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w 1. Introduction 

This paper  is an  invest igat ion of the K~ihler condi t ion  for a compact  complex 
manifold.  The first ma in  result is a character izat ion of those compact  complex 
manifolds  which admit  K~ihler metrics. The main  idea of this character izat ion 
is the following. Recall that the K~ihler form co of any hermi t ian  metric on a 
complex manifold  X has the property that it restricts to be the volume form 
on every complex curve. Hence, if the metric is K~ihlerian, i.e., if &o=O, then 
no compact  complex curve can be a bounda ry  in X. More  generally, it is true 
that  each positive current  T of b id imens ion  1,1 has mass (or "weighted vol- 
ume")  equal to T(co), and  hence cannot  be the (l, 1)-component  of a bounda ry  
unless 7"=0. (More specifically, if T=nl, ldS, then M ( T ) =  T(co)=(nl ,  ldS)(co) 
=(dS)(co)=S(dco)=0,  and  so T=0.)  The first ma in  theorem of this paper as- 
serts that  this intr insic condi t ion  actually characterizes K~ihler manifolds.  Tha t  
is, if a compact manifold carries no positive (1, 1)-components of boundaries, then 
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the manifold supports a Kiihler metric. It should be noted that the question: 
"Which complex manifolds admit a K/ihler metric?" is equivalent to asking: 
"Which complex manifolds can be calibrated?" This is a natural question to 
arise in the context of Calibrated Geometries (Harvey-Lawson [7]). 

The key technical result required for the proof of this characterization theo- 
rem is established in Sect. 2. Here it is proved that the space of (1, 1)-com- 
ponents of boundaries is a closed subspace of the space of all (1, l)-currents on 
a compact manifold. 

A brief description of positive currents of bidimension 1, 1 is given in 
Sect. 3. The Characterization Theorem is proved in Sect. 4. 

The remainder of the paper is concerned with improvements on, and appli- 
cations of, the Characterization Theorem. In Sect. 5, we enunciate a set of 
problems aimed at relaxing the condition we have given for a manifold to be 
K/ihler (and thereby strengthening the consequences of being non-K/ihler). Ex- 
amples of solutions to these problems are given in subsequent sections of the 
paper. 

In Sect. 6 we examine the extent to which the condition of being K/ihler 
persists under twisted products. For  example, we show the following. Let X be 
compact and suppose f :  X - + Y  is a holomorphic submersion with 1-dimensional 
fibres onto a Kgthler manifold Y Then there exists a Kgthler metric on X if and 
only if the .fibre of f is not a (1, l)-component of a boundary. Examples where 
the fiber bounds are provided by the Calabi-Eckmann manifolds S 1 x S 2"+1 

I ,  IP"(Ir). The above condition on the fibre o f f  is equivalent to the requirement 
that for any volume form c0 on Y,, the pullback f ' c o  is not the (1,1)-com- 
ponent of an exact form on X. 

When X has dimension two, the result above can be substantially 
strenthened. In Sect. 7 the following is proved. 

Theorem. Let X be an elliptic surface. Then the following are equivalent. 
(1) X admits a Kiihler metric. 
(2) The first Betti number of X is even. 
(3) The general fibre of X does not bound. 

By the "general fibre of X" we mean any non-singular fibre of the elliptic 
fibration f :  X - . C .  Condition (3) means that the class of the fibre in HE(X; IR) 
is not zero. This condition is equivalent to the condition that the map f * :  
H2(C; ~)--~H2(X; F,) is not zero. The equivalence of (1) and (2) in the Theo- 
rem above is a result of Miyaoka [10]. 

It would be interesting to find a direct proof that a compact complex sur- 
face with even first Betti number carries no (non-trivial) positive currents T 
which are (1, 1)-components of boundaries. For two different classes of currents 
we give such a direct proof. First, for currents T which are smooth such a 
direct proof is given in Proposition 37 and the preceeding paragraph. Second, 
for currents T which are d-closed Theorem 26 provides a direct proof. The 
result just mentioned (Theorem 26) raises the following question. 

Question. If T is a positive (1, 1) component of a boundary on a compact com- 
plex surface, then is T necessarily d-closed? 
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An affirmative answer to this question combined with Theorem 26 would 
have as a consequence the theorem ([15] and [13]): 

A surface with even first Betti number admits a K~ihler metric, 

without taking special note of K3 surfaces and relying on Kodaira 's  classification. 
It is quite important to note that our Characterization Theorem has a posi- 

tive consequence for non-K~ihler manifolds. It asserts that any non-K~ihler ma- 
nifold carries an analytic object analogous to the one carried by a K~ihler 
manifold (the K/ihler form). Namely, any non-Kiihler manifold carries a positive 
bidimension (1, 1)-current which is the (1, l)-component of a boundary. 

These objects appear to be intimately related to the geometry of a non- 
K~ihler manifold. In fact, on any complex manifold X, there are three cones of 
particular interest. Let P(X) denote the convex cone of positive (1, 1)-currents 
on X. Then set 

Pbdyl,l(X)=~-{TeP(X): T is a (1, 1)-component of a boundary}, 

Pbay(X)-- {TeP(X): r is a boundary}, 

Pelosed(X) ~ {TeP(X): dT= 0}. 

The behavior of these cones under meromorphic  transformations is an 
interesting phenomenon to study. 

One can begin to see the relationship of these cones to the geometry of a 
surface X from the following fact (Theorem 43). Let ~ y , , l ( X )  denote the set of 
smooth currents (i.e., C a forms) in Pbd~l.l(X). Then the intrinsically defined open 
set B (X)={xeX:  (a~+O for some q~b~y, . l (X)} carries a complex analytic fo- 
liation ~ ( X )  intrinsically defined by .~y~.,(X). 

Motivated by examples, we introduce the concept of the Kiihler rank of a 
surface X. If X is K/ihler then the Kiihler rank is 2. If the complement of the 
foliation set B(X) is a curve in X then the Kiihler rank is 1. Otherwise the 
Ki~hler rank is zero. In particular, the Kiihler rank of an elliptic non-Kghler 
surface is one. 

In w167 9 and 10 we investigate the K~ihler rank and the cones defined above 
on each of the known non-K~ihler surfaces. The results are quite interesting. 
For example, when X is an elliptic Hopf  surface the three cones coincide and 
are exactly the set of positive currents for the elliptic fibration. For  Hopf  sur- 
faces which are not elliptic there are two classes to consider denoted class 1 
and class 0. For  class 1 the elliptic fibration is replaced with the distinguished 
complex analytic foliation ~ ( X )  given above, and the cones are again just the 
foliation currents for g ( X ) .  In this case B(X)=  X so that all of X is foliated. 
For a Hopf  surface of class 0 we have succeeded in showing that the only d- 
closed positive current on X is a distinguished torus (and its positive mul- 
tiples). Although we have shown t ha t  Pbdy,,,(X) contains no smooth currents its 
general structure remains unknown for class 0. In particular, Hopf  surfaces of 
class 0 are the only known surfaces of K~ihler rank zero. 

The non-elliptic Hopf  surfaces provide examples of the following phenome- 
non. Those of class 1 are "smoothly  non-K~ihler" but not "geometrically non- 
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K~hler" (in the sense that there exist a smooth positive form that bounds but 
no positive combination of complex curves that bounds). On the other hand, 
those of class 0 are "geometrically non-K~hler" but not "smoothly non- 
K~ihler" (in the sense that there exists a complex curve that bounds but no 
smooth positive form that bounds). 

Note that in describing the cone P~lo~d(X)=Pbdy(X) on a Hopf  surface X, 
we are, in particular, describing all complex curves and all closed positive C ~ 
(1, 1)-forms on X. 

Similar remarks apply to our analyses of these cones on Inoue surfaces and 
Inoue-Hirzebruch surfaces. We refer the reader to w 10. 

We would like to remark that an important inspiration for this work was 
the work of Dennis Sullivan [14]. 

For complex dimension 3 or more an interesting, strictly larger, class of 
complex manifolds (co-K/ihler) has been characterized by M.L. Michelsohn 
[9]. 

w 2. dl, 1 has closed range 

Let ~ denote the sheaf of germs of pluriharmonic functions (i.e. locally real 
parts of holomorphic functions) on a complex manifold X. Define dL'=--i(~--6) 
the conjugate differential and recall that the exterior derivative d=~+ 6. Thus 
~=�89 c) and 3=�89 The operators d and d c are real and hence ddCu 
= 0  for any pluriharmonic function u. Conversely, if ddCu=O on a simply con- 
nected manifold X, then u is the real part  of a holomorphic function f = u  +iv 
on X. First note that a 0, 1-form g vanishes if and only if the imaginary part 
1 

(0~- ~) vanishes. Thus 6(u + i v) = 0 if and only if 

0 = Im ~(u + iv)= Im�89 + id c) (u + iv)=�89 +d~u). 

Consequently, a solution v to the equation 

dr= -d~u 

provides the holomorphic function f -  u + i v. 
More is true. 

(1) Proposition. 

ddc ~ 1  . . .  0-~-- ,~-- - - ,~, '  ~-~ [~, ~| [~,, 3| ~| ~ ] ~  

is a fine resolution of the sheaf of germs of pluriharmonic functions. 

Here U ,~ denotes the sheaf of germs of smooth forms of bidegree p, q and 
the subscript IR denotes germs of real valued forms. 

The proof  is standard and omitted. Exactness at g~ was noted above. 

Remark. It is of some interest that the adjoint sequence is not locally exact, 
even for dimension 2. 
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Fig. ! 

(2) Corollary. 

a) H'(X, J f)={@eS"'(X)~: d4/=O}/ddC~(X)w 
b) H2(X, 3f~)= {~b~[e"2(X)(~e 2' l(X)], :  dip =O}/dS"'(X)~. 

These cohomology groups are finite dimensional vector spaces if X is com- 
pact. 

(3) Proposition. If X is a compact complex manifold, then HP(X, Jr) is finite 
dimensional for p=0 ,  1, .... 

Re 
Proof. The exact sequence of sheaves: 0-*IR-~(9---.Yf--~0 gives rise to a long 

exact sequence of cohomology groups. The result is thus a direct consequence 
of the well established finite dimensionality of H*(X; ~ )  and H*(X; (_9). 

In particular, combining Corollary 2b) with Proposition 3 this proves that 
the image of 

d: ~"l(x).--+Z(X)~ {~lE[8"2(X)(~o2"l(X)].: d~=O} 

has finite codimension. Therefore, by a standard consequence of the open map- 
ping theorem the image of d in Z(X) is closed. This proves the next result. 

(4) Lemma. 

d: 81'l(X)~-~[~1,2(X)Ooc2,l(X)]~ has closed range. 

This Lemma can be dualized as follows. Let o~'p,q(X) denote the dual space 
of the Frechet space 6~P'q(X). An element T~o~'p,q(X) has compact support and 
dimension p + q ;  it is called a current of bidimension p,q. As before the sub- 
script IR indicates that only real currents are included. Now we compute the 
adjoint of the operator d in Lemma4.  The domain o~1'1(X)~ has dual space 
6/1,1 (X)~, and the target [d ~ 2(X)O~2' I(X)] R has dual space 
[d~'l, 2(X)@d'2,1(X)]~. Let rc denote the natural projection 

e'dx).-. <,,(x). 
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sending a current T of dimension 2 to the component TI,~ of bidimension 1, 1 
(in general T=Tz, o+ TI,I+ To,2). If ~beg~'l(x)~ and Se[g~,z(X)| l(X)] ~ 
then 

(S, dO) = (dS, ~) = ((nod) (S), ~9). 

Thus nod is the adjoint of the operator d in Lemma 4. 

(5) Definition. The differential operator 

d 1,1: [~,2 (x)| ~(X)3.-. ~;,l(X). 

is defined by dl, 1 =_nod restricted to [o~'l,2(X)Og2,1(X)]~. 

(6) Lemma. The operator 

d 1,1 : [ g l ,  2 ( X ) � 9  g2 , ,  (X)3~ .~  ~'e;, 1 (X)~ 

has closed range. 

Proof. As noted above dl, t is the adjoint operator to the operator 

d: gl ' I(X)~--,[gl 'z(x)og2'I(X)]R 

from a Fr6chet space to a Fr6chet space. Hence the closed range theorem is 
applicable (see Schaefer [12], Sect. 7 of Chap. IV). This theorem says that the 
adjoint of a map with closed range has closed range, so that Lemma6 is a 
consequence of Lemma 4. 

w 3. Positive currents of bidimension 1, 1 

Suppose X is a complex manifold. The space of compactly supported currents 
g~,I(X) of bidimension 1, 1 consists of those currents T which can be locally 
expressed as 

i 
T= ~ T jk ~ a/az; A a/3U, 

j ,k 

where each T Jk is a distribution. Such a current T is said to be positive if 
~TJkwjff~k is a non-negative measure for each wee" .  This definition is inde- 
pendent of the choice of coordinates. One can show (e.g. Harvey [4] Lemma 
1.20) that if T is positive then each T Jk is a Radon measure. Let J/ffP{(X) 
denote the subspace of E'I,I(X) consisting of those currents T whose coefficients 
T Jk are Radon measures. Let PL1(X) denote the cone of positive currents in 

cpt J/II,I(X ). The structure of currents with measure coefficients is very pretty. 
First, consider an (auxiliary) hermitian metric on X. Then Gc(1, TxX), the 
grassmannian of complex 1-dimensional subspaces of the tangent space to X, 
can be considered as the compact submanifold of AETxX consisting of unit 
simple 2 vectors of bidegree 1, 1. Similarly the grassmannian G(2, TxX) of 
oriented real two-dimensional subspaces of T~X is contained in A 2 T~X. 

Now if T has measure coefficients there exists a non-negative Radon mea- 
sure ]l TII called the total variation measure of T and a 2-vector field T, which is 
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]lTN-measurable, such that T =  I]T[I T. (That is, T(dp)=~(a(7~)dttTIt(x) for any 
exterior 2-form ~ on X.) Furthermore, for IITI[ a.e. x the 2-vector T(x) belongs 
to the boundary of the convex hull of G(2, T~X). The mass of T, denoted M(T), 
is defined to be the total variation measure IlZll (X). The reader is referred to 
Federer [2] for more details. One can show without difficulty that 

(7) A 2-dimensional current T is positive if and only if T(x) belongs to the 
convex hull of Gr T~,X) for tlT]I-a.e, x. 

That is, T is positive iff T(x) is a positive 1, 1 vector IITII - almost everywhere. 
An important class of positive currents is the set of finite sums T = ~  nj[V~] 

where each Vj is a compact 1-dimensional complex subvariety of X and each n~ 
is a positive integer. Such currents are called (positive) holomorphic chains. 

w 4. Kiihler manifolds 

Suppose X is a K~ihler manifold with K~ihler form co. 

(8) Theorem (Wirtinger's Inequality). The inequality o3(4)<= 1 holds for all ~ in 
the convex hull of the real grassmannian G(2, TxX), and equality is attained if 
and only if ~ lies in the convex hull of the complex grassmannian Gr TxX). 
For the proof see Federer [23 or Harvey [4]. In particular, because of (7), if 
T~PI,I(X ) is positive of bidimension 1, 1, then 

T(to)= .[ to(T)IITII = ~ IITH = M(T). 
X x 

A KS.hler form co is characterized by the following three properties: 

(9) toSo~I' 1 (X)N, 

(10) dto=O, 

(11) T(to)= M(T) for each TeP~, I(X). 

These properties can be dualized as follows. Consider 

d l ,  1 " [ ~ l , 2 ( X ) ( ~ o c 2 , 1 ( X ) ] ~ . - - ) . O t ~ l . l ( X ) F .  " 

as in Sect. 2. Let BI,I(X ) denote the range of dt. 1. That is TcBI.x(X ) if and 
only if T is the bidimension 1, I component of a boundary dS with S~'3(X). 
Now condition (10) that d o = 0  can be reformulated as 

(10)' to vanishes on BI.I(X), 

since to vanishes on do~'3(X) if and only if to vanishes on BI,1(X). Note that 
dg~ (X}~c~ N~, 1 (X)~ is a proper subspace of BI, 1 (X). The property (11 ) contains 
information independent of the hermitian metric on X 

(ll) '  T(to)>0 for each TaPI,I(X ) with T4:0. 
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(12) Proposition. Suppose X admits a Kiihler metric. Then: 

(13) P~,I(X)c~BI,I(X)= {0}. 

That is, there are no positive currents with compact support which are bidimen- 
sion 1, 1 components of boundaries. 

Proof Let co denote a K~ihler form on X. Conditions (10)' and (11)' say that co 
is zero on BI,I(X ) and strictly positive on PI,I(X)-{0}. 

If the manifold is compact then (13) characterizes K~ihler manifolds. 

(14) Theorem. Suppose X is a compact complex manifold. I f  there are no (non- 
trivial) positive currents which are bidimension 1, 1 components of boundaries, 
then there exists a Kahler metric for X. 

Proof The hypothesis is that PI,I(X)(-sBI,I(X):{O}. Choose any hermitian 
metric h on X and let ~b- - I m h .  Then ~bsgl ' l (X)a and 

(15) K = { TeP~, ~(X): r(~b)= 1} 

is a compact base for the cone P~,I(X). More precisely, K is weakly compact in 
the space of bidimension 1, 1 currents with measure coefficients, and hence K is 
weakly compact in g[,~(X)~. Lemma6  says that the image of dr,l, namely 
B~,a(X), is a weakly closed subspace of 8[,~(X)~. Thus the Hahn-Banach sepa- 
ration Theorem is applicable (see Schaefer 1-12], p. 65). This Theorem implies 
that there exists a form coegt ' l (X)~ which is zero on the subspace 
BI,I(X)cg~,I(X)~ and strictly positive on K. Hence (10)' and (11)' are valid. 
Now co(B1,1)=0 implies dco=0. Furthermore, choose TeGe(1, n)cAI '~TxX 
and set T=6~T. Then TeK and hence co(6xi")>0. Consequently, the 1, 1 form 
co has rank n at each point x, and is positive. This completes the proof that co 
is a Kiihler form. 

Remark. Suppose X is a compact complex manifold. Sullivan [14] noted that 
there are no (non-trivial) positive 2-currents which bound if and only if there 
exists a closed smooth 2-form whose (1, 1)-component is positive definite. 

w 5. Some general problems 

It is very useful, whenever possible, to relax the condition that we have given 
for a manifold to be Kiihler. This, of course, strengthens the consequences of 
being non-K~ihler. There are several natural ways to relax our condition. They 
lead to the formulation of some interesting problems in complex geometry. We 
state these problems here, and in subsequent sections we shall solve them for 
certain interesting classes of manifolds. 

Recall (cf. [4]) that a positive holomorphic 1-chain on a complex manifold X 
is a finite sum ~ nj[Cj] where each nj is a positive integer and each Cj is a 
complex curve in X. The positive holomorphic 1-chains are examples of d- 
closed, positive (1, 1)-currents. 
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We shall say that a complex manifold X has Property NK if there exists a 
non-trivial positive current which is the bidimension-(1, 1) component of a 
boundary. Of course, our main theorem asserts that for compact manifolds, 
Property NK is equivalent to being non-K~ihler. 

Problem 1. Describe general classes of complex manifolds for which Property 
NK implies the existence of a holomorphic 1-chain 

(a) which bounds, or, at least, 
(b) which is the (1, 1)-component of a boundary. 

Manifolds in such a class will be K~ihler if and only if they carry no holo- 
morphic 1-chains which bound (in case (a)) or are the (1, 1)-components of 
boundaries (in case (b)). 

It is also natural to reduce our criterion to the class of smooth differential 
forms. 

Problem 2. Describe general classes of complex manifolds for which Property 
NK implies the existence of a (non-trivial) smooth positive bidimension-(1, 1) 
current 

(a) which bounds or, at least, 
(b) which is the (1, t)-component of a boundary. 

To test whether a given manifold in such a class is K~ihler it suffices to 
check the pointwise non-negative, smooth ( n -  1, n -  l)-forms, to see if one is a 
boundary. 

In general, the set of positive (1, 1)-currents which are boundaries (or nearly 
boundaries) constitute an important analytic-geometric object on a complex 
manifold. The essential relationship with the geometry of the manifold will be 
clear when we discuss non-K~ihler surfaces in detail below. We pose the follow- 
ing general problem. 

Problem 3. On a given complex manifold, describe all of the positive bidimen- 
sion-(1, 1) currents which 

(a) bound 
(b) are the (1, 1)-components of boundaries 
(c) are d-closed. 

Part (c) is, of course, a generalization of the problem of describing all the 
complex curves in a given complex manifold. 

Later we will use the notations 

(16) Pbdy(X), Pbdy,,l(X) and Pclosed(X) 

for the set of currents in (a), (b), and (c), respectively. 

w 6. Non-singular families of curves 

In this section we shall treat a class of manifolds where Problems 1, 2 and 3 
above can be handled. This is the class of manifolds which fibre over a ma- 
nifolds of one-lower dimension. The first main result allows one to build K~ihler 
manifolds inductively by a sequence of holomorphic submersions. 

We assume that X is a compact connected complex manifold. 
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(17) Theorem. Suppose f :  X---*Y is a holomorphic submersion with 1-dimen- 
sional fibres onto a Kiihler manijbld Y. Then there exists a Kiihler metric on X if 
and only if the fibre o f f  is not a (1, 1)-component of a boundary. 

Note A. Any two fibres of f are homologous. Hence, if one fibre is a (1, 1)- 
component of a boundary, then they all are. That is, if F p - f - t ( p ) = n l , l d S ,  
then for any qeY, Fq=Fp+dSo=nl,~dS+dSo=nl.~d(S+So). 

Note B. This condition on the fibres of the submersion is a necessary assump- 
tion. The Hopf  surface X=(IE2-{O})/27Z~_SIx S 3 admits a holomorphic sub- 
mersion onto IP~(C) with K/ihler fibres (tori), however, X is certainly not a 
K~ihler surface. Of course, in this case the fibres are actually boundaries. 

Note C. The argument of Note A above actually proves that in Theorem 17 the 
condition on the fibre can be replaced by the corresponding condition on any 
(1, 1)-cycle homologous to the fibre. Let oo~g"-Ln-~(Y) be a smooth volume 
form on Y of total integral 1. Then the pull-back f *  co, considered as a (1, 1)- 
current on X, is homologous to the fibre (which is essentially the pull-back of 
the &function). Consequently, Theorem 17 can be restated as follows. 

(17) ~ Theorem. Suppose f :  X - ~  Y is as in Theorem 17. Then there exists a 
Kiihler metric on X if and only if the pull-back of a volume form on Y is not the 
(1, 1)-component of a boundary. 

Note D. The question remains whether X (as in Thm. 17) is K~ihler if and only 
if the fibre does not bound. When dimc(X )=2,  this is true, as we shall see in 
w 

Proof Suppose X is not K~ihler. Then by Theorem 14 there exists a positive 
current T of bidimension 1, 1 on X which is the 1, 1 component of a boundary, 
say S. That is T=(dS)I,1. 

The push forward f ,  maps currents of bidimension p, q to currents of bi- 
dimension p, q, and maps positive currents to positive currents. Therefore f , ( T )  
is a positive current of bidimension 1, 1 which is the 1, 1 component of the 
boundary d(f,(S)). Since Y is assumed to be K~ihler, Theorem 14 implies that 
f , ( T )  must vanish. 

The next lemma is needed to complete the proof of the Theorem. 

(18) Lemma. Suppose f :  X - *  Y is a holomorphic submersion with one-dimen- 
sional fibres, and suppose T is a positive current of bidimension l, 1 on X. Then 
the push-forward f , ( T )  of T to Y is zero if and only if T= IITI[ F where F is the 
field of unit 2-vectors tangent to the fibres. I f  in addition, T satisfies the equa- 
tion c)~T=0, then 

T = f * ( # )  

for some non-negative density # on Y 

Proof. Suppose r = l I r t l  : .  Then for any 2-form q~ on Y,, we have ( f*  g~) (F) - 0. 
Hence, ( f ,  T)(c~)=r(f*4))=O and we conclude that f ,  r = 0 .  

Conversely, suppose f ,  T = 0  and write T =  ltrll T where T is the associated 
field of positive (1, 1)-vectors. Then for any positive (1, 1)-form co on Y we have 
that 
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( f ,  T) (r = ~ ( f *  (~)('F)d }l T}[ =0 .  
X 

From positivity we know that (f*u))(T)>__0. Consequently,  we conclude that  
( f*co)(T)=01[TH-almost  everywhere. Since this holds for all positive (1, 1)- 
forms on Y, it is easy to see that  T=_F, I!Tl[-a.e., as claimed. This argument is as 
follows. Fix a point xEX and choose an isomorphism T x X ~ C "  so that the 
differential f ,  becomes the linear projection J,(z 1 . . . . .  z , )= (z  2 . . . .  , zn). Then ir x 

can be written as T x = ~  T ~/ A where hermit ian positive 
C~ Zk l 

semi-definite matrix. Choose any covector  a=azdz2+.. .+a~dz . and set u~ 
1 

= 2 ~ a A S .  (Note that u~ is of the form f * O o  for ~o~Tj, xY) Then co(Tx) 

= ~  a~irJkSk=0 for all such a. We conclude, since ~sk is semi-definite, that ~ k  

= 0  for j_>2 or k>__2, that is, x 2 /x = / ~  as claimed. 

Recall now that  any positive (l, 1)-current can be thought  of as an exterior 
( n - 1 ,  n - 1 ) - f o r m  with measure coefficients. Under  this correspondence,  a cur- 
rent of type T =  [] TII/~ is written as 

T =  IITll f*(f2)  

where ~2 is a smooth volume form on X The equation ~?~T=0 in this case 
becomes the equation 

(a/]l TII) A f *  (f2)-- 0. 

This implies that, in the fiber directions, the measure IlTIl is harmonic.  Since 
the fibres are compact,  we conclude that [tT][ is independent  of fibre coor- 
dinates, i.e., IITII is the pull-back of a measure go on X Thus T = f * ( # 0 f 2  ) 
= f * ( # ) ,  and the lemma is proved. 

We now complete  the proof  of Theorem 17. As before, if X is not  K~ihler, 
then there exists a positive (1, 1)-current T with T=d~.~S for some 3-dimen- 
sional current  S. Since f is holomorphic ,  we have that  f , T = d l , l ( f , S  ). Thus, 
since Y is Kiihler, we conclude that f , T = 0 .  L e m m a l 8  then implies that T 
= f * ( p )  for some non-negative density # on Y. Let  c = ~/2= 11TH, and recall that  

Y 

any two densities with the same total mass are homologous  on X Hence, for 
any point  y s  Y,, the Dirac density ~. at y has the proper ty  that 

c6~.-#=dR 

for some current  R on Y. Pulling back by f we have that  

c [f-m (y)] _ T = df* (R). 

Therefore,  the fibre [ f - l ( y ) ]  is the (1, 1)-component of a boundary.  This com- 
pletes the proof. 

The  next corollary to L e m m a l 8  is an example of a solution to 
Problem 3b) above. 
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(19) Theorem. Suppose f :  X--+Y is a holomorphic submersion, with 1-dimen- 
sional fibers, of a non-Kiihler manifold X onto a Kiihler manifold Y Then the 
cone of all positive currents which are 1, 1 components of boundaries is equal to 
{T: T = f * ( # ) f o r  some non-negative density t~ on Y}. 

Note that on the non-K~ihler manifold X, this cone recaptures the sub- 
mersion Y intrinsically. 

w 7. Elliptic surfaces 

In this section we shall give a complete answer to Problems 1, 2 and 3 for 
elliptic surfaces. Recall that an elliptic surface is a compact complex surface X 
which admits a holomorphic map f :  X--~ Y onto a curve Y such that for al- 
most all yeY, the fibre f - l ( y )  is a non-singular elliptic curve. Note that f need 
not be a submersion (it can have singular fibres), so the theorems of the last 
section do not immediately apply. Nevertheless, dimension 2 is sufficiently spe- 
cial that quite strong results can be proved. In the process we will establish 
some useful general propositions on complex surfaces. 

Our first main result is the following. 

(20) Theorem. For a compact elliptic surface f :  X - ~  Y the following are equiva- 
lent. 

(1) X admits a Kiihler metric. 
(2) The first Betti number of X is even. 
(3) The general fibre o f f  does not bound in H2(X,N ). 

The equivalence of (1) and (2) is a Theorem of Miyaoka [10]. The argu- 
ment here is quite different from that of [10] and establishes the further equiv- 
alence: (1)<>(3). 

Note that, as seen in w condition (3) is equivalent to 

(3)' The pull-back f *  ~o of a volume form co on Y is not exact on X. 

Proof of Theorem 20. The proof will be given in several stages. We begin by 
establishing some results for arbitrary (not necessarily elliptic) surfaces. 

Suppose X is a compact complex surface. Let q - h  ~  (9) de- 
note the irregularity of X, and let b 1 -d imn~Hl (X;~ )  denote the first Betti 
number of X. Kodaira [8] has shown that: 

(21) A - 2 q - b  1=either 0 or 1, 

and consequently 

(22) A =0-,:~b 1 is even. 

Of course, if X is Kiihler, then b 1 is even (and so A =0). Our first step towards 
proving the converse is the following. 

(23) Proposition. Suppose X has even first Betti number. Then there are no 
(non-trivial) positive 1, 1 currents that bound. 
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Proof. As noted above, the exact sequence 

Re 
0 - ~ - ~  (_9 > o~--~0 

of sheaves induces the long exact sequence: 

O-~ HI(IR)-+ HI((9)-~ HI(Yf)-~ H Z ( ~ ) ~  H2((9) .... 

Note that O-~HI(~,,)--~HI((~) is surjective if and only if 2q=bl .  Therefore, by 
(21) and (22), 

(24) H I ( H ) - ~ H 2 ( ~ )  is injective <:~b 1 is even. 

Recall that HI(Jf)~-{T~'1,1(X)~: dT=O}/iO[8'(X),. Now suppose that 
T~8'l,l(X)~ and that T=dS. Then T determines a class in H~(Jvf) and the 
image of that class in H2(IR) is zero. Hence, the hypothesis that b~ is even 
implies that the class determined by T in Hi (W)  must vanish. That is, T=i30~ 
for some q~Eg'(X). If T is positive then ~b is plurisubharmonic and hence con- 
stant by the maximum principal. Thus, T=0  and the proof is complete. 

The Proposition can be strengthened by the following observation. 

(25) Proposition. Suppose that T is a real (1, 1)-current on a complex surface X, 
and that T=(dS)I,I for some real current S. I f  dT=O, then, in fact, T=dS. 

Proof. T=~S~'~ ~ and since dT=O, 0S 1'~ is a holomorphic 2-form. Hence 

O=Sd(S o 

which proves that c~Sl'~ 
Combined with Proposition 23 we have proved the following. 

(26) Theorem. Suppose X has even first Betti number. I f  T is a positive current 
on X which is the 1, 1 component of a boundary and if dT=O, then T=0. 

See Theorem 38 for a dual interpretation. 
On an elliptic surface the positive currents which are (1, 1)-components of 

boundaries can be completely described. 

(27) Proposition. Suppose X ~ Y is an elliptic" fibration. Then each positive 

current T which is the (1, l)-component of a boundary is of the form 

(28) T=f*(#)  

for some non-negative measure (density) # on Y 

Note. The current f*(p) in Eq. (28) is defined by first restricting to the regular 
points, where f is submersive. Here f* (# )  is well-defined and gives a positive 
current of finite mass. We then take the natural extension of this current to all 
of X. 

Since any current of type (28) is d-closed, Proposition 27 enables us to 
apply Theorem 26. This proves that an elliptic surface with even first Betti 
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number carries no positive (1, 1)-components of boundaries. Applying our main 
result (Theorem 14) then proves Miyaoka Theorem: 

(29) Corollary. An elliptic surface is K~hler if and only if b 1 is even. 

A current of the form (28) is cohomologous to c[F] where F is any non- 
singular fibre and c = S ~. Thus we also conclude: 

Y 

(30) Corollary. An elliptic surface is Kiihler if and only if the generic fibre 
does not bound (in real homology). 

These two corollaries constitute Theorem 20 above. It remains only to es- 
tablish the proposition. 

Proof of  Proposition (27). The proof of Lemma 18 shows that for some non- 
negative density # on Y, the current T - f  *(p) is positive and supported in the 
singular fibres of f. This current is also ~?J-closed. Consequently, by a local 
calculation (the next lemma), T- f* (# )  is of the form 

(31) T - f * ( # )  = ~  cj[Cj] 
J 

where each cj is a positive constant, and each Cj is an irreducible component 
of a singular fibre. 

(32) Lemma. Suppose T is a positive bidimension (1, 1)-current on a complex 
manifold, and assume that O~T= O. I f  T is supported in a complex curve C, then 
T can be written as a sum 

T=~h j [C j ]  

where each Cj is an irreducible component of C and each hj is a non-negative 
harmonic function on Cj (i.e., the pull-back of hj  to the normalization of Cj is 
harmonic). 

Proof. At each manifold point of suppT  we may choose coordinates 
z - ( z 1 , . . . ,  z" ) - ( z  1, z') with supp T= {z' =0}. Then 

T=~5o(Z,) ~ hjk(zt) i • ~3 
J,~ ~ A  ~ 

with each hJk(z ~) a measure. Now 

0 = 636T=~ bo(Z ) c3~ ~fl 

+ R e  ~ 'c?6~ ~hJl(zt) ~, iO26~ 
j~2z ~z- ~ ~z~ f-j,k>=220z j 0~  

Therefore, h~1(z ~) is a non-negative harmonic function, hJX(z ~) is holomorphic, 
and each hJk=0 for j, k>__2. Moreover T positive implies h j~ = 0  for j > 2 .  Thus 

T=6o(z)hl l (z l )~-d~zl /X~zl  with h X l ( z 1 ) > 0  and harmonic. Since hll(z) is har- 

monic and >__0 on C i minus its singular points, it can be extended to a non- 
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negative super-harmonic function_/~j on the normalization Cj of Cj. Set 
T '=~[~3] . ( /~ [Cj ] )  where n~: C~C~ is the natural projection (i.e., 
T ' =  ~ h i[Cj]). Fix asingular point a ~ C and let 8je Ci be the point (if any) with 
nj(Sj)=a. On Cj, i#Oh~=- -kj[_~] for some k~>0 because /~ is superharmonic. 
Since g . [ f i j ]= [a ] ,  i~T'=-). ,kj[a] near a. Thus, near a, both T-T'  and 
i~(T-T')=~kj[a] have support in a. It follows easily that ~k~=0,  and so 
each k s = 0 and T = T'. This completes the proof of the lemma. 

Equation (31) now follows immediately from Lemma32 since each Cj is 
compact. In particular, the current T is d-closed. T is also the (I, 1)-component 
of a boundary, and thus by Proposition 25, T must be d-exact. This gives the 
following equation in N-homology: 

(33) 0 = [T] = [ /*P3 + ~ cIECj]. 
J 

The homology class [ f ' p ]  is exactly the class c[F] where F denotes a non- 
singular fibre and where c = ~ # >  0. 

Y 
To simplify the discussion we consider for the moment, the case where 

there is only one singular fibre, say f l(y0). Then there are positive constants 
71,72, .-. and 7 so that 

(34) f*(6,,o) = Z 7i Cj~ 7F 
J 

(where " ~ "  means "homologous over N"). 
We now consider the intersection pairing " . "  on the set of curves {C j}. The 

matrix of intersection numbers consists of integers [Cj]- [Ck] which are >0  for 
j=t=k. Furthermore, since the non-singular fibres are connected, so is the sin- 
gular fibre. This implies that the matrix [Cj]-[CR] is connected in the sense 
that each pair of distinct indices is joined by a sequence of indices for which 
each successive pairing is strictly positive. 

The fibre class [F]_~?,~[Cj]  has the property that [ F ] . [ C j ] = 0  for all j. 
(Thisis evident geometrically.) It now follows from a lemma in linear algebra, 
which is basic for surface theory, [1, Proposition 1.1 on p. 350], that any linear 
combination x=~Q[C~] with all c j>0  and x. x=0 ,  must be a scalar multiple 
of IF]. From Eq.(33) we see that O=[T]=c[F]+~Q[Cj], and so (~c~[Cj]) 2 
=0. Consequently there is a t > 0  so that cj=t~/~ for all j. Using (31) and (34) 
we conclude that 

T=f*(p) + t~Tj Cj 
=f*(l~)+tf*(6,, o) 
=f*(p') 

where p'=/~+t6yo is again a non-negative density. 
In the case where there are several singular fibres, the intersection matrix 

decomposes into a direct sum of connected matrices, each of which corre- 
sponds to a single fibre. The argument then proceeds exactly as before. This 
completes the proof of Proposition 27 and Theorem 20. 

The discussion above enables us to give the following example of a solution 
to problem 3. 
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(35) Theorem. Suppose f: X--* Y is a non-Kiihler elliptic surface. Then the fol- 
lowing convex cones coincide. 

Pbdyl, 1 -  All positive (1, 1)-components of boundaries on X. 
Pbay ~ All positive (1, 1)-boundaries on X. 

Pi-{f*(#)eo~'l , l(X): /~ is a non-negative density on Y}. 

Proof. It is evident that Pbay~.Pbdyl.l and Proposition 27 asserts that Pbdy,, =Pf. 
However, Pz~Pbdy by Theorem 20(3'). 

(36) Theorem. Let f: X-- ,  Y be a non-Ki~hler elliptic surface. Then the cone of 
positive d-closed currents on X consists of all elements of the form 

r = f * @  + y tjCj 

where f*(lO belongs to Pr where tj>O and where C1, C2, ... denote the irreduc- 
ible components of the singular fibres of f. 

Proof. Let T be a d-closed positive (1, 1)-current on X, and let f2 be a volume 
form on Y. Then M ( f ,  T ) = ( f ,  T)(f2)= T( f*O)= 0 since, by Theorem 20(3'), the 
form f ' f 2  is exact on X. The theorem now follows from the arguments of 
Lemmas 18 and 32. 

Some remarks on non-elliptic surfaces. We would like to be able to give a direct 
proof that for a compact surface X 

Property NK~=~bl(X ) is odd. 

Of course, by our main theorem this is equivalent to the conjecture of Kodaira 
[11, p. 853 

bl(X ) is even<=~X is K~ihler. 

Perhaps it is worth remarking that there is an elementary argument that 

Property (NK) ~ ~ b l ( X  ) is odd. 

This is to say that if bl(X ) is even, then there are no smooth positive (1, 1)- 
currents which are (1, 1)-components of boundaries. This follows from Proposi- 
tion 23 and the next result. 

(37) Proposition. Suppose X is an arbitrary compact complex surface. I f  T is 
smooth, positive and the 1, 1 component of a boundary then T is a boundary, and 
in addition T is simple (i.e. of rank <= 1) at each point. 

Proof. Suppose T=(dS) 1'~ for some current S. Then -OT={[OS 1'~ s o  that 
0S 1'~ is smooth. Similarly, we have that ~S ~ is smooth, and so dS is smooth. 
Now by deRham we may assume S is smooth without changing dS. We then 
see that: 

0 = I d(S AdS) = ~ dS AdS 

=S TA T+2S(dS) 2'~ A (dS) 2'~ 

Therefore TA T -  0 and (dS) 2' 0 _ 0. 
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Utilizing Kodaira 's  beautiful classification of surfaces, if X is non-algebraic 
and non-elliptic with first Betti number even, then X is either a torus (which is 
obviously K~ihler) or X is a K3 surface. Thus Theorem 20 settles the Question 
above except for the case where X is a K3 surface with no meromorphic  func- 
tions. Recently, as an important  application of Yau's solution to the Calabi 
conjecture, Todorov [15], Siu [ t3]  gave an argument that each K3 surface is 
K~ihler. 

Perhaps it is worth remarking that the dual interpretation of Theorem 26 
above says: If a compact  surface X has bl (X  ) even, then there exists a real 2- 
form co on X such that: 

(i) d o = 0 ,  
(ii) o) 1' 1 is positive definite, 

(iii) o)2,0=~al,o for some (1,0)-form ~1,o. 

More generally, the existence of such a "weakened"  K~ihler form can be 
characterized as follows. 

(38) Theorem. Suppose X is a compact complex manifold. The manifold X ad- 
mits a real 2-form o)egz(X) with 

(i) do) =0,  
(ii) o)1,1 positive definite, 

(iii) o )2 '~  for some 1,0 form a, 

if and only if X does not support a (non-trivial) positive, d-closed current which is the 
bidimension 1, 1 component of a boundary. 

Only the proof of the difficult half of the theorem is sketched. As before, 
P~,~ denotes the positive currents of bidimension 1, 1 and BI, 1 denotes the 
bidimension 1, 1 components of boundaries. Let Z1,1 denote the d-closed cur- 
rents of bidimension 1, 1. Let A l denote the annihilator of A. Then B • 1,1 
= {o)eg~'l(X): do)=0} and will be denoted Z 1"I. Moreover, Z -L {o)eE~'l(X): 1,1~--- 
o)=(dc01'1 for some c~eS~(X)} will be denoted B 1'1. The hypothesis is that 
P~,lc~B~,~c~Z~,~={0}. The Hahn-Banach Theorem implies that there exist 
( D ~ g l ' I ( x )  with &s(BI,lc~ZI,1) ~ and 5) positive definite. Now (B1,1 ~ZI ,1)  • 
--B• l l , t = Z a ' l + B l ' t  (assume for the moment  that this sum is a closed 
subspace). Thus, for some c(, ~5-(da) 1' 1 is closed. Equivalently, 

CO _~ (~ - -  (~(X 1' 0 - -  (~(xO' 1 

is closed. Since co 1' ~=& and c o 2 ' ~  ~'~ properties (ii) and (iii) follow. 
It remains to verify that Z ~'~ +B  1'1 is a closed subspace of g~'~(X). First 

note that 

O ~ f  ( -a )~ ia~ReOl@go~d+a)g l  d 1 ' 1 _ ~ 1 , 1  dde ~.Ur 

is an exact sequence of sheaves. This can be used to show that the image of 
d 1'1 (i.e., B 1'1) has finite codimension in the closed space ker(ddC). Since Z 1'1 is 
a closed subspace of the kernel of dd ~ this implies that B 1'1 + Z  1'1 is closed. 
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w 8. The K~ihler rank of a surface 

Our characterization of K~ihler manifolds says that on a non-K~ihler manifold 
there exists a (non-trivial), 1, 1 component of a boundary. In the last section we 
characterized the cone of all such currents in the elliptic case. In particular, 
this cone contains a geometric object IF], the current corresponding to in- 
tegration over the generic fiber; and an analytic object (2, the pull back of a 
volume form on the base. In this section we consider compact complex sur- 
faces which admit a form such as ~2. 

First, we establish some notation which will be useful in the remaining 
sections. Let P denote the cone of all positive currents of bidimension l, 1 on 
the surface. Recall that 

Pbdy~ {TeP: T is a boundary}, 
Pbayl ' , -  {TsP: T is a (1, 1)-component of a boundary}, 
P~losed~{TEP: r is d-closed}. 
Proposition 25 asserts that on a compact surface 

Pdose  Pud,1,1 =Pus," 

Now we turn our attention to the subcones of the above cones consisting of 
those currents that are smooth. The subcone is denoted by using the super- 
script oc. Proposition 37, which is basic to this section, says that: 

and that any form ~0ePb~y is simple at every point of X. Suppose x~X  is a 
point such that q0~=t=0. Note that for any other tpePb~y the sum q0+0 is also in 
Pb~y, and so the 1, 1 vectors p~, 0x and qo~ +0~ are all simple. This implies that 
0 x = 2 q ~  for some 2>0.  In particular, the complex line 

~ =  ker(cp~) 

is defined independently of the choice of form q~ePb~y- Since d~o =0, we see that 
this line field ~ is integrable. 

This leads us to consider the following intrinsically defined set: 

(39) ~ ( X ) - { x ~ X :  3q)ePb~y(X ) with q ~ 0 } .  

The argument given above proves the following. 

(40) Theorem. The open subset r carries an intrinsically defined com- 
plex analytic foliation ~. This foliation has the (defining) property that q~l~==-O 
for any q)6Pb~y(X). 

While a surface may contain no complex curves, it still may have such an 
analytic foliation. 

Motivated by the above discussion and the structure of Pb~yl. =Pb~y for a 
non-Kiihler elliptic surface, we introduce the concept of K~ihler rank. 

(41) Definition. Suppose X is a compact complex surface. If the complement 
of the open subset O(X) in X is contained in a complex curve, then X is said 
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to have Kiihler rank one. If X is Kiihler we say that the Kiihler rank of X is 
two. Otherwise, the Kiihler rank is zero. 

Note that for a non-K~ihler elliptic surface the K/ihler rank is one. In fact 
by Theorem 35, the complement of ~(X)  in X is contained in the union of 
the singular fibers of the elliptic surface X. 

Many interesting questions remain. Is the K~ihler rank of a surface a bimero- 
morphic invariant? If so, it is vaguely analogous to the transcendence degree 
of the meromorphic function field over ~ (which is 0, 1, or 2) and orthogonal 
to the other basic numerical invariant ~c, the canonical dimension (which is 
- 1 , 0 , 1  or 2). 

We now briefly recall some relevant facts concerning nonelliptic surfaces. 
Suppose X is a compact surface with no meromorphic functions (i.e., M(X) 
=i12). Then for any holomorphic line bundle L on X, dim H~ L)<__I, for 
otherwise the ratio of two independent sections of L would yield a non-con- 
stant meromorphic function. In particular, the geometric genus pg=dimH2((9) 
=dimH~ is either 0 or 1. If pg= l, then Kodaira has proved that X is 
either a complex torus (which of course is K~ihler) or a K3-surface. We shall 
assume that p~=0. 

in this case, it is a fact that (cf. [1]): b l = q = l ,  Z((9)=b]=0,  and b2=b ~ 
=Z(N) ( - t h e  Euler characteristic). Furthermore, 

h~,~ H~ =0  hl,l=_dimHl(f2X)=b2. 
(42) 

h 1 _= dimaHl(~vf) = b2 + 1. 

In particular, the sequence 

0-~ H'(P,.)-~ H i ( C ) ~  H I ( ~ )  -~ Hz(~)--~ 0 

(43) II II 

IR C 

is exact. This has the following consequence which will be useful to us later. 

(44) Lemma. Suppose M(X)=II2 and pg=0. Then given any two non-trivial cur- 
rents, To, Tl~Puay(X), there exist constants c%>0 and cq > 0  so that 

o~o ro -cq  rl = iaJ~b 

for some function ~b on X. 

Proof Recall that H I ( ~ ) =  {T~W 1, I(X): dT=O}/iO~E,o(x) from Corollary 2a. 
The image of a class T in H2(IR) is zero if and only if T is a boundary. Now 
given a non-trivial TePbdy(X), the class of T in H2(IR) is zero, but its class in 
H I ( ~ )  is not. (For if T=idJqJ, then ~ is a plurisubharmonic function on X, 
and therefore constant.) 

By the sequence (43) we see that the kernel of the map HI(j(~)----~H2(R1.) is 
1-dimensional over ~ .  Consequently, given two non-trivial currents 
To, TlePbdy(X), there are real constants c%,cq so that [ % T 0 - e l T 1 ] = 0  in 
HI(,YF), i.e., eoTo-elTl=iO(?O for some ~b. Both c% and el are of the same 
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sign since otherwise either q5 or -q5 would be plurisubharmonic. This com- 
pletes the proof. 

Recall now that for a non-elliptic non-algebraic surface X with pg=0 we 
have b~(X)= 1. It is a theorem of Kodaira that if, in addition, b z ( X ) = 0  and X 
contains a curve, then X is a non-elliptic Hopf surface. (We shall study these 
surfaces in detail in Sect. 9.) If b z ( X ) = 0  and X contains no curves, then Inoue 
and Bogomolov have proved that X is an Inoue surface. (We shall study these 
in Sect. 10.) 

The remaining case to consider is the one where X is a non-elliptic non- 
algebraic surface with pg=0 and bz (X)>0 .  Little is known in this case. There 
are, however, some examples: the so-called Inoue-Hirzebruch surfaces (see 
Sect. ll),  and some recent examples given by Kato. 

w 9. Non-elliptic Hopf surfaces 

In this section we shall concentrate on the Hopf surfaces of non-elliptic type. 
Every such surface has a finite cover by a primary Hopf surface. This is a 
surface of the form 

X :  (•2 _ {0})/Z 

where Z is generated by a certain biholomorphism cb of ~ 2  {0}. The allow- 
able biholomorphisms 45 fall into two classes. 

Class 1. Here we have 
~(zl, z2)=(~zl, ~2z2) 

where el and 0~ 2 are complex constants with 0<1ell <[c~2l < 1. Hopf surfaces in 
this class are elliptic if and only if e~ =c~ q for some p, qeZ. 

Class O. Here ~b is of the form 

4,(zl, z2) =(~mz~ +2Z7, C~Z2) 

for non-zero constants c~ and 2 with lel< 1 and for some positive integer m. 
Hopf  surfaces of this class are never elliptic. 

A. Hopf surfaces of Class 1 

We begin with (non-elliptic) surfaces of class 1. Let r >  1 be defined by 

(45) [~11 = lezl', 

and consider the plurisubharmonic function q~ in 1122 given by 

(46) ~o = Log(lz 112 + Iz2lZ'). 

Since q0(~(z)) = ~o(z) + Log[ell 2, the 1-form 

(47) �89 dC qo~gl(X) 
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is well defined on the quot ient  X. Fur thermore ,  its exterior derivative 

(48) f2=_�89 q~ =i~?cS~oeo r I(X) 

is a posit ive smooth  1, 1 current  on X which bounds.  Theorem 40 says that  
there is an intrinsic complex foliation ~ defined on B(X) which is determined 
by the simple 2-form O on the set where O is not zero. More  explicitly, 

(49) f2= [Z212(r- 1) 
(iz112 + 1z212,)2 i(z2dz 1 - r z ld z2 ) / x  (ZzdZ 1 - r ~-1d22) 

vanishes exactly on the zl-axis. Replacing the ~0 defined above by 

(50) 0 = L~ 1] 2 + IzzI 2") (IZl l  2/r "4- IZ212 ) 

and defining 

we obta in  a positive smoo th  1, 1 current  on X which bounds  and is never zero. 
Thus each (non-elliptic) H o p f  surface X of class 1 is of K~ihler rank 1 with 
B( X) = X. 

The ho lomorph ic  vector  field 

(51) V(z) =_ rz, ~z~ - z2  ~z~ 

is well defined and never zero on X. Moreover ,  V is in the kernel  of  f2. Thus  
the complex foliation ~ is in fact a ho lomorph ic  foliation. The  induced fo- 
liation on C 2 -  {0} can be described by the flow lines 

{%(0: t~r 

of the ho lomorph ic  flow ~ determined by V: 

tl~t(Z)=---(ertzi, etz2), t~ff~. 

Alternatively, each flow line L c is the graph of the mul t ivalued function 

z 1=cz'2, for some c ~ r  

over  the z2-axis which we denote Loo. Thus  each leaf L of g on X when pulled 
back to r  {0} is of the form 

[.){Lc: q)N(Lc)=L c for some N ~ Z }  (52) 

where C is fixed. 
The  function 

IZI[ 
(53) re(Z) =1Z112 +lZ212r 

is ~b-invariant and gives a well defined map  n: X--~ [0, 1]. 



190 R. Harvey and H. Blaine Lawson 

(54) Lemma. The fibers of n are exactly the closures of the leaves of the 
foliation o~ on X. 

Proof The fibers of n are clearly unions of leaves of ~. Let L denote a leaf 
pulled back to ~2 a -  {0}. It will suffice to show that its closure I is of the form 

Izll =plz2[ r for some pE[-0, oo] 

where p=oQ defines the set z2=0. 
First note that: 

(55) Lc=L c if and only if C=e2~ki'c for some ks~E, 

so that L contains 
z 1 =e2~k~rcz~, k~Z 

for some ceC. 
Hence, if r is irrational, then I is of the form ]Zll=plz2] ~ with p=]cl. Sec- 

ond, let 0 be defined by 

~1 = ei~ ~r2, (56) 
and note that: 

(57) ~(Lc)=L c where C=ei~ 

If X is not elliptic then either r is irrational or O/2rc is irrational. If O/2n is 
irrational again we have that I is of the form 

Izx[=plz2[ r with p=--lcL, 

completing the proof. 

(58) Theorem. Let X be a non-elliptic Hopf surface of class 1. Let 

f2 = i~/Log([z1[ 2 _}_ ]Z212r) (]Zl 12/r ..~ ]Zzl 2) 

denote the positive 1, 1 form defined on X above. All of the following cones 
agree. 

1. Pbd.,~ 
2. Pbay 
3. P~lo~d 
4. The d-closed positive foliation currents for .~'- on X 
5. {n*(f)f2: f is a non-negative generalized function on [0, 1]} 

Proof Since H2( X ,N)=0 ,  Pudy=Pcloscd. Moreover, if TeP~los~a, then T(f2)=0 
since f2 bounds. Thus Pbdy=P~lo~cd= {T: T is a positive d-closed foliation current 
for o~ on X}. If Teddy,, ~, then we also have that T(f2)=0 (since dO=0),  and 
again conclude that T is a positive foliation current for ~ on X, but which is 
only dd~-closed. Each positive foliation current T for ~- on X must be of the 
form 

T=g(2 
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where g is a non-negative generalized function on X (i.e. a non-negative cur- 
rent of dimension four on X). 

It remains to show that: if ddCg/x Q = 0  then 

g=rc*(f)  for some f > 0  on [0,1]. 

First, assume that g is continuous on X. Then g is harmonic on the leaves of 
, f  and bounded. Since the leaves of o~ are easily seen to be of the form ~2 or 
~* we conclude by Liouville's theorem that g is constant on the leaves and 
hence constant on the leaf closures. Thus g = 7~*(f) by Lemma 54. 

More generally, introduce coordinates p, 0~, 02, 03 defined by 

(59) Z 2 = e  03+i02, Z t = p C  r03+iO' . 

Then 
�9 (p, 0~, 02, 03)-(p,  01 + al, 02 + a2, 03 + Log 1~21) 

where a: ~ Arg(ctj) j = l, 2. 
Moreover, ~(p, Ol,02,03)-(p,O~+rlmt, 02+Imt, O3+Ret) defines the 

leaves: 
p = constant, 

01 - r 0 a = constant. 

It suffices to show that for each smooth function qo(p)>0 with 5(p(p)dp= 1 

G(O,, 02, 0~)~ ~ g(P, 0~, 02, 0~)~0(p)do 

is a constant. 
First we note that dd~g/x f2=O becomes 

(A2+BZ)(g)=O. 

c~ 0 
which implies that (A2+ B 2) (G)=0, where A -  r - ~ ,  ~ (~-~. + ~  and B - ~ ,  Choose 

0 > 0 ,  5~ (a )da=  1, ~eC~(N) .  Then smoothing G by the approximate identity 
based on 0 we define 

G~(~)= ~ 0(a) ~(O+eG) da. 

Then G~ is smooth on $1• S I •  l, harmonic on the dense leaves which are 
either C or C*, and hence each G~ is constant. Thus 

G-= lira G~ is constant. 
~ 0  

B. Hopf surfaces of class 0 

We now consider the non-elliptic Hopf  surfaces of class 0. First note that the 
parameter ~ . ~ *  used in the above description of those surfaces, can be chosen 
arbitrarily. That is, let ~j: ~2_~ ~2, j =  I, 2, be the biholomorphism given by 

~(z~, z:) =(~'~ z~ + ;~ z~', ~z2) 
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where 0 < [ e [ <  1 and where 21, ~.2el~* a r e  arbitrary. Set 

x ~ - - ( r  ~ - { o } ) / ( % 5 .  

(60) Proposition. The surfaces X 1 and X 2 are holomorphically equivalent. 

Proof. Define F: 1~2__1.1~2 by F(Z1,Z2)~-((,~2/,~1)Z1,Z2). Since F o ~ l = ~ 2 o F ,  F 
induces a b iho lomorphism/~:  X 1 - ~ X  2. 

We now fix a H o p f  surface X=(~2{0}) / (45 )  where q)(zl,z2)=(og"z 1 
+2z2 ,  ctz2). Here  c~ satisfies 0<]c t ]< l  and 2e(I~* may be chosen to our  con- 
venience. The first step in our  analysis will be to construct  a holomorphic  
vector field on X. 

Choose a value a for loge.  Then cte=etl~ is defined for all tell2. Note  
that  

(61) Re(a) < 0 

since [el < 1. We now consider the complex flow on ~22 given by 

(62) cb,(z 1 , z2)=((xtrnz1 -t- t2cd'- 1)mzT, o~tz2) 

=(em~tzl + t2~-m ema'z"~, eatz2) 

f o r a l l t e ~ .  Note  that cb~=~. Since q', gives a group action of C on C 2, q~t 
commutes  with ~ l = ~ b  for all t. Hence this flow descends to a complex flow on 
X. 

The complex vector field corresponding to this flow is 

:U(z) = (maz 1 + 2 c~- ~ z'~) ~ + a z 2 
dz 1 Oz 2" 

Set V= Re ~U and note that  

< V(z), z ) =  R e { m a ] z l [ 2 + 2 ~ - m z ~ z l  + a[z2] 2} 

= (Re a)([z1[2 + [z212)+ [2[ [~]-m [z2], iZll ' 

Suppose Iz2[ < 1, and choose 2 so that  

I,~[ I~ I - m  ,< __ Re(a). 
Then 

(V(z) ,  z )  < Re(a) ([Zl]2 _ iZll [z2[ + [z2[2) 

< 1 R e ( a )  ([zl[ 2 + Iz2[ 2) 

which implies the following. 

(63) Lemma.  V is transverse to all spheres o f  radius < 1 about the origin in 
C 2" 

(Since ~ = c b  1, we have that  cb t, t e ~ ,  gives an Sl-act ion on the manifold X. 
Lemma  63 then proves that  X is diffeomorphic to S 1 x $3.) 
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We now return to the complex flow associated to U =  V+iJV. Writing 
�9 t(Zl, z2)=(zl(t), z2(t)), we note from Eq. (62) that 

(64) zl(t) - z l  + 2  t. 

Consider now the subset M 2 of the unit sphere sa={LZllZ+lz212=l} given by 

(65) M 2= zeS3: zz=O or Im \~z'~] J" 

This surface is an immersed torus. It can be explicitly parametrized by 

cos q~e i~ ~ s i n  ~oe ~m~ 

for q0, 0e l0 ,  2~). The image of F has an m-fold self-intersection along the curve 
7 =$3 c~ {z~-axis}. 

(66) Lemma.  Each orbit of the holomorphic flow ebt, teC, meets the subma- 
nifold M a - 7  exactly once (and transversely) with the exception of the zl-axis 
which meets M 2 in the singular curve 7. 

Proof By (64) we see that (for z 2 = 0  ) the equation p=_Im(Xz~(t)/~"z"~(t))=O 
uniquely determines Im(t). Now the real flow q~t is transverse to the unit 
sphere, and so there is a unique Re(t) such that ~b,(z)eM 2. 

To see that 4~t(z ) meets M transversely when z2+0,  we consider the defin- 
ing equations r=lz l l  2 +1z212= l and p = 0  for M 2. It is easy to calculate that on 
m 2, (dp) (V) = 0 and (dp) (J V) = 1212/l~t 2,,. Furthermore, by (63) we have (dr) (V) 
is never zero on r =  1. Hence, (dr/x dp)(VA J V) is never zero on M 2. This com- 
pletes the proof. 

The orbits of the flow ~t, tsff~, give a complex analytic foliation ~ o f  the 
Hopf  manifold X=((l~z-{0})/cb. As we shall see, this foliation has only one 
compact  leaf, the (image of the) z~-axis. The surface M - ~ /  is a cross-section of 
the remainder of the foliation. 

We now consider the positive foliation currents for o~ These are the cur- 
rents (of finite mass) of the form 

T=/~,~ 

where ~ is the field of unit oriented tangent 2-vectors to ~ and where / t  is a 
non-negative Radon measure on X. Suppose we consider a local "flow-box", 
i.e., a local complex coordinate system (w t, w2) on X in which the leaves of 
are given by the equation wz=constant .  Then the foliation current T can be 
expressed (dually) as a differential form 

T= l~idw~ A dw 2 

(with some Radon measure g > 0  as coefficient). Note  that in this represen- 
tation 
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(67) dT=Oe* - -  = 0'r ~ = ~/.(W2). 

A major  step in our analysis of X is the following. 

(68) Proposition. Let T be a positive d-closed foliation current for the complex 
analytic foliation o~ of X. Then 

T =  r [ z  i - axis] 
for some r > 0. 

Proof Let Z denote the characteristic function of an open subset of M 2 whose 
closure is disjoint from 7 =M2c~ { z l -  axis}. Extend )~ to all of X by requiring Z 
to be constant on the leaves of o~ (This extended function is the characteristic 
function of an open o~-saturated subset of X.) 

We now observe that Z T is also a positive d-closed foliation current. To see 
this, consider a small "flow box", i.e., a local complex coordinate system 
(w 1, w2) on X as above. In these coordinates Z=X(w2) is the characteristic func- 
tion of an open subset in the w2-plane. Hence, by (67) we conclude that d(z T) 
~ 0 .  

Note that the cycle M is transversal to ,Y- on the support  of the current Z T. 
(See Lemma 66 and the definition of Z.) This means that we can pair z T  with 
M. From the positivity of )~T we see that this pairing (xT, M) is zero if and 
only if zT=O. However, since H2(X)=0,  we can write M = d S  for some 3-chain 
S. Hence, O~T, dS)-(dO~T),S)=O, and we conclude that  supp( r )c [z~-ax i s ] .  
Since T is a flat 2-current with support in the 2-torus T - [ z l - a x i s ] c X ,  it is a 
standard result of Federer [2], that T=rT  for some constant r. Since T was 
positive, we must have r > 0 (assuming, of course, that T is oriented canonically 
as a complex curve.) This completes the proof of Proposition 68. 

This brings us to our main result. 

(69) Theorem. Let X = ( t ~ 2 { 0 } ) / ( ( ~ )  be a Hopf suface of class O. Then 

Pbdy(X) = P~lo~ed(X) = {rT: r => 0} 

where T ~ {zl - axis}/(~").  Moreover, Pbdy,.l(X) contains no smooth currents ; so 
that each Hopf surface of class 0 has Kiihler rank zero. 

Remark. The structure of Pbdy,, ,(X) is not completely understood. 
Hence, not only is the elliptic curve T the only complex curve on X, it is 

the only d-closed positive (1, 1)-current on X. 

Proof The last part  of the theorem follows from the first part by Proposition 
37. To prove the first part let T be a positive d-closed (l, 1)-current on X. We 
shall show that T is a positive foliation current for the orbit foliation ~. The 
theorem will then follow from Proposition 68. (Note that since H 2 ( X ; N ) = 0 ,  
we have Pbay(X)=P~los,~(X).) 

We first observe that by averaging T over the SX-action on X, we can 
assume that T is Ot-invariant for t eN.  (That is we can replace T by 

1 

(Ot),(T) dt 
0 
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and recall that  since cbl=cb, the b iho lomorph i sms  q~, for teN/Tl, give an S 1- 
act ion in X.) This averaging procedure  preserves the proper ty  of being (or not  
being) a foliation current  for the orbit  foliation. 

We now observe that  by L e m m a  44, there is a positive constant  r such tha t  

(70) T -  r T + i ~3 •F 0 

for some generalized function F 0 on X. We lift T and F 0 to the universal 
covering space ~ 2 _  {0}. Here  Eq. (70) becomes 

(71) T=iO~F 

where 
f - r  loglz2l + Fo. 

Since T is positive, Eq. (71) means  that  F is a p lur i subharmonic  function in II~ 2 
-{0}. Therefore,  by a s tandard  result (see [4]), F extends across 0 as a pluri- 
subharmonic  function. Thus, F is lower semicont inuous  on C 2 (with values in 
l R u  { - ~ } ) ,  and in part icular,  we know that  

(72) F is bounded from above in a neighborhood of 0 in q22. 

Note  that  by integrat ing over  the Sl-action,  we can assume that  the func- 
t ion F o on X is 45~-invariant. This implies that  

F(dPt(z)) = F(z) + Re(a) t 

for all t e N .  (Recall  that  a=logc~ and Re(a )<0 . )  Fur thermore ,  since cbt+is 
= q~ o q ~ ,  we have that  

(73) V(~t+~s(z) ) - - - =  F(clais(Z)) -1- Re(a) t 

for all t, s e N .  The  expression in (73) is a subharmonic  function in the (t,s)- 
plane which may  be = - o o .  We consider z e ~  2 -  {zl-axis } for which the func- 
t ion 

f (s)- F(CP~s(z)) 

is not identically - o o  and such that  

f ' (0 )  = (J V) q~(z) 

is defined. (Note that  cb,(c~/c~t)=V and dP,((?/Os)=JV.) Since the function f ( s )  
+ Re(a) t  is subharmonic  and linear in t, it follows that  f ( s )  is convex, that  is, 
f"(s)  is a non-negat ive  measure.  This  implies that  f(s)>__f(O)+f'(O)s for all s, 
and  therefore, 

(74) F ( ~  t + is(z))> V(z)+ b s + Re(a) t 

for all s and t, where 

(75) b = f ' ( 0 ) = ( S  V) ~b(z). 
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We shall now show that  if T is not  a foliation current, then (64) contradicts 
the boundedness  of F (near 0) established in (72). Examinat ion of  (62) shows 
that  for a sequence of complex numbers  r k = t ~ + i s k ,  k----1, 2, 3 . . . . .  the points 
~k----~b~(z)~0 in II? 2 provided that Re (a vk) -+ -- oc . By (74) we have that 
F(~k)>bsk+Re(a)t k. Hence, we look for a sequence of solutions to the system 
of  real equations 

Re(a) t k -  Im(a) s k = - k 

(76) Re(a) t k + b s k = k 

for k = 1 , 2 , 3  . . . . .  These solutions exist unless b = - I m ( a ) .  The existence of 
these solutions implies F is not  bounded  from above near 0 in C z. Hence, we 
must  have that b=(JV)dp(z)=-Im(a) at all points z where this derivative is 
defined. In particular, the convex function f(s) is linear. Thus the function 
F(@~+is ) is linear in t and s. In particular, we conclude that T=ddCF vanishes 
on the orbits of  cb~, and so T is a foliation current as claimed. This completes 
the proof. 

w I0. Surfaces of Bombieri, Hirzebruch, and Inoue 

+ ( - )  The surfaces SM, SN,p,q,r;t, and SN,p,q, r of Bombieri  and Inoue (see e.g. [1]) are 
all of the form 

(77) X - IH x C/G 

where the group G acts properly and discontinuously on lid x II~ with no fixed 
points. (Here IH denotes the upper half  plane.) Moreover ,  the 2nd Betti num- 
ber b 2 of  X vanishes. 

In this section we shall investigate these surfaces f rom the point  of  view of 
this paper  (see [1]  and its references for the s tandard definitions and facts). 

The only other information about  such surfaces which will be needed is the 
following. 

(78) The action of  G on IH x C preserves the factors of  the product.  

The group H given by the induced action of G on IH is a subgroup of  
B i h(lH) = SL(2, ~,) and contains:  

(79) ho(z)=ez c~> 1 irrational 

hl(z)=z+cz a~lR, a.t=O 

h2(z)=z+ea. 

Choose  coordinates z=x+iyMH and well?. Then the fact that  HcSL(2,1R) 
implies that  the forms 

dx (80) ~ - - -  and to-do= dxAdy y y2 

are defined on the quotient  manifold X. 
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(8l) Proposition. The KShler rank of each compact complex surface defined by 
(77) is one. The foliation set B(X) is all of X and the canonical foliation is 
holomorphic with leaves biholomorphic to 112 or if2*. 

Proof. Since o~ is never vanishing and positive with co=dz on X, the Kghler 
rank is one and B ( X ) = X ,  with the leaves parameterized by {z} x 112 under the 
quotient map. 

(82) Theorem. Suppose X is one of the compact complex surfaces given by (77). 
The cones 

Pbdy,,, ( X )  = nr (X) = nbdy (X) 

all agree and equal the cone P(X) of positive closed foliation currents for the 
canonical foliation of X. This cone P(X) can be described explicitly by 

P ( X ) = { T :  T=-~)(y) dx Ady~ and (acP} 

where P is the set of non-negative generalized functions on IR + invariant under 
the transformation y--~ c~ y. 

Remark. Note that the standard fact that X contains no curves is a special case 
of this Theorem. 

The Theorem follows immediately from two independent lemmas. 

(83) Lemma. Suppose T is a positive current of bidimension 1, 1 on X which is 
either d-closed or the bidimensional 1, 1 component of a boundary on X. Then T 
is a positive d-closed foliation current .for the canonical foliation on X. 

(84) Lemma. Each positive d-closed foliation current T, for the canonical fo- 
liation on X, is of the form 

T . ,  , d x A d y  
= q?tY) y2 

where (~(y)>O is a generalized function on IR + invariant under the transfor- 
mation y---~ y. 

Proof of Lemma (83). If T is d-closed then T(~o)= T(dz)=0. If T=(dS)I.1 then 
T(o~) = (dS)(~o)= 0 also. Since T(~o)= 0, and both T and co are positive, we con- 
clude that the dw A d~-component  of T must vanish identically. Hence, T can 
be expressed in the form 

T=ax l  idz A d Z + a l z i d z  Adff~+a21idw Ad~. 

Positivity now implies that aal >0  and a12=az1 =0. Consequently, T is of the 
form T=f~o, where f - 2 a l a y  z is a non-negative generalized function on IH 
x C which is G-invariant (since T and ~o are). 

Note that since ddCT=O, the function f is harmonic in the variable w. Thus 
for each non-negative function 0~C~(IH), the integral S f0~o  defines a non- 

IH 
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negative ha rmonic  funct ion on IE, which by Harnack ' s  Inequal i ty  must  be con- 
stant. Consequent ly,  f is a generalized funct ion of z alone, so that  T=fo9 is d- 
closed. This completes the proof of Lemma  83. 

Proof of Lemma (84). Since T=fa) is independent  of z it is de termined by a 
non-negat ive  measu re /~ (= fco )  on IH. This measure # on IH is invar iant  under  
the subgroup H of SL(2, R) determined by the act ion of G on IH x Ir. 

Fo r  each ~ ( y ) ~ 0 ,  where ~ C ~ ( R + ) ,  the push-forward of ~k/~ to the x-axis 
defines a non-negat ive  measure v=Tt , ( f f# )  on R which is invar ian t  under  
t rans la t ion  by a and ~a  (~ irrat ional)  because of (79). Hence v = c dx, for some 
c~[-0, ~ )  by Weyl 's  Lemma.  Consequent ly  

dxAdy 
# = f  y2 

with f ( y ) >  0 depending only on y. This completes the proof. 

Similar  results can be obta ined for the Inoue-Hi rzebruch  surfaces (see [1] 
and its references). Such a surface X has the property that  there are two con- 
nected sets of curves in X, say C + and  C - .  Moreover,  Y - X - ( C + u C  - )  can 

dx 1 
be expressed as a quot ient  Y=II-I x C/G. Again the forms ~-- and ~o~dr  

Yl 
are invar ian t  under  G. Moreover,  they extend to X with d r=o9  and  09 positive. 
In  particular,  each Inoue-Hi rzebruch  surface has K~ihler rank one. 
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