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Summary. A new algorithm is presented for computing vertices of a simplicial 
triangulation of the p-dimensional solution manifold of a parametrized equa- 
tion F (x )=0 ,  where F is a nonlinear mapping from R" to R", p = n - m >  1. 
An essential part  of the method is a constructive algorithm for computing 
moving frames on the manifold; that is, of or thonormal  bases of the tangent 
spaces that vary smoothly with their points of contact. The triangulation 
algorithm uses these bases, together with a chord form of the Gauss-Newton 
process as corrector, to compute the desired vertices. The Jacobian matrix 
of the mapping is not required at all the vertices but only at the centers 
of certain local "tr iangulat ion patches". Several numerical examples show 
that the method is very efficient in computing triangulations, even around 
singularities such as limit points and bifurcation points. This opens up new 
possibilities for determining the form and special features of such solution 
manifolds. 

Subject Classifications: AMS(MOS):  65H10; CR: G 1.5. 

1. Introduction 

Parameter-dependent nonlinear equations 

v(z, x)=0, (1.1) 

involving a state variable z and a parameter  vector 2, arise in many applications. 
Under  natural conditions on F and the relevant spaces the set of solutions 
(z, 2) of (1.1) constitutes a differentiabte manifold in the product  of the state 
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and parameter space, and the dimension of this manifold equals the parameter 
dimension. 

In most practical applications interest centers not so much on computing 
a few solutions of (1.1), but rather on determining the form and special features 
of the solution manifold. For  instance, if (1.1) represents an equilibrium problem, 
then we may wish to determine the bifurcation diagram or the boundaries of 
the stability regions on the manifold. But, as it turns out, all standard computa- 
tional methods for such an analysis require us to construct a picture of a p- 
dimensional manifold from information along one-dimensional paths. In fact, 
all these methods belong to the family of continuation processes for which 
the dimension of the parameter space always has to equal one. Thus, before 
such a process can be applied, any problem with a larger parameter dimension 
must be reduced to some form involving only a scalar valued parameter and, 
geometrically, such a reduction is equivalent with a restriction to some path 
on the solution manifold of the original equation. A continuation method then 
computes a sequence of points along such a path. For example, in structural 
engineering the parameter 2 often characterizes a vector of load components 
in which case it has become customary to fix a linear combination of these 
components specifying a particular load direction. The resulting reduced equa- 
tion then involves only the load intensity as a one-dimensional parameter vari- 
able and the standard ' incremental '  methods generate points along this load 
path. 

In general, it is not easy to develop a good picture of a p-dimensional mani- 
fold from information along one-dimensional paths. Thus it is not surprising 
that there is growing interest in computational methods which generate multi- 
dimensional grids of solution points covering an entire segment of the manifold. 
Up to now the only method for computing such multi-dimensional grids appears 
to be that of Allgower and Schmidt [2]. It utilizes a simplicial continuation 
algorithm to cover, by means of n-simplices, a portion of a p-dimensional mani- 
fold defined by an equation of the form (1.1). 

Here we present a different method for computing vertices of a simplicial 
triangulation of segments of the p-dimensional solution manifold of an Eq. (1.1). 
An essential part is a constructive algorithm for computing orthonormal moving 
frames on the manifold in the sense first considered by E. Cartan; that is, of 
orthonormal bases of the tangent manifolds that vary continuously with their 
points of contact (see e.g., [17]). The resulting triangulation algorithm uses these 
bases and a predictor-corrector approach to compute the desired grid points. 
It has many similarities with the continuation methods including a comparable 
computational complexity. In particular, the Jacobian matrix of the mapping 
is not required at all the points. For  example, on a two-dimensional manifold 
the computation of a typical triangulation pattern with 114 triangles involves 
only 19 Jacobian decompositions. 

After summarizing some basic concepts in Sect. 2 we introduce the moving 
frame algorithm in Sect. 3. Then Sect. 4 outlines the general triangulation meth- 
od and Sect. 5 present several numerical examples. Finally, we end with an 
outlook on the utilization of the computed triangulations for the determination 
of specific features of the manifold. 
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2. Basic Concepts 

T h r o u g h o u t  this article, let 

F : S ~ R  m, S o p e n i n R " ,  p = n - m > l ,  (2.1) 

be a different• mapping  of class C r, r > 1, on the subset S. As usual, a point  
x~S is called regular if the first derivative, DF(x), of F has full rank m and 
hence maps  R" onto  R". We consider the equat ion 

F ( x ) = 0 ,  x6S,  (2.2) 

and assume that its regular solution set 

M = {xcS; F(x)=0, x regular} (2.3) 

is non-empty.  It is well-known that M is a p-dimensional Cr-manifold in R" 
without  boundary  (see, e.g., [17] or  [15]). 

The tangent  space TxM at any point  x ~ M  may be identified with the kernel 
of  the Jacob• DF(x); that  is, 

Tx M = ker DF(x ) -  {u ~ R"; DF (x) u = 0}. (2.4) 

The normal  space N~M at x~M is the o r thogona l  complement  of  the tangent  
space under  the natural  Euclidean inner p roduc t  on R"; that  is, 

Nx M = (Tx M) • = (ker DF(x)) z = rge DF(x) r. (2.5) 

Since DF(x) has maximal  rank in some open subset So of S containing 
M, the mapping  

xeSo __, DF(x)r[DF(x)DF(x)r]- 1 DF(x)cL(R") (2.6) 

from So into the space L(R") of all linear mappings  on R" is of class C ~- 
on So. Hence, the o r thogona l  projection 

P: M--*L(R"); P(x)=I,--DF(x)T[DF(x)DF(x)T] -~ DF(x), x e M  (2.7) 

of R" onto  T~ M is a mapp ing  of  class C r 1 on the manifold M, (here I ,  denotes 
the identity on R"). 

For  the computa t ion  we require local coordinate  systems on M. Any  p- 
dimensional  subspace T of R" induces a local coordinate  system of M at any 
point  x c M where 

7-~  Nx M = {o} ,  (2.8) 

In fact, if (2.8) holds for x ~ M  then there exist open ne ighborhoods  1/1 and 
V• of  the origins of  T and R", respectively, as well as a unique C r -  1 function 
w: V1 --' T • with w(0)=0 ,  such that 

M ~  V2= {y~R";  y = x + t + w ( t ) ,  teVl},  (2.9) 



168 w.c.  Rheinboldt 

(see, e.g., [9] or [15]). In other words, in the local coordinate system induced 
by T t h e  point y=-x+t+w( t )  of M has the coordinate teT. 

A point x e M  where (2.8) holds is a non-singular point with respect to the 
given coordinate space T, else we call x a singular point. Clearly, at any point 
x e M  the tangent space T x M can be chosen as coordinate space and x is non- 
singular with respect to it. In most  applications, a "na tura l "  parameter  space 
A is given, as indicated by the form of the Eq. (1.1), and the orthogonal subspace 
Z = A  • is the state space. Then interest centers on determining the singular 
points with respect to the space A. These are the so-called foldpoints on M 
where the tangent space has a non-zero intersection with the state space Z 
and the parameter  space A can no longer be used as a local coordinate space. 
These are also the points where, for example, in equilibrium problems a change 
in the stability behavior of the physical system under study may be expected. 

Numerically, the mapping w of (2.9) can be implemented in various ways. 
A simple approach is based on a chord form of the Gauss-Newton method. 
At the given point x ~ M  we compute the QR-factorization 

DF(x)r=Q[o]  (2.10) 

of the transposed Jacobian DF(x) r involving the n x n orthogonal matrix Q 
and m x m nonsingular, upper triangular matrix R. Then, starting from any 
point y in a suitable neighborhood of x in x + Tx M, we may apply the process 

1) Set y ~  

2) for k = 0 ,  1 . . . .  until convergence (2.11) 

2 a) solve R r z = F (yk) for z ~ R";  

2b) compute the next iterate yk§ 1 = y k  Q(Z, 0) r. 

With (2.10) this is readily rewritten in the form 

Df(x ) (y  k+l - -yk)+f(yk)=o,  yk+t--yke[kerDf(x)]•  k = 0 ,  1, ... (2.12) 

which shows that yk+l--ykeNxM. Thus we have y k e y + N x M  for all k > 0 ,  
whence the limit point y* - if it exists - is the unique point in the intersection 
of M and y + Nx M which, in the notation of (2.9), can be written as y * =  x + t 
+ w(t), t= y -  x. 

The convergence theory of Gauss-Newton processes is well understood. Ear- 
lier studies of these methods considered applications to least squares problems 
and hence assumed that F maps R" into R" where n < m. A local convergence 
result which covers our case n > m  may be found in [8, Theorem 4]. Another  
simple proof  for the method in the form (2.12) also follows along the lines 
of the convergence proof  for singular chord methods given in [ t4] .  These results 
guarantee the validity of the following theorem: 

Theorem 1. Under the stated assumptions about the mapping F there exists for 
any point x of M a neighborhood V(x) of x in x + Tx M such that for any starting 
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point y in V(x) the Gauss-Newton process (2.11) converges to the unique point 
y* in the intersection of M and y+ NxM that has the coordinate t = y - x  in 
the local coordinate system induced by the tangent space Tx M. 

3. A Moving Frame Algorithm 

As usual, a vector field of class C S, s < r, on an open subset Mo of our manifold 
M is a C s function u: Mo-~ TM from M o into the tangent bundle TM such 
that u(x )eTxM for all x e M o .  A moving frame of class C' on Mo is a mapping 
which associates with each x e M o  a frame (i.e., ordered basis) {u t, ..., u v} of 
Tx M such the functions ui: M o --, TM, i= 1 . . . . .  p, form p vector fields of class 
C' on M o. When such a moving frame exists on Mo then the sub-manifold 
M o is said to be paratlelizable. We will consider only orthonormal moving 
frames; that is, frames for which the basis vectors are orthonormal. (For a 
discussion of these concepts see, e.g., [17].) 

Clearly, the problem of computing an orthonormal basis of the tangent 
space TxM of M at a given point x ~ M  is equivalent with the construction 
of an n x p matrix U with orthonormal columns for which 

DF(x) U =0 .  (3.1) 

There are many techniques for computing such a matrix. A well-known proce- 
dure is provided by the QR-decomposition (2.10). In fact, if the matrix Q is 
partioned in the form Q=(Q1, Q2) where Q1 has m columns then we may use 
U=Q2 as the desired basis. Various other techniques for computing U have 
been proposed. In particular, for practical application to large problems the 
methods in [5] and I-6] for producing sparse bases U are specially important. 

An algorithm for constructing a moving frame of class C s on some open 
subset Mo of M has to generate a basis matrix U = U ( x )  for each x ~ M  o in 
such a way that the mapping U: M o - ~ L ( R  v, R") is of class C s. As Coleman 
and Sorensen 1-7] have noted, the approach based on the QR-decomposition 
does not give continuously varying matrices U(x). This observation extends 
to other algorithms of a similar nature; in fact, it relates directly to the corre- 
sponding problems of computing eigenvectors associated with a multiple eigen- 
value. Three remedies are proposed in [7], but they concern only the construc- 
tion of a limit Uo of a sequence of bases U(x) when x tends to xo. 

For our construction of a moving frame we restrict attention to open subsets 
M 0 of M where a given p-dimensional subspace T of R" induces a local coordi- 
nate system; that is, where (2.8) holds for all x of M 0. With a mild abuse 
of language, let T O be an n x p matrix with orthonormal columns which span 
the coordinate space T. Moreover, assume that we have picked some method 
for computing at any point x of Mo an n x p matrix U(x) with orthonormal 
columns that span the tangent space Tx M at x. Of course, U is not expected 
to depend continuously on x. For instance, we may use the matrices produced 
by the QR-decomposition technique. For any orthogonal p x p matrix Q =Q(x) 
the matrix U(x)Q is another orthonormal basis of TxM and our aim is to 
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construct matrices Q(x) such that the " ro ta ted"  bases U(x)Q(x) depend contin- 
uously on x for all x in Mo. 

The normalization (To) r To=l  ~ suggests that we choose the orthogonal 
matrix Q so that (U(x)Q)rTo approximates the identity Ip. Various norms may 
be used for this; an advantageous choice is the Frobenius norm IIAllv 
= [tr (ArA)] 1/2. The resulting optimization problem 

H(U(x)Q)W To- Ip l l v=min ,  subject t o Q r  Q=lp  (3.2) 

is a case of the orthogonal  Procustes problem. As discussed in [12], the following 
algorithm solves (3.2): 

(1) Uo,=U(x)7To; 
(2) compute the singular value decomposit ion U 0 = AZ B r 
(3)  Q:=AB w. (3.3) 

For our purposes the essential fact is now the content of the following theo- 
rem: 

Theorem 2. Let M o be an open subset of M on which the given p-dimensional 
subspace T of R" induces a local coordinate system. For any x~Mo ,  let U(x) 
be an orthonormal basis matrix of TxM and compute the orthogonal matrix Q 
= Q (x) of (3.3). Then the mapping x e Mo ~ U (x) Q (x) ~ L(R p, R") is of class C r- 1 
on Mo and defines an orthonormal moving frame on M o. 

Proof. Evidently, ZTUo=O implies that the tangent vector U ( x ) z ~ T x M  must 
be orthogonal  to the subspace T of R" spanned by the columns of T o, and, 
and hence that U(x) ze  T • By construction of M o this cannot happen for x c M  o 
unless z = 0 .  In other words, for x e M  o the matrices U 0 and s arising in (3.3) 
are non-singular. Now 

U o = A Z B r = A B T ( B X B T ) = Q H ,  H = B X B  T, 

is the polar decomposit ion of U o and it follows that 

H = [(Uo) r Uo] x/2 = [(To)T U(x) U(x) T To] ,/2 

is non-singular, whence 

Q= U (x) T To[(To) T W (x) W (x) T To]-t/2. 

Evidently, U(x) U(x)T=p(x)  is the or thogonal  projection (2.7) from R" onto 
Tx M. Thus we see that 

U (x) Q = P(x) To [(To) T P(x) To] - 1/2 (3.4) 

and, since P was already shown to be of class C r-  1 on M, the result follows. 
Our overall moving frame algorithm on M o now consists of the following 

three steps: 
(1) Given x e M o ,  compute the basis matrix U(x) of Tx M; 
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(2) compute the orthogonal matrix Q by (3.3); 

(3) form the desired basis matrix U(x) Q. 

(3.5) 

If the QR-factorization is used in step (I), then the order of the required 
number  of floating point operations is as follows: 

Computat ion of U (x) 
Multiplication U (x)l" To 
Singular value decomposition 
Format ion of the product U(x)Q 

O(nm 2) 
O(np z) 
O(p 3) 
O((n + p) p2). 

Thus, when the dimension p of the manifold is small in comparison with the 
space-dimension n, as is typical in applications, then the principal cost is related 
to the QR-factorization of DF(x) r and involves about  (2/3) n 3 operations. This 
is indeed analogous to the complexity of a standard continuation process. It 
should be noted also that in practice the " ro ta t ed"  basis U(x)Q need not be 
computed explicitly. This is especially important  when U (x) is sparse. 

For the practical implementation it is certainly desirable to choose the basis 
matrix T o of our reference coordinate space T in R" as simply as possible. 
In particular, it is very advantageous to define T as a subspace spanned by 
p appropriate  natural basis vectors e I . . . . .  e" of R n. Then To can be taken as 
a matrix with columns e ~ with certain distinct indices i=ij, 1 <ij<=n,j= 1 . . . . .  p. 
For the choice of these indices, recall that for any x of M and given vector 
aeR", ]la[12=l, the principal angle c~e[0, r~/2] between T~M and span{a} is 
defined by 

cos (~ )=max  {uWa; ueTxM, Ilull2 = 1}. 

Evidently, if a is one of the global basis vectors of R", then 

cos (0q)= 11U(x)reil]2, i =  1 . . . . .  n; (3.6) 

that is, the Euclidean norm of the i-th row of U(x) is the cosine of the principal 
angle between the tangent space TxM and the i-th coordinate line span {e i} 
of R n. Since the Euclidean norm is invariant under orthogonal transformations, 
it is obvious that the principal angle does not depend on the particular basis 
g (x) of r x M. 

This suggests the desired selection of To. We initialize our moving flame 
algorithm at some reference point x* of M and compute a basis matrix U(x*) 
of the tangent space of M at this point. This allows for a straightforward calcula- 
tion of the principal direction cosines r i = c o s ( ~ )  of (3.6) which we order in 
descending order of size. Let il, ..., ip be the indices of the p largest of these 
ri (with equality broken, say, by lexicographic ordering), then the corresponding 
natural basis vectors of R" span our reference coordinate space T and form 
the columns of the basis matrix To. Since U(x*) has rank p, none of the selected 
coordinate directions can be orthogonal to the tangent space. Hence, as required, 
x* is a non-singular point with respect to T, and the subset M o of Theorem 
2 contains an open neighborhood of x* on M. Geometrically the constructed 
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subspace T is close to the tangent space of M at x* in the sense of the above 
maximization of the direction cosines (3.6). In fact, our construction is analogous 
to the local coordinate selection used in the continuation program P ITCON 
(see [-15] or [16]). Obviously, this choice of To also has the advantage that 
the computat ion of the matrix Uo in step (1) of the algorithm (3.3) simply becomes 
an extraction of p of the rows of U(x). 

We end this section with two observations. The restriction to the subset 
Mo of Theorem 2 opens up other possibilities for computing a moving frame. 
In particular, the widely used augmenting methods for parametrized problems 
suggest consideration of the matrix A(x)=(DF(x) r, To), which, under our 
assumptions about  T 0, is non-singular for all x c  M 0. Therefore, the QR-factoriza- 
tion A(x)=  Q(x)R(x) is unique provided only that all diagonal elements of R(x) 
are enforced to be positive. From this it follows readily that Q(x) is of class 
C r-  1 on M 0 and, since the last p columns of Q(x) form an or thonormal  basis 
of T~M, we have obtained another  moving frame algorithm on M 0. When 
p is again small in comparison to n, its complexity is slightly higher than that 
of (3.5); but, more importantly, (3.5) has the advantage not to depend on the 
use of the QR-factorization. In fact, as was stressed before, the tangent basis 
U(x) may be computed by any available method, and for high dimensional 
problems sparse basis methods of the type in I-5, 6] are especially desirable. 
There are also other situations where the QR-factorization is not readily appli- 
cable for computing tangent bases. An example for this occurs in the triangula- 
tion of sub-manifolds of foldpoints of the manifold M. Then, as will be shown 
elsewhere, different methods for computing tangent bases are needed, but the 
" ro ta t ion"  technique of Theorem 2 remains nevertheless applicable. 

As noted already, in the algorithm (3.5) the formation of the product Uo 
= U(x) r T o can be reduced to the extraction of p rows of U(x), and, in practice, 
the product  U(x)Q need not be computed either. Hence it may be of interest 
that, in the frequently occurring case of manifolds of dimension p =  2, we can 
even avoid the singular value decomposit ion of Uo. In fact, in that case, there 
exists a direct representation, up to signs, of the orthogonal matrix Q of the 
algorithm (3.3). More specifically, if 

then a straightforward calculation shows that 

where 
= + (a + d)/,~, 

:1 
a= +_(b-c)/6, 6=[(a+d)2 +(b-c)2] 'n. 

With the normalization ad-bc>O, the signs are readily chosen by comparing 
the directions of the computed frame with the directions of the natural basis 
vectors of To. This leads also to a direct proof  of the theorem in this special 
case. 
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4. A Triangulation Algorithm 

The results of the previous section are now used to generate the desired triangula- 
tion on a subset of our manifold M. The basic idea is as follows: We introduce 
a reference triangulation on R p and use the bases produced by the moving 
frame algorithm to map segments of it onto the spaces x + "Ix M corresponding 
to appropriate  points x on M. Then the Gauss-Newton process (2.11) is applied 
to "project"  these triangulations from x + Tx M onto M. 

The reference triangulation, of course, is any covering of R p by a locally 
finite collection of p-simplices such that any two of these simplices intersect 
either in a common face or not at all. The literature on this topic is large 
and we refer here only to the discussion of various numerically efficient triangula- 
tions in [18]. Our algorithm does not place any particular restrictions on the 
choice of this triangulation except that we should be guided by considerations 
of computat ional  simplicity. Let 22 be the collection of simplices of this triangula- 
tion. 

Most triangulations used in simplicial continuation studies are generated 
by pivoting rules. A simple such rule is pivoting by reflection. For any index 
j6{ l ,  2 . . . . .  p} set j+ = j +  1 and j_  = j -  1 with the provision that j+ = 1 i f j = p  
and j - -p  if j =  1. Then, for a given p-simplex a =  [y0, yl . . . . .  yP] in R p, pivoting 
by reflection of the vertex yJ is defined as the replacement of a by the simplex 
l-y0 . . . . .  yj-1,  y~+ + y j -  _y~, yj+i . . . . .  yP]. If ~0 is a given reference simplex in 
R p, then by repeated application of this procedure a triangulation of R p can 
be generated (see, e.g. [1]). 

A frequently used example is the so-called Kuhn triangulation which is gener- 
ated by repeated pivoting by reflection starting with the simplex 

a0 = [0, e I, e I + e  2 . . . . .  e I + e 2 +  ... +eP].  

In the case p =  2, we can also use triangulations of R 2 by equilateral triangles 
generated by pivoting by reflection beginning with the 2-simplex 

a0 = [0, e t, 0.5(e 1 + ~ 3  e2)]. (4.1) 

Let x denote a given vertex of the triangulation in R p and 6 > 0  a fixed 
steplength. Then for any point x ~ M  where a basis matrix U of Tx M is known, 
the mapping 

A: R P ~ x +  T~M, A t / = x + 6 U ( t / - - ~ ) ,  t/~R p (4.2) 

transfers 22 onto x + Tx M. As in Theorem 1, let V(x) denote the local convergence 
domain in x + T x M  of the Gauss-Newton process (2.11). If t/ is a vertex of 
Z for which At/ belongs to V(x), then (2.11) can be used to map At/ into a 
point y e M .  The set F(~, x, U, 6) of vertices of S that can be mapped onto 
M in this way shall be called the "pa t ch"  corresponding to the information 
~ ,x ,U ,  6. 

An idealized version of our algorithm can now be formulated as follows: 
(1) Select a reference vertex ~=~*  of S; 
(2) select a reference point x = x* of M; 
(3) initialize the moving frame algorithm at x* and let M0 be the subset 

where, by Theorem 2, this algorithm applies; 
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Fig .  I 

(4) mark the vertex ~ as used; 
(5) while x belongs to M o 

(5a) mark ~ as a "center" ;  
(5b) 
(5c) 

(4.3) 
compute the frame U = U(x) by the moving frame algorithm; 
select all vertices of the patch F(~, xU, 6) which have not yet 
been marked "used";  

(5d) use (4.2) to map these vertices onto x+TxM and mark them 
"used";  

(5e) use the Gauss-Newton process to project the resulting points 
from x + Tx M onto M; 

(51) choose a "used"  vertex ~ of X not marked a "center"  and let 
x be its computed image on M; 

The points computed on M inherit the connectivity pattern of the original 
simplices of S which in turn induces a simplicial approximation Mx of a segment 
of M in R". The algorithm is still "ideal" in nature since, in practice, the sets 
Mo and F(~, x, U, 6) are not known explicitly. Without this knowledge the com- 
putation may halt when the iteration in step (5e) fails to converge; that is, 
when we encounter a point in the affine space x + Tx M of one of the centers 

which does not belong to the neighborhood V(x) specified in Theorem 2. 
A second possibility for failure arises in the execution of the moving frame 
algorithm in step (5b) when the selected point x does not belong to M o. 

In order to make the algorithm practical, we replace the "ideal" patches 
F(~, xU, 6) in step (5c) by "standardized" patches Fo(~ ). The definition of these 
patches depends on the specific reference triangulation in R p. As an example, 
consider the earlier mentioned triangulation on R 2 consisting of equilateral trian- 
gles produced by pivoting by reflection from the triangle (4.1). Then the standar- 
ized patch for the center point (0, 0) in Fig. 1 is the hatched, star-shaped region 
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and for any other vertex it is obtained by obvious translation. With this standard 
patch the progress of the algorithm is easily followed in Fig. 1. There, at each 
vertex, the second of the two integers is a counter and the first one identifies 
the "center"  ~ that is used in mapping that vertex onto M. Thus after the 
initial vertex 0, the nodes 7 . . . .  , 12 become centers which serve to map the 
nodes 13 . . . . .  42 onto M. Then the process continues with nodes 17, 18, 19, 
23, 24, 28, 29, 33, 34, 38, 39, 42 as centers. This is no longer shown in the 
figure, but, in practice, we have always continued through this further stage. 
It results in the earlier mentioned total of 1t4 triangles involving 19 centers 
and hence as many Jacobian evaluations. 

Once a standardized patch F0(~) is used in step (5c), a suitable divergence 
check has to be built into the Gauss-Newton process. If in step (5d) this check 
is triggered, then the corresponding vertex ~ of X is flagged as unusable. Such 
unusable vertices are excluded from the further computation.  A similar proce- 
dure may be followed when in step (5b) the moving frame algorithm fails. How- 
ever, in the latter case it is often advantageous to re-initialize the moving frame 
algorithm at one of the successfully computed points x on M. Of course, then 
the computed basis U(x) has to be used as the reference matrix To �9 

The above provisions may result in triangulations that cover a somewhat 
irregular domain on M. Fortunately, in practice, this does not occur as frequently 
as might be expected, provided the steplength (5 is not chosen too large. Accord- 
ingly, it is natural to introduce procedures for adapting 6 in cases of failures 
and hence for producing irregular triangulations on M. The ideas entering into 
such procedures are similar to those used in continuation methods and will 
not be discussed here. 

5. Numerical Experiments 

In this Section we present results of some numerical experiments with the trian- 
gulation algorithm. The method produces a wealth of numerical data which 
cannot be reproduced in the limited space of this paper. At the same time, 
it is a challenging problem to invent instructive graphical representations of 
manifolds of dimension larger than 2. As a consequence, only some graphical 
results for two-dimensional manifolds are shown here. It is hoped that other 
experiments with higher dimensional manifolds can be given elsewhere. 

An Exothermic Reaction 

As a first example we consider a simple transport  model for an exothermic, 
first-order reaction-scheme discussed in [4] which, in dimensionless form, leads 
to a two-point boundary value problem 

(Du') '+ko(p-u)exp(-2(l+u)-~)=O, u(O)=u(L)=O. (5.1) 

The dimensionsless parameters/~ and 2 involve the constant concentration and 
temperature on the outside of the system, and for the calculation we follow 
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Fig. 3 

[4] and set D = 1, L = 1, and ko = 10 v. The standard finite difference approxima-  
tion of (5.1) on a uniform mesh xi=ih, i=0 ,  1, ..., n + l ,  h = ( n + l )  -1 then pro- 
duces a nonlinear equation of the form 

- -Xi -  1 nt-2xi--Xi+ 1 = h 2  ko(]'l--xi) e x p  ( - 2 ( 1  + x l ) -  ~, 

i=1 ,  ..., n, X o = X , + l = 0 .  
(5.2) 

For  # =  1 there is a simple turning in 2 near 2 = 22 which was calculated with 
the continuation code P I T C O N  and n = 10. This point was then used to initialize 
the triangulation algorithm. Here - as in the subsequent example - the reference 
triangulation in R 2 was generated by repeated pivoting by reflection from the 
equilateral triangle (4.4). The stepsize in the affine mapping (4.5) was 3=0.4.  
Figure 2 shows the results of this triangulation. More specifically, the intersection 
of the computed simplicial approximat ion Mx with the (2, #, xc)-space is shown, 
where xc is the computed x-value at the center of the interval. The coordinate 
axes are marked by x = 2, Y = p ,  and Z =xc,  and are slightly rotated. One sees 
clearly the star-shaped pattern of the reference triangulation of Fig. 1 as it was 
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Fig. 4 

mapped onto the manifold. The floor of the valley actually represents a foldline 
as can be seen in Fig. 3, where the same surface in (2, p, xc)-space is projected 
onto the (2, #)-parameter plane and we have again X = 2, Y= #, Z = xc. It shows 
also that the location of the turning point in 2 depends approximately linearly 
on/~. 

A Shallow Circular Arch 

As the second example we consider a finite-element model for the deformation 
of a thin, shallow, circular arch which has been used as a test case by many 
authors. It appears  to go back to Walker [19] and we employ here the same 
formulation as in [13]. In particular, in a (r, O)-polar coordinate system with 
the vertical direction as the r-axis, the unloaded configuration of the arch is 
represented by the circular segment {(r, 0 ) ;  r = 10, - 0o_-< 0 < Oo = 15 ~ and, 
for pinned ends, the dimensionless total potential energy and associated bound- 
ary conditions are given by 

8 o  

- 8 o  

[[(w' - u) + ao (u') 2] z + cq (u") 2 - c~ 2 p u] d O, 

u(O)=w(O)=u"(o)=o,  o =  + o  

where primes denote derivatives with respect to O. For  the asymmetrical load 

p ( O ) = ( l -  v) #, i f - O o < O < 0 ,  and p ( O ) = ( l + v ) # ,  i f 0 < O < O o ,  

involving the two parameters  v and #, the load path for v = 0  has a bifurcation 
point near/~ = 1.9. This point was computed with P I T C O N  and used to initialize 
the triangulation algorithm. The stepsize of the mapped triangles was 6=0.5.  
The results are shown in Fig. 4. More specifically, let xc denote the (dimension- 
less) radial deformation at the center, then the figure shows the intersection 
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of the manifold with the (/~, v, Xc)-space projected onto the (/l, v)-plane. The coor- 
dinate axes are X =/~, Y=  v, Z = Xc. The cusp-bifurcation is clearly visible and 
the saddle shape of the surface can be seen even better in the slightly rotated 
Fig. 5. 

The problem was also run with the load function 

p(O)=l~[1-4(v-O)(Oo)-l], if m a x ( - O  o, v-O.250o)<O<v, 

p(O)=/~[1 +4(v-0)(0o)-1], if v<O<min(O o, v+0 .2500) ,  

considered already in [3]. In other words, the load is a piecewise-linear hat 
function which has the value p at O - - v  and is zero outside the interval centered 
at v of width 0.5 Oo. 

Figures 6 and 7 give results with this load obtained at two initialization 
points. The coordinates are Y = v, Z =/~, X- -xc .  More specifically, the triangula- 
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tions were centered at the limit points with respect to /t when v is fixed at 
v = 0 or v =0.5, respectively. Once again these limit points were computed with 
PITCON.  The foldline in the (v,/0-plane has the shape shown in Fig. 8 and 
Fig. 6 and 7 clearly show segments of this foldline. In particular, Fig. 7 contains 
one of the points where the most dangerous load occurs, namely at about v 
=0 .1600 .  

6. Out look  

The numerical examples indicate that the triangulation algorithm works very 
efficiently even around singularities. Thus - as intended it does indeed offer 
a new tool for deriving information about  the shape and features of the manifold. 
Of course, as mentioned before, we are able to present here only some graphical 
information and none of the extensive numerical output of the algorithm. This 
output is available as input to various post-processes for extracting further infor- 
mation. Several such processes have already been developed and will be 
described elsewhere in more detail. Here we give only a brief overview of some 
of the possibilities. 

As noted earlier, linear interpolation between the vertices of the computed 
triangulation defines a simplicial approximation M z of the corresponding part 
of the manifold M. The points of M z  can be used to compute further points 
of M. For example, we may project any such point onto M by applying the 
corrector iteration (2.11). Alternately, we can augment the system (2.2) with 
p appropriately chosen equations and then apply, say, a chord Newton method 
to calculate a corresponding point on M. This approach is useful when points 
on M with specific properties are desired. For  example, we may be interested 
in certain target points where the parameters have prescribed values. In that 
case, these target conditions become the augmenting equations and we may 
start the iterative process from a point on M z where the parameters  have the 
specified values. Augmenting equations are also essential when we are interested 
in determining the specific location of certain types of singularities. For the 
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computation of limit points a comparison of various such augmentations was 
given in [ 13], and for higher order singularities the literature on suitable augmen- 
tations is fairly extensive. In our present setting, the "minimal"  augmentations 
discussed in [11], and thereafter in [10], appear to be of particular interest. 

For  any given functional the computed data allow us to generate contour 
plots on the intersection of the simplicial approximation Ms with various sub- 
spaces. For  instance, in some structural problem we might be interested in 
seeing lines, where some stress component is constant, plotted in dependence 
of certain other variables. A special example of such a contour plot involves 
the graphical representation of lines of foldpoints. As the figures of the previous 
section already show, our triangulations provide information for approximating 
segments of such foldlines. One approach for detecting foldpoints is to monitor 
the orientation of the projection of the tangent basis onto the parameter space. 
If there is a change in this orientation then we have passed through a foldpoint, 
but the converse is not necessarily true; that is, not every foldpoint can be 
detected this way. The orientation is characterized by the determinant of the 
projected basis in the parameter space. Thus, if we plot lines of constant determi- 
nant values, then lines of zero determinant are approximations of the desired 
fotdlines. Of course, for this we need the tangent basis at each vertex of the 
triangulation and that increases the cost of the overall algorithm. However, 
there are also other possible techniques for approximating foldlines from data 
obtained by our triangulation algorithm. This will not be pursued here. 

Even though these contour plots only provide lines of constant values on 
the simplicial approximation M s rather than on M itself, they tend to offer 
already good insight into the shape of the manifold. Of course, as discussed 
earlier, we can always call on various local corrector methods to project these 
lines onto M itself. 

So far we mentioned only the need for appropriate post-processing tech- 
niques for analyzing the output of our triangulation method. There is also con- 
siderable room for improving the algorithm itself. In particular, for large sparse 
problems the QR-factorization may be computationally expensive. As noted 
earlier, there exist results for computing sparse bases of the null space of a 
matrix (cf. [5, 6]). The rotation required for the moving frame algorithm is 
likely to destroy this sparsity, and hence the rotated basis should not be stored 
but computed only as needed. In the case of low dimensional manifolds, this 
is highly desirable when the computation of the original basis of the tangent 
space takes account of the sparsity structure of the Jacobian. 
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