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The Hartree-Fock-Bogolyubov-Equations of the cranking model are used to give a 
description of nuclear rotations in a general single particle model. Numerical results 
for some rare earth nuclei are presented. 

I. Introduction 

Since Baranger formulated the HFB-Theory  for nuclei L several 
authors have used the HFB-Equa t ions*  in order to study the problem 
of nuclear equi l ibr ium deformationsZ. In  this paper we plan to go one 
step further and  calculate excitation energies of rotat ional  bands within 
the f ramework of the cranking model3 and HFB-Theory.  

In Section II we give a brief derivation of the HFB-Equa t ions  and  the 
stability condi t ions  for even and odd mass nuclei. Section I I I  provides 
a discussion of symmetries of the HFB-Equa t ions  and their solut ions 4 
In  Section IV the cranking model is discussedS. Finally Section V con- 
tains a description of the methods actually used to solve the HFB- 
Equat ions  and  results which have been obtained. 

* Throughout this paper we shall use HFB as an abbreviation for Hartree-Fock- 
Bogolyubov. 

1 Baranger, M.: Phys. Rev. 122, 992 (1961). 
2 Baranger, M., Kumar, K.: Nucl. Phys. 62, 113 (1965). -- Dietrich, K., Mang, 

H.J., Pradal, J.: Z. Physik 190, 357 (1966). -- Faessler, A.: Proceedings of the 
Yugos[ave Summer School Herceg Novi, 1967. 

3 [nglis, D. R.: Phys. Rev. 96, 1059 (1954). -- Thouless, D. J., Valatin, I. G.: Nucl. 
Phys. 31, 2ll (1962). -- Marshalek, E. R.: Phys. Rev. 139 B, 770 (1965). 

4 Herbut, F., Vujicii, M.: Phys. Rev. 172, 1031 (1968). 
5 Kamlah, A.: Z. Physik 216, 52 (1968). -- Rogerson, N.: PHD-Thesis M[T (1967) 

(unpublished). -- Meyer, J.: PHD-Thesis TH Mfinchen (1969) (unpublished). -- 
Beck, R., Mang, H. J., Ring, P.: Z. Physik 231, 26 (1970). 
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II. Derivation of the HFB-Equations 

The following derivation of the HFB-Equations is not the con- 
ventional one. It will, however, turn out to be most convenient for a 
discussion of the stability of the HFB-Solution and for generalization 
to the case of an odd particle number. 

The Hamiltonian is: 

~- ~ + + C  n = y ~ , , c ~  c,,+~ E L. .......... e,,,c.2.4e,,~ ( ' )  
I1 II 1 . . .  114 

where {c,,} is a set of Kermi operators and the v ... . . .  3,4 are matrix ele- 
ments of an effective interaction. 

We introduce the general Bogolyubov-Transformation 

),+ =ya,~ ,c ,  +, + B , , , G  (2) 
t l  

where the y's are again Fermi-Operators. 

The wave function [q~{y}) of the ground state of the system is 

14' {y}) = I~ ~'~ 10) (3) 
/ l  

and fulfills 7KI ~{}'}) =0. 

The set of operators {y} is determined from 

6 (~{~'}l H - 2 N I ~ { ~ , } )  = 0 .  (4) 

The solution will be denoted by {ft,}. 

To obtain the equations which determine this solution we first note 
that any function I~{}'}), which is not orthogonal to [4,{fl}), can be 
constructed in the following way: 

[~{y}) = C . e x p  {�89 + fl,+} ]4~ {fl}) ; (5) 
/ l  v 

where C is a normalization constant. 

The solution of the variational Eq. (4) is determined as follows: In 
an expansion of the expectation value of H' ( H ' = H - 2 N )  in powers 
of the coefficients c,,, the linear terms must vanish because then the 
equation 

c ~ ( ~ [ H ' ] ~ ) ]  = 0  (6) 
& ~  (~1~> [ ..... o 
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holds for all values of tL and v. The expansion up to quadratic terms is 
given by: 

<~{~,}1 H' I~{~,}> 
<~{~,}i ~{~,}> =E; 

+ ~ Z ( e ~ v  <4,{/~}1 [H' , /~2  ~,+] 14,{~}> +c .c . )  
.It V 

+}  ~. (c. ,, c., ,,. <4, {B} [ [H',B~B,,+B,+.fl+]14,{fl}>+c.c.) (7) 
]/v//" v" 

* (<4,{~}1 ' + + ' " +�88 ~ e,~.c,.~,. ~ , , ~ , H  ~,,/~v, [4 , [p}>-2 . eoO, ,~ ,0 , . , , , )  
/ /  t , / /~ V" 

-}- . . . .  

The commutators are most easily evaluated, when H'  is transformed to 
quasiparticle operators fl: 

H'= Ho + H'~ t + H'2o + H3, + Hzz + H4o. (S) 

The explicit expressions for these operators are given in the Appendix. 
The necessary and sufficient condition for the linear terms to vanish is 

H~o = 0 .  (9) 

This equation, however, does not determine the set of operators {fl} 
uniquely. Any linear transformation of the fi's leaves the wave function (3) 
and Eq. (9) unchanged. Therefore we may further require that H~L be 
diagonal. 

Hi~ = 2  E', fl~ [3,. (10) 
at 

Of course any other operator of the type 

u r  

might have been chosen instead of H[t. 
Eqs. (9) and (10) lead to the HFB-Equations for the coefficients 

A,,F,, Bn~,: 

The matrices h, A, F are defined as: 

h = s - 2 t  + F 

r s  I'5 

p,,,, = <4, {/3} I r + c, 14, {/3}> = ( B *  BT)t,. (13) 

,~,,,, = <4, {/~}l c,. c, 14, {~}> = ( B *  AT),,,,. 
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The system of Eqs. (12), (13) is a nonlinear eigenvalue problem which 
can be solved by iteration. 

In order to have a minimum of the energy E=(4[ t t '14)  the 
matrix 

(W < Wi (14) 
K * ]  

must be positive definite. K and W 

G ~ , , , :  <4 {fi}l fl,,/L S'  &; fl~ 

~ v . .  ~.= <4 .[fl}l [H' , /<  fl,+ ~,,+. 

are: 

14 ,~fl} > - Ho (0~ ,. o,.. . .  - o, ,  ,,. < , . )  
(15) 

If on the other hand this matrix is positive definite, then vibrations 
around the HFB-Solutions have real frequencies6. 

For a description of nuclei with an odd particle number we proceed 
analogously. The wave function is a one quasiparticle state [4K>= 
?/~ 14{?}). The set of operators {fi} is again determined by: 

(4K[ H' 14K) =0. (16) 
(r 4K) 

The expansion of the expectation value of H '  yields instead of Eq. (9): 

11 '  HK, =0  for K=t=ld 

H/,~ + 3 ' ~  . H uvKK=031 for ~l, v ~ K .  07) 

We introduce the antisymmetric matrix/~2o'  and the hermitian Matrix 
/ _ I I 1 " .  

- 2 0 "  20" 31 Ht[~+ [j+ Hu~,=Hu~. +3 .Hu, ,~K=(4K[__  ~,, . , ,  [4K) for /~,v4=K 

=<41H ' f l+  fl+ 14 > for i t+K,v=K (18) 
~ l t "  i[411 1' ~ .  Z[ /4-22 , , + Hu,, = . .~ , . . , . , . uKvK=(4K[f l~ , (H ' - -Eo- -EK)f lv  14K) for lt, v#K  

= (4~:1 (H' ' ' + -Eo-EK)flv 14) for ll=K. 

The set of Eqs. (17) is fulfilled provided/~2o, is zero a n d / t  ~ l, is diagonal. 

This leads to a set of HFB-Equations for odd particle number, 
which was first given by Sugawara 7: 

, ,B~,t = E I ' \ B  u " 

6 Mang, H. J., WeidenmOller, H. A.: Ann. Rev. Nucl. Sci. 18, 1 (1968). 
7 Sugawara, K.: Progr. Theoret. Phys. (Kyoto) 35;, 41 (1966). 
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The potentials h, /~, zl are constructed as in Eq. (13) from the density 
matrix fi and the pairing matrix ~?: 

p~,,,= < qSKi C,,+Ct lq)K>= ptm--(B~K " BmK-- �9 A,,,* K) 
(20) 

~'I ,n=<qDKIC,n C t [ ~ K > = I C l m - - ( B ~ K  " Am K --  B,n* K" At K) �9 

They depend on the quasi particle state [~bK> and therefore Eq. (19) 
must be solved separately for each quasipartiele state [4~K>. The wave 
function ]q~Ko>, which yields the lowest energy, describes the ground 
state of the nucleus. The remaining states I cbK> are single particle 
excitations. 

The Eqs. (19) are a straightforward generalization of the "' blocking"- 
method of the BCS-Model. They correspond exactly to the usual HFB- 
Equations (12) in the case of even particle number. The ground state is 
now the one quasi particle state l~bK> instead of the vacumn 14~>. It is 
constructed so that in first order perturbation theory transitions to 
states of the type/3~/3~ I cbK> and/3 + I q s> ( p #  K) do not exist: 

<~KI H'/3. +/3,.+ 14,,>=0 
(,OKIH'!3/~ ~ 14~5=0 ['or l t : #K .  (21) 

As in the case of even particle number the quasiparticle operators rid 
are not uniquely determined by this equations. Any unitary trans- 
formation of the states /3~+[~K> ( I t # K )  and ]q~> leaves Eq.(21) in- 
variant. This freedom is used to diagonalize the Hamiltonian H '  within 
the subspace of these states. There is however an important difference 
between problems with even and odd particle number: For an even 
particle number the exact ground state does not contain contributions 
of two-quasiparticle-states in first order perturbation theory because 
of H2~  The analogous matrix elements in the odd case, which 
connect the state ]q~K> with three-quasiparticle-states are not zero: 

<43K[ H'  13 Q P > # 0  

unless the three quasiparticles contain /3~. Therefore three-quasi- 
particle-states are admixed into the ground state even in first order. 

Therefore in order to obtain a wave function of the odd system 
which is of the same quality as the one obtained from the HFB-Equations 
for the even system, the coupling of one and three quasiparticle states 
must be taken into account. A natural way to do this would be to 
include states of the type: one quasiparticle plus one phonon in the 
treatment. 

In this paper, however, the calculations will be restricted to the 
HFB-Model. 
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Even then an exact solution of the "b locked"  HFB-Equations (19) 
creates some problems. 

l. The iteration has to be carried out separately for every quasi- 
particle state. 

2. The wave functions [qSK) thus obtained are in general not ortho- 
gonal. 

After the remarks just made it seems to be questionable whether 
such an effort is justified. We propose therefore the following approxi- 
mation: The term H 3~ in Eq. (17) is neglected. Then Eq. (17) coincides 
with Eq. (9) of the even problem. In this approximation ~ and g are 
replaced by p and ~c, which do not depend on K. The only state I qS) 
must be determined from the normal HFB-Equations (12) with the 
subsidiary condition 

~N)  = tr p = odd number (22) 

and the states ]q~K) are obtained as one quasiparticle states 

I~bK) =fl~ 14'). (23) 

Two shortcomings of this simple method must be mentioned: 

l. The blocking effect is neglected. The coefficients A,,, and B,,u are 
not calculated by minimalization of {~bKIH'[~bK) but are simply taken 
from the even nucleus. Nilsson and Prior 8 have shown that the main 
effect of blocking is a reduction of the gap parameter A. Calculations 
within particle number conserving theories 9, however, have demon- 
strated that A is reduced too much. 

2. The state ]q~K) do not have the correct expectation value of the 
particle number. And this is the most important shortcoming of the 
description of an odd nucleus by one-quasiparticle-states built on the 
ground state of a neJghbouring even nucleus. Therefore in Section IV 
the chemical potential 2 is determined separately for each state in such a 
way that ]qsK) has the correct expectation value of the particle number. 

lII. Symmetry Operations and HFB-Equations 
The HFB-Equations define a nonlinear eigenvalue problem. In such 

a case symmetries of the Hamiltonian will not necessaryly lead to the 
usual consequences for the wave function as known from linear eigen- 
value problems. Whereas the exact solution of the Schr6dinger equation 
is an eigenstate of a complete set of operators which commute with the 
Hamiltonian, this must not be true for the HFB-Approximation. 

8 Ni|sson, S. G., Prior, O.: Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 32, 
Nr. 16 (1961). -- Soloviev, V. G.: Kg[. Danske Vedenskab. Selskab, Mat.-fys. 
Medd. 1, Nr. ll (1961). 

9 Mang, H. J., Rasmussen, I. O., Rho, M.: Phys. Rev. 141, 94l (1966). 



16 P. Ring, R. Beck, and H. J. Mang: 

The HFB-Groundstate is uniquely characterized by the density 
matrix p and the pairing matrix t~ (/7 and ~ in the odd case). The trans- 
formation properties of the wave functions are therefore determined by 
the transformation properties of these matrices. In lhe following we 
consider linear, or antilinear, unitary operations S which transform the 
single particle Hilbert space with basis In)=c, ,  + 10) into itself. Under 
such transformations p behaves as an operator: 

p' = S + p S. (24) 

In the case of an antilinear S = S  M. K is a product of the matrix S M and 
the operation of complex conjugation. The behavior of the pairing 
matrix tr on the other hand is that of the matrix part of an antilinear 
operation: 

~:' = S + x S*. (25) 

Now the HFB-Groundstate is invariant under S, if p and x fulfill the 
relations 

p = S + p S ,  ~ = S + K S  *. (26) 

Since the HFB-Equations are solved by iteration the symmetry relations 
of the solution depend on the initial values Po and 1%. The following 
theorem holds: 

Theorem. If S is a symmetry operator of the Hamilton and if S leaves 
the initial values Po and i% invariant, then the iterative solutions of the 
HFB-Equations p and tr are also invariant. It is therefore necessary to 
choose initial values without any symmetry in order to obtain the most 
general solution. On the other hand if one knows from physical argu- 
ments that the solution must have a certain symmetry, then it is possible 
to use this fact to reduce the dimension of the HFB-Equations by 
means of (26). 

IV. The HFB-Equations of the Cranking Model 

It has already been said that the solutions of the HFB-Equations 
will in general not be eigenstates of the angular momentum operators j2 
and J3. The proper procedure to correct for this shortcoming of HFB- 
theory would be to project from wave functions of the HFB-type eigen- 
states of angular momentum and solve the variational equations with 
these projected HFB-wave functions l~ 

10 Zeh, H. D.: Z. Physik 188, 361 (1965). -- Villars, F., Cooper, G.: Ann. of Phys. 
(to be published). -- Kamlah, A.: Z. Physik 216, 52 (1968). -- Rogerson, N.: 
PHD-Thesis MIT (1967) (unpublished). -- Onishi, N.: Progr. Theoret. Phys. 
(Kyoto~ 40, 84 (1968). 
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The resulting equations are very complex and cannot be solved 
without approximations. Most attempts to handle these "projec ted"  
HFB-Equations yield as a first approximation the equations of the 
cranking model 11 : 

6 (~b[ H ' - c o -  Ja I ~b) = 0 .  (27) 

The cranking frequency is determined by 

(~1 J1 Ir 'J" (J+ 1). (28) 

Therefore it is necessary to solve the HFB-Equations in the rotating 
frame: 

( ~ -  2 - ~  �9 J t  A A K 

Within this approximation the HFB-Vacuum ]q~o(s)) describes a 
rotational state of angular momentum J. Eqs. (27), (28) apply to an 
even nucleus. They can be generalized to odd mass nuclei, i.e. to one 
quasi particle states. Only the subsidiary condition relating the ex- 
pectation value of Jt to the total angular momentum J is changed in 
the following way: 

(~bK] J ,  [~bK) = V J .  ( J +  1 ) -  K 2 (30) 

where K is the projection of the angular momentum on the symmetry- 
axis. Further ]r has to fulfill also the relation 

e '=J' 14~K) ~ I~bK). (31) 

Otherwise the approximate angular momentum projection will not lead 
to the subsidiary condition. It is instructive to treat the equations in 
lowest order in the cranking frequency co. In the even ease this leads to 

O 2 (32) 
( ~ 1 H  14')--E0 +-~2-o 

and 

(q~] ttlc~)a=Eo +~l~-J(J + 1). (33) 

In the odd case one has to take into account the symmetrization of the 
wave function 

1 
I q ~ K ) - - O "  {f~K) + ]~-t()} (34) 

11 Kamlah, A.: Z. Physik 216, 52 (1968). 

2 Z. Physik, Bd. 231 
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where ] ~5~:) and ]~-K) are the one quasiparticle states with (J3) equal 
to K and - K  respectively. Therefore 

(~, , l  J ,  [~K)= (~K I Jr 143K)+ ( ~ 1 J t  I~-K) �9 (35) 

The first term (~KIJ~ [ ~K) allows the expansion 

(~:1 J1 ]~K) =c~ O (36) 

whereas the second one is very small unless K=�89 Then it leads to the 
socalled deeoupling factor a t2 and the formula for the energy is: 

1 
E =Eo + ~ O - -  (J- ( J +  1) + ( - )  s+~. a - ( J + � 8 9  5K~). (37) 

X=A+B; 

Y=A - B ;  

The equations for X and Y read 

V. Numerical Solution of the HFB-Equations and Results 

The dimension of the HFB-Equations (12) is twice the dimension of 
the configuration space. Some symmetries of the equations allow, 
however, a considerable reduction of the dimension. First we note that 
together with A, B and E also B*, A* and - E  is a solution of the HFB- 
Equations. If now h, A, A and B are real quantities the dimension of the 
matrix to be diagonalized can be reduced to half the original dimension 
in the following way. One defines: 

A=�89 Y) 
B = 1. ( X -  Y). (38) 

Hence 

(h-A).  X=E.  Y 
(39) 

(h+A). Y=E. X. 

(h+A) . (h-A) .X=E 2.X, 

1 ( h - A ) X .  Y-=~. 

(40) 

The unphysical solutions of the HFB-Equations with negativ eigen- 
values are automatically excluded, if in Eq. (41) the positive squareroot 
of the eigenvalue E z of (40) is chosen. 

In the calculations described here this simplification is possible. The 
single particle basis can be chosen in such a way that all matrix elements 
of the residual interaction v,p~ and of o)J 1 are real. Further the sym- 

12 Bohr, A., Mottelson, B. R. : KgL Danske Videnskab. Selskab, Mat.-fys. Medd. 
27, Nr. 19 (1953). 

(41) 
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metry operation T , P , e  ~=s2, which consist of a rotation of n around 
the 2-axis, the parity transformation and the time inversion, commutes 
with the hamiltonian H ' = H - o ) . J  1. It corresponds to complex con- 
jugation in our basis which means it is antilinear and has the unity 
matrix as matrix part�9 It is plausible from physical arguments to require 
that tile solution of the HFB-Equations be invariant under this 
operation. Eq. (26) leads immediately to 

p* = p,  ~* = x. (42) 

Therefore the potentials F and A are real. 

Conservation of charge (3-component of isospin) and parity offers a 
further possibility to reduce the dimension of the HFB-Equations. 

The numerical calculations were carried out in the "quadrupole  
plus pairing force "-model, which is described extensively by Baranger 
and Kuma P  3. Since the HFB-Equations are solved exactly it is not 
necessary to neglect neither the contributions of the pairing force to the 
selfconsistent potential F, nor the contributions of the quadrupole force 
to the pairing potential A, nor the exchange term in the Hartree-Fock- 
potential F, as is usually done�9 

Hence we use the following Hamiltonian: 

2 

u=v o n Q E + �9 " -rs ~illn -s Cm CnCr 

. I, = - 2 ( 4 3 )  
mil l ' s  

Y, + +  �9 C m CKn r C n �9 

ttb/~ > 0  

The single particle energies are chosen in such a way that they coincide 
for deformation zero with the energies of Nilsson ~4 and the BCS phase 
convention is adopted s. The quadrupole matrix elements are given by 

2 I~ t,  2 Y~ = ( m ]  �9 Y~'(O,q~)]n). (44) 

In the calculation we include the most important shells above the 
magic numbers 50 (protons) and 82 (neutrons)�9 There are 32 proton 
states: 4g 7/2, 4d 5/z, 4d  3/z, 4s l/z, 5tP ~/2 and 32 neutron states: 
5h 9/z, 5f  7/2 and 6i 13/z. 

The coupling constants Q and G of the quadrupole and the pairing 
force are not chosen so as to reproduce exactly some specific experi- 
mental data. We require only: 

13 Baranger, M., Kumar, K.: Nucl. Phys. 62, 113 (1965). 
14 Nilsson, G.S. :  Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 29, Nr. 16 

(1955)�9 -- Mottelson, ]3. R., Nilsson, S. G.: Kgl. Danske Videnskab. Selskab, 
Mat.-fys. Medd. 1, Nr. 8 (1959). 

2*  
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20- 0 ~  

a 3 

V 

10- 20 / 
J = 2  

0 0.1 0.2 0,3 MeV 
OJ 

Fig. 1. Dependence of the expectation value (~1 .I~l ~ )  an the cranking frequency co. 
The values of the angular momentum J are given in the adjusted scale 

I. The pairing correlations should be strong enough to produce an 
energy gap A of approximately 1 MeV. 

2. The nucleus should be strongly deformed. 

The equations are then solved by iteration. We obtain the initial 
values Po and ~:o to start the iteration by a diagonalising a single particle 
hamiltonian with a deformed harmonic oscillator well, followed by a 
simple BCS calculation. 

We have obtained numerical results for even and odd mass nuclei. 
In the even case we choose the particle number N p = N , = I 8  which 
corresponds to Er 168. 

Obviously all calculated quantities depend on the cranking fre- 
quency co. With the help of the subsidiary condition 

(q~ L J~ I~> = I /J"  ( J +  1) 

this dependence can be converted into a dependence on the angular 
momentum J (Fig. l). The energy E(J)  then gives the position of the 
rotational levels (Fig. 2). For small cranking frequencies co the energy 
depends quadratically and (q~ I Jl[  ~> linearly on co as predicted by 
perturbation theory. In this case the energies of the rotational levels 
are given by: 

1 
E= ~ - .  J (J  + 1). (45) 
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Fig. 2. Comparison of the calculated energies E(J) with the spectrum of a typical 
rotational nucleus Hf 17~ and with a spectrum of the J(J+ D-Type. The J =  2-levels 

are adjusted 

O is the selfconsistent moment  of inertia of Thouless and Valatin 15. 
The numerical value in our case is O=15.40  [MeV-~]. This value is 
very close to the value calculated from the "Inglis Formula"  

O,ng=~ I(A+ Jt B*-B+ J, A*), , ,I  z (46) 
,v Eu+E~ 

which yields Oi,,g = 15.57 [MeV- 1]. 

It  is a good approximation in this model to neglect the selfcon- 
sistency for small values of the cranking frequency. For higher fre- 
quencies o~ the expectation value of J t  (Fig. 1) as well as the energy 
increase more rapidly than predicted by perturbation theory. This 
leads to deviations from the J.(J+ 1)-law for the energies of the rota- 
tional band. 

When we compare the calculated energy spectrum with an experi- 
mental one we first note that the calculated moment of inertia is only 
half the experimental moment  of inertia. The reason is mainly the 
relatively small configuration space which was used in the calculation. 

15 Thouless, D. J., Valatin, I. G.: Nucl. Phys. 31, 211 (1962). 
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MeV 
1.0' 

0.8 
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0./.- 

0.2, 

0.1 0'.2 013 0]~. MeV 

r 

Fig. 3. The gap parameter z/ 

We are, however, more interested in the behavior of the energy as a 
function of the angular momentum J than in a calculation of the ab- 
solute value of the moment  of inertia. Therefore we adjust the energy 
scale and the angular momentum scale in such a way that for the 2 + 
level calculated and experimental energy agree. We wish to point out 
that it is not enough to adjust the energy alone because of the relation 

0co E(o)=o)-~-~-(~b[ J t  [q~) (47) 

which is rigorously valid provided we have performed a selfconsistent 
calculation. In Fig. 2 we compare calculated and experimental energies 
of a typical rotational nucleus. The calculated values are somewhat 
lower than the experimental ones, which means that in the expansion 

1 Ej=~-J(J+ 1 ) + B .  j2(j+ 1)2. (48) 

B has the correct negative sign, but its absolute value is too large. The 
reason for the deviation f rom the J(J+ l)-law is the increasing influence 
of the rotation on the internal structure of the nucleus. There are two 
important effects: Antipairing and stretching. 

Fig. 3 shows the decrease of the gap parameter A for increasing 
angular momentum J. In spite of the small difference of the proton 
and neutron gap for J = 0  the neutron gap decreases much more rapidly 
with J. The critical angular momentum for the vanishing of the neutron 
gap is J = 2 8 .  In this region the energy and the expectation value of J~ 
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2 ~ ! 3 2  ~ . 30 
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J 

Fig. 4. The expectation values ( J2)  and (J3)  

7 

increase rapidly with co. Beyond the transition point the neutrons are in 
the normal phase (A, =0). For even higher values of the angular momen- 
tum the proton gap goes to zero too. The antipairing effect increases the 
moment of inertia and therefore lowers the energies compared to the 
energies given by Eq. (45). 

The stretching effect manifests itself in the change of the internal 
quadrupole moments ( r  2 Y~) or the expectation values of J32 and Jz 2 
(Fig. 4). For J = 0  the nucleus is strongly deformed (Jz2=23.4) and 
axially symmetric (Ja 2 =0). With increasing J the deformation in the 
3-direction increases somewhat. But this is not a very large effect. 
Furthermore the nucleus develops some asymmetry, i.e. (r z Y22) and 
(J3 z) are no longer zero. There are admixtures of K~=O in the wave 
function. 

As an example of an odd mass nucleus we have chosen a neigh- 
bouring nucleus to Er 168 with odd proton number Ho 167, The Table 
gives the energies of the single particle excitations and the inertial 
parameters O and B of the rotational bands built on them. Each band 

Table. H01672 Energies of  the single particle excitations and the inertial parameters 0 
and B of  the rotational bands built on them 

K = ( J 3 ) ~ =  o 7/2 1/2 5/2 5/2 3/2 7/2 5/2 

Parity --  %. %- --  %. %. %. 

Ej= K [MeV] 0 0.22 1.02 1.12 1.21 1.82 1.95 

O [MeV -1] 37.l 55.5 36.8 37.0 34.3 43.5 37.2 

B[eV] --35 --  --126 --121 %.30 %.190 %.79 
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is characterized by the quantum numbers K and ft. ~ is the parity and K 
the eigenvalue of J3 at co--0. With increasing cranking frequency K is 
no longer a good quantum number but the expectation value of J3 is 
not very different from K. Thus a classification according to this quan- 
tum number is possible. The different single particle states have very 
different inertial parameters. I t  is, however, possible to reproduce the 
following experimental facts: For K4:�89 the energy levels are given by 

Es=E~ 2@" (J (J +I)-K z)+B.(J(J+I)-K2) 2 + - . - .  (49) 

The moments of inertia O are generally larger than the correspondent 
values of the neighbouring even nucleus 14. The B-coefficients are always 
larger than the B coefficient of the neighbouring even nucleus. For 
K=�89  the spectrum is characterized by the decoupling parameter  a. For  
the lowest K= �89  + band a has the value -0 .57 .  (The experimental value 
for HO 165 is a =  -0 .77 . )  

VI. Conclusions 

We may conclude that HFB-Theory allows a satisfactory treatment 
of nuclear rotations on the basis of a general single particle model. All 
physical quantities which we have calculated behave as expected. I t  is 
not surprising that  only qualitative agreement with measured quantities 
can be obtained, because of the crude model we have used. The main 
defect of the model is the smallness of the single particle configuration 
space. The computational difficulties which arise when the single 
particle basis is enlarged could, however, be circumvented by using not 
a larger but a more appropriate basis. For instance instead of n eigen- 
functions of a spherical harmonic oscillator one should use n eigen- 
functions of a more realistic deformed single particle potential.Thus 
one would no longer be able to find out whether a nucleus is deformed 
or not - a question which can be answered with the help of a cal- 
calculation in a spherical basis as described in this paper - but the 
properties of a de[ormed nucleus could be calculated much more satis- 
factorily. Finally we must admit that we have used a very simple effective 
interaction. We do not yet know, however, neither how a more realistic 
interaction would change our results, nor how to construct a suffi- 
ciently simple but realistic effective interaction to be used in HFB- 
Theory. Certainly any refinement of the interaction would only be 
meaningful if the single particle basis is chosen in such a way that any 
discrepancy between theory and experiment can only be attributed 
either to the interaction or to HFB-Theory itself. Therefore the two 
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problems of the single particle basis and the effective interaction should 

be at tacked in this order. We hope to be able to present some results on 

the first p roblem in the near future. 
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Appendix 

The Hami l ton ian  in tile Quasipart icle  Representat ion 

o 1l (H2o fl+ + 
H = H  + Z H u , f l +  f i , + Z  fi~ +h.c . )  , , - - #  v r 'bt  

p v  f t ; ,  

'[- E 40 + + + + (s,, , ,  . p,, /L P,,/L +h.c.) 
I ~ v p a  

"1- E 3 1  + + + ~";' (Hu~pr fl~ tip f l r  ~ H ; ; o r  fi,+. flofio. 
l I v p a  l l v p a  

With the definitions of Eq.  (13) fol lows:  

H~ =tr  {(~+~r).  p - ~ d .  K*} 

H I l = A  + h A - B  + hT B +  A + A B - B  + A* A 

H 20 = �89  § h B* - B +/I T A* + A + A A *  - B + A* B*) 

H 4o _ •  * . . * ~p,,.a--4 ~ v . . . . .  ~ A , : . A , , , p  B , , . . B *  a 
t l m l ' s  

H 3 t  _ ~  f * . B * .  * * . B *  . A ~ }  �9 ~'t~--4 ~ v . . . . .  " ~ A , ~ ' B * ~  ~;, B , ~ - A ~ . A , ~ p  ~, 
n r a r s  

H22 _ •  c * * . ~ - - 4  V v ...... . ~ . ~ A , ~ . A , , ~  A,.~,.As~ 
n o l P s  

+ B2; * �9 B ~ .  B,,~. B,~ 

+ 4 . A 2 : , . B , 5 . B , , , . A ~ o  } . 
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