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The presented method is based on an extension of the Goldberger-Adams theorem 
and on a systematic application of Wick's theorem. The latter leads to combinatorial 
problems, which in general are complicated but well-fit to be handled by computers. 
In the two pure YT-eases E-- e and T-- t the combinatorial problems are simple. In 
particular in the E-- e-case (trigonal) the optical response can be written in a concise 
analytical form. It is shown further that by means of a one-to-one correspondence 
of the respective combinatorial problems it suffices to calculate the complete sequence 
of moments in the strong coupling limit to write down expressions for the optical 
response with arbitrary coupling, which are exact both in the strong and weak coupling 
limit. 

1. Introduction 

The interaction of degenerate molecular or lattice vibrations with 
degenerate levels of localized electronic systems has gained much interest 
during the 30 years, since Jahn and Teller 1 have stated the static par t  of 
the problem. The dynamical  problem has no t  been solved exactly, 
except for  trivial cases, but  many  approximat ion methods have been 
developed. For  a good  review the articles of Longuet-Higgins 2 and of  
Sturge 3 may  be consulted. 

The general characterization of a Jahn-Teller problem is the inter- 
action of a degenerate high-energy system (electronic system, high- 
frequency oscillator) with a degenerate low-energy system (oscillators). 
The dynamical  situation may  be unders tood as a resonance phenomenon  
between the effective splitting of the high-energy states and the excita- 
tions in the low-energy system. 

Because of the large energy differences in the high-energy system it 
is convential to adopt  the adiabatic principle (appropriately modified 
for  the JT-problem) and to assume that  the electronic wavefunctions 
~b~o")(x) and ~b)(X) are independent  of the vibrational coordinates q, 
a l though the functions ~b~ b) (x) may  be mixed dynamically by the coupling. 

1 Jahn, H. A., Teller, E. : Proc. Roy. Soc. (London) Ser. A 161, 220 (1937). 
2 Longuet-Higgins, H. C.: Advan. Spectr. 2, 429 (1961). 
3 Sturge, M. D. : In: Solid state physics (ed. Seitz-Turnbull), vol. 20, p. 91. New York: 

Academic Press 1967. 



276 M. Wagner: 

The latter assumption corresponds to the Condon approximation in the 
non-degenerate coupling problem. Since the restrictive effect of these 
two presuppositions is of no significance for the arT-problem, we will 
accept them throughout this paper. They are incorporated in the for- 
malism, if the electronic Hamiltonian He(x) commutes with the inter- 
action Hamiltonian V(x, q), 

[He(x), V(x, q)] = 0 .  (1) 

If this is postulated, each electronic state defines an independent subspace 
of the total Hilbert-space. 

For  optical transitions only two electronic states are involved. Since, 
by means of (1) the interaction with the vibrations does not mix in other 
electronic states, we may use an oscillator description for the electronic 
two-level system also, 

He(x) =COo Z a+ ai. (2) 
i 

Here the boson operators a + and ai describe the degenerate electronic 
excitation and the de-excitation respectively (/---index of electronic 
degeneracy), o~ 0 is the electronic excitation energy, and a system of units 
is used for which h = 1. For  the vibrational Hamiltonian we have 

H v (q) = ~ ~o k b+j b k ~ (3) 
kj 

where bk + and bkj are the oscillator creation and annihilation operators 
respectively ( j= index  of vibrational degeneracy). The total JT-Hamil- 
tonian is then 

H (x, q) = H e(x) + Hv(q) + tr V(x, q). (4) 

According to our assumption that each electronic energy-level charac- 
terizes an independent subspace of the total Hilbert-space, the wave- 
functions of H(x, q) must be of the form 4 

T~,)(x, q)=O(O,)(X)q~om(q), a-~00g;'(a) __ ~__,, (5a) 

for the electronic groundstate a, and 

~(f) (x, q) = Z @~b)(X) ~}~ (q) (5 b) 
i 

for the excited electronic state b. The JT-functions �9 (q) are solutions of 
the reduced Schr6dinger equations 

~m (q), r (~j-w,~ (6a) [H~(q)+tc<V>oo] (") ~ - -  "(") (~) 

4 Wagner, M. : Z. Physik 230, 460 (1970). 
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and 

where 

{(COo + Hv(q)) 6ik + K (V)ik} ai(b) C,,,-- ,(b) ,n(b)C~, "-X-'km~.Vl) - - w  m -..t-im kt.1} , 

k 

(V)oo ----~ dx 0~oa) (x) * V(x, q) O~o~)(x), 

( V)~k=j dx ~k}b)(x) * V(x, q) O~b)(x). 

In matrix notation, 

O(o b) (q) = {(o90 + Hv(q)) 6i k}, V(q) =- {< V>ik} 

Eq. (6b) may be rewritten in a more concise form, 

~(b) ~-~ .(b) Wb)(q)e~,, (~)=~,m ~m(q) 
where 

H ~b) (q) = H~o b) (q) + ~: V ( q ) .  

(6b) 

(7a) 

(7b) 

(8) 

(9) 

(10) 

As a further consequence of the separation of the total Hilbert-space 
into independent subspaces the JT-functions ~(~(q) satisfy the closure 
property 4 

~ - - ( b )  ~_,x* qg~mttl ) ~(kb)m(q)=bikr(q--q'). (11) 
7n 

2. The Optical Response 
Our method is based on an extension of a formalism first developed 

by Lax 5 and on a subsequent application of Wick's theorem. The solu- 
tion will be in the form of an optical response which is displayed if an 
optical transition is made from the non-degenerate initial states T(fl)(x, q) 
to the final JT-states. The functional form of the optical absorption is 
given by 

a(o9) = g . o9 . Iba(o9  ) (12) 
where 

Iba(o9 ) = [Tr (a) exp ( -H /kT ) ]  -1 ~ ~ e - ~  
n m 

�9 I (~b)  (X, q)[p(O(x)[~n~")(x , q))12 6(o9~ ) --o9~")--o9). (13) 

The constant K contains the static and dynamic dielectric constants and 
the local electric field4; it is of no importance in our context. P(i)(x) is 
the dipole operator, 

p(0 (x) = e xi = p (ai + a +) (14) 

5 Lax, M.: J. Chem. Phys. 20, 1752 (1952). 
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if we assume, without loss of generality, the lightfield to be polarized in 
xcdirection, co~) and co(, a) are the respective energies of the initial and 
final states, and again with no loss of generality we may choose COCo a) = 0. 
Employing expr. (14) for the dipole operator and the forms (5a, b) for 
the wavefunctions, the integration over the electronic space is possible, 
and we arrive at (abr. Iba(Oo)=p 2 G@)) 

G (co) = [Tr (") e x p ( - H / k T ) ] - I  E E e-o~"'/kr 
n m 

(a)  (b) (b) �9 <q~. (q) l q~im (q)> <q~im(q) I qb(a)(q)> b(COm (b)-On (a)-fO)" (15) 

The Fourier transformation of this expression is the optical response 
function; it is given by 

G(t) = [Tr(a)...3-1 E E e-~176 <q~n(a) I q~b2> (orb2 I q~n(a)> 

�9 exp [-- i co~ ) t + i con( ~ t] (16) 

which, in virtue of Eqs. (6 a) and (9) can be transcribed into 

G(t) = [Tr<a)...]-I ~ 2 <~,{~) I ~ [ e x p ( -  i H {b) t)],k [ ~ >  
,, ,,, k (17) 

�9 1 

Employing now the closure property (11) the expression simplifies to 

G(t) = [Tr(a)...]- 1 2  <~P) I [ e x p ( -  i H (b) t)]~, 
n 

�9 1 (17a) 

and by means of Eqs. (8) and (10): 

(0 = e-i  o0t [Tr(a)...] -1 ~ (~n(") [ [exp ( -  i (H~ I + tc V) t)]u 
n (18) 

where I is the unity matrix�9 The further aim of our study will be the 
evaluation of the optical response function, as given by (18)�9 If this is 
achieved, the absorption function G(co) can be found as the Fourier 
transform of ~(t),  

G(o3) = 2 ~  S G(t) e +i'~ d t. (19) 



Quasi-Exact Solution of the Optical Jahn-Teller Problem 279 

3. Application of an Operator Calculus 

At this stage we employ a theorem first introduced by Goldberger 
and Adams 6. It reads 

exp[--i(Ho+ W)t]=e-'H~ [--i i Wx(t')dt' ] (20) 

where P is the Dyson chronological operator, and where 

Wl(t)=e i n~ We -i lt~ (21) 

The theorem (20) is wellknown also in the theory of the U(t, t')-operator 
in quantum field theory. For  our purpose we need an extension to matrix 
operators. Now, if H o and V are taken to be matrix operators, (vid. 
Eq. (8)), H o ~ H o = H o I =- H o 8ik, W ~  W = Wik, where Ho is a diagonal 
matrix, one finds the theorem 

exp [ -  i (Ho + W) t]=e-i n~ p exp [ -  i i Wl( t') d t' ] (22) 

where 
(Wi)ik = e i not ~k  e-i no t. (23) 

The derivation of the theorem (22) can be achieved, if one repeats step 
by step the Goldberger-Adams6-derivation of (20) for the matrix 
operators H o and W. This procedure is straightforward and does not 
lead to any difficulties, provided H o is a diagonal matrix. Therefore it 
is not necessary to write down this derivation here. If we apply the 
theorem (22) in the expression for the response function (18)we arrive at 

[ ( i ) ]  G ( t ) = e - i ~ 1 7 6  -~H~t Pexp  - i ~  Vl(t')dt' 
n ~i (24) 

4. Application of Wick's Theorem 

In all JT-cases and also in the non-degenerate coupling case the 
choice of vibrational coordinates and the choice of the energy can be 
made in such a way, that for the ground state one has without loss of 
generality ( V ) o o = 0 ,  Le. H(a)(q)=Hv(q). Then by means of (6a) the 
optical response function (24) reduces to 

G(t)=e-i~~ r ~ 2 ml+'''+mr 

m, ..... mr t (25) 

�9 ( m l  . . . .  , m , I  Pexp [-irCo~ Vl(t')dt']lml,ii . . . ,m, )  

6 Goldberger, M. L., Adams II, E. N.: J. Chem. Phys. 20, 240 (1952). 

20a Z. Physik, Bd. 244 
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where 
I m l , . . . ,  m,> = (ml !)-~... (m, !)-~(b+)mx... (b~+) mr ~)(a) (26) 

V I ( t ' )  = e i rz~t V ( q )  e -  i ov  t. (27) 

For simplicity we have assumed that there is only one set of degenerate 
oscillators with frequency cot, r being the degree of degeneracy, j =  1, ..., r. 
The problem is nontrivial only, if the electronic degeneracy is also as- 
sumed to be r. For one set of degenerate oscillators we have 

Tr (a )exp ( -Hv /k r )=(1 -2 )  -~, ,~=exp(-oh/kT). 

Performing the series expansion of the exponential operator in (25), a 
typical term in the optical response function reads 

(-i~c) 2" 2ml+...+mr 
(2#)t Z (29) ml,. . . ,mr 

�9 (ml  . . . .  , mrlP[V~(h). . .  Vx(t2,)-Iiilml . . . . .  m~>. 

In the nontrivial JT-cases the elements (Vi(t))i~ of the matrix operator 
are _+ (bj(t) + b + (t)), j =  1, . . . ,  r, where 

bi(t)=ei nvt bje -i u"t. 

For this reason only even terms appear in the series expansion of the 
operator exponential of Eq. (25), as already accounted for in (29). Now, 
it has to be emphasized that the time-ordering operator in Eq. (29) acts 
onto the products of matrix operators Vt(tO, which is not identical with 
the time-ordering of the products of elements�9 E.g. for 

t 2 > t l > t a > . . . > t z u  
we would have 

[e Z 
J1 J2... 

whereas 
P Y. v(tou  . . . .  Z v(t )j j  v, j ,(h) . . . .  

Jl J2 Jl J2... 

However, in order to end up with a closed solution one is forced to 
neglect this difference and to make the approximation 

[P Vi(tl). . .  V1(t2,)]u~ ~ P l/ij, (q) V~jz(t2)..- Vi,2,_,),(t2,). (30) 
j l  j2. . .  

It is not known, whether the neglected terms can be collected in a system- 
atic way. They are not negligible in the intermediate coupling region. 
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Nevertheless, it can be shown, that the result based on the approximation 
(30) is exact both in the weak (~c~co) and strong (x>> co) coupling limit. 
This can be seen, if one compares the moments of the absorption band, 
as calculated by adopting Eq. (30), with the exact moments 7. 

By means of Eq. (30) and the commutat ion relation 
t + �9 ~ ,i [(bj( t )+b; (t)), bj,(t)+b~,(t ')]=O for j j (31) 

any P-product  of the sequence of products in (29) factorizes into a pro- 
duct of P-products, where each single one contains only the operators 
(bj(t) +b + (t)) of the same j.  Let 2#j be the number of (bj + bf)-factors  
in one of these P-products, 

#1 + " "  + #r = # (32) 

and further let vj be the number of (b~+b+)-factors with sign ( - ) ,  and 
v} the respective number with sign (+) .  Then we have 

(rnl . . . . .  m~l P [Vi(tl) ... Vi(t2,)] Ira1, . . . ,  mr) 
(#~ + . . . + / ~ r = # )  r 

= ~ 1-I (m jJP  [(bj(t~ j~) + b + (t~J~)) 
gl ..... u~ j=l  (33) (j) + (j) 

bj (tz#))] I "'" (bj(t2 u j) + m j )  
2 # 1  2 # r  

�9 ~ ... ~ ( - l ) v l + ' + v ' z ( m ,  . . . , l z r lv l ,  . . . ,  vr) 
V l = O  V r = 0  

where Z (#  1, .. . ,  Pr I vl, .-., vr) is the number of all allowed combinations 
of the elements of Vt in expr. (29), for which the factors (bj + b +) appear 
2/~ftimes and the factors ( - 1 )  appear (v 1 + .-. + v~)-times. This number 
is the solution of a combinatorial problem, which is specific to each 
type of JT-situations. We shall return to this problem in the next section. 

In this section we will investigate further the P-products of the last 
expression; by writing them in the context in which they actually appear 
in the response function (25), one is confronted with the integration 
problem 

t t 

-2"(m~)tr ~-J - o o (34) 

... (bj (t2 #i) + b+ (t2 #)) [ rn~). 

This integral can be calculated by a systematic application of Wick's 
theorem, which also leads to certain combinatorial problems; their 

7 The result (58) for the optical response in the system E--e has been published 
previously by the author in a short note in Phys. Letters 29A, 472 (1969). Rosen- 
feld, Yu. B., Tsukerblat, B. S., Vekhter, B. G., have kindly informed the author 
that they have calculated the moments of (58) up to the 6th one and compared 
them with the exact moments. They coincide exactly up to the 4th one, and for 
the weak and strong coupling limit there is coincidence for all moments. 

20b Z.  Physik, Bd. 244 
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solution turns out  to be weUknown. This calculation has been given in 
ano ther  paper  of the au thor  (see Ref. 4, Appendix  B). There  it is found  4 

where:  

(ms) _ v ,~s 1 I2,,j ( t ) -  (2 Jb). Y'. , 
~=o v. [(~j- 0 !] ~ 

�9 C(t)~D(t) "j-~ m j ( m j -  1). . .  (mj - ( l l  J -  v - 1)) 

(35) 

1 [_icol  t + l _ e _ , O i t  ] (36) C ( t ) = co~1 

D (t) = ~ [1 - cos co 1 t ] .  (37) 

Employ ing  expr. (35) in (25), the summat ion  over  m~ can be performed,  

(l-~)Y~m'mAmj-1)...(%-(~-l))= ~_~ .~!. (38) 
mj 

Hence we have 

(1- ,~)Zr,  x~.~(t)=(2~)! Z , 
,,j , = o v. ( # j -  v) ! 

2 "l~s (39) 
_ (2~j)! [c +T2-T DJ . #j ! 

Insert ing this via (33) into Eq. (25) the optical  response funct ion takes 
fo rm 

1 (~l+...+u,= g) ~(t)=e_~O, ot ~ _ / ~  u ( t)2,  ~ ( 2 # 0 !  ... (2#r)! 
u=0 (2#) .  u~ ..... u, # l !  ... ktr! 

2 ~ 2 ~,, (40) 
�9 Z "'" Y'- ( - -  1)  v* +''" + v ' Z ( # *  . . . . .  //r I h ,  " " ,  V,) 
vI=O vr=O 

combinator ia l  p rob lem 
where the abbrevia t ion  

i~c [ [ - i ~ l t - t  1 + 2  1 -,o,~t 2 
U ( t ) =  --  

co 1 1-----2 1 - 2  e 1 - 2  

has been used. In t roducing the fur ther  abbrevia t ion  

((~,)=("~+~"-=~ "~(2~tl)!... (2~,3! 
~, ..... ~, #i ! . . . / / ,  ! 

2~1 2/tr 
.E 
Vl=O 

] ~ 

_ _ _ e  i ~ t  , ( 4 1 )  

. . .  ~ ,  ( - 1 ) * ' + ' " + v ' z ( m ,  . . . ,  ,.lv~ . . . . .  v . )  
vr=O 

(42) 
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we may write 

G(t)= e -i'~176 ~ ((#) u(t) 2~. (40a) 

((#) represents the solution of the combinatorial problem which is 
specific for each JT-case. Before investigating these it is interesting to 
note a connection of ((#) to the moments of the absorption band in 
the strong coupling limit. For the normalized absorption function G(og) 
the moments are defined by 

+oo 
Mm= I G(~ (c~176 mac~ (43) 

-oo 

Now by means of the Fourier representation of G(co) we may write 
+o0 

G(t)= S G(og) e-i~~176 
- ~ ( 4 4 )  

=e-i'~176 G(og) ~==o �9 (('~176176176 

or, in view of Eq. (43): 

G(t)=e -''~176 ~ 1--2---M ( - i t )  m. (45) 
,n~o m! -'- " " 

Hence, we may calculate Mm directly from G(t): 

Mm= (i ff~) m[e~C~176 G(t)]t=o . (46) 

Now, expanding G(t) in a power-series in t, in each/~-term of (40a) only 
the lowest t-power must be considered for the calculation of the moments 
(strong coupling limit). From (41) we have 

1 i 1 -~- ,~ ~ X2 t2 -1- 0 (ta), (47) u(t)2= - 2 -  \ 1-2~1 

whence, by means of (46) the moments of (40a) in the strong coupling 
limit are given by 

Mzm= ( 1 + 2  /t72) m 
1 - 2  --2- ((m), M2m+l=0 (48) 

i.e. the solution of the combinatorial problem, ((m), is proportional to 
the even moments M2m. This, in reversion, yields the possibility of ex- 
pressing the response function (for arbitrary coupling strength) by the 
moments of the strong coupling limit, 

G(t) =e-i~~176 2 M,(O) 2 " ,=o (2#)! ~ u(t) 2~ (49) 

20e Z. Physik, Bd. 244 
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where M~(0) are the strong-coupling moments for T=0 .  This gives the 
moment-calculations a new significance (vid. Ref.4). To conclude this 
section, it should be noted that the form (40) for the optical response 
also applies to the non-degenerate coupling case (nondegenerate electro- 
nic excition, single oscillator) characterized by the Hamiltonian 

H(a)(x, q)=~o o a + a+co 1 b + b+tca + a(b+b+).  (50) 

In this case we have Z ( # I 0 ) = I  and therefore ~(a)(#)=(2#)!/p!, from 
which we arrive at 

~(A)  - i t a o t  co 1 2g  - i t o o t + u  2 
G ( t ) = e  ~ ,~ -u  = e  . (51) 

# = 0 # "  

This is a wellknown result and yields 5-functions for G(a)(og) at the 
positions o~, = o~ o - (k2/~ol) + 091 n, n = 0, + 1 . . . . .  It has been derived first 
by Lax s in an approximative manner. 

5. Combinatorial Problems for JT-Systems 

Among the multitude of JT-situations which appear, if orbital degen- 
eracy only is considered in the electronic system, there are two fundamen- 
tal nontrivial types 4. The first is present in trigonal symmetries and 
involves a coupling of a doubly degenerate electronic level with doubly 
degenerate vibrational modes (system E - e ) * .  The second is found in 
cubic symmetries, where a triply degenerate electronic level may interact 
with triply degenerate modes (system T - t ) .  For  further details another 
paper of the author may be consulted 4. 

Our method can be applied to both cases and also to a mixture of 
each of the fundamental nontrivial interactions with trivial parts. But 
in these complicated systems the resulting combinatorial problems are 
rather awkward and the optical response cannot be given in a condensed 
closed form. Therefore we will restrict our further consideration to the 
two pure cases. For  these the Hamiltonians read 4 

2 2 

H~e)( x, q)=~ E a+ a~+~ E b f  bj (52) 
~=1 j = 1  

+tr [(a~- al--a + a2)(bl+b~)+(a~ a2+a + al)(b2+b+)], 

(system E -  e) 

* It shou ld  be no ted  tha t  the  E - -  e JT-case m a y  also arise in cubic-symmetry ,  bu t  we 
describe it to tr igonal  systems,  because this is the  lowest symmet ry  where  it is 
found .  



Quasi-Exact Solution of the Optical Jahn-Teller Problem 285 

and 
3 3 

H(T)(x, q)=O)O ~ a~- ai+r 1 E bf bj 
i = l  j = l  

3 
+ + 

+to ~ (a~ ak+ l +akak+ l)(bk+ 2 -I- bk+2) 
k = l  

(53) 

(system T -  t). 

Let us first consider the system E - e .  In this case the interaction matrix 
operator Vr is of the form 

/(b,(t)+b-~ (t)), (b2(t)+b+ (t))'~. 
VI (t)  = k(b2 (t)  + b~- ( t)) ,  -- (b 1 (t) + b~ (t)),J (54) 

Hence, for the calculation of the optical response (40) one has to evaluate 
expressions of the form (29), where r=2 .  The multitude of different 
combinations of the elements of I11 (t) in expr. (29) may be depicted as 
diagrams, the elements of which are given in Fig. 1. 

-(bl + b~) 

p(2~ +b~) 
(bl + b~) 

Fig. 1. Combinatorial problem for the JT-case E--e 

The sum of all allowed combinations of the elements of I7i in expr. (29) 
consists now of all closed diagrams starting and ending on line 1 of 
Fig. 1, if we choose the incoming light to be polarized in xl-direction 
(i.e. i=  1 in expr. (29)). In each allowed diagram the elements (VI)12= 
(b 2 +b~) and (VI)21 =(bz +b~)  appear equally often, and in agreement 
with the preceding section this number will be denoted by #z. Accordingly, 
the multiplicity of (Vg)z2=-(bl+b-~) and (Vz)t~=+(b~+b~) are 
denoted by v~ and v~ respectively, and we must have v l + v ~ = 2 # l .  The 
evaluation of the number Z(#I, #2] vl, 0) of allowed paths leads to a 
combinatorial problem which has been solved in another paper of the 
author 4. The result is 

Z(pl, pzlVl, 0)=[P2+v'l~ (#z+vl-1)  (55) 
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which has to be inserted in Eq. (40) and leaves a summation problem, 
which again can be performed 4: 

Z ( -  1)" = . (56) 
vl \ 2 # l - h  / \ vl \ #i / 

Inserting this in (42) we have for ((#) (vid. Ref. 4): 

(2#1)'(2#-2/~1)! ( # ) _  2, 
((n)(#)= #1!(#-#1)!  # t - 2  #t (57) 

. 1 = 0  

Hence the optical response (40) resp. (40a) is simplified to 

oo I G(n)(t)=e-,~ot~, #' (2u(t))2,. 
.=o (2~) ! (58) 

= e- ~ ~,ot {rc~ u (t) e u2 Erf(u) + 1 } 

where u(t) is given by def. (41) and Eft(u) is the error function s, 

e-U 2 ~- 2 V u  2 v + l  
Erf(u) = 27z-'~ ~ o ' ( ~  " (59) 

We now turn to the JT-case T - t .  Here the interaction matrix operator 
Vx follows from the Hamiltonian (53) and is of the form 

( O, (ba+b~), (b2+b~)) 
V~(t)= (b3+b~-), 0, (bl+b~) . (60) 

\(b2 + b~-), (bl+b~), 0 
Here the multitude of different combinations of the elements of Vx(t ) 
in expr. (29) may be depicted as diagrams, the elements of which are 
given in Fig. 2. 

1 f - - -  ----.... 

(b2 + b~ ' ( / ~ ~ ' ~ 1 : )  (b3 + b~3) 

(b1+b~") 
Fig. 2. Combinatorial problem for the JT-case T-- t 

8 E.g. see Ryshik, I. M., Gradstein, I. S. : VEB Tables. Berlin: Deutscher Verlag der 
Wissenschaften 1963. 
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The number Z(121, #2, #a 10, 0, 0) is now the number of closed paths 

starting and ending in point 1 of Fig. 2, which interesect regions ~ ,  ~ ,  

31 respectively 212a-, 212~- and 2122-times. This combinatorial problem 
has not been solved for arbitrary #(=121 +122+12a) -values. Up to 12= 5 
the numbers Z(121,122, 12a [ 0, 0, 0) have been tabulated in Ref.4. The 
number ((12) is now given by 

(,,+u=+~3=/*) (2121) ! (2122) ! (2123) ! 
((r~(12)= ~ , " Z(121,122,12310, 0, 0) (61) 

1'1,/*2,/*a 121" 122 ! 123 ! 

It has been tabulated up to 12= 12 in Ref.4. Since the combinatorial 
problem of Fig. 2 is very clear cut, it is evident that ((12) may be easily 
calculated by computers up to arbitrary 12-numbers, i.e. the absorption 
function may be calculated via Eq. (40a) to an arbitrary degree of ac- 
curacy. A similar statement also holds for more complicated JT-systems, 
e.g. for mixed JT-cases, or for systems with more then one set of degen- 
erate oscillators, if the presented method is applied to them. 

6. Summary and Discussion 

A method has been developed, which allows the calculation of the 
optical Jahn-Teller problem both in the weak and strong coupling limit. 
The method is based on an extension of a theorem first given by Gold- 
berger and Adams 6 and on a systematic application of Wick's theorem. 
The latter leads to combinatorial problems, which in general are rather 
complicated, but in any case are easy to handle by computers. In the 
two pure JT-cases E - e  and T - t  the combinatorial problems are dear- 
cut and simple. In particular in the E-e-case a closed solution of the 
combinatorial problem can be given and the optical response can be 
written in a concise analytical form. 

It is shown further on that the combinatorial problems appearing 
in the presented operator method have a one to one correspondence with 
those in the strong coupling limit of the method of moments for the 
optical JT-problem, presented in another paper of the author 4. This 
correspondence is of importance, because it has the consequence that 
the knowledge of the complete set of moments in the strong coupling 
limit is sufficient to write down the quasi-exact expression for the 
optical response. In view of this a calculation of the moments gains an 
extended meaning. 

The presented method may also be employed to discuss the quality 
of approximative methods for the dynamical JT-problems, e.g. semi- 
classical methods 9, etc. But the above investigation, although being 

9 Toyozawa, ~f., Inoue, M.: J. Phys. Soc. Japan 21, 1663 (1966). 
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interest ing in itself, has  also some significance in a more  general  sense. 
I t  is one of the few examples,  where a nonl inear  coupl ing of two systems 
can be hand led  a lmos t  exactly. I t  m a y  well be of value for  the  discussion 
of nonl inear  t r anspo r t  problems.  I t  also appears  suggestive, to use the  
me thod  as a guide for  f inding a nonl inear  canonical  t r ans format ion ,  
which would  simplify the  calcula t ion considerably.  To i l lustrate this,  
let  us here re turn  very briefly to the non-JT-case  as character ized by the 
Hami l t on i an  (50). In  this case the  t r ans fo rma t ion  H ' = e - S H e  s, ~ '=  
e -  s ~,  where 

S= lc (b_b+)a+ a,  
o) 1 

decouples  the  two systems completely.  F o r  the  JT-case one m a y  th ink  
of a s imilar  t rans format ion ,  bu t  this  is left to future  study.  
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