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Using the Glauber-Sudarshan P-representation for the field modes and a quasi- 
distribution function recently presented for arbitrary quantm~a systems we derive an 
exact generalized Fokker-Planck equation for a multi-mode laser containing a set 
of multi-level atoms with homogeneous and inhomogeneous level broadening. By 
introduction of suitable collective atomic coordinates this generalized Fokker-Planck 
equation is reduced to an ordinary one which may serve as a basis for the adequate 
treatment of laser light statistics. 

w 1. Introduction 

After it had been shown theoretically 1 and experimentally z that the 
statistical properties of laser light differ drastically below and above 
laser threshold a great amount of work has been devoted to a detailed 
exploration of the statistical properties of laser light 3. The treatment of 
photon statistics by Risken 4 and later on by Risken and Vollmer 5, 
who used a classical Fokker-Planck equation, turned out to be particularly 
successful and excellent agreement in a region not too far above threshold 
was found with their predictions 6. Because the statistics of laser light 
is caused by quantum mechanical processes the question arose why one 
is allowed to use the classical Fokker-Planck equation for such a prob- 

1 Haken, H.:  Z. Physik 181, 96 (1964). 
2 Armstrong, J. A., Smith, A. W.: Phys. Rev. Letters 14, 68 (1965). 
3 For review articles (mainly theoretical) see Haken, H.: Laser theory, vol. XXV/2c 

of the Encyclopedia of Physics, ed. S. Fliigge. Berlin-Heidelberg-New York: 
Springer 1970. -- Risken, H.: Progress in optics, vol. VIII, ed. E. Wolf. Amsterdam: 
North-Holl. Publ. Comp. 1970. -- The articles of Scully, M., Haken, It., Weid- 
lieh, W., Louisell, W., Gordon, J. P. : In the Proceedings of the Varenna Summer 
School "Enrico Fermi",  1967. --  Itaken, H.:  In: Quantum optics, eds. Kay, S. M., 
Maitland, A. London and New York: Academic Press 1970. --  Pike, E. R.: 
ibd. -- The experiments are described in the articles of Arecchi, F. T., Haus, H. A.: 
Proceedings of the Varenna Summer School "Enrico Fermi",  1967. 

4 Risken, H.: Z. Physik 186, 85 (1965); 191, 302 (1966). 
5 Risken, H., Vollmer, H. D.:  Z. Physik 201, 323 (1967); 204, 240 (1967). 
6 See e.g. Arecchi, F. T., Degiorgio, V., Querzola, K.: Phys. Rev. Letters 20, 1168 

(1967). --  Meltzer, D., Mandel, L.: Phys. Rev. Letters 25, 1151 (1970) and the 
articles quoted under 3. 
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lem. Thus there was a challenge to derive Fokker-Planck equations 
starting from a complete quantum mechanical formulation. The first 
success was achieved for the damped harmonic oscillator 7. After it 
became possible to derive Fokker-Planck-type equations not only for 
Bose fields but also for 2- and 3-level atoms, Fokker-Planck equations 
were derived for a laser with a single mode coupled to a system of 2- or 
3-level atoms 8. Finally a generalized Fokker-Planck equation was derived 
for arbitrary quantum systems, using a formulation particularly well 
suited for multi-level atoms 9. All these Fokker-Planck equations apply 
to quasi-probability distributions. 

The purpose of the present paper is to derive a Fokker-Planck 
equation for a laser with many modes which are coupled to a system 
of multi-level atoms. Although in a strict sense the generalized Fokker- 
Planck equation contains arbitrarily high derivatives it is possible to 
reduce it to an ordinary Fokker-Planck equation containing only the 
first and second derivative by the introduction of suitable collective 
excitations of the atoms. The Fokker-Planck equation thus derived 
may serve as a basis for all calculations of the statistical properties of 
lasers in multimode action and with atoms having arbitrary numbers 
of levels. 

In subsequent papers by one of us (H.D.V.), the usefulness of the 
Fokker-Planck equation derived in the present paper will be demon- 
strated by means of explicit examples. 

w 2. The Density Matrix Equation 
We start by writing down the density matrix equation of the whole 

system. It refers to the quantum states of the individual atoms (first 
term), the time development of the electromagnetic field (second term) 
and the coupling of atoms and field due to the interaction Hamiltonian 
Hat 

dp Op i "H 

The index # labels the atoms with respect to their spatial position ~ ,  
the index 8 labels them with respect to their different inhomogeneous 
level broadening. In the following, statistical independence of # and 
is assumed. For  purely homogeneously broadened levels, e may be 
dropped. 

7 Weidlich, W., Haake, F.: Z. Physik 185, 30 (1965); 186, 203 (1965). -- Lax, M., 
Louisell, W. H.: I.E.E.E.J. Quantum Electronics QE-3, 47 (1967). -- Bonifacio, R., 
Haake, F.: Z. Physik 200, 526 (1967). 

8 Haken, H., Risken, H., Weidlich, W.: Z. Physik 206, 355 (1967). -- Gordon, J. P.: 
Phys. Rev. 161, 367 (1967). -- Lax, M., Yuen, H.: Phys. Rev. 173, 362 (1968). 

9 Haken. H.: Z. Physik 219, 411 (1969). 
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The first two terms can be calculated by use of a Wangsness-Bloch 
treatment of atoms and field respectively, coupled to a Markoffian 
heat reservoir: 

a) Atoms. The time development of the density matrix of a n-level 
atom #, ~ is described by means of the projection operators P,k~, for the 
atom #, 8 from level k to level i by the equation 

O(__~_) =~g~kp, k~.pp, k,.+~(Fi+if2,.)pp~,v, (2.2) 
A, ,a, 8 i, k i 

+Z(v,- 
i 

where 

The P, ku, fulfill the relation J 

P ' k ~ ,  P~'k'  # : =-- Pik"  #* (~ki" ( ~ # '  ( ~ , , "  (2.3) 

hf2~, is the energy of level i. Through its dependence on 8, f2,, may 
describe inhomogeneous broadening. The ?,k's describe for i•k the 
transition rates from level i to level k, for i=k the level width caused 
by phase destroying processes occurring in level i. 

The explicit form of Eq. (2.2) is taken from Schmid and Risken* 0 
where the transformation from the projection operator description to 
the density matrix formulation had been made. 

b) Field. The time development of the electromagnetic field within 
the cavity of volume V, written in terms of the field creation and annihila- 
tion operators b~, ba for each mode 2, is given by 1~ 

(OP) =z{-ivx[b+bxp]-Ka{[b~'bxp]+[pb~'bx]} (2.4) 

where [A, B]=AB-BA. 
The commutation relations for b~, ba are 

, + 0 [b~ b~,]=5~,~,, Ibm, bz,]=[b~-, b~,]= . (2.5) 

nath = (exp(h va/kT)-1)- ~ is the mean number of thermal quanta of the 
mode 2 in the cavity of temperature T, vz is the eigenfrequency of mode 2 
and tcx the corresponding damping constant. 

The third term describes the (coherent) interaction. 
The linear interaction of field and atoms can be derived by use of the 

Hamiltonian Har=h ~,, g, kh.a,P, ku.(b~,+ba,). (2.6) 
i, k, 2", ,u, s 

10 Schmid, C~, Risken, H.: Z. Physik 189, 365 (1966). 
11 Wcidlich, W., Haake, F.: See Ref. 7. 
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The coupling constant g~kh~x, for the transition between the levels i 
and k of atom/~, e and the electric field of mode 2' is given in the dipole 
approximation by (standing electromagnetic waves ~2) 

g i j  hl~ A" 

=g,jhz,  sin k~,r - 2~eVim - -  ha~z, ~ V sin(kz,~,) .~p*(e~, .p)q~jdz (2.7) 

and can therefore be split up into a field and an atomic part. It  should 
be noted that in general g**=O because of the definite parity of the 
atomic wave functions. 

Using the explicit expressions (2.2), (2.4), (2.6), the density matrix 
equation reads ~3 

~ Pot = ~  {- ivy(b+ bxp-pb-~ bz) 

- ~cx(b~- b~p+pb-~ b~-2bzpb~) 

+ 2 ~  nz,h(b~- pbz+bzp bz + - bx + b~p-pb~b~)} 
+ ~ 7,knkiu.pp, k~ (2.8) 

i, k, tl, g 

+ ~ [(F~--ia,.)b,k6Z. o-ig,  khuz(b++bx)]P,k,~P 
i, k, 2, ~, 

+ Z �9 
i, k, 4, I~, 

w 3. Definition of the Distribution Function, 
Calculation of Expectation Values 

The distribution function f o r  the variables u, u* and v, corresponding 
to the operators b +, b and P of field and atoms, is defined as usual by 
use of the Fourier transform f of the characteristic function/7. 

- z ~k~ov~..-~(y~.z§ 
f({u}, {v}, t)=91~...y e "~'~' 

�9 F({x), {y), t) d{x} d{y). (3.1) 

9l means the normalization constant, ya, YI' and Xiku. are the classical 
variables related to operators bz, b + and P~ku~, respectively*. The 
variables yx, y~, Xik.. are imaginary, so that (3.1) is indeed a Fourier 

* Note that * does not mean here the complex conjugate but denotes another set of 
variables, related to the others by 

u*=~, u=~*, y = - - y * ,  y * = - - y .  

The bar indicates the complex conjugate. 
12 See e.g. Haken, H.: Z. Physik 190, 327 (1966). 
13 See e.g. the first article quoted under Ref. a 
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transform. The characteristic function F is derived from the density 
matrix p(t) by taking the trace over the whole system. 

F=Tr(Op) (3.2) 

after multiplying it with an operator O that can be chosen suitably. 
In order to arrive at a definition of the distribution function f ,  which 
also holds classically, (3.2) must be a Fourier transform from p to F 
because p is known to be the distribution function. The classical function 
O must therefore be a product of exponentials. The quantum operator O 
is similarly composed of exponential operators whose sequence can be 
suitably chosen. 

In a previous paper 14 we have introduced such an operator O 
and given rules how operators applied to O act on the characteristic 
function F. While the former treatment is most suitable for a single 
n-level atom, it is advisable to define O for a system of atoms in the 
following generalized form. 

O({x}, {y}) = ]-[ Ou.. r I  Ok 
,u, 8 2 

=I-I{I-[e:~,k,,~176176 e','-,~176 (3.3) 
~ , e  i < k  i i > k  

. I-[ {erlb2. e,~ b~}. 
x 

The operators b occur in the same way as in Glaubers P-representation ~ 5. 

In our further calculation it is rather unimportant whether differential 
equations for F or f are derived. Due to the Fourier transform (3.1) 
the characteristic and the distribution function are connected by the 
relation 

I d \P I d \q x q t-~x ) F(x)~--rt----~--~- ) vPf(v). (3.4) 

In order to be able to transform the operator equation (2.8) into a 
partial differential equation with the variables v, u or x, y for the func- 
tion f or F, we must know how operators acting on O can be replaced 
by differential operators. These relations can be derived by use of the 
commutators. For the field these relations read ~6 

14 See Ref. 9. 

A g O , ~ .  b+ Ok= ay'~ ' 

\Oy~ 

b,~O.~=(-~-~y+y,t) 0.~ 

Ok b~ = ~  Ok. 

15 Compare the paper of Lax, M., Louisell, W. H., Ref. 7 
16 SeeRef.  7,a. 

(3.5) 
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For the projection operators of atoms the corresponding relations 
have been determined previously and read 17 

0 
Ou.P,k.~ = ,,mE N[:t),. ((x}. ~ ) ~  0 . ,  

= Z N'~z~),n ((x}..) ~ Ou. (3.6) Ou~ 
1, m 

~ o 
1, m O X l m # e  Itt~" 

The functions M and N are given explicitly in the Appendix. The argu- 
ment {x},, stands for all XVm,~,~ with fixed # and e, but variable l' and 
m' (compare the Appendix). 

In order to derive a differential equation for the distribution function 
we multiply the density matrix equation on both sides from the left 
with O and take the trace over the whole system. The further steps 
have been described previously 18 and lead to the equation 

OF--~ {iv* (Y* ~-~-Y* y. 

+ 2 0 
i, k, t, m, l*, e a~l m ~ ~ F 

(3.7) i, l, m, I& 8 

i, k, 1, m, l~, e 0 X l m l* 8 

+ E igikhu,~(Ni(k2)m({X}~,~)--N[kl)tm({X}u~)) 
i, k, l, m, A, I~, 8 

( + a__L_ F \Oy~ dye] Oxt,,,.~ 
0 

+ i, k, t, Zm, ~, u,. igikh"a(N[k~)m({X}"")Y*--N[kl~m({X}"")Y~)~ F" 

The first sum describes the lightfield, the second, third and fourth 
the atomic motion. The fifth and sixth sum refer to the coupling between 
field and atoms. This differential equation for the characteristic function 
is of very high order, namely of the order N. n 2 + 2 M  where N is the 

17 See Ref.  9 
18 See Ref. s 
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number of atoms, n that of atomic levels and M the number of field 
modes under consideration. It is known from other work that the laser 
dynamics can be very often described by much less variables, if a suitable 
set of macroscopic variables is used. For instance in a two level system 
with only one mode, those adequate collective variables are the total 
atomic inversion and the total dipole moment 19. This suggests to try 
to introduce similar collective variables for our multimode and multi- 
level system. On account of the boundary condition one is led to intro- 
duce 2 types of collective operators in the definition of the distribution 
function: Those which are connected with the off-diagonal atomic 
matrix elements, which may be decomposed using a sine wave and those 
connected with the diagonal elements corresponding to atomic occupa- 
tion numbers which are decomposed into cosine waves. In order to treat 
those two cases simultaneously we introduce the following decomposition 
and its inverse 

1 , 
Pik~,=Z C, k4,P, ku~; P~Eu~=-w Z C, k4, Pik4~ (3.8) 

where the coefficients C are defined by 

C~k4u = 6ik COS k4 ~ - -  i(1 -- 6~k) sin k4 ~u. (3.9) 

In the definition of F and f b o t h  operators and classical variables occur. 
It is advisable to introduce collective variables for both sets of quantities. 
We first introduce collective operators. Due to the symmetry relation 

Piku=(2t~ik--t)Pik_~; pik~=(2C~ik--1)pik_4 (3.10) 

the sums in (3.8) have to run over all 1#[ and 121 respectively, whereas 
the sign can be chosen arbitrarily for each 2, p. (The index e has been 
dropped in (3.10).) 

The corresponding collective coordinates (the classical variables) 
are defined in such a way that sums in the exponents of the function O, 
(3.3), remain invariant under the transformation 

(3.11) 
141 I~1 

This leads after a short transformation to the following definition and 
its inverse 

141 

1 , (3 .12)  

~ " tt, I 
19 See Ref. 1. 
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The transformation of the derivatives is given by 

O 1 C* O (3.13) 
OXlklt n N 141 

For the Fourier transformed variables we find in complete analogy 
to (3.8) the relations 

lul 

A simple inspection of the functional determinant reveals that it is 
a constant for this transformation so that we can immediately proceed 
to the definition of the distribution function by means of the collective 
variables: 

q_ * * x  
-- ~ X i k A c V i k A e - - ~ ' ( y ~ U A  Y z U x )  

f({V}, {u})=gl' $...~ e "~'~'" 
�9 e ( { x } ,  {y})  d{X} d{y}. (3.15) 

w 4.  Differential  Equation of  the Characteristic Function 
in Collective Coordinates 

The main task is now to transform the Eq. (3.7), which had referred 
to individual coordinates, to an equation referring to the collective 
coordinates introduced above. We skip the elementary transformation 
and write down immediately the differential equation 

OF {ivz a 

t, m, 121,e (4.1) 
+ E ,2, ,1, [ 0 + 0 0 

- -  ~ F l,m (JlmA;"({X}a)-Jimx;~'({X}e)) \ a y z ,  ayx, l aXlm2. 

+ Z (J}2)~x'({X},)Y~'-JI(~)~x'({X}~)Yz') t?Xzma--------~" F 
l ,  nl  

l~l, l,Vl,, 

where the following abbreviations were used 

(2) 1 (2) 
(1) J- J;m,~L'({X}e)=Z "-~-" gik hx' i Z C;2x~,Ni(k~)m({X}u,) " sin (kz, r (4.2) 

i,k IN 
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and 

1 C* 

- �89 (N/~)~ ({x}, ~) + N[~)~ ({x}~ ~))} (4.3) 

(2,  (1, �9 
,,k N f~'l " (Nium({X}~)-Nu,m({X}~,,))Ctmx~. 

{X}, stands for the set of variables X r m , ~  for all possible l', m', 2, 
but fixed e. 

The functions Niktm and Mikk,,l ~ on the right hand side are to 
be taken as the functions defined in the Appendix. In these functions 
the individual atomic variables are to be expressed by the collective 
ones according to the formulas (3.12). The equation for F is the most 
general result of our present analysis. If we assume that the original 
density matrix equation is exact this new equation describes exactly 
the time dependent and stationary behaviour of a laser with many 
modes and a complete system of atomic variables. Of course, for practical 
purposes this equation is still far too general, but we want to show that 
there are several effective ways to cut down the number of variables. 
Usually the number of atoms in a laser is very large. Because the collective 
variables Vik~, increase with the number of atoms we may anticipate 
that the corresponding relative fluctuations will decrease. On account 
of the transformation (3.4) we expect the variables X,k~ and y~ to 
become smaller with increasing atomic number. Thus we may try to 
expand the coefficients Jlm,~Z' and Ktmx~ into a power series of the 
number of atoms, N. Because we are dealing with a differential equation, 
the order of magnitude of terms containing derivatives can be determined 
only if the distribution function is known or is known afterwards so 
that we can make our assumptions selfconsistent. Indeed, all examples 
calculated so far, show that f is a smooth function, in which the field 
distribution depends on the parameter N in a characteristic manner used 
below. Therefore we are allowed to compare the coefficients and the 
derivatives in an adequate way. 

In order to do the investigation with respect to the variables X~k~ 
and yz we remind the reader of the connection (3.4) between the variables 
and their Fourier transform V~kZ and uz. For  the Fourier transformation 
a factor is to be replaced by a derivative and vice versa according to 

a a 

X~k~.-~ OVid,.' c~X~k~:~ ~ V ~ .  
~ (4.4) 

Yz-* Ouz ' ayx~Uz"  
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Table. Dependence of the terms in Eq. (4.1) on the number of atoms within the resonator 
when the coefficients N 0), N (2), M are expanded into a power series of the coordinates 

Power of the dependence on N 
of the following terms 

Region relative to threshold 

above at below 

Xfi~8 --1 --1 --1 
gik --1/2 --112 --1/2 
Xija.  (i+j) --1 --3/4 --1/2 
y~ --1/2 --114 0 

Field part of (4.1) 

atomic part, diagonal 
Ku~(a/aX.~O 
power of X in K 

atomic part, off-diagonal 
Klma(X) (c3/OXlmJ,~) 
power of X in K 

0 ,  - 1 0 ,  - -  1 / 2  0 

[ 0  1 1 1 

l12 0 0 0 
- -  1 - -  1 / 2 ,  - -  1 O, - -  1 

3 --2 --312, - -2  - - 1 , - - 2  

~1 0 0 0 
--1 --1 --1 
- -2  --3/2, --2 - - 1 , - - 2  

Interaction, diagonal part 

. . . , ( x )  § 
OXu~. 

power of X in J 

interaction, off-diagonal part (/~ m) 

power of X in J 

interaction, diagonal part 

dll,~,~" Y~' OXttae 

power of X in J 

interaction, off-diagonal part 

Jlmz~'Y1" "-~tm~. (l~-m) 

power of X in J 

0 0 0 
- 1  - 1  - 1  

1 1 / 2  0 

0 - 1/2 - 1 
- I  - 1 , - 3 / 2  - 1 , - 2  

- -  m _ 

- -  1 - 1 / 2  0 

- 2 - 3 / 2  - 1 

0 0 0 
--1 - 1  - 1  
- -2  --3/2, - -2  - - 1 , - - 2  

Consequent ly  the  dependence  of the var iables  Xik2e and  Vik~ on N 
is reciprocal .  In  the Table  the  powers  of N of the cor respond ing  contr i -  
but ions  are  given for  3 regions,  above,  a t  and  be low threshold .  In  the 
Table  we assume tha t  the  field ampl i tude  be low threshold  is independen t  
of the n u m b e r  of a toms  bu t  above  threshold  depends  l inear ly  on  the 
number  of a toms.  This  a s sumpt ion  is subs tan t ia ted  by  the deta i led  
t r ea tmen t  of a single m o d e  laser  and  is selfconsistent  in this t rea tment .  
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The results of the Table can be interpreted as follows: At and below 
threshold it is sufficient to retain terms up to second order for the atomic 
part and up to first order in the interaction term. Thus one obtains 
an equation whose Fourier transform contains derivations only up to 
second order so that the usual Fokker-Planck equation results. Far  
above threshold the interaction term must be treated in the same way 
as the atomic part up to second order. In this way we obtain a range 
of validity which goes beyond that of the Fokker-Planck equations 
derived so far. The criteria of how far we have to go in our expansion 
is the following�9 We retain the field term as the exact one and expand 
the other terms in powers of the atomic number at least to the same 
order. Using the results of the Table we expand the coefficients N[~m, 
N/(2) Mikk as given in the Appendix and evaluate the sums over klm~ i, lm 
the atomic indices as far as needed�9 

This leads us to the expression 

i ,k 

+ [i (f2t~- f2 m ~)-  �89 (1 - 6, m) E (7,k + 7,~ k)] X, m ~ 
k 

-'}-�89 E [~) lp(~ik((~iPq- f~i l ) - -2Vlk(~l i f ip]  
i, k, p 

IX'l, I~"1 �9 g~iX,,Skkx,,86Z+,v+;,,, ~ 

"4- 2 [~m<l(~)Ik--6kIErli)J-(~l<m(~;mk--~mkErmi)] 
k, I~'1, I;." I i i 

�9 Xkk,peXlm,~, ,e(~2+~,+~, , ,O (4.5) 

i, k p 
lz'l, I~'l 

�9 X ~ , ~ X k i ~ , , , ~ + ~ , + ~ , . . o .  

In a similar way the somewhat lengthy but elementary calculation 
yields for j ( n  and j(2) which occur in (4.1): 

Y [ ~ z , ( { X } . ) =  - h ; :  gtm6X, a " 

q-hz'glm6t<m Y~. ( 6 i l - - ( ~ i m ) X i i 2 " e 6 2 + A ' + X ' , O  

i, k, I~." I 

+�89 gtm61<m Y'~ [6ik(6U+6im ) 
i, k, I;t"l, Iz'"l 

- ( 6 i t  6k,,, + 6k t '~i m)] 
�9 X i i2 , , eXkk ,U , , e~2+2 ,+s  (4.6) 
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+ E ha'[--g'k(Ji<~Jt<kJt<m(1--Jk,,,) 
i, k, p, q 

IX"l, IZ"'l ..~ ( f~im.Or J i  <m) ~m<k Jm <l) ~t p Jm q 

-b g l k  ~ pq J im  ~l < v J p<k (~ p<m 

"q" g i m ( 1 - - ~ i m )  Ji<m(~pm'q-C~p<m) 

�9 6vqJtkJi<pJp<l] 

�9 X , , ~ a " ~ X k q a ' " ~ a a + ~ ' + ~ . , , + . v , , . o .  

J[Zm~a, may be obtained from J~(m*~a' by the following relations 

Jt l) l m glk m3,a" 

[ I [ [ ( 4 . 7 )  
//(2) 

m .a. ,~ " n,'t l g k l �9 

After insertion of Ktma~, J~(*.,~a" and the corresponding relation for 
Jt(=2)a 4' we obtain a differential equation for the characteristic function�9 
Our final goal is to find the ordinary Fokker-Planck equation for the 
distribution function itself which may be immediately obtained from 
that for the characteristic function by taking the Fourier transform. 
Our final result reads 

{ ( -  ZVa+,Cz) Ua +hal,Em, e g tm V l m a ~ } f  

. 
lal t,m,e 

+,. iZl, ~ '  aV.,,,,~. {~ (Y'k V~'ae-- ggi Vkkz')+k. la~lZ"l h'c(uz'+ t 

�9 (gik V,, ,a , . . -g, .  re,,,a,,3aa+~..+a,, o}f  
a 

e,g, lZl,~ z 

+ E ha'gki(Ua'+U*')(~ka".--~,z"e)aa+a'+a".o}f 
14,1 la,,i 

d = 
+ 2 {2/c a nata}f ~ au '; 

a 2 
+ E 

i, k, I 
lal, IZ'l, IZ"18 

- r i ~  a .  ~i~"~] aa+a'+a", o 

- -  �89 ha,, (u.v,  + u*, ,)  (,51 k - -  6k t) (6i  < Z - -  at < i) 

~, (git Vna'"~-gu Vzia'"3 6a+a'+a"+a'", o}f 
la'"l 
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9 2 

i , l ,  m 
14l, 14'[,  [4"1,~ 

k 
9 2 

+ ~-' 8~,g~aKmx,~ {a'ka'm(a'<'YP~ Vvpa"8 (4.8) 
i, k, l, m, p 

I~1, I~'1, IX" ls  

+ ai<z ?Iv Vu a" ~) cSa + a' + x", o + h4"(ua" + u*,,) 

�9 [ -  a,. g,~(ak<m a=<, a=<, 0 -  a.) 
-(a,m + a,<O am<k am<, + a, <, a, <m( a~, + a~<,) 

--(1--ak~)J,<,cS,<k~3z<=) y '  V~=4,,,,cS4+a,+v,+4,,, o 
14'"16 

+ g,~ a,=(a~<, a,<, a,<~- (1 - a . )  a,< ~(a,p + a,<p a,<, a,<k) 

Y, V,,,,4,,, v54 + 4,+ 4,,+ 4,,,, o 
14"q 

+gp~a,m(a~<~(1-a~,)(a,~+a,<pa~<,a,..-a~<,a,<~a,<,) 

E Vp ,4'",'~4 + 4'+ 4"+ 4'", o]}f 
14,-i 

a2 
+ Y~ { ( -  h4.) s (a,<, g,, v,,4..~ 

l,*, 14 I, 14'18 By,,. 8u:. la"l 

- ai<l g .  V.4..O a4+4.+4.., o}f  
92 

+ X 8Vfi4,Su4, {(-h4")E(ai<,gitVu4", 
l, i, 141, 14'1 ~ la " l  

-al<i g. ~i4"0 a4+4'+4", o}f 
9 2 

~,k, 141, I,Vl ~ 14"1 

�9 34+4,+4,,, o}f 
82 

+ ~" gVk,4~Su4, {h4' ~ g,ka,<k(Vkk4"8-- V.4.,~) 
~,k, 141, IZ'l 8 14"1 

�9 a4+4,+4,,, o}f. 

Because this equation will be used later as a starting point for further 
treatments we briefly remind the reader of the notation. The classical 
amplitude, corresponding to the quantized field amplitudes of mode 2, 
is u4. V~ ~4~ is the collective coordinate of the atomic occupation number 
of level i in the spatial mode ,!, of the atoms with the level broadening 
index e. e is to be omitted for a homogeneously broadened line. Vik4~ 
is the collective off-diagonal element corresponding to the spatial mode it. 
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vx is the frequency of the mode 2 in the unloaded cavity and ~x 
its decay constant, ha g tm is defined in Eq. (2.7) and represents the coupling 
between atoms and field. 7~k is the atomic transition rate from the level i 
and k (for the definition see zo), hf2k" is the energy of the atomic level k 
with broadening index e. nxth is the number of thermal photons of 
mode 2. Inspection of (4.8) reveals that it is an ordinary Fokker-Planck 
equation containing derivatives up to second order. It  describes for 
sufficiently high numbers of atoms a laser with M modes and N atoms, 
having each n levels, in a nearly exact fashion. Thus it may serve as a 
basis for future work on the behaviour of such a laser containing all 
relevant quantum mechanical information. 

Appendix 
Explicit Form of the Coefficients M and N 

In addition to the Kronecker symbol 6~k we use the symbol 6i< k 
which is defined by 

k-1 S1 
6i<k=l~06il=~. 0 ifif i<ki~k. (g.1) 

We further use as previously 4 the abbreviation 

Om-'k=6mk+ ~ X,,,ll ~,,,<ll Xh l2 ~h <t~ ... Xijk ~St~<k (A.2) 
11, 12, ... 1j 

where the sum runs over all possible indices under the restriction 
m < ll < . . "  < k. For  descending indices it reads 

orn~k=(~mk'~- 2 Xmll(~ll<mXlll2t~12<ll "'" Xtjk6g<b" (A.3) 
11, 12, ... Ij 

With this abbreviation the coefficients Mikki ,tin and Niktm which had 
been derived elsewhere 4 can be written in a very compact fashion, namely 

(1) 
Niklra( { X } ) - - (  ~ki '~  ~k<i) ~il(~mk--~rn<k Skm) '~-~ik  (~im~rn<l X l m  

-~- )Vl<kkt.,km -- .eXkm Vk<m] ~ -- t.,l<rn C,m< k LXkm c 

+ ~ ~<~ 6~<k ~ <m Xk. Xnm e x~-x"" (A.4) 
lz 

~-(~i<k((~mk--f~m<k X k m )  ((~lm-~-t~m<l) } 0 l~-i 

-- ~ (~i<k((~mk -- ~m<k X k m )  6m<n ~n<l S i n  on~-i" 
tl 

20 See Ref. lo or 3. 

29 Z. Physik, Bd. 242 
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F r o m  it ~viklrnnr(2) may  be found  by the following replacements  

N(a) i k I m a X ~  0 ~*-~ iklm 

I I I [ I I I l (A.5)  
N(z) k i m l 5 X?u O g '~.  iktm 

In  a similar manne r  one finds after  lengthy calculations the following 
explicit f o rm 

M , ~  ,., m ({x}) = ( Z  O~ -~" O '  ~ e ~ ' ' )  {6,, 5, m e -  ~" ~ -- [6,, 5~ <, 
P 

+Si,.61<i]e-X" Xlm+[5,.<i6i<le-X" +6l<iS~<,.e -x~' 

+ 5z <m 5..< i e -X""+ fit.. 5t<i e-X=" 

+6t<i6m<te ] X l i X i m - 2  51<nSn<m(sn<i (A.6) 
n 

�9 X l l S i n X n m  e - x~"  

- - 2  (5,n<n ~n<l ~n<iXln Xn i g l m  e-X""}, 
n 

E&-'POV*-keXPP=ZeX"'(Skv+Sk<v Z Xkq, 6k<q, "'" 
P P ... ql, rl ... 

... Xq, pfq~<p Xpr ~ 5r~<, ". Xrsk(sk<rj). (A.7) 

The summat ion  runs over  all indices so tha t  k < q a < . . . < q ~ < p >  
7~ > "'" > y~>k  is fulfilled�9 

Expansion of  ~,~k~m~r(~) is a power series of  the number of  atoms N up to 
second order. F o r  the diagonal  elements i =  k we simply obtain  the exact 
result  

N,(~ ) ({x}) = (su (5~ m + ((5,m -- (5,t) (sin <t Xt m" (A.8) 

Fo r  the corresponding elements i ~ k  the result reads 

N2s 
= (sn (skm+ (5. (skin (sl<k(X.-- X~k) 

+ ((sik + (5~<k) (51,m(si<~ X.--((5,~<k + (5~<k (sk<,.) (5. Xk., 
I 2 

-~- (sil (5I<k (skm �9 ~ ( X l l  -- Xkk)  ~- (51<k((5km (5i<1Xli-- (sli (sk<rn Xkm) 

�9 (Xl l--Xkk)-- t~i l (51<m(sm<k(Xll--Xmm)Xkm (A.9) 

- -  {(51 < k (5, < m ( 1  - -  (sk m) -~ (5i < k (sin < k [(51 m "~- ((5i m -]- (5i < m) am < 1] } 

p 

+ (si<k (5,,= F. (1 -(s:<,)ai<,(5,<lxlpX,,. 
P 

N}~]m follows f rom (A.9) by means  of the relation (A.5). 
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Expansion of M up to terms of second order. 

The result reads 

Mikki,  lm({X))=(~il(~Im"[-(~il6lm(Xkk-- Z i i ) - - (~ i l~m<l  + (~im(~l<m) Xlm 

+~iz~t~" �89 2 -- (~ .  5,~<1 + 5ira ~l<.3 

�9 (Xkk_X,~)X~.,+[Sm<,5,<,+5~<,5,<,~+5,<,.5,~<, (A.IO) 

+ 51m Sl <i + Sm<l Sl <i] X l i X im + Si l Slm ~'~ Sk < p Xk  p X p k �9 
P 
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