 2 Ilul[3- 

Note that these conditions can hold only if the interpolation polynomials for 
the transverse deflection are quadratic (at least). This requirement is in fact 
the basic reason for ruling out the "simplest" schemes where both u and 0 
are interpolated by piecewise linear functions. [] 
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