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Summary.  The solution of the Stokes problem is approximated by three 
stabilized mixed methods, one due to Hughes, Balestra, and Franca and 
the other two being variants of this procedure. In each case the bilinear 
form associated with the saddle-point problem of the standard mixed formu- 
lation is modified to become coercive over the finite element space. Error 
estimates are derived for each procedure. 
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1. Introduction 

Consider the Stokes problem 

- I~A~I+Vp=j 7 , xe~2, (1.1 a) 

div (7/=0, xef2,  (1.1 b) 

g/=~, xe+')f2, (1.1c) 

where f~ is a bounded domain in R k, k = 2  or 3. A mixed formulation of (1.1) 
is given by the finding of {~, p} e/~o 1 (f2)x (L 2 (f2)/R) such that 

where 

a(q, f ) - ( d i v  ~, p )=  (~,, ~ ,  fe/?o~ (Q), 

(div q, w) = 0, w e L 2 (Q), 

k k 

a(q, ,7)=/* ~ (Vqi, Vvi)=l~ ~ (Oqi/c~x3, (')vi/c~xj). 
i= l  i , j - 1  

(1.2a) 

(1.2b) 
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A standard mixed method for approximating the solution of (1.2) would 
depend on choosing a pair of spaces Vhc/t~(f2) and Whc L2(f2) such that the 
"inf-sup" condition 

(div ~, s) > ~ > 0, inf sup = 

c~ independent of h, holds. As can be seen in the very recent book of Girault 
and Raviart [2], there are quite a few such spaces known for this problem; 
however, most of these combinations employ some basis functions that are 
not found in many of the engineering code packages that are most commonly 
used. For this reason it can be convenient to modify the form of (1.2) so that 
the associated bilinear form is coercive over Vhx Wh; then, almost any pair 
of spaces can be chosen for Vh x Wh, and the resulting method can be imple- 
mented easily and rapidly within the framework of many existing engineering 
codes. 

Hughes et al. [3] proposed to modify the saddlepoint problem as follows. 
Let Jhh denote the polygonalization of f2 into polygons T of diameter roughly 
equal to h. Let Wh~HI(f2), rather than L2(f2), and test Eq. (1.la) against Vw, 
wE Wh, over each "triangle" Te~h, multiply the result by a (small) multiple 
of h~=(diam T) 2, and add their sum over triangles to (1.2b). Thus, their method 
consists of finding {qh, Ph} e ~ X W h c / t ~  (O) x H~(g2) such that 

a (C~h, t3)- (div ~, Ph)= (.~, v-'), ~Se Vh, 

(div Oh, W)+C~ ~ h~-[([Tph, [TW)r--(d ~h , [TW)T ] =o~ 2 h2(~ VW)T, 
T T 

wEWh, 

(I.3a) 

(1.3b) 

where the subscript T indicates that the inner product is to be extended over 
the set T only; in (1.3) and below, we assume a scaling such that the viscosity 
p equals one. 

The constant ~ should be chosen so that the bilinear form 

A({0, p}, {5, w})= a(~, b')- (div 5, p)+(div ~, w)+a  ~ h~[(Vp, VW)T--(Agl, VW)T] 
T 

is coercive over Vh x W h with respect to the norm 

[llqlll2 + ~ h21[ 2 1/2 Vpllo. r] (1.4) 
T 

This can be done as follows. Assume a shape regularity for .~  (i.e., assume 
that the ratio of the diameter of the circumscribed ball for T e ~  to that of 
the inscribed ball is bounded, independently of Te ,~  and h=max{diam T: 
Te,~}). Then, whenever ~ and Wh consist of C~ polynomial spaces 
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of fixed degrees over ,~  and if the boundary condition (I.1 c) holds on Vh, 
there exists a constant Q such that 

A ({q, p}, {g/, p}) = a (0., q) + c~ y" h 2, [(Vp, gp) r - ( d  7q, Vp)T] 
T 

> a (q, q) + c~ ~" h 2. [( gp, 17p) r - Q h ~. ~ II e q II o. 7" II Vp 1} o. r] 
7" 

> (1 _ �89 Q2) ii v0l]g +!c~ v h2 2 2 ~ T H [TpH0.  T - 
r 

Hence, we have the desired coercivity, in fact over Vh x H ~, for small ~. 
Two observations can be made easily. First, the coercivity over Vh x Wh 

implies immediately the unique solvability of (1.3), without the imposition of 
an "inf-sup" or related condition. Second, (1.3) is not a penalty procedure, since 
the solution of the differential problem (1.1) satisfies the equations of (1.3); conse- 
quently, no loss in accuracy with respect to the natural norm (1.4) or those 
given in a duality argument should be expected. These two points, and the 
accompanying convenience in the choice of approximation spaces Vh X Wh, were 
the prime motivations for the introduction of (1.3) by Hughes, Balestra, and 
Franca. 

The remainder of the paper consists first of an analysis of the convergence 
of the solution of (1.3) to that of (1.1) in Sect. 2, the presentation in Sect. 3 
of a technique for piecewise-linear Vh and Wh for which the terms involving 
(AYqh, [TW)T and (f, Vw)r  are dropped, the presentation in Sect. 4 of a variant 
of (1.3) in which certain of the added terms are replaced by ones on boundary 
triangles. The proofs in Sect. 2 are simpler than the corresponding development 
in the paper of Hughes et al. [3], and the results are slightly more general, 
in that they include L 2 estimates for the error. The method of Sect. 3 is a penalty 
procedure and the results obtained here simplify and generalize earlier results 
for the same method obtained by Brezzi and Pitkfiranta [1]. We point out 
that this method introduces a penalty error of order O(h) independent of the 
choice of the discretization space; consequently, though the use of higher order 
spaces is feasible for the method without stability problems, such usage is not 
recommended. The method of Sect. 4 is possibly a bit cheaper computationally 
than (1.3) and maintains the same error estimates. 

The concepts introduced by Hughes et al. [3] can be applied to other mixed 
finite methods, such as for second order elliptic equations and for the equations 
for linear elasticity. In the case of the second order elliptic equation, nothing 
very useful seems to be gained; however, for the elasticity equations convenience 
in the choice of approximation spaces does result, though at perhaps an increased 
computational cost over the application of mixed spaces designed for the prob- 
lem. Neither of these applications will be discussed further here. 

2. Analysis of the Error in the Method of Hughes, Balestra, and Franca 

Consider first the case of a convex polygonal domain, let Vh consist of 
C%piecewise linear vector functions over a triangulation ,~ consistent with ~?f2 
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and vanishing on c3f2, and let Wh consist of C~ linear functions over 
the same ,~.  The coercivity of A over ~'h X W h implies the existence and unique- 
ness of a solution {g/h, Ph} to (1.3). Let {~, s} e Vh x Wh be an optimal order correct 
interpolation of {~, p}. Now, subtract (1.3) from (1.2), shift {g/, p} to {~, s}, and 
integrate the term (div g, g/-~) by parts: 

a(f--g/h,g)--(divg, s - -ph)=a( f - -g / ,g) - - (d iv~,s - -p) ,  g e ~ ,  (2.1 a) 

(div (~ - g/h), W) + ~ ~ h 2 [( V(s -- Ph), Vw)r -- (A (f--  g/h), V v)r] 
T 

=(g/-? ,  V w ) + ~ h ~ [ ( V ( s - p ) ,  Vw)r--(A(f--g/), Vw)r ] , w~W h. (2.1 b) 
T 

Take Z3=f--g/h and w=s- -ph;  add the equations and use the coercivity of A 
over Vh x Wh and the regularity 

IIg/lI2+ IIPlI1 ~ Q  Ilfllo (p normalized so that (p, 1)=0) 

of the Stokes problem on the convex polygon ~2; it follows that 

p EII~-g/hl112 + Y', h 2 II V ( s -  Ph)ll 02, r] 
T 

=< a (?-- g/, ?-- g/h) + (div (~-- g/h), P -- S) + ( g/ -- ~, V (s -- Ph)) 

+ C~ ~ h 2 [(V(s -- p), V(s-- Ph))r-- (A (?-- g/), V(s-- Ph))T]. 
T 

(2.2) 

Let the shape regularity condition on Yhh be expressed by the inequality 

IIVZllo, r < Q h r  I IIZIIo, T, z~Wh; (2.3) 

the analogue of this inequality is valid on Vh as well. A simple calculation 
shows that, for e small enough 

I1~- g/hll a + [ ~  h 2 tl V(p--Ph)ll 2, T] 2/2 
T 

< Q { I]g/--Fll2 + llp-- sl{~ + ~ [hrZ llg/--fll ~, T + h211g/--FIl~, T + h2r tl V(p-- s)llg, r] } ~/2 
T 

<Q Ilfllo h. (2.4) 

A very similar argument shows that 

11 g/ - g/h 112 -t- [ ~  h 2 ]l V (p  - Ph) t12 O,T]'/2<Q{llg/llj+ l + IIPlIj} hJ, 
T 

(2.5) 

when the shape regularity condition holds for gh and the space Vh X Wh is chosen 
to be of the form 

Ph={geC~ glrePm(T), TeJhh}, m>=j, 

Wh={w6C~ WlreP.(T), T~9-h}, n > j - - 1 .  

(2.64) 
(2.6b) 
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Note  that  the error  es t imate (2.5) is not  given in terms of the da ta  function 
f ;  a polygonal  doma in  does not lead to a shift theorem that  bounds  ll011j+l 
and Ilpllj in terms of IlYlIj-,. For  a smoo th  bounda ry  the shift theorem is valid; 
however,  it cannot  be expected that  the bounda ry  condi t ion 0h = 0 can be applied 
on Ph. It is possible to define a procedure  over  a space Vh c / ~ I  (f2), rather  than  
/4~ (f2), by in t roducing a me thod  based on ideas cor responding  to those discussed 
by Nitsche [4] for the Dirichlet p rob lem;  however,  we shall not treat  this exten- 
sion here. 

Let  us turn to error  est imates in L2(s with s being polygonal  and convex 
and Vh x W h being given by (2.6). We wish to prove  the following theorem. 

Theorem 1. Let ~ satisfy (2.3). Then, 

l i 0  - qhll o < (2 { ll(7/ilj+ 1 + It Pit j} h j + 1. 

Is in addition to the shape regularity of  Jn required by (2.3), there exists a positive 
constant 7 such that h r >  y h ,for T e ~ ,  then 

l ip-philo < Q {ll(7/lll+ 1 + IIpll2} hi- 

Proof. Consider  [Lq- qhl[ 0 first. Let 

--dpj-Vff=O--Oh , xE~, 

div 6 = 0 ,  x~f2,  

/5 =~ ,  xe(?f2, 

so that  11/5112+ IlallI <(2 114- 4,,110- Then, 

]10- 0hll 2 = ( _  d/5 + Va, O -- Oh) = a (q-- Oh,/5) - -  (div ( q -  Oh), a) 

= a (q -- Oh, fi -- (5) -- (div (q - Oh), a -- z) + a (q -- Oh, (5) -- (div (0 -- qh), z) 

for {05, z} e Vh x Wn. First, 

la(O--qh,/5--(5)--(div(0--0h),  a- -z ) f  < Q 114- 4hll i [11/5--(5111 + Ila --~110] 

< Q  hllO-qhll~ Itq-ohllo 

for proper ly  chosen (5 and  r. Next,  

a (q - Oh, (5) = (div (5, p -  Ph) = (div ((5--/5), p -- Ph) = -- ((5 --/5, V(p -- Ph)) 

IIV(p-Pn)IIo. T~ �9 <= Q h llq_qhllO {~" h 2, 2 ~,1/2 
T 

Finally, 

- (div ( q -  Oh), Z) = C~ ~" h~- [(V(p-- Ph), Va + V(z -- a))r--  (A (q - ~ + A ( f -  Oh), Vz)r] 
T 

Ph)llo. r +  I lq-r l l2.  r])  - <Qhl lq_qhl lo{ l l~_Ohl l ,  +(y ,  h2[ l l g (p_  2 - - 2 ~/2 
T 

It follows that  I[gl-Oh[lo<Q {llO[Ij+ 1+ IIPHj} hJ+ 1. 
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To analyze P--Ph, add the assumption that ~ is quasi-regular both in size 
and shape; then, the inequality (2.5) can be written in the form 

I[q --Clhll l + h liP -- Phll l < Q { II~ll~+ 1 + Ilpllj} h j. 

Let the dual problem be changed to 

- A ~ + V a = ~ ,  x ~ o ,  

div fi=p--ph , x~(2, 

=~, X~OY2, 

so that 11r Ill+ Ilall o < Q lip-Philo. Then, with the Vh and r e Wh, 

II P - -  Ph I] 2 ~- (p  _ Ph , div ~ ) + (p - Ph , div (fi - t~)) 

= a(q--~h, ~b)--(V(p--ph), ~--tb) 

< Q {llq--Qh}la +hllp-ph}[1} liP--PhilO, 

and it follows that IIp-ph}lo<Q{ll~llj+ 1 + ][pllj} h j, as was to be shown. 

3. A Penalty Stabilization 

Consider the modification of the Stokes problem given by 

- -  d q h  + V p h = d  7 , X E Q ,  (3.1 a) 

div  q h - - h 2  Z lp  h = 0 ,  xff(2, (3.l b) 

~ h = ~ ,  X E (~ ~c~, (3.1 c) 

Oph/On =0,  x E c3(2, (3.1 d) 

and the associated weak problem given by the finding of ~he /~  ((2) and phe Hi(O) 
such that 

a(~l h, ~)-(div ~7, ph)= (jT, ZT), ~Te/4~ (O), (3.2 a) 

(div ?l h, w) + h2(Vp h, Vw) = 0, w6H 1 (f2). (3.2 b) 

The problem (3.2) is a penalized version of the Stokes problem; it is this problem 
that will be approximated by what amounts to a stabilized mixed method. 
First, let us analyze the difference between the solution of (3.2) and (1.2). Let 

SO that 

p=q__~h, ~z=p__ph, 

a(~, f ) - ( d i v  f, ~ )=0 ,  f~/1~(f2), 

(div/~, w)+h2(Vn, Vw)=hZ(Vp, Vw), w~Hl(O). 

(3.3a) 

(3.3b) 
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Test (3.3) by selecting v=p and w = ~ ;  then, it follows that 

]lfi]] 1 + h  11V~]lo < h IIVpllo<Q 11711o h. (3.4) 

Note that this implies that Ildiv ~hllo = O(h), as div c7=0, and also that  IIt~ll 2 = O(1), 
by the strong form of (3.3a). 

L2-estimates can be derived for fi and ~ by duality. Let t~e/4~(g2) and 
OeHl(O) be determined by the equations 

-~7p+vO=~, xet2, 

div ~ = 0 ,  xet2 ,  

~=~,  x ~ ,  

with (re, 1) = 0. Then, II ~ II 2 + Ib 0 II ~ s Q II f5 IP o and 

II~ll 2 = a ( ~ ,  t~ )+  (170, t~) = (div ~, ~)+(VO, ~)= - ( a i r  ~, 0) 

= h2([7(rc- p), 170)= --h2(Vp h, VO)<=Qh 2 llVPhllo II V011o 

< Q  h 2 I/t~llo Elfllo, 

so that  
IItSIIo< Q 117110 h i. (35) 

Next, consider the dual problem 

-A~+VO=O, xeQ, 

div ~=Tz, x~f2, 

O = 0 ,  xec?Q, 

with (re, l) 0. Then, 

]]rC]lo 2 =(div q~, ~)=a(~ ,  t~)< [IPl] ~ ]]t~]l ~ < Q 1]7[]o hll~tlo 
and 

II~llo =< Q 11711o h. (3.6) 

We can now consider the discrete problem. Let {qh, P~} ~ Ph X W h be the solu- 
tion of the equations 

a(Oh, f)--(div ~, Ph) = (7, ~), f e  Vh' (3.7 a) 

(div (7/h , w)+h2(Vph, 17w) = 0, W~Wh. (3.7b) 
Thus, 

a(~h--~lh,~)--(div~,ph--ph)=O, ~e~, 

(div(~lh--glh),W)+h2(V(ph--ph), Vw)=0 ,  w e W  h. 

Set q~ = {~5, w}, [[(pl[~ = [a05, g )+h  2 11VWI[2] 1/2, and 

A(p, ~)= A({O, w}, {~, z})=a(~, f i ) -  (div ~5, w)+ (div ~], z)+h2(Vw, Vz). 
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Then, A(q~, q~)=a(~, g)+h2(Vw, Vw)= II~oltZ,, so that it follows that 

I[ O h - qh I112 + h 2 ]l V(P h -  Ph) ll 

<= QA ({O h -  qh, ph_ Ph}, {O h -  qh, ph_ Ph}) 
<Q inf[a({oh--6, ph--w}, {~lh--O, ph--w}): ~ ,  WeWh] 

< Q { II~hll~ + Ilphll ff } h 2, (3.8) 

so that, by (3.4) and the remark following, 

IIO--@hll 1 +h IIV(p--Ph)l[o<Q I1~11o h. (3.9) 

Again we employ duality to derive LZ-estimates for the error {h s} = {C~--(Th, 
P--Ph}. First, let 

- A(k + VO=?, xaO, 

div ~ = 0 ,  xeO,  

with ~ = ~  on c~2 and (0, 1)=0. Then, with {2,,7}e E x ~ ,  

llTll~ =a(~, ~ ) -  (div f, O) = a(h ~ -  ~,) + a(f, 2 ) - (d iv  f, O -  q ) - (d iv  f, q) 

= I + I I + I I I + I V .  

Now, 

Next, 

I +  III < Q  [1~11 a {ll~tl2 + II0111} h<Q II~ll 1 I1~11o h. 

II = (div ~, s)= (div ( ~ -  t~), s)= - ( 2 - ~ ,  Vs) 

_-<Q [l~]12 nsljl hZ<=Q II~llo Hsll~ h 2. 
Finally, 

IV=h2(Vs, Vq)~h 2 IIVsllo HVqI[o <= Q h 2 [Is[ll [l~llo. 

Thus, it follows that 

IKllo=<Q llfl[o h2. (3.10) 

Similarly, if the dual problem is changed to be 

-~(~+t70=O, xeO, 

div ~ = s ,  xaQ,  

with the usual boundary conditions and normalization, then 

IJ s I[ o z = (div ~, s) = (div (~;-)~), s) + a (?, ~) 

< Q [ltslto IIsII 1 h + II~FI 1 llsllo], 
and 

Ilsllo <(2 llYllo h. (3.11) 

Thus, the same asymptotic error estimates hold for the penalty stabilized method 
as for the method of Hughes et al. [3] when C~ (or -bilinear 
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or -trilinear) spaces are used for the velocity components and the pressure. 
Note that no gain in rate of convergence will occur if higher order spaces are 
used. For  the linear elements this method is somewhat less expensive in computa- 
tional requirements than the other procedure. 

4. A Modification of the Hughes, Balestra, and Franca Method 

If the divergence is taken of (1.1 a), then one sees that 

A p = d i v f ,  xef2. (4.1 a) 

Let the outer normal to f2 be denoted by v; then 

~p/()v=f. v+v .  AO, xcOf2, (4.1 b) 

so that, if (4.1) is tested against w e H  I(Q), 

(Vp, Vw)- (v -Agl ,  w) = (.~, Vw). (4.2) 

Now, assume that the triangulation ~ is quasi-regular both in shape and size 
near the boundary (?Q; it can be less regular in the interior of f2. Then modify 
the approximation procedure, which is not limited to linear elements, to become 
the finding of {qh, Ph} ~ Vh • Wh such that 

a (cTh, ~) -- (div ~, Ph) = (.~, V), ~e F/h, (4.3 a) 

(diV~lh, W)+ctha[(Vph, Vw)- -~(v-AOh,  W)oT~Oe]=c~hZ(y,,Vw), w ~ W  h . (4.3 b) 
72, 

Here, it is important that the normalization (Ph, 1)=0 be understood, as 
it simplifies the proof of coercivity of the bilinear form 

A({~, p}, {g, w})= a(~, ~ ) -  (div ~, p)+ (div c~, w) 

+o: h2[(Vp, Vw)-- ~ (v " AO, w),~T~e,r~ ] 
T 

over Vh X W h. Note that scaling and the assumed quasi-regularity show that 
over  • Wh 

I~v'A~t,p)e,T~,O~l<Qh -~ Ilqll 1.r ]lpll~,r, 

so that 

and 

h 2 ~ (v .  d ~, p)~r~,o~<= Q II0111 - h IlPll 1 
T 

A({0, p}, {?l,p})>p[llqll~+h 2 Ilpll 2] 

for sufficiently small c~. Consequently, there exists a unique solution of (4.3) 
when c~ is so chosen. 

of C -piecewise-linear approx- We shall present the error analysis for the case o 
imation spaces; the extension to higher order spaces is quite analogous to that 
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given above for the Hughes, Balestra, and Franca procedure. Let {2, rt}~ Vh X W h 
and write the error equations in the form 

a(2--~h, ~)-  (div ~, q --ph)=a(2--O, g)-- (div 17, q --p), 

(div(2-0) ,  w)+7 h 2 [([7(0 -- Ph), ~Tw) nu 2 (v  . A(2--g'lh), W)c~Tc~O~] 
T 

= ( 0 -  2', Vw) + ~ h 2 ( V ( ~ -  p), Vw) + c~ h 2 < v . ~ ( 2 -  0), w),~, 

where we note that v-A(2-0)eL2(~Q).  Choose the test function {)~--0h, rl--Ph}. 
Then, all terms resulting in the expression above were present in (2.2) with 
the exception one coming from the last term, which we can estimate as follows: 

1(v. A(2-O),  q-Ph)o~e[ < Q  II0[I 2 lit/-Phil ~. 

Thus, it again follows that 

Ibgt- qh[li + h HP--PhlI, <= Q Ilfllo h. (4.4) 

L2-estimates can be derived in the usual way. Let us begin with 0 qh. Let 

-- A ~  + I70=~I--Oh, x e • ,  

div ~ = 0 ,  x e ~ ,  

with ~ - -~  on ?~f2 and (0, 1)=0. Then, with {2, it} e Ph X Wh, 

II 0 - -  qh I I 2 = a ( q -  qh, ~ - -  2) -~- a (q-- qh, 2)-- (div (q-- qh), 0-- r/)-- (div (q -- qh), 0) 

=a(O--Oh, 7)-- 2) + a(O--Oh, 2)--(div(O--Oh), O-- ~l) + c~ h2(V(p -  ph), Fr/) 

+ c~ h 2 ( v .  A (~ - qh), rl)OO. 

The only new term in this relation is the last one, and it can be bounded 
by (where ~e Vh) 

~ h 2 ( v  �9 A(O--~), t / ) +  c~ h2 (v �9 A(~--Oh),rl) 

<Q{h2 II0112 lit/Ill +hll~-0hll, I1~11~} 
-<_Q {ll0tl2+ Ilpl[~} h2 II0--0hlIo. 

Thus, 
Ilq-0hllo < Q Ilfllo h 2- (4.5) 

The argument for the LZ-estimate for p--Ph in Sect. 2 did not use the second 
error equation; the result for p - P h  remains valid for this method" 

liP--Philo < Q Ilfllo h. (4.6) 

As pointed out in the introduction, the method of this section should be 
a bit cheaper than the original one, since there are many fewer boundary ele- 
ments than there are in total, so that the assembly of the matrix involves fewer 
terms. There should be little difference in the work required to solve the algebraic 
equations for the two variants. 
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