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I. Introduction 

A Banach algebra A is called amenable if any bounded derivation 6 of A into 
a dual Banach A-bimodule X* is of the form 6(a)=ax-xa for some xsX* 
([13, p.60]). A few years ago Connes proved that amenable C*-algebras are 
necessarily nuclear ([6]). In the present paper we will prove the converse impli- 
cation; All nuclear C*-algebras are amenable. A partial result was obtained 
recently by Bunce and Paschke [2]. They proved, that any bounded derivation 
6 of a nuclear C*-algebra A into a dual Banach A-bimodule X* is of the form 
6(a)=ax-xa for some xsX*, provided that X** is weakly sequentially com- 
plete. Their proof as well as ours relies heavily on the fact that the second dual 
of a nuclear C*-algebra A is an approximately finite dimensional von Neu- 
mann algebra. (cf. [3, 6, 9]). Our main new tool is the generalization of 
Grothendieck's inequality to bilinear forms on C*-algebras proved by Pisier 
[16] for C*-algebras, having the bounded approximation property, and by the 
author [11] for general C*-algebras. This inequality is in Sect.2 used to prove, 
that for any approximately finite dimensional von Neumann algebra M, there 
exists a mean rn on the semigroup of isometries I(M) in M (considered as a 
discrete semigroup), such that 

S V(au*,u)dm(u)= ~ V(u*,ua)dm(u), 
I(M) I(M) 

for all separately ~-weakly continuous bilinear forms V on M and all aeM. It is 
essential to consider I(M) and not only the unitary group U(M). The mean can 
be concentrated on U(M) if and only if M is finite (cf. Prop. 2.4 (2)). Applying 
the above result to M =  A**, the second dual of a nuclear C*-algebra, one gets 
quite easily, that A has a virtual diagonal in the sense of [14], which implies 
that A is amenable (cf. Theorem3.1). In [18], Rosenberg proved that the C*- 
algebras O,, n=2 , 3  . . . . .  ov constructed by Cuntz ([7]) are amenable but not 
strongly amenable in the sense of [13, p. 70]. He also proved that the tensor 
product O, | K of O, with the compact operators K on an infinite dimensional 
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Hilbert space is strongly amenable. In Theorem3.3 we show that A |  is 
strongly amenable for any amenable C*-algebra A. The problem whether 
amenable C*-algebras are stable isomorphic to strongly amenable C*-algebras 
was brought to our attention by L.G. Brown. 

In the last section (Sect.4) we use the generalized Grothendieck inequality 
to prove that any derivation ~ from a C*-algebra A into its dual is of the form 
6(x)=xq~-q~x for a (peA*. This is the affirmative answer to a problem raised 
in [2]. 

2. Bilinear forms on injective von Neumann algebras 

We shall make repeatedly use of the following generalization of Grothendieck's 
inequality to C*-algebras (cf. [11, Theorem 1.1]): Let V be a bounded bilinear 
form on a C*-algebra A. Then there exist four states ~Pl, ~P2, ~1, ~b2 on A such 
that 

IV(x, y)t_-< H Vlt (q~l(x* x) + q~2(x x*))~(~ l(y* y) + 02(y y*))~ 

for all x, yeA. Moreover, if A is a v o n  Neumann algebra, and V is separately a- 
weakly continuous, then (pl ,(p2,~Jl ,~/2 can  be chosen normal (cf. [11, 
Prop. 2.3]). In [16, cor.2.2] Pisier proved a similar inequality for C*-algebras 
having the bounded approximation property. Using that nuclear C*-algebras 
have the metric approximation property (cf. [4]), Pisier's result is in fact suf- 
ficient to prove Theorem2.1 below for M=A** ,  where A is a nuclear C*- 
algebra, and hence also sufficient to prove our main result (Theorem 3.1). How- 
ever, in Sect. 4 we will need the inequality for general C*-algebras. 

For  any unital C*-algebra, we let U(A) (resp. I(A)) be the group of unitary 
operators in A (resp. the semigroup of isometries in A). Following [10], a mean 
on a semigroup G is a state m on the algebra I~(G) of all bounded functions on 
G (no topology will be taken into account). For  fs l~(G),  we will often write 
re(f) in the form 

Sf(g) dm(g). 
G 

We let B(A, A) denote the set of bounded bilinear forms on a C*-algebra A, 
and we let B~(M,M) denote the set of separately a-weakly continuous bilinear 
forms on a yon Neumann algebra M. 

Theorem 2.1. Let M be an injective yon Neumann algebra. There exists a mean m 
on the semigroup I(M) of isometrics on M, such that 

V(au*, u)dm(u)= ~ V(u*,ua)dm(u) 
I(M) I(M) 

for all V~B~(M,M) and all a~M. 

Lemma2.2 .  Let M be a yon Neumann algebra, and let p be the largest finite 
projection in the center of M. Let m be a mean on I(M), such that for all posi- 
tive, normal functionals q) on M, 

q)(uu*) dm(u)= q)(p). 
I(M) 
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Then for any VeB~(M, M), the maps 

a ~  ~ V(au*,u)dm(u) 
I(M) 

and 

a--* ~ V(u*,ua)dm(u) 
I(M) 

are a-weakly continuous functionals on M. 

Proof Let V~B~(M,M). By the generalized Grothendieck inequality [11, 
Prop.2.3], there exist four normal  states q)l ,q~/ ,Ol,O: on M such that  

IV(x, Y)I < II VII ((P a (x* x) + (p 2 (x x*))& (0 ,  (Y* Y) + 0 2 (Y Y*))~ 

for all x, yeM. 
For i = 1, 2, put 

q~',(x)= S ~o,(uxu*)dm(u), xeM 
I(M) 

~'i(x)= ~ Oi(uxu*)dm(u), x~M. 
X(M) 

Since for any positive, normal  functional ~o on a finite yon Neumann  algebra 
N, the convex hull of the set {u*~ou]ueU(N)} is relatively a(N,,N)-compact 
(cf. [19, Chap.V, proof of Theorem2.4])  it follows that  the restrictions of O'i 
and ~b'~ to p M are normal  functionals. But by the assumption on m, 

q)i(1-P) = ~ (pi(u(1-p)u*)dm(u) 
I(M) 

= ~ ((1-p)~oi)(uu*)dm(u) 
l(M) 

=((i -p)  q~,) (p) 
= 0  

and in the same way ~ ' i (1 -p )=0 .  This shows that q~'i and O'i vanish on the 
properly infinite part of M. Hence ~o' i and O'i are normal. Put now 

~o~(a)= ~ V(au*,u)dm(u), aem,  
I(M) 

o)2(a)= ~ V(u*,ua)dm(u), aeM. 
Z(M) 

Then 

l e) 1 (a)[ = t V(a u*, u)J 

< J] V b] (q01 (u a* a u*) + q) 2 (a a*)) ~ (01 (u* u) + ~9 2 (u u*)) ~ 

<=]/~llVH(qOl(ua, au,  ) , 1 + q02(a a ))2. 

Hence using the HSlder inequality, we get 

[(nl(a)l _-<1/2 [1 VII ~ ((Pl( u a* a u*) + (P2(a a*)) ~ dm(u) 
I(M) 

= ] / 2  II vii (q0i (a* a)+cpz(aa*)) ~, aeM. 
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In the same way one gets 

Ic%(a)l <=1/2 II VIL (01(a* a)+ O'2(a a*)) ~, aeM. 

This proves that e) 1 and c% are a-strong* continuous, which implies that 
0)1, O)2EM , �9 

Lemma2.3.  Let M s be an increasing set of yon Neumann algebras, such that 
each I(M~) has a mean m, satisfying the condition in Theorem2.1. Let M be the 
a-weak closure of U Ms" Then I(M) also has a mean satisfying the conditions in 

Theorem 2.1. 

Proof Let VeB,(M,M). Since the restriction of V to M~• belongs to 
B,(M,, M~), we have 

V(au*,u)dm,(u)= ~ V(u*,ua)dm~(u) 
I(M~) I(M~) 

for all a~M~. Each m, can be extended to a mean rfi~ on I(M) by putting 

rh~(f)=m,(f~), f~l~(I(M)), 

where f~ is the restriction of f to I(M,). 
For VeB~(M,M), a~M, and fi>__~ we get 

S V(a u*, u) d,~p = ~ V(u*, u a) d ~ .  
I(M) I(M) 

Let m be a weak* clustering point for the net (rfi~)~, then 

V(a u*, u) dm = ~ V(u*, u a) dm (*) 
I(M) I(M) 

for all V~B~(M,M) and all a~ U M~. 
ct 

If M is a finite von Neumann algebra, the mean m satisfies automatically the 
condition in Lemma2.2,  and hence the equality (.) is valid for all a~M. 

Assume now that M is not finite, and let p be the largest finite projection in 
the center of M. Since ( 1 - p ) M  is properly infinite, it contains an infinite type I 
factor. Hence we can choose a sequence of isometrics (w, ) ,~  in ( 1 - p )  M, such 

�9 converges a- that w * ~ 0  a-strongly. Put v,=p+w,.  Then v, eI(M), and v,v, 
weakly to p. Put 

m , ( f ) =  ~ f(v,u)dm(u), f~l~(I(M)). 
I(M) 

and let m' be a weak* clustering point for this sequence. Let V~B~(M,M), and 
put 

For  a~UM~, , we have 
ot 

I 
I(M) 

V,(x,y)=V(xv*,v,y), x, y6M. 

V,(au*,u)dm(u)= S V,(u*,ua)dm(u) 
I(M) 
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which is equivalent to, 

V(au*,u)dm,(u)= ~ V(u*,ua)dm,(u). 
I(M) I(M) 

Hence 

V(au*,u)dm'(u)= ~ V(u*,ua)dm'(u). (**) 
I(M) I(M) 

Let q~ be a normal state on M. Since uu*>p for any ueI(M), we have 

~o(u u*) am' (u) >= ~o(p). 
I(M) 

On the other hand 

cp(uu*)dm'(u)<limsup ~ ~o(v, uu* v*)dm(u) 
I(M) n I(M) 

< lim sup ~0(v, v*) 
n 

= ~0 (p ) .  

This shows that m' satisfies the condition in Lemma2.2,  and we can conclude 
that (**) is valid for all a~M. 

Proof of Theorem2.1. Assume first that M is finite dimensional, and let m o be 
the normalized Haar  measure on the continuous functions on U(M). Let m be 
a Hahn-Banach extension of m o to I~(U(M)) satisfying I]mH =1. Since re(l) 
= m o ( 1 ) = l ,  m is a mean on U(M) (considered as a discrete group). Using that 
m is right invariant on the continuous functions, we get 

V(vu*,u)clm(u)= S V(u*,uv)clm(u) 
U(M) U(M) 

for V~B~(M,M)=B(M,M) and v~U(M). Since M=spanU(M) and I(M) 
= U(M) it follows that Theorem2.1 holds for all finite dimensional von Neu- 
mann algebras. Using [5] and Lemma2.3 one gets that it holds for any in- 
jective von Neumann algebra with separable predual. The result can be extend- 
ed to countable generated injective von Neumann algebras, because such an 
algebra is a direct sum of injective von Neumann algebras with separable pre- 
dual. Finally by [9, Theorem4]  we get that Theorem2.1 is valid for any in- 
jective von Neumann algebra. 

Remark. In 1-12] de la Harpe proved that a von Neumann algebra M with 
separable predual is injective if and only if the unitary group U(M) is amen- 
able in the sense that the space Cbr(U(M)) of right uniformly continuous func- 
tions on U(M) admits a left invariant mean (or equivalently, the space 
Cb(U(M)) of left uniformly continuous functions on U(M) admits a right in- 
variant mean). Here U(M) is considered as a topological group in the strong 
operator topology. The separability condition on M ,  is not essential (use [9, 
Theorem 4]). Unfortunately de la Harpe 's  result cannot be used to give a more 
direct proof  of Theorem 2.1. The reason is that when V is a separately a-weakly 
continuous bilinear form on a v o n  Neumann  algebra M, the function 

f(u) = V(u*, u), u ~ U(M) 
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is not in general left uniformly continuous: Take f. inst. M=B(H), where H is 
a Hilbert space with basis (ek)k= 0,1,2 ..... and let (u , ) ,~  be the unitary operators 
defined in [12, p. 226]. Then (u , ) ,~  is a Cauchy sequence in the left uniform 
structure on U(M), and u, % = %  for all heN.  Let aeB(H) be given by 

and put 

aek=(--1)kek, k=0 ,1 ,2  .. . .  

V(x,y)=(yaxeo,eo), x, yeB(H). 

Since the sequence V(u*,u,)=(-1)" is not convergent, the function f(u) 
= V(u*,u) cannot be left uniformly continuous on U(M). 

For the sake of completeness, we will show that the conditions (1) and (2) 
in Theorem2.1 actually characterize the class of injective yon Neumann al- 
gebras. 

Proposition 2.4. Let M be a yon Neumann algebra. 

(1) There exists a mean m on I(M), such that 

(i) ~ V(au*,u)dm(u)= ~ V(u*,ua)dm(u) 
I(M) I(M) 

for all V~B,~(M,M) and all aeM if and only if M is injective. 
(2) There exists a mean m on U(M), such that 

(ii) ~ V(au*,u)dm(u)= ~ V(u*,ua)dm(u) 
U(M) U(M) 

for all VeB~(M, M) and all aeM if and only if M is injective and finite. 

Proof. 1) The "if part" is already proved. Assume now that M is a von Neu- 
mann algebra on a Hilbert space H, and m is a mean on I(M) which satisfies 
(i). We can define a linear map E of B(H) into itself by 

cp(E(x))= ]" cp(u*xu)dm(u), cpeB(H),. 
I(M) 

Clearly [IEI] <1. Using (i) on the bilinear form 

Vx,~(a,b)=q)(axb ), a, beM, 

we get for xsB(H), aeM and q~eB(H).: 

q~(aE(x))= ~ ~o(au*xu)dm(u) 
I(M) 

= ~ q~(u*xua)dm(u)=q)(E(x)a). 
I(M) 

Hence E(x)~M' for all x~B(H). Using that u* u =  1 for u~I(M), one easily gets 
that E(x')=x' for all x'sM'. Thus E is a projection of norm 1 of B(H) onto M'. 
This implies that M is injective (cf. I-8, Theorem 5.1 and Theorem 5.3]). 

2) The "if par t"  follows from Theorem2.1, because U(M)=I(M), when M 
is finite. Assume next that M is a v o n  Neumann algebra, and m is a mean on 
U(M) satisfying (ii). The proof of the "only if par t"  in (1) can also be applied in 
this case to show that M is injective. If M is not finite, there exists a non zero 
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central projection p in M, such that p M is properly infinite. Let ~o be a normal 
state on pM. Put 

q~'(x)= ~ qg(uxu*)dm(u), x6pm. 
U(M) 

Then ~p' is a state on pM. Using (ii) on the bilinear form Vx,~o(a,b)=cp(bxa), we 
get for all a~M 

~p'(ax)= ~ cp(uaxu*)dm(u)= ~ q~(uxau*)dm(u)=qY(xa). 
U(M) U(M) 

Hence ~p' is a tracial state on p M. This contradicts that p M is properly in- 
finite. Thus M is finite. 

3. The Main Results 

Let A be a Banach algebra, and let A @A denote the completion of the alge- 

braic tensor product A QA in the projective tensor norm (cf. [19, p. 189]). The 
Banach space A@A is a Banach A-bimodule, when left and right multipli- 

cation are defined by 
a(b|174 

(b|174 

Let p: A @ A ~ A be the bounded linear map for which 

p(a@b)=ab, a,b~A. 

Following Johnson [-14] a virtual diagonal for A is an element ~oe(A@A)** 
for which 

1) aog=coa V a~A 
2) p**(~o)a=a V aeA. 

Here (A@A)** and A** are considered as dual Banach A-bimodules in the 
7~ 

usual way. Note that when A is a C*-algebra, Condition2) is equivalent to 
p**(co)= 1 (unit in A**). By [14, Theorem 1.3] a Banach algebra is amenable if 
and only if it admits a virtual diagonal. 

When E is a subset of a dual Banach space, we let w 'co(E)  denote the 
weak* closed convex hull of E. 

Theorem3.1. Any nuclear C*-algebra A has a virtual diagonal ~o in the weak* 
closed convex hull of {a*| Itall =<1}. In particular all nuclear C*-al- 
gebras are amenable. 

Proof Let A be a nuclear C*-algebra. Then A** is an injective yon Neumann 
algebra. We can identify B(A,A) with (A@A)*, by putting (V,a| V(a,b) 
for VeB(A,A) and a, beA. 

It follows from [15, Lemma2.1] that any bilinear form on A has a unique 
extension to a separately a-weakly continuous bilinear form f; on A**. Let m 



312 U. Haagerup 

be a mean on I(A**), which satisfies the conditions in Theorem2.1. For 
VeB(A,A) put 

co(V)= ~ f'(u*,u)dm(u). 
I(A**) 

Clearly CO~B(A,A)*=(A@A)**. We will show that co is a virtual diagonal for 
/r 

A. For  a~A, we let L a and R, denote left and right multiplication with a on 
A@A, i.e. 

" L.(b|174 

R.(b|174 

By definition co is a virtual diagonal for A if and only if 

(1) ** ** IJ. co=R. co, aeA 

(2) p**(co)=l (unit in A**), 

where p(a| For VEB(A,A)~-(A@A)*, we have 

(L* V)(x, y)= V(a x, y), 

(R* v)(x, y) = V(x, y a). 

Hence for all aeA" 

(L** ~)(V) = co(L* V) 

= ~ V(au*,u)dm(u) 
I(A**) 

= ~ V(u*,u a) am(u) 
I(A**) 

= co(R* V)=(R** co)(V). 

This proves (1). 
For  (peA*, put V~,(x,y)=(p(x y), x, yeA. Since 

(p* (p, x | y )  = (p (x y) = Ko(x, y), 

we have p*(p = V~o. Let q5 be the unique extension of (p to a normal functional 
on A**. 

Clearly 

Hence for all (peA* 

~',o(x, y) = q5 (x y), x, yeA**. 

(P** co, r = (co, E> 

= ~ (o(u*u)dm(u)=(o(1). 
I(A**) 

This shows that p**co is the unit in A**. Hence ~o is a virtual diagonal. If 
coCw* co{a*| [[a[[ <1}, there exist a WeB(A,A) and aceN, such that 

Re W(a*, a) N c < Re co(W) 
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for all a in the unitball of A. Let uEI(A**). By Kaplansky's density theorem 
there exists a net (a~) in the unitball of A, such that a ~ u  a-strong*. By [11, 
Cot. 2.4], the extension W of W to A** is jointly a-strong* continuous. Hence 

Re lTV(u*, u) < v < Re co(W) 

for all u~l(A**). This contradicts that 

co(W)= 5 (V(u*,u)dm(u). 
I(A**} 

Hence coew* co{a* |  Ilall -_< 1}. 

Corollary3.2. Let A be a nuclear C*-algebra and let 6 be a derivation of A into 
a dual Banach A-bimodule X*. Then there exists an x in the weak* closed con- 
vex hull of {a*6(a)[a~A, IEal[ <1} such that 6 ( a ) = a x - x a  for all aeA. 

Proof There is a unique bounded linear map 4:  A @  A--* X*, such that 
rg 

eb(a| a, bsA .  

Let q~, be the restriction of 4)* to X~=X** and put ~=(4),)*.  Then ~ is a 
~((A| ( A |  continuous extension of ~ to (A|  It 
follows from the proof of [14, Theorem 1.3] that for any virtual diagonal co6 
(A| 

6 (a) = a ~(co) - q~(co) a, a cA. 

By Theorem 3.1 ~o can be chosen in w* co {a* | a l aeA, II all < 1 }, which implies 
that ~(co)ew* co {a* 6(a)[aeA, Ika{q < 1}. 

Recall that a unital C*-algebra is strongly amenable, if and only if for any 
derivation ~ of A into a unital dual Banach A-bimodule X*, there exists 
x~w*co{u*(3(u)]ueU(A)} such that 6 ( a ) = a x - x a  for all aeA. Moreover, a 
non unital C*-algebra A is strongly amenable if and only if A=A+II21 is 
strongly amenable (cf. [13, p. 70-72]). 

Theorem3.3. Let A be a nuclear C*-algebra and let K(H) be the compact oper- 
ators on an infinite dimensional Hilbert space H, then A |  is strongly 
amenable. 

For the proof we need a few lemmas: 

Lemma3.4. Let A be a unital C*-algebra. I f  A has a virtual diagonal 
co e w* co {u* | u l u ~ U(A)}, then A is strongly amenable. 

Proof The statement follows from the proof of Corollary 3.2. 

Remark. The converse of Lemma3.4 is also true. This can be proved by the 
same arguments as in the proof of the "only if" part of [14, Theorem 1.3]. 

Lemma3.5. Let A be a C*-algebra. I f  there exists a mean m on U(A**), such 
that for all VeB~(A**, A**) and all aEA 

V(a u*,u) dm(u) = ~ V(u*,u a) din(u) 
U(A**) U(A**) 

then A is strongly amenable. 
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Proof Assume first that A is unital. For V~B(A, A) we let f" denote its unique 
extension to a separately a-weakly continuous bilinear form on A**. We can 
define r A)* = (A @ A)** by 

7t 

co(v)= ~ ~(u*,u)dm(u). 
U(A**) 

Then co is a virtual diagonal for A (cf. proof of Theorem 3.1). If ~o~ 
w* co { u* | u[u E U (A)} there exist We B (A, A) and c ~IR, such that 

Reco(W) < c <  Re W(u*,u), Vu~U(A). 

By [19, Theorem4.11] U(A) is a-strong*-dense in U(A**). Moreover, the ex- 
tension Iv]: of W to A** xA** is jointly a-strong* continuous ([11, Cor.2.4]). 
Hence 

Reco(W)<c<RefV(u*,u) Vu~U(A**). 

This contradicts the definition of og(W). Hence coew*co{u*@ulueU(A)}, 
which implies that A is strongly amenable by Lemma 3.4. 

Assume next that A is not unital, and put B = A + �9 1. There exists a central 
projection p in B** such that A**=pB** and ( 1 - p ) B * *  is one dimensional. 
We can identify U(A**) with the partial isometrics in B**, which have support 
and range projections equal to p. Let m be a mean on U(A**) that satisfies the 
condition in the lemma, and define coe(B@B)** =B(B,B)* by 

co(V)= ~ I"(u*,u)dm(u)+ [z (a-p ,  l - p )  
U(A**) 

where fz is the usual extension of V~B(B,B) to B**xB**.  Since a ( 1 - p ) =  
( 1 - p ) a = 0  for all a~A, it is easily verified that 

�9 * - -  * *  E, co-R a co, Va~A 

(cf. proof of Theorem3.1). Since L** and R** are the identity on (B@B)** it 
follows that 

~ - - " b  ~, V b e A + C l = B .  

If coCw*co{u*| we can as in the first part of the proof find 
WeB(B,B) and c~R,  such that 

Reco(W)<c<RefV(v*,v), VveU(B**). 

If u~U(A**), then ul=u+(1-p) and uz=u-(1-p) are unitary operators in 
B**. Moreover, 

W(u*, u) + I:r - p, 1 - p) = �89162 U 1) + W ( u 2 ,  U2))" 

Hence Re(l:C(u *, u)+ I?V(1-p, 1 -p ) )  >c.  This implies that Re co(W)> c, which is 
a contradiction. Hence co,w* co {u* | u lue U(B)}. Since p(u* | u) = 1 for all 
uEU(B), we have p**(co)=l. Therefore ~o is a virtual diagonal. Hence by 
Lemma 3.5, B is strongly amenable, which implies that A is strongly amenable. 



All nuclear C*-algebras are amenable 315 

Lemma3.6. Let M be an injective yon Neumann algebra, and let p be a pro- 
jection in M, such that p..~ 1-p.  Then there exists a mean m on U(M), such that 
for all VeB,(M,M) and all aepMp: 

S V(au*,u)dm(u)= ~ V(u*,ua)dm(u). 
U(M) U(M) 

Proof Let F 2 be the algebra of complex 2 • 2-matrices, and let (ei~)i,~ = 1,2 be the 
matrix units in F 2. The assumption p ~  1 - p  implies that M can be written in 
the form 

M = N |  

in such a way that p--1 | Thus 

p M p = { x |  

Since N is also injective, we get by Theorem 2.1 that there exists a mean m on 
I(N), such that for all VeB~(N,N) and all aeN: 

V(au*,u)dm(u)= ~ V(u*,ua)dm(u). 
I(N) I(N) 

To each uel(N), we associate the two unitary operators ul,u z in M = N |  2 
given by 

Ul: (; l--UU*~ (U --(1--UU*)~ 

We can now define a mean rfi on U(M) by 

rNf )= �89  I (f(uO+ f(u2))dm(u), fel~(U(M)) �9 
I(N) 

Let W~B~(M,M) and b~pMp. The operator b has the form b=a| for an 
aeN. Let VeB~(N,N) be defined by 

V(x,y)=W(x|174 ), x,y~N. 

By 2 x 2-matrix computation, one gets that for all ueI(N): 

bu*=bu~=au*|  

ut b=u2 b = u a |  

and 

Hence 

�89 +Uz)=U| 

�89 W(bu*,u2))= W(a u* •e11, u |  11) = V(au*,u) 

and 

�89 us b) + W(u~, u S b)) = V(u*, u a). 

Therefore 
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S W(bv*,v)dt~(v)= ~ V(au*,u)dm(u) 
U(M) I(N) 

= ~ V(u*,ua) dm(u) 
I(N) 

= ~ W(v*,vb)drfi(v). 
U(M) 

Hence the mean r~ satisfies the conditions in the lemma. 

Proof of Theorem3.3. Let A be a nuclear C*-algebra and let K=K(H)  be the 
compact operators on an infinite dimensional Hilbert space, and put B =  
A | K. We will show that B satisfies the condition in Lemma 3.5. We have 

B** --= A** @ B(H) 

(yon Neumann algebra tensor product), and B** is an injective von Neumann 
algebra. Let (E, <)  denote the set of finite dimensional projections in B(H) 
with the usual ordering. Since d i m H =  + o  e, we can for each esE find a pro- 
jection f > e ,  such that f,-~ 1 - f  in B(H). Using Lemma3.6 on M = B * *  and p 
= l |  we get that there exists a mean m e on U(B**), such that for all 
V~B~(B**,B**) and all a~A** | 

V(au*,u)dme(u)= ~ V(u*,ua)dme(U). 
U(B**) U(B**) 

Let m be a weak* clustering point for the net (me)~ E. Then 

V(au*,u)dm(u)= ~ V(u*,ua)dm(u) (,) 
U(B**) U(B**) 

for VEB~(B**,B**) and a~ U A** |  
eeE 

Since U A|  is uniformly dense in B = A |  the formula (,) holds for 
e~E 

all a~B. Hence by Lemma 3.5, B is strongly amenable. 

4. Derivations of a C*-Aigebra Into Its Dual 

In [2, Sect. 3], Bunce and Paschke proved that all derivations from a semifinite 
von Neumann algebra M into its predual M ,  are of the form 6(x)=xtp-xq~ 
for a ~oeM,. Using the generalized Grothendieck inequality, we can show that 
this is true for all yon Neumann algebras. As a corollary one gets that any 
derivation from a C*-algebra into its dual is also given by a commutator. As 
in the previous sections I(M) denotes the semigroup of isometries in M. 

Theorem 4.1. Let M be a yon Neumann algebra, and let ~ be a derivation from 
M to M , .  Then there exists a q ~ M ,  in the norm closure of {u* 6(u)lu~I(M)}, 
such that 6(x)=xqo-q~ x that 6(x)=x~o-qo x for all xeM. 

Proof The weak and norm closures of a convex set in M ,  coincide. Hence, if 
M is finite, the Theorem follows [2, proof of Lemma 3.1]. Assume next that M 
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is properly infinite. From the first part of the proof of [2, Theorem 3.2] we get 
that 6 is a(M, M , ) - a ( M , ,  M)-continuous. Hence the bilinear form on M given 
by 

V(x,y)=(6(x) ,y) ,  x , y ~ M  

is separately a-weakly continuous. By [11, Prop. 2.3], there exist four normal 
states qa 1, ~P2, 4'1, 4'2 on M, such that 

I(,~ (x), y ) l <  I[ ~ II (r x(x* x) + ~o2 (x x*))~ (4'a (y* y) + 4, ~ (y y*))~ 

for x, yeM.  Since M is properly infinite, we can choose a sequence of isome- 
tribs v, eI(M), such that v* converges o--strongly to 0. Put Z,=v*6(v,)  and let 
xeM* be a a(M*,M)-clustering point for Z,. For a e M  we have 

[z,(a)[ = 1(6 (v,), a v*)[ 

< ] / 2  b]6tj (4' l(V, a* av,)+4'2(aa*)) ~. 
Since 

lim sup 4' 1 (v, a* a v,) < []a [t 2 lim sup 4' 1 (v, v*) = 0 

we get Ix(a)[<l/2 ]]6l] ~2(aa*)~. This shows that ~ is a-strong* continuous, i.e. 
z e M . .  Let ueU(M). Then 

u* z .  u + u* ~ (u) -- u* v.* ~ (v.) u + u* v* v. ~ (u) 

= u *  v* ~(v.u). 
Hence, for aEM 

I(u* z .  u + u* ,~(u), a)} = K~(v.  u), a u* v*)l 

< ]/2 1161[ (4' l(v, ua* a u* v*)+ 4' z(aa*)) ~ 
and therefore 

I(u* gu+u*  6(u),a)[ <1/2 H61[ 4'2(aa*)�89 

Using [1, Theorem II.3] we conclude that the convex hull of 

{u* Zu + u* 6(u) lue  U(M)}  

is weakly relatively compact in M. .  Let K be the norm closure (=weak 
closure) of 

co {u* Z u + u* c5 (u) lu e U(M)} 

then K is weakly compact. For ue U(M), put 

%(~o)=ucpu* +uS(u*), q~eM.. 

Then (%)u~v~u~ is a group of affine transformations on M .  leaving K invariant. 
Moreover, 

]tc~,((p)-~,(4')11 = [Icp- 4'i1, q~, 4 ' eM. .  

Hence by Ryll-Nardzewski's fixed point theorem [10, Appendix2], there exists 
)~oeK such that %(Zo)=Xo for all ueU(M). One gets easily that 6(u)=UZo-Xo u 



318 U. Haagerup 

for all u~U(M), and hence ~5(x)=XZo-)~o x for all xeM.  Since u*)~u+u*6(u) is a 
weak clustering point for the sequence u*v*6(v,u) for all ucU(M), it follows 
that Zo is in the weak closure ( = n o r m  closure) of span{v*f(v)lwI(M)}. 
This proves the theorem in the properly infinite case. 

In the general case M = p M G ( 1 - p ) M ,  where pM is finite and ( 1 - p ) M  
is properly infinite. We may assume that p 4= 0 and 1 - p  =I = 0. 

Since 
( 2 p -  1) 6(p)= ~(p2 _ p ) = 0  

we have 6(p)=0. Hence for x~M 

6(px)=pcS(x) and 6((1-p)x)=(1-p)6(x) .  

Thus 6(p M)c=p M , 
there exist 

and 

and 6 ( ( 1 - p ) M ) c = ( 1 - p ) M , .  By the first part of the proof, 

q~1~c-6 {v* ~(v)[ v* v=p} 

q~2~c-6 {w* 6(w)lw* w = 1 - p }  

(norm closures), such that 

6(y) = y  q~-q~l  Y, 

~ (z) = z (/02 - ~02 z, 

y6pM 

z~(1 - p )  M. 

Put cp=~0~ +r Then one gets easily 

6(x)=x(o-qox,  xEM. 

When v*v=p and w * w = l - p ,  then v+w, and v - w  are isometries in M. 
Moreover, 

v* ~ (v) + w* ~ (w) = �89 ((v + w)* ~ (v + w) + (v - w)* ~ (v - w)). 

Hence ~0~-O{u* 6(u)lu~I(M)}. This completes the proof. 

Corollary4.2. Let 6 be a derivation of a C*-algebra A into its dual A*. Then 
there exists q~6A*, such that [Iqoll < It611, and 

6(x)=xqo-q)x,  x~A. 

Proof. By [17], 6 is norm continuous. Since 6 is weakly compact (cf. [1, 
TheoremII  8]) it can be extended to a a(A**,A*)-a(A*,A**) continuous lin- 
ear map 6: A**~A*.  Using that the multiplication in A** is separately a- 
weakly continuous, one gets by a two step argument, that 6 is also a deri- 
vation. Hence by Theorem4.1 there exists q~A*, such that II~ol[ _-< 1t611, and 6(x) 
=xcp-q)  x, x~A**. 
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