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In this paper we give a proof of the following result: 

Theorem. Let (X, O) be a complex principally polarized abelian variety off 
dimension g. Assume: 

(i) dim(Sing O ) < g - 4 ;  
(ii) there exists a one-dimensional subset U c X  such that for generic ueU 

o n e  h a s  ." 
O ~ O ~ c O ~ w O y  

for some x, y 6 X  with {0, u}~{x ,  y} =0. 
Then (X, O) is the polarized jacobian of a (smooth irreducible non-hyper- 

elliptic) curve. 

This gives a positive answer to a - stronger version of a - problem 
proposed by D. Mumford ([5], p. 81), under the additional hypothesis (i) above. 
In particular, by work of A. Beauville [1], it implies: 

Corollary. Let (X, O) be an irreducible complex principally polarized abelian 
variety of dimension <= 5. The following are equivalent: 

a) There is a one-dimensional subset U c X satisfying property (ii) above. 
b) (X, O) is the polarized jacobian of a curve. 

This improves the main result of Z. Ran's paper [6], and Theorem 7, p. 476, 
of his earlier paper [7]. (We remark that, since any reducible principally 
polarized abelian variety is a - trivial - solution to the hypotheses in 
Mumford's problem, the main statement in [6] is not entirely correct.) Both 
works are the main source of inspiration for the present one. In contrast with 
Z. Ran's techniques, we use general facts about line bundles on abelian va- 
rieties. Secondly, an eventual use of R.C. Gunning's recent result [2] brings the 
proof to a quick end. 

Proof. The Corollary is a consequence of the following facts, proved in [1]: If 
g < 5  then: d i m ( S i n g O ) < g - 3  is equivalent with (X, O) being irreducible, and 
dim (Sing O ) < g - 4  is equivalent with (X, O) being irreducible and not a hyper- 
elliptic jacobian. 
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To prove the Theorem, we may assume O to be a symmetric theta divisor, 
and U irreducible. Let Y be a desingularization of O, fixed once for all in this 
proof. We shall need the following two propositions. (The condition 
d i m ( S i n g O ) < g - 4  is used in the first proposition, while the second one uses 
only dim (Sing O) < g - 3.) 

Proposition 1 (Z. Ran [6], Corollary (3.3)). Restriction of line bundles gives an 
isomorphism Pic ~ ( X ) ~  Pic ~ (Y). 

Proposition 2. Let aeX, a:#O. Restriction of sections gives an isomorphism 
H ~ Ox(O~)~-~ H ~ 67y(O,). 

Proof Let j:  Y ~ X  be the obvious map. Since O is a normal variety, one has 
an exact sequence 

O ~ ( ~ x ( - - O ) ~ ( ~ x ~ j ,  (gr ~ O. 

By [4], p. 76, the sheaf (~x(Oa-O) has zero cohomology if a # 0 .  Hence the 
result follows by tensoring the above sequence with (gx(Oa), q.e.d. 

For aEX, a # 0 ,  we shall denote 0~_ the divisor of Y which O a defines by 
pullback. We choose also any divisor O of the system [(gv(O)l, fixed from now 
on .  

i) The algebraic system {6~u}u~ v on Y is given by a certain divisor on U x E 
Let D be an irreducible component of this divisor, such that D(u), uEU is 
variable. Write R the residual divisor, thus 6)u=D(u)+R(u) for all ueU. By the 
hypotheses in the Theorem, there exists an irreducible finite cover re: [?-~ U 
and a morphism x : [ ? ~ X  such that, for all re/_?: D(rr(f))__<Oxl~) and 
x(fi)~{0, rr(f)}. For  simplicity, we shall write D(f) instead of D(Tr(fi)). 

ii) Claim. Without loss of generality, we may assume that R(u) is fixed, .lot all 
uEU. 

To see this, suppose that R(u) is not fixed. For  any fi, ~EO we have, by 
Proposition 1 : 

D (~) -- D (f) - 0 z(~, ~,)- O, 

where z: U x  U ~ X  is a suitable morphism. By the Theorem of the Square 
([4], p. 59) this implies 

D(~) + R (f)= 0 ~ ,  v~+ ~ ) '  (*) 

Now, we can fix an fie[? such that the set 

u '=  {z(f, ~)+~(~)1 ~e 0} 

is one-dimensional, and such that x(~):#z(f, ~)+n(f)  for general ~. In fact, if 
x(~)=z(fi, ~)+rc(f) for all fi, ~ 0 ,  we would have D(~)+R(f)-6)x~r,), and [R(f)] 
would be constant in Pic(Y). Since (O~(~) is linearly isolated in Y,, so is R(f), 
and R(fi) ought to be fixed, against our assumption. As for the first condition, 
if z(fi, ~)+Tc(f) were independent from ~e[?, so would be D(~), contradicting 
our assumptions, too. 

By Proposition 2 and the equivalence (,), this means that U' satisfies the 
initial requirements for U, namely 
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6) ~ 6) z(~, 3) + ~(~) c 6) x(~,) LY 6) y 

for some fixed ycX ,  y4:0. We aim to replace U by U'. 
Since the map ( J ~ U '  sending ~ into z(fi,~)+~(fi) factors through U (use 

Proposition 1 and (*) to see that n(~1)=~(~2) implies z(~, ~l)=Z(~, v2)), we infer 
that the divisor 

~ U  

of U'• Y is irreducible. Together with the equivalence (.) - an identity, in 
fact -, where now R(fi) is kept fixed, this proves Claim ii). 

Thus we may suppose that, for all ~ f 3 :  O ~ ) = D ( f i ) + R o ,  with R o a fixed 
component, the system {D(u)}~ U irreducible, and D(fi) ~ 6)~i,), x(fi)~ {0, ~(~)}. 

iii) Claim. There exists an irreducible subvariety M c X of codimension 2 such 
that, for all fi~/,), the image of D(fi) in X equals M~(~). 

In fact, writing O)~r in Y one has, for fi, ~ U :  

S(fi) + D(fi) - O ~.~ - D(~) + D(fi) - O ~r + O~r - O ~r 

[~(x(~)-~z(~)) + r~)" 

Fixing any ~c~', we get, by Proposition 2: 

S(~) + D(fi) = 6)ix~ ) - ~.)) + ~l~), 

for (almost) all fie 0-. Writing for a moment M(fi) the image of D(fi) in X, this 
implies M(fi)_~t~)C6)xtr. ) ~tv)c~6), hence that M(fi) ~ )  is constant, thereby 
proving our claim. 

Thus, if N denotes the image of R 0 in X, we obtain in this way, for all 
u~U: 6) �9 6 ) , = M , +  N. 

iv) Claim. N = ( - M ) .  

Applying the symmetry of X to the equality 6). 6 ) , = M , + N  and translat- 
ing by u we obtain 6). 6 ) , = ( - M ) + ( - N ) , .  Comparing both expressions we 
deduce that ( - N ) = M + F  with F , = ( - F )  for all u~U. We show that F =0 .  
Suppose that F4:0. Fixing any u'aU and writing V = U , , ,  the curve V gen- 
erates a proper abelian subvariety A c X ,  since F,=F for all aaA. On the 
other hand, if C = [7 is the Zariski closure of U in X, the Pontrjagin product 
[-M] �9 [-C] yields a non-zero multiple of [6)] (since M, is contained in 6) for all 
u~U, and is variable), and ~ F ] . [ C ] = 0 .  Then, from the equality 6). O , = M ,  
+ ( - M ) + ( - F )  we deduce that [6)2] .  [C]=216) ]  with 24:0, hence that ~C] is 
a multiple of [6)g-~]/(g-1)! .  This contradicts the degeneracy of K 

Thus, summarizing: 6). 6 ) , = M , + ( - M )  for all uaU; moreover, M is irre- 
ducible and C c X is non-degenerate. 

It follows that, for all u,u'~U, u4:u': 

6) . 6) ._,, = M, + ( - M )_,, 

(notice that [M] = [ 6 ) 2 ] / 2  and that the preceding equality implies 

M ~ + ( - M )  , c O .  6),,_~,). 
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v) We finish this proof by applying Gunning's results [2]. I t  follows from the 
preceding  conclus ion  that,  for all ul, u2, u3, u4eC , the divisors  

O.,- .2  + O.~-.4, O + O.,+.~- .2- .4,  O. , - .4  + O.~-.~ 

belong to a l inear  pencil.  (Use the Theo rem of the Square  and the exact 
sequence 

0 --* (gx(Os) ~ (9 x (0  + 0~) o j ,  (gr(O + Os) ~ O, 

with s = u l + u 3 - U z - U 4 ) .  Cons ider  now the m a p  X--*IP 2 . -1  defined by the 
l inear  system 12OI; it is a s t anda rd  fact tha t  this m a p  can be identif ied with the 
m o r p h i s m  

4,: X~120[,  ~9(t)=Ot+Ot. 

W h a t  we have jus t  seen implies:  for all a, b, ceC and  all ~ e X  with  2 ( e C - a  
- b - c, the  points  

q~(~+a), q4~+b), 0(~+c) 

are  col] inear  in IP 2.-1.  App ly ing  now [2],  L e m m a 4 ,  p. 385, to this s i tua t ion  
we get the  fol lowing:  Let  a: X--*X denote  the e n d o m o r p h i s m  a t tached  to the 
one-cycle  C of X and the theta  divisor  O ([3], p. 415). F o r  a, b, ceC general ly  
chosen, the  m a p  a - I  (I = identi ty)  is cons tan t  on the set {a, b, c}. 

Thus a - I  is cons tan t  on C. Since C is non-degenera te ,  it follows that  c~ = I ,  
hence, by the  M a t s u s a k a - H o y t  Cr i t e r ion  [3], p. 416, (X, O) is the j a c o b i a n  of 
the  (smooth,  i rreducible,  non-hypere l l ip t ic )  curve C, q.e.d. 
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