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Summary. Nonlinear stationary fixed point iterations in R" are considered. 
The Perron-Ostrowski theorem [23] guarantees convergence if the iteration 
function G possesses an isolated fixed point u. In this paper a sufficient 
condition for convergence is given if G possesses a manifold of fixed points. 

As an application, convergence of a nonlinear extension of the method 
of Kaczmarz is proved. This method is applicable to underdetermined 
equations; it is appropriate for the numerical treatment of large and possi- 
bly ill-conditioned problems with a sparse, nonsquare Jacobian matrix. A 
practical example of this type (nonlinear image reconstruction in ultrasound 
tomography) is included. 

Subject Classifications: AMS(MOS) 65H10; CR 5.15. 

1. Introduction 

Let DcR" be an open set; let G: D--*R" be a continuous mapping. The subject 
of this paper are nonlinear stationary processes of the type 

(1.1) xk+ t = G(xk); 

G is assumed to possess a manifold of fixed points where possibly the spectral 
radius of G' satisfies p(G'(u))=l. This case is not covered by the Perron-Os- 
trowski theorem [23]. 

Linear processes of this kind have been investigated by a number of au- 
thors, e.g. Oldenburger [21], Ansorge [2], Keller [16], Tanabe [29]. For a real 
or complex n x n-matrix Q let 

(1.2) xk+ 1 =Qxk +b, 

where b is such that u=Qu+b is consistent. The scheme (1.2) converges if and 
only if any of the following four conditions is satisfied: 
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(1.3) lim Qi exists; 
i~oO 

(1.4) for any eigenvalue 2 of Q either [21 < 1 or 2 = 1; every elementary divisor 
for an eigenvalue 1 is linear (Ansorge [2]); 

(1.5) R"=NI| Na and N 2 are invariant subspaces of Q; Q is the identity 
on N 1 and convergent on N 2 (Keller [16]); 

(1.6) p(Q[~m~1_r (Tanabe [29]). 

In (1.6), I is the n x n identity matrix, I m ( I - Q )  denotes the range of I - Q  and 
QII-Q is the restriction of the mapping Q to I m ( I - Q ) .  

In this framework, Tanabe [28] has shown that the method of Kaczmarz 
[14] converges for (practically) every linear system of equations, regardless if 
there exists a variety of solutions or no solution at all. Other convergence 
results have been obtained by Herman and his coworkers [11], McCormick 
[18], and Elfving [6] for a block-iterative version. The popularity of the meth- 
od in problems like image reconstruction (Gordon et al. [9]) and image re- 
storation (Huang 1-12]) is mainly due to its computational simplicity and to the 
fact that sparsity of the corresponding matrices can easily be exploited. 

For  nonlinear systems of equations, a combination of the Kaczmarz meth- 
od as primary iteration together with the one-dimensional Newton method as 
secondary iteration has been proposed by Tompkins [30]. It is shown that this 
and some related methods converge locally if the corresponding system of 
equations possesses a manifold of solutions. 

In the final section, a brief introduction to the image reconstruction prob- 
lem in ultrasound tomography is given. This amounts to the numerical so- 
lution of an inverse problem for a wave equation. The continuous problem is 
ill-posed and frequently underdetermined. A discretization will reflect these 
properties. Using an algorithm derived by Schomberg [26], it is demonstrated 
that collocation and subsequent application of the Kaczmarz-Newton method, 
together with a simple regularization provide an efficient technique for its 
numerical inversion. 

The following notation will be used: For  a matrix A, A* is the adjoint and 
KerA is the nullspace. N(x,e) is an ~-neighbourhood of a point x~R" with 
respect to the Euclidean norm I]. II- 

2. Convergence of Fixed Point Iteration in the Presence 
of a Manifold of Fixed Points 

For the mapping G defined in Sect. 1, suppose that 

E= {ubu=G(u)} ~D 

is a manifold of fixed points. For every x~D let there be a u(x)~E such that 

Ilx-u(x)ll =min  I l x -u l l  ; 
ueE 

the mapping x--*u(x) is assumed to be continuous. 



Underdetermined Equations 163 

Lemma  2.1. Suppose that for an u~ there is an N(u ~ e) and an c~ < 1 such that 

HG(x)- u(x)ll _-<~ 1Ix - u(x)ll 

for all x~N(u ~ e). Then there is an N(u ~ 6)c  N(u ~ e) such that for every starting 
vector x~ ~ 3) the sequence {x k} generated by (1.1) satisfies 

lim x k =ueE c~ N(u ~ e). 

Proof (3 can be chosen so that for any x~176 

1 + ~  
--IIx~176 I + [lu(x~176 <~. 
1 -  o~ 

The following two relations are easily proved by induction (k> 1): 

ilxk _u(x  k- 1)11 <~k iix o _ u(xO)ll, 

IIx k -u~  < IIx ~ - u ( x  k- ~)11 + llx k- x _u(x  k- 1)11 + iix k - l _uOll 
k- - I  

<(1 +~) ~ ~i iix o _u(xO)ll + ilu(xO)_uOll. 
i=O 

Consequently,  {xk}cN(u~ and every accumulat ion point of {x a} is a fixed 
point  of G. Uniqueness of the accumulat ion point  is a consequence of 

p--q 
IIxP-- Xqll ~ ~ [IIxq+i--u(x q+i 1)1 I - I - I IX q+i- l -u(Xq+i-1)ll] 

i=1  

2~ q 
< IIx~176 

which can be proved by the previous two inequalities. [ ]  

The following theorem generalizes some aspects of the Perron-Ostrowski  
theorem on the convergence of stat ionary iterative processes ([23, 22]). 

Theorem 2.2. Suppose G is continuously differentiable in E. Let for an u~ 

(2.1) , o IIG (u)llma-G,(uO))*ll = f l <  1, 

(2.2) for any x~D satisfying u(x)=u ~ x - u ~ 1 7 6  *. 

Then there is an N(u~ such that for any starting vector x ~ 1 7 6  k} 
satisfies 

lira xk =uEE. 
k ~  

Proof For  all xeD with u(x)=u ~ evidently 

[Ia'(u~176 < ~ l l x - u ~  

holds. Since G'(u(x)) is continuous,  there exist e>0 ,  f la< 1 such that  
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(2.3) IIG' (u(x)) (x - u(x))ll ~ ~ Itx - u(x)ll 

for all x E N ( u  ~ O. For sufficiently small e, 

(2.4) M G(x) - G(u(x)) - G' (u(x)) (x - u(x))ll < ~ IIx - u(x)ll 

with 7< 1- f la  for all x e N ( u  ~ e). (2.3) and (2.4) yield 
I IG(x)-u(x) l l  < ( 7 + f l X ) ] l x - u ( x ) N ,  and Lemma 2.1 holds. []  

If I - G ' ( u  ~ is nonsingular, then (2.2) is satisfied and (2.1) reduces to 
I]G'(u~ <1,  which is a stronger assumption than the one in the Perron-Os- 
trowski theorem. Also, if G is an affine function, then Theorem 2.2 is more 
restrictive than any of the conditions (1.3)-(1.6). 

Condition (2.2) means in geometrical term that x - u  ~ is orthogonal to the 
nullspace of I - G ' ( u ~  Since G: D ~ R " ,  the Jacobian matrix I - G ' ( u  ~ will gen- 
erally be rank-deficient, and thus (2.2) is not at all obvious. 

As an easy consequence of the preceding proof we note that the R 1- 
convergence factor (Ortega and Rheinboldt [22, p. 288]) can be estimated by 

R x { x k  - u (xk)}  : lim sup II xk  - u ( x  k) Ii ~/k 
k~oo 

< p (G' (U)[lm(l_ G'(u))*)" 

3. Convergence of a Nonlinear Extension of the Method of Kaczmarz 

The algorithm described in this section is applicable to nonlinear equations 

(3.1) F(x)=  - =0, 

VSx / 
where F: D ~ R  m is continuously differentiable in the open set D c R  n. There 
may exist a manifold of solutions of (3.1); m and n are arbitrary. Let 

(3.2) gi(Y) =Y -f~(Y)II Vf~(y)J[- 2 Vf~(y), i=  1 . . . .  , m 

(V f  denotes the gradient o f f  and Vf~(y):~ 0 is assumed). Starting from an initial 
vector x ~ the nonlinear Kaczmarz method generates a sequence {x k} by the 
recursion xk+I=G(xk ) ,  where 

(3.3) G ( x ) = g , , ( . . . g l ( x ) . . .  ). 
m 

This algorithm belongs to the class of generalized SOR-Newton-schemes con- 
sidered by Ortega and Rheinboldt [22, p. 226]. Each computation of gi(Y) 
amounts to a shift of y in the direction of -Vf~(y) towards the manifold 
{x If~(x)=0}. The steplength is determined in an obvious manner by one step of 
the one-dimensional Newton method. Alternatively, one step of the iteration 
can be interpreted as a sequence of orthogonal projections of the points x k'i 
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=gi(xk'i-1), xk'O=x k onto  the hyperplanes fi(xk'i)+(vfi(xk'i),x--xk'i)=O, i 
= 1 . . . . .  m. To the authors  knowledge, this method  is due to Tompkins  [30] 
and was rediscovered by McCormick  [18]. There exist similar methods  for the 
solution of the convex feasibility problem, see Eremin [7], Raik [25], Censor 
and Lent  [5] and the survey [3] of Censor. The proofs of convergence in these 
papers do not  treat  the case that (3.1) possesses a nonconvex set of solutions. 

The Kaczmarz-Newton  method is a row action method in the sense of  [3], 
i.e. in every substep access is required to only one row of the Jacobian matrix 
and only one iterate has to be stored. This proper ty  makes the method  attrac- 
tive for the numerical t reatment  of very large and sparse problems. 

In order  to apply Theorem 2.2 we cite in the following Lemma  two results 
of Tanabe  on the linear Kaczmarz  method ([28, Cor. 4, Th. 5.2]). 

L e m m a  3.1, Suppose A is a real or complex m x n-matrix and a i is the i-th col- 
umn vector of A*. It is assumed that Naill=t:O for i = l , . . . , m .  The matrix Q is 
defined as follows: 

1 

Q= I~ ( I -a la*  IlaiN-2)" 
i = m  

Then K e r ( I - Q ) =  Ker A and ]lQllma, l] <1.  

Theorem 3.2. Suppose there is an u~ eE such that G is well-defined in an 
e-neighborhood N(u ~ e). For every xeD satisfying u(x)=u ~ we assume 

(3.4) x - u~  F'(u~ *. 

Then there is a (3-neighbourhood such that the sequence {x k} converges for every 
starting vector x~ ~ 6) towards a u~N(u ~ 0 ~ E .  

1 

Proof The chain rule yields G' (u~ l-I g'i(u~ �9 A simple calculation shows that 
i = m  

g',(y) = I -  II v f , (y )  ll - 2 v f , (y )  v f , (y )*  

for f / (y)=0.  Lem ma  3.1 with A=F' (u  ~ and Q=G'(u ~ yields ImF' (u~  
-G'(u~ * and Theorem 2.2 holds because of 

, 0 t 0 
IlG (u)llm(I-G,(uo)),[I = JIG (u)[ImF'(uO)*l[ <1.  [ ]  

Assumpt ion  (3.4) is for instance satisfied if there exist - possibly after a suitable 
permuta t ion  of indices - functions {f l  . . . . .  fro'} c {fa . . . . .  fro} with the proper ty  

rank ( ~@l(u)' cOfl 'u ' \  I (3.5) F'(u) = m' = rank ......,~x t J ~  

for all ueN(u ~ According to some well-known results of analysis (e.g. Os- 
trowski [24, w 16, 79]), {f , , ,+ l , - . . , f , ,}  are dependent  on {fl  . . . .  ,fro'} in the fol- 
lowing way: 
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(3.6) f i(u)=~bi(fl(u) . . . . .  fm,(u)), m' + l <_i<m, 

where ~bi: R"'--*R 1 and ueN(u~ For  all u e O  satisfying f t ( u ) =  ... =fm,(u)=0,  
(3.6) shows that 

(3.7) fl (u) = f/(u ~ = 0, m' + 1 _< i _< n. 

Therefore, if x satisfies I l x - u ~  then also 

(3.8) II x - u ~ [I z = min { II x - u II 2 Ifl (u) . . . . .  fro' (U) = 0}. 

Standard Lagrange multiplier theory for (3.8) finally yields (3.4). 

4. Convergence of Other Methods 

Theorem 4.1. Under the same assumptions on F as in Theorem 3.2 the following 
methods converge: 

(a) the Kaczmarz-Newton  method with relaxation, i.e. gi is defined by 

(4.1) gi(Y)=Y-e)f i (Y)l l  Vfi(Y)H-2 Vfi(y), 0<co <2 ;  

(b) the corresponding simultaneous iteration scheme of Hart  and Motzkin 
[10] 

(4.2) xk + l : xk - -  ~, ('oifi(Xk) II Vfi(xk) N-- 2 Vfi(x k) 
i = l  

then 

G'(y)= I -  ~ o)~ Vf~(y) Vf~(y)* II rf~(y)[I 
1 2 

i=l 

Since G'(y) is Hermitian, 

for f~(y)=O, i=1  . . . . .  m. 

tl G'(U)llm(l_ a'(.))*ll = p(G' (U)l lm(i  - G'(u)) < 1 

for  o9~>0, ~ < 2 ;  

(c) the method of  Altman [1] 

(4.3) x k + 1 = x k _ co f '  (x k) I I F' (xk) II - 2 f (xk), 0 < Co < 2. 

Proof. (a) Following the reasoning of Tanabe [28], it is possible to prove an 
extension of Lemma 3.1 where Q is replaced by l - [ ( I -o~aia*  Ilaill-2), 0 < c o < 2 .  
The rest is a mere repetition of the proof of Theorem 3.2 

(b) A block-iterative version of (4.2) for systems of linear equations was 
considered by Elfving [6]. If 

G ( y ) = y -  ~ ~oif~(y ) II Vf~(y)lb-2 Vf~(y), 
i = 1  
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because of [6, Th. 9]. It should be noted that according to Elfving the con- 
ditions on o) i can be relaxed. 

(c) This can be proved in a similar way as (b) using results of Friedrich [8]. 
The method of Altman has been thoroughly investigated by McCormick [17]. 

5. Numerical Solution of a Nonlinear Image Reconstruction Problem Arising 
in Ultrasound Tomography 

Ultrasound tomography is a technique for obtaining a tomographic image of 
the internal structure of an object via ultrasound time-of-flight measurements 
in a similar way as in computed tomography with X-rays (Kak [15]). It is 
hoped that ultrasound tomography will become relevant for the early detection 
of breast cancer. 

At the very beginning, the well-proven reconstruction techniques of X-ray 
CT were applied to ultrasound CT. Soon it was recognized that the results 
obtained in this way were poor since ultrasound - in contrast to X-rays - does 
not propagate along straight "rays". A more adequate physical model for ul- 
trasound is geometrical acoustics, i.e. the rays - according to Fermat's prin- 
ciple - are curved in a way that depends on the object to be investigated. The 
function n which represents the unknown object is called the acoustical re- 
fractive index (following the notation of the references, n does not denote a 
dimension). For a parallel scanning geometry and a refractive index depending 
on two space variables, the problem can be posed as follows: Let 

~(u,O)= ~cosO-sinO 0 ucosO+sinO 
sinO+cos ' ~R(u'O)= usinO-cosO 

for - o e < u < o e ,  O_<_O<m For fixed O,~E(u,O ) (the emitter position) and 
~R(u, O) (the receiver position) are a pair of parallel lines tangent to the unit 
circle (Fig. 1). 

Let n:R2-*R be a positive function with n(~)=l  for II~ll>l; and let n 
possess all the smoothness properties required in the sequel. Let 7(n, u, O) be the 
path of an ultrasound ray passing from the emitter ~E(u,O) to the receiver 
~R(u, 0). For nonconstant n, 7(n, u, O) is not a straight line, but is determined by 
the variational principle 

(5.1) ~ nds =min;  

where ;~ is a curve connecting ~E(u, 0) and ~R(u, 0), and ds denotes the line 
element of arc length. If several such rays exist (possibly corresponding to local 
minima of (5.1)), let 7(n, u, 0) be one for which (5.1) attains an absolute mini- 
mum. The line integral (5.1) is - up to a normalization factor - the time-of- 
flight of an ultrasound pulse travelling along 7(n,u,O). Since these time-of- 
flights can be measured, the reconstruction problem in its continuous form is to 
recover n from the nonlinear integral equation 
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(5.2) ~ nds=h(u,O), - oo<u<oo, O<O<~r. 
7(n, u, 0) 

This so-called inverse kinematic problem for the wave equation nZut,=Au is 
for a different scanning geometry the classical inverse problem of seismology. It 
is well-known that even the continuous problem is not necessarily uniquely 
solvable. (Gilbert and Johnson [13], McKinnon and Bates [19]; a condition 
for uniqueness is given by Muhometov [20].) The well-established methods of 
solution like the Backus-Gilbert-technique ([13]) are too time-consuming for 
medical applications. Schomberg introduced in [-26] a nonlinear extension of 
the Algebraic Reconstruction technique, basically a special kind of collocation 
with subsequent application of the Kaczmarz-Newton method which we are 
going to describe now. 

The time-of flight data h(u, O) are in practice measured at a discrete set of 
points (u~, 0r), 1 < 1 < L, 1 <p  <P.  The refractive index n is approximated by a 
finite set of linear independent functions {~bl/1 < i < m}: 

n ~ =  ~ xi4)i. 
i = l  

For a fixed m-tupel x=(x  1 . . . . .  Xm) , the ray passing from the emitter ~e(ul,0p) 
to the receiver ~a(Ul, Op) (with respect to h) can be computed by the numerical 
solution of the variational problem 

S hds=min!  
~(~, ul, 0p) 
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1,0 

Fig .  2 

The numerical approximation of y(fi, ul, Op) will be denoted by ~(h, ul,0p). 
Using a suitable quadrature scheme, the line integrals can be evaluated: 

( S S 
~,(~, u~, Op) ~,(~, u~, Op) 

Thus, we arrive via collocation at the following discrete ill-conditioned coun- 
terpart of (5.2): 

hds~(dP(x ) , x )=h(u l ,Op) ,  l < l < L, l <P < P. 
~,(fi, u z, Or) 

This nonlinear system of equations can be solved by the Kaczmarz-Newton 
method of w 3; details of the algorithm like the computation of the derivatives 
and regularization are given in [27]. 

The time-of-flight data of the following numerical example were experimen- 
tally measured for 75 uniformly spaced angles 0v, 0 < 0 p < ~ ,  and for 64 uni- 
formly spaced positions u~ , -  l<u~<  1. The object consisted of 7 thin-walled 
rubber tubes filled with saline and hanging in a water tank. The refractive 
index of this phantom varied as indicated in Fig. 2. The problem was discre- 
tized by bilinear finite elements on an even 64 x 64-grid. Starting from the in- 
itial guess n---1, three cycles of the Kaczmarz-Newton method were performed. 
In Fig. 3, a grey-scale image of the reconstruction is shown. 

The problem as scetched above applies to a refractive index depending on 
two space variables. For medical applications, n depends on three space vari- 
ables, and the rays are curved in R a. In this situation, additional measurements 
in vertical direction have to be made. Let the position of the emitter/receiver 
pair be described by 

i cos0 sin~ z   c~ 
~ ( u , O , z ) =  sinO+cos , ~R(U,O, sinO--cos , 

Z Z 

where z is the vertical position. If 7(n, u, O, z) is the path of the ultrasound ray 
passing from the emitter ~E(u, O, z) to the receiver ~R(U, O, Z) and if h(u, O, z) is 
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the corresponding time-of-flight, then ~z is to be recovered from the ['ollox~ing 
equation even if one is only' interested in one slice of n: 

j" JTds h(lt, 0, -). 
; ' ( n .  u .  0 .  : )  

In the following numerical example, a three-dimensional refractive index vary- 
ing between 0.95 and 1.05 was generated on a computer. This is about the 
range of soft human tissue. Measurements for 45 evently spaced angles 0~,, 64 
evenly spaced emitter/receiver pairs with lateral position ,~, and 10 layers z,~ 
were simulated. After introducing 0.5 % random artificial noise to the data, the 
problem was solved in a similar way as in the 2-dimensional case (trilinear 
elements on an even grid, approximately 22,000 unknowns and 28,000 equa- 
tions). Figure 4 shows the middle layer of the original phantom and Fig. 5 the 
reconstruction of the same layer after three cycles of the Kaczmarz-Newton 
method. 

Fig. 4 Fig. 5 
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