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The Fokker-Planck Equation of a Laser
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Using the Glauber-Sudarshan P-representation for the field modes and a quasi-
distribution function recently presented for arbitrary quantum systems we derive an
exact generalized Fokker-Planck equation for a multi-mode laser containing a set
of multi-level atoms with homogeneous and inhomogeneous level broadening. By
introduction of suitable collective atomic coordinates this generalized Fokker-Planck
equation is reduced to an ordinary one which may serve as a basis for the adequate
treatment of laser light statistics.

§ 1. Introduction

After it had been shown theoretically! and experimentally? that the
statistical properties of laser light differ drastically below and above
laser threshold a great amount of work has been devoted to a detailed
exploration of the statistical properties of laser light®. The treatment of
photon statistics by Risken* and later on by Risken and Vollmer?,
who used a classical Fokker-Planck equation, turned out to be particularly
successful and excellent agreement in a region not too far above threshold
was found with their predictions®. Because the statistics of laser light
is caused by quantum mechanical processes the question arose why one
is allowed to use the classical Fokker-Planck equation for such a prob-

1 Haken, H.: Z. Physik 181, 96 (1964).

2 Armstrong, J. A., Smith, A. W.: Phys. Rev. Letters 14, 68 (1965).

3 For review articles (mainly theoretical) see Haken, H.: Laser theory, vol. XXV/2¢c
of the Encyclopedia of Physics, ed. S.Fliigge. Berlin-Heidelberg-New York:
Springer 1970. — Risken, H.: Progress in optics, vol. VIII, ed. E. Wolf, Amsterdam:
North-Holl. Publ. Comp. 1970. — The articles of Scully, M., Haken, H., Weid-
lich, W., Louisell, W., Gordon, J. P.: In the Proceedings of the Varenna Summer
School “Enrico Fermi”, 1967. — Haken, H.: In: Quantum optics, eds. Kay, S. M.,
Maitland, A. London and New York: Academic Press 1970. — Pike, E.R.:
ibd. — The experiments are described in the articles of Arecchi, F. T., Haus, H. A.:
Proceedings of the Varenna Summer School “Enrico Fermi”, 1967.

4 Risken, H.: Z. Physik 186, 85 (1965); 191, 302 (1966).

5 Risken, H., Vollmer, H. D.: Z. Physik 201, 323 (1967); 204, 240 (1967).

6 See e.g. Arecchi, F. T., Degiorgio, V., Querzola, K.: Phys. Rev. Letters 20, 1168
(1967). — Melizer, D., Mandel, L.: Phys. Rev. Letters 25, 1151 (1970) and the
articles quoted under 3.
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lem. Thus there was a challenge to derive Fokker-Planck equations
starting from a complete quantum mechanical formulation. The first
success was achieved for the damped harmonic oscillator’. After it
became possible to derive Fokker-Planck-type equations not only for
Bose fields but also for 2- and 3-level atoms, Fokker-Planck equations
were derived for a laser with a single mode coupled to a system of 2- or
3-level atoms®. Finally a generalized Fokker-Planck equation was derived
for arbitrary quantum systems, using a formulation particularly well
suited for multi-level atoms®. All these Fokker-Planck equations apply
to quasi-probability distributions.

The purpose of the present paper is to derive a Fokker-Planck
equation for a laser with many modes which are coupled to a system
of multi-level atoms. Although in a strict sense the generalized Fokker-
Planck equation contains arbitrarily high derivatives it is possible to
reduce it to an ordinary Fokker-Planck equation containing only the
first and second derivative by the introduction of suitable collective
excitations of the atoms. The Fokker-Planck equation thus derived
may serve as a basis for all calculations of the statistical properties of
lasers in multimode action and with atoms having arbitrary numbers
of levels.

In subsequent papers by one of us (H.D.V.), the usefulness of the
Fokker-Planck equation derived in the present paper will be demon-
strated by means of explicit examples.

§ 2. The Density Matrix Equation

We start by writing down the density matrix equation of the whole
system. It refers to the quantum states of the individual atoms (first
term), the time development of the electromagnetic field (second term)
and the coupling of atoms and field due to the interaction Hamiltonian
Hyp

40 _ 5p) (gg i
dt -—ua (—ﬁ Aﬂ8+ at)F _h—[HAF’p] (21)

The index p labels the atoms with respect to their spatial position £,,
the index ¢ labels them with respect to their different inhomogeneous
level broadening. In the following, statistical independence of u and &
is assumed. For purely homogeneously broadened levels, ¢ may be
dropped.

7 Weidlich, W., Haake, F.: Z. Physik 185, 30 (1965); 186, 203 (1965). — Lax, M.,
Louisell, W. H.: LE.E.E.J. Quantum Electronics QE-3, 47 (1967). — Bonifacio, R.,
Haake, F.: Z. Physik 200, 526 (1967).

8 Haken, H., Risken, H., Weidlich, W.: Z. Physik 206, 355 (1967). — Gordon, J. P.:
Phys. Rev. 161, 367 (1967). — Lax, M., Yuen, H.: Phys. Rev. 173, 362 (1968).

9 Haken. H.: Z. Physik 219, 411 (1969).
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The first two terms can be calculated by use of a Wangsness-Bloch
treatment of atoms and field respectively, coupled to a Markoffian
heat reservoir:

a) Atoms. The time development of the density matrix of a n-level
atom p, ¢ is described by means of the projection operators Py, for the
atom p, ¢ from level k to level { by the equation

ap) _ .
(_a_t_ A e—i, k'})ik‘Pik,ut:pPikue-}';(I}—l‘l‘Qia)pIDiiua (22)

+Z(Fi—'igie)Piiusp

where - —%Z)’ij-

The Py, fulfill the relation g _

'Pik,ueIJi’k'u's’= ik’uaéki’ 5##'555" (23)

hQ,, is the energy of level i. Through its dependence on g, Q;, may

describe inhomogeneous broadening. The y;.’s describe for ik the

transition rates from level i to level &, for i=k the level width caused
by phase destroying processes occurring in level 7.

The explicit form of Eq. (2.2) is taken from Schmid and Risken!®
where the transformation from the projection operator description to
the density matrix formulation had been made.

b) Field. The time development of the electromagnetic field within
the cavity of volume V, written in terms of the field creation and annihila-
tion operators b3, b, for each mode 1, is given by!!

(%?)f;{—-ivl[bzf bas P1=rs{[b7, bap]+[pbF, b1

+216, 1, [b, £, 531}

where [4, B]=AB— BA.

The commutation relations for bf, b, are

[bls b;’]=5l,}v’a [bi.’ b;_']=[b;, b}]:O (25)

1, =(exp(hv,/kT)—1)""! is the mean number of thermal quanta of the
mode A in the cavity of temperature T, v, is the eigenfrequency of mode A
and x, the corresponding damping constant.

The third term describes the (coherent) interaction.

The linear interaction of field and atoms can be derived by use of the
FOmIONR Hymh T g a5 +b). 26)

10 Schmid, C., Risken, H.: Z. Physik 189, 365 (1966).
11 Weidlich, W., Haake, F.: See Ref. 7.
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The coupling constant g;.h,,. for the transition between the levels i
and k of atom p, & and the electric field of mode 1’ is given in the dipole

approximation by (standing electromagnetic waves!?)
8ij M

. 2e T in(k % d 27
=gy hysinky §,= T m sin(ky €,) - foi (Ez' -y)fpj T (2.7)

and can therefore be split up into a field and an atomic part. It should
be noted that in general g;;=0 because of the definite parity of the
atomic wave functions.

Using the explicit expressions (2.2), (2.4), (2.6), the density matrix
equation reads®3

%, ,
=2 (=il bip=pbi b)
—1¢;(bi byp+pb; b,—2b,pb})
+21, 1, (b7 pby+bapby —b; byp—pb,b;)}

2.8
+.k2 Vik Prine P Pirpe 28)
Lk e
+ k; (=193, 01485, 0= 1 8k Bua(bi +5)] Preyap
Iy Ky Ay Iy E
+ k; PPikus[(Fi'f‘iQis)éik‘Sz,0+igikh,ul(b;+b/1)]-
Lk ps

§ 3. Definition of the Distribution Function,
Calculation of Expectation Values
The distribution function f of the variables », u* and v, corresponding
to the operators b*, b and P of field and atoms, is defined as usual by
use of the Fourier transform f of the characteristic function F,

T xikusvikua—)}_j(yau;.+y';‘.“i)

(s (o} =t |
-F({x}, {y}, ) d{x}d{y}. (3.1

9t means the normalization constant, y;, y§ and x;;,, are the classical
variables related to operators b,, b and P,,., respectively*. The
variables y;, ¥¥, x;,, are imaginary, so that (3.1) is indeed a Fourier
* Note that * does not mean here the complex conjugate but denotes another set of
variables, related to the others by
u*=1u, w=u*, F=—y* Fr=—y.

The bar indicates the complex conjugate.
12 See e.g. Haken, H.: Z. Physik 190, 327 (1966).
13 See e.g. the first article quoted under Ref. 3.
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transform. The characteristic function F is derived from the density
matrix p(¢) by taking the trace over the whole system.

F=Tr(0p) (3.2)

after multiplying it with an operator O that can be chosen suitably.
In order to arrive at a definition of the distribution function f, which
also holds classically, (3.2) must be a Fourier transform from p to F
because p is known to be the distribution function. The classical function
O must therefore be a product of exponentials. The quantum operator O
is similarly composed of exponential operators whose sequence can be
suitably chosen.

In a previous paper'* we have introduced such an operator O
and given rules how operators applied to O act on the characteristic
function F. While the former treatment is most suitable for a single
n-level atom, it is advisable to define O for a system of atoms in the
following generalized form.

0({36}, {y})=:[|-l_];:0u8 ' 1;[0}.
=1’[ {Hexikuspiky,sn exiiuaPiipu: H exikuapikus} (33)

n,e i<k i i>k
. H{eyj.bi." . g¥2 b;v} R
A

The operators b occur in the same way as in Glaubers P-representation !°,

In our further calculation it is rather unimportant whether differential
equations for F or f are derived. Due to the Fourier transform (3.1)
the characteristic and the distribution function are ccnnected by the
relation

x1 (;;)pF(x)H(——(%—)qv”f(v). (3.4)

In order to be able to transform the operator equation (2.8) into a
partial differential equation with the variables v, u or x, y for the func-
tion f or F, we must know how operators acting on O can be replaced
by differential operators. These relations can be derived by use of the
commutators. For the field these relations read!®

00 0
by 0,= i; b101=(—+y3*) 0,
0y; 0y,
3 5 (3.5)
0b+=( +)0; 0,b,=——0,.
a0 6yf Vi) Vs 20, 3y, i

14 Seec Ref. °.
15 Compare the paper of Lax, M., Louisell, W. H., Ref. 7.
16 See Ref. 7+8,
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For the projection operators of atoms the corresponding relations
have been determined previously and read !’

0
Oua ‘l)ikue::l[:nlvi(kll)m({x}us) m Oue

0,
-Pikus Ous= ZM(kzl)m({x}ua)

l,m axlmus

0, (3.6)

0
PikusOuePki=l§:Mikki,lm({x}ue)‘é‘)};"“:oua.
s mpy

The functions M and N are given explicitly in the Appendix. The argu-
ment {x},, stands for all x;.,.,, with fixed  and &, but variable /” and
m’ (compare the Appendix).

In order to derive a differential equation for the distribution function
we multiply the density matrix equation on both sides from the left
with O and take the trace over the whole system. The further steps
have been described previously '® and lead to the equation

6F_ . x O 0 )
ot —;{”’z (J’). ay;_k Ya 3,

J 0
—K; (J’jl= _"'yl_a_j,’;) +2K, 1, m V5 J’A}F

i
0
+ ) yikMikki,lm({x}ua)TF
i,k l,mp, 2 Impe
0

i Q. (N2 —NW -

+i,l’mz’",alQze(lem({x}ua) ]Vulm {x}ua)) axlmua F (37)
0

+ Y ("‘%')’ik)(Ni(izt)m({x}ua)+M(i11);n({x}ua))'a—x—“"“F
i, k,l,myp, ¢ Impe

+ Z lglk hnl Ivi(kzl)m({x}u e)_JVi(kll)m({x}u e))

i k,l,m, A, i, &

( 0 + 0 ) 0
éyf{ ayl axlm;uz

, 0
+ z 18ix hu).(lvi(kzl)m {x}us) J’T—M(klz)m {x}ns) yl)

i, kyl,my2,p,¢ axlmue

F.

The first sum describes the lightfield, the second, third and fourth
the atomic motion. The fifth and sixth sum refer to the coupling between
field and atoms. This differential equation for the characteristic function
is of very high order, namely of the order N-n%+2M where N is the

17 See Ref. 9.
18 See Ref. 8,
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number of atoms, n that of atomic levels and M the number of field
modes under consideration. It is known from other work that the laser
dynamics can be very often described by much less variables, if a suitable
set of macroscopic variables is used. For instance in a two level system
with only one mode, those adequate collective variables are the total
atomic inversion and the total dipole moment!®. This suggests to try
to introduce similar collective variables for our multimode and multi-
level system. On account of the boundary condition one is led to intro-
duce 2 types of collective operators in the definition of the distribution
function: Those which are connected with the off-diagonal atomic
matrix elements, which may be decomposed using a sine wave and those
connected with the diagonal elements corresponding to atomic occupa-
tion numbers which are decomposed into cosine waves. In order to treat
those two cases simultaneously we introduce the following decomposition
and its inverse

1
pim=Z CikanPikuss Pikuez—]'\f‘chklupik}.e (3.8)
lu 14|

where the coefficients C are defined by
C,-klu=5ikCosklfu—i(l—éik)sinklfﬂ. (3.9)

In the definition of F and f both operators and classical variables occur.
It is advisable to introduce collective variables for both sets of quantities.
We first introduce collective operators. Due to the symmetry relation

Pu=Q0;—DPy_y;  Pixa=Q0u— D pir-s (3.10)

the sums in (3.8) have to run over all | x| and || respectively, whereas
the sign can be chosen arbitrarily for each A, p. (The index ¢ has been
dropped in (3.10).)

The corresponding collective coordinates (the classical variables)
are defined in such a way that sums in the exponents of the function O,
(3.3), remain invariant under the transformation

Zplk“ 1k).e'_z ikue xkuz- (311)

This leads after a short transformation to the following definition and
its inverse

xikue=zcik}.uXik}.z

(3.12)

:k},s thk}.p, lk[,L?.’

19 See Ref. 1.
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The transformation of the derivatives is given by

0 0

o 3.13
axtkua |z}.[ R a)(zk).x ( )

For the Fourier transformed variables we find in complete analogy
to (3.8) the relations

Viku=zcik;.uvikus§ U;kua‘_“_—zczklu ikiee (3.14)

{ul

A simple inspection of the functional determinant reveals that it is
a constant for this transformation so that we can immediately proceed
to the definition of the distribution function by means of the collective
variables:

SV} {u}) =R [--fe e
- F({X3, {yh)d{X}a{y}.

Xikare Vik)n:“'E(Y}. up+yh uh)

(3.15)

§ 4. Differential Equation of the Characteristic Function
in Collective Coordinates

The main task is now to transform the Eq. (3.7), which had referred
to individual coordinates, to an equation referring to the collective
coordinates introduced above. We skip the elementary transformation
and write down immediately the differential equation

at & A i 6y AT ay}'

7]
—K; (J’* 7y =5t 3y )+2K;."th’:1kJ’A}F
0

+ Kimo({X}) m—F

lm?ﬁ.[, fm4 ({ }) lm}.s (41)

0 il
(2) (1 .
" X U0 K00 (554 5ow)
_ 0

+ IZ (Jz(rzn)u'({X}s)J’f' l(:‘l)}vll ({X}a)y/l) ox, . -F

114, "

where the following abbreviations were used

z(r};)u {X}) Z N gzkhl'lzclm}.u 1klm({x}ua) sin (k. £,) 4.2)
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and

szze({X}s)=Z7’ik : _]b—%c;kmlu {Mikki, lm({x}ua)

i,k

— 3 (N ({3} + N0 ({x},00)} 4.3)

2.0y 30 (N (05}, = N (,0) G-
i "

{X}, stands for the set of variables X, ,, for all possible /', m’, 2,
but fixed e.

The functions N;y,, and M;;;; ;, on the right hand side are to
be taken as the functions defined in the Appendix. In these functions
the individual atomic variables are to be expressed by the collective
ones according to the formulas (3.12). The equation for F is the most
general result of our present analysis. If we assume that the original
density matrix equation is exact this new equation describes exactly
the time dependent and stationary behaviour of a laser with many
modes and a complete system of atomic variables. Of course, for practical
purposes this equation is still far too general, but we want to show that
there are several effective ways to cut down the number of variables.
Usually the number of atoms in a laser is very large. Because the collective
variables V;;,, increase with the number of atoms we may anticipate
that the corresponding relative fluctuations will decrease. On account
of the transformation (3.4) we expect the variables X;.,. and y, to
become smaller with increasing atomic number. Thus we may try to
expand the coefficients J,,,,; and K, ,, into a power series of the
number of atoms, N. Because we are dealing with a differential equation,
the order of magnitude of terms containing derivatives can be determined
only if the distribution function is known or is known afterwards so
that we can make our assumptions selfconsistent. Indeed, all examples
calculated so far, show that f is a smooth function, in which the field
distribution depends on the parameter N in a characteristic manner used
below. Therefore we are allowed to compare the coefficients and the
derivatives in an adequate way.

In order to do the investigation with respect to the variables X, ,,
and y, we remind the reader of the connection (3.4) between the variables
and their Fourier transform V;, , and u,. For the Fourier transformation
a factor is to be replaced by a derivative and vice versa according to

0 0

Kikre™— 1% > X Vikaes
ikie ikt

(4.4)

yl—)—-a—ul’ ayl—-)ul.
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Table. Dependence of the terms in Eq. (4.1) on the number of atoms within the resonator
when the coefficients N, N®, M are expanded into a power series of the coordinates

Power of the dependence on N
of the following terms

Region relative to threshold

above at below
Xiize —1 -1 —1
&ix o —1/2 —1/2 —1/2
Xijae (1) -1 —3/4 -1/2
Ya -1/2 —1/4 0
Field part of (4.1) 0,—1 0,—1/2 0
. . 0 1 1 1
atomic part, diagonal 1 0 0 0
K1120000%,15) 2 —1  —12,-1 0-—1
power of X in K 3 _2 ___3/2’__2 —1—2
atomic part, off-diagonal 1 0 0 0
K, ,(X) 0/oX,,, 5) {2 —1 —1 —1
power of X in K 3 -2 —3/2,—2 —1,-2
Interaction, diagonal part
PR ALI KN I,
i Ay, oyl aXyy, 2 —1 -1 —1
power of Xin J
interaction, off-diagonal part (/3= m)
P P P 0 1 1/2 0
J; A(X) ( + ) 1 0 —1/2 —1
S Z O T A Y ) —1 —1,—32 —1,-2

power of X in J

interaction, diagonal part

P 0
A e — 1
nar Va3 X110 5
power of X in J
interaction, off-diagonal part 0
17
J, v (Id=m) 1
tmad 12 Imie 2

power of X in J

—1 —1/2 0
-2 —3/2 —1
0 0 0
—1 -1 -1
-2 —3/2,—2 -—1,--2

Consequently the dependence of the variables X;;,;, and V;,; on N
is reciprocal. In the Table the powers of N of the corresponding contri-
butions are given for 3 regions, above, at and below threshold. In the
Table we assume that the field amplitude below threshold is independent
of the number of atoms but above threshold depends linearly on the
number of atoms. This assumption is substantiated by the detailed
treatment of a single mode laser and is selfconsistent in this treatment.
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The results of the Table can be interpreted as follows: At and below
threshold it is sufficient to retain terms up to second order for the atomic
part and up to first order in the interaction term. Thus one obtains
an equation whose Fourier transform contains derivations only up to
second order so that the usual Fokker-Planck equation results. Far
above threshold the interaction term must be treated in the same way
as the atomic part up to second order. In this way we obtain a range
of validity which goes beyond that of the Fokker-Planck equations
derived so far. The criteria of how far we have to go in our expansion
is the following. We retain the field term as the exact one and expand
the other terms in powers of the atomic number at least to the same
order. Using the results of the Table we expand the coefficients N,
NBwms Miyrs, im as given in the Appendix and evaluate the sums over
the atomic indices as far as needed.

This leads us to the expression
szzs({X}a)-——ézmz;‘(Yki51k—3’ik5iz)Xius
+ (@ — Q2,0 —-3(1 “5lm);(')’1k+7mk)] Ximse

+%0;m Z (V15 0:x(8i p+6:) —27:1 0161 ]

I l,lk’p I
PUNH
* Xiiw e Xukare Oarar427,0

+k M;l;nl[ém<l(’ylk_5klzyli)+5l<m('ymk—6mkzymi)]
« Xk e XimareOna 2742, 0 4.5)
+61m ZI:C (PixSr<it Y Vi pOr<r 1)
1, p
1471, [4”]

: Xvikl'axki}.”852+i.’+l”, 0

In a similar way the somewhat lengthy but elementary calculation
yields for J© and J® which occur in (4.1):

Jz(;i)u'({X}s) =—h; &m 51, Py
+hy Gim 51<m_ Z (051 0im) Xis 27201147447, 0

g
+hy 5lm' kzl:lulgik 03 <k(Omi—0x1) Xpias0at a2, 0
+3h; 8imli<m Y [6:x(0:1+6:m)
ik, (A7), 1A

— (010 m+ 041 0im) ]
* Xiiare XiraeOat 2424207, 0 (4.6)
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+ .kZ hl’[_gik(5i<lal<k51<m(1_5km)
Ky Py 4
12711471 +(5im+5i<m) 5m<k5m<l)5lp5mq
+glk5pq5im 6l<p5p<k5p<m
+gim(1—51m)5i<m(5pm+5p<m)
‘ 51;q5lk5i<1;51:<l]
* XpiwreXeqaeOniwrtartam, o
J{2, ,» may be obtained from J{L, ;- by the following relations
Jlmu I' m gy
I P 4.7
Jz(p%;)u' mo 1 g
After insertion of Kj,,,, J&¥, . and the corresponding relation for
Jf2, ,» we obtain a differential equation for the characteristic function.
Our final goal is to find the ordinary Fokker-Planck equation for the
distribution function itself which may be immediately obtained from

that for the characteristic function by taking the Fourier transform.
Our final result reads

3
FJ:‘ Z o — (=it Dui+0: Y GimVimaelS

[4] Lme

i,
;T{(IVA‘*‘KA)W—}M Y & Vims s}f

I,m,e

+ W—{Z(%kVnu—h;Vkua)‘F Z by (uy+ul)
i, |4], & iide k

Ha

(g Vikl”e_gkiVkil”e)5/1+).’+}.”,0}f
g .
g»2 Viks {[l(‘Qkﬁ_‘QiE)—I—%(l—"5ik)zl:(yil+7)kl):lVik}.z

ik, A, &
+ ” Efl”lh” i +u) Virare—Viswr D Sas a4, 0} S
62
+ ) ———{2k,n
l%:aaula E3 { 2 lth}f
62
+ 4L S, .V, et Vo
i,%l 61/1_“261/“‘1’8 {[2 1k(711 e TYit Yiia a)
141 2], 12712

~Yix01: Viiarel 62420427, 0

=3 by (u+u) (30— 6D (81<1— G1<)

. lZ I(gil Vitirre=81i Visarme) Oat ar s a b arm, o}f
=
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62
Y gy {[Gueitit Srcntnd
121 lll [47]e

—;Vik@m« 011+ 01<m Oim)] Vimars 02410427, 0} f
52
+M|": ’fifii}”l'hﬂlsm {61k 01m(B1<iVp1 Vopare (4.8)
+0i<1V1p Vitar o) Sa4 a4, 0F By g+ 30)
. [—5ip gik(5k<m Om<iOm<i (1047
—(Oim+0i<m) Om<k Om<rF 01<i 01 < (1 + O <r)

_(1 _5km) 5i<lél<k51<m)MEl Viml”’aé}t+}.’+l”+l’”, 0
e

+8ip 51m(5p<z5t<i5z<k—(1 =0k p) 0i<p(01,+01<p) 5i<151<k)

: IZlI/}‘M,,,e(S;_H,H"H,,,,O
2,

+ 251 O1m Ok < p (1 — 6,081, + 61< ) Or <1 61<i— <1 Oy <k O1<s)
Z i eOasaea+rolbS

2
+ h 6 1O i e
l’l’l};ll“alfulsa * {( A)Z( <t gl L

—0i<181: Viiare) 51+A’+/l", O}f

aZ
+ (= ha 5i< i Vl e
t,i,p%me OV;i2e0uy {( 1)1;|( it i

—01<i 81 Viiare) 5/1+/1'+;.", o}f

32
OV, 0ur h 9 Vi e n' &
ik 13T 4] & Vi 0US {h thk e<i(Verar ae)
2 Oxvatim ot f
0

+ —— _Sh., . O | A /A
i,k,[).zlzlz']a 6Vki“6u,v{ lI;Iglk i<tk (Vekara= Viiar o)
' 5z+;.'+;.",0}f-

Because this equation will be used later as a starting point for further
treatments we briefly remind the reader of the notation. The classical
amplitude, corresponding to the quantized field amplitudes of mode 4,
is u;. V;;,, is the collective coordinate of the atomic occupation number
of level i in the spatial mode A of the atoms with the level broadening
index &. ¢ is to be omitted for a homogeneously broadened line. Vi, ;,
is the collective off-diagonal element corresponding to the spatial mode A.
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v, is the frequency of the mode A in the unloaded cavity and «,
its decay constant. &, g;,, is defined in Eq. (2.7) and represents the coupling
between atoms and field. y;, is the atomic transition rate from the level i
and k (for the definition see 2°), K Q,, is the energy of the atomic level k
with broadening index e. n;, is the number of thermal photons of
mode A. Inspection of (4.8) reveals that it is an ordinary Fokker-Planck
equation containing derivatives up to second order. It describes for
sufficiently high numbers of atoms a laser with M modes and N atoms,
having each » levels, in a nearly exact fashion. Thus it may serve as a
basis for future work on the behaviour of such a laser containing all
relevant quantum mechanical information.

Appendix

Explicit Form of the Coefficients M and N

In addition to the Kronecker symbol d;, we use the symbol J;.;
which is defined by

k-t 1 if i<k
5i<k=l;06il_{0 if izk. (A'l)

We further use as previously* the abbreviation

Om—’k=5mk—|— Z Xml15m<l1Xl112511<12"‘lek51j<k (A.2)

i, 12, .0 1

where the sum runs over all possible indices under the restriction
m<l; <..- <k. For descending indices it reads

0m<—k=5mk+ Z Xm11511<le1125l2<11"'lek5k<lj' (A.3)

I, 12, ... 45

With this abbreviation the coefficients M, ;,, and Ny;,,, which had
been derived elsewhere* can be written in a very compact fashion, namely
Ni (XD =(0ri+0k<i) 51 (mi— S m<sc Xiem) + 0i5 01 Ot X 1m

+ {01 <1 (Okm— Xiem O <m) XTI G S Xy €T

+Z5l<n5n<k5n<kaanmeX”_X"" (A4)

+5i<k(5mk_5m<kam) (5lm+5m<l)} Ol(—i
_Zéi<k(5mk— 5m<kam) 5m<n 5n_<len On‘_i .

20 See Ref. 1% or 3,
29 Z.Physik, Bd. 242
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From it N{?},, may be found by the following replacements

ND kIl ma X, 0F

i
I I T O T I (A.5)
N®n k i m | & Xgz OFF

In a similar manner one finds after lengthy calculations the following
explicit form

Mz, 1 ({(x) = 0F"F 0P * ¥ 7) I [T
r
+8im01<il € X+ [OneiOrcre” 481101 cme ™
+81<mOm<i€ T+ Oy 6y
+51<i5m<le_X”]XliXim_25l<n5n<m5n<i (AG)

n

'XliXianme-Xnn
~25m<n(5n<l5n<inaniXime_X"n}9

Zok»pop«-k pr_ZeXpP(ékp+5k<p Z Xklh 5k<q1 ..

iy Fieen

X gpBarcn XpriOricp oo Xy Oper,)-

4ip “qi<p “pri

(A7)

The summation runs over all indices so that k<g;<--- <g;<p>
y1> >y, >k is fulfilled.

Expanszon of N{{)w is a power series of the number of atoms N up to
second order. For the diagonal elements i=k we simply obtain the exact

resul N =011t (Bim =310 Bt Ko a9
For the corresponding elements ==k the result reads
N lm({x})
=011 0k m+ 031 Om Oy < (Xii = Xit)
+(Bix+6;<1) Oem Gi<1 X13— (Ome<rcF O1<k O <) 61: Xim
+68;101<x Opm - 3 (X=X + 81<k Bsom 63 <1 X11— 013 B com Xm)
(K= X)) = 01161 <m Om < (K11 — Xwm) Xiem (A.9)
—{01<k01<m(1 = Opm) + 01 <k Om< i [O1m+ (1 + 1<) Omei ]}
: 5i<leika+5li§51<p5p<k5p<kaPXPm
+5i<k5km2(1_5m<p)6i<p5p<lepoi'

N, tollows from (A.9) by means of the relation (A.5).
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Expansion of M up to terms of second order.
The result reads

Miies, 1m({X 1) =011 61+ 051 Oy m (X i = X)) — (311 Ot 01 Oy <o) Xy
+6101m 3(Xiex—X1)> = (0116 maiF 81 Or<)
Xk = Xi) Xy + [Ome<i0i<1F 011 6i<mF 1< O
+01m 01 <iF Omes 1<il XliXim+5ilalm§6k<pkaka'

(A.10)
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