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1. Introduction and statement of the main results 

We determine all universal  relat ions which hold between the fixed point 
indices {I( f")} ,_  1.2... of the iterates f "  of a m a p  f :  V--*E where Y is an E N R  
(=euc l i dean  ne ighborhood  retract ;  cf. [4], IV.8), V c  Y is an open subset, and 
the i terates f": V,--.Y are defined inductively by f l  = f ,  V = f - I ( v , _ I ) ,  f"(v) 
= f " -  ~ ( f  (v)) for n > l .  The  index l(.f")eTZ is defined if the fixed point  set 
Fix(f")={v~V, lf"(v)=v} is compac t ;  the points  of F ix( f" )  are the n-periodic 
points  of f If m divides n then F i x ( f ' )  is a closed subset of F ix( f" )  - hence 
compac t  if Fix(J'") is compact .  If  n = p  is a pr ime then Zabre iko-Krasnose l ' sk i i  
[13] and Steinlein [12] proved that  p always divides I ( f P ) - I ( f )  - provided 
Fix( f  p) is compact .  We generalise their result (for E N R s ;  compare  6.11) as 
follows. 

(1.1) Theorem. For any natural number 17>1, !f F ix ( f " )  is compact then n 
divides the number 

(1.2) l . ( f ) =  ~ ( -1) l~lI ( f" : r ) ,  
r c P ( n )  

where P(n) is the set of all primes which divide n, the sum extends over all 
subsets z of P(n), Izl=cardinality of t, and n : z = n ( I - I p ) - l = n  divided by all 
pEZ. per 

For  instance, if n=p is a pr ime then Theorem 1.1 becomes  the Zabre iko-  
Krasnsel 'ski i  theorem.  If  n=p k is a power  of a p r ime then 1-13] still asserts 
p/lvk(f) whereas T h e o r e m  1.1 gives pk/Ipk(f). On the other hand, Theo rem 1.1 
easily reduces to the special case where n is a power of  a prime. 

The congruences  n/1,(f) are the only relat ions which are satisfied by the 
fixed point  indices {i(fv)}~= 1,2... of a rb i t ra ry  maps  f as above. Slightly more  
general, 
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(1.3) Theorem. I f  s: I N ~ Z  is a sequence of integers such that 17 divides the 
number 

(1.4) Ms(n)= ~ ( -  1)l~ls(n:z) 
1: c p (n] 

for every natural number n > l  then there is a (connected 2-dimensional) sim- 
plicial complex Y and a continuous map f:  Y ~ Y  such that Fix ( f  ~) is compact 
and I(fV)=s(v) for all v> l. In fact, f can be so chosen that, for every v, f has 
exactly IM~(v)l points of smallest period v each of index M~(v)IM~(v)l-1= + 1. 

The notation on the right side of (1.4) is as in (1.2). On the left side we use 
M, as in M6bius, because (1.4) resp. (2.7) is in fact the M6bius inversion 
formula (cf. [13, App.). 

If one wants the E N R  Y in Theorem 1.3 to be compact then one has to 
impose additional finiteness conditions on the sequence s. A crude way to do 
so is indicated in 3.8. For a complete answer to this question one needs the 
Lefshetz power series L ( f  ; t) which is defined as follows. 

(1.5) Definition. If f :  V ~ Y  is a continuous map as above (Y an ENR, V~ Y 
open) and F ix ( f ' )  is compact for all n = 1 , 2 . . ,  then we define the Lefshetz 

(formal) power series L( f ; t )=  ~ L , ( f ) t "  by the (Newton) recursion formula 
Lo(f)  = 1, ,= o 

(1.6) nL . ( f )=  y~(-1)~+lL._~(f)I(f ~) for ,7>0. 
j = l  

Alternatively (compare 4.4' and 4.4) 

(1.6') L ( f ; t ) = e x p (  l ( f~) tv) .  
l 

We shall see (cf. 1.8) that L(f ; t )  always has integral coefficients, L , ( f ) 6 Z  
Thus L(f;  t )~Z[ [ t ] ] ;  in fact, 

(1.7) L(f; t)~(1 + t71 l i t ] ] )  

because L o ( f ) =  1. We can then reformulate 1.3 as follows. 

(1.8) Theorem. For a sequence of integers s: I N ~ Z  to be the sequence of indices 
l ( f  ~) of a map f as above it is necessary and sufficient that the formal power 

series ~(t)=exp - v  ~ t ~ has integral coefficients. 

And we can answer the question whether Y can be taken compact  as 
follows 

(1.9) Theorem. For a sequence of integers s: IN~TI to be the sequence ~f indices 
I ( f  ~) of a map f :  Y--* Y with compact E N R  Y it is necessary and sufficient that 

the formal power series ( ( t )=exp  - 2_, - - t  an ~= 1 v ) is integral rational function. 
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In this case, L( f ; t )=exp - ~  t" coincides with de t ( id - t f_ ) '  where f+ 

resp. f_ is the endomorphism which f induces on the even resp. odd homology qf 
Y with rational coeJJicients (or integral homology mod torsion), H . . . .  = @ H 2 i  , 

H,,dd = ( ~ H z i +  1" i 
i 

As pointed out to me by T. tom Dieck (cf. also [9]) the preceding estab- 
lishes a strong connection between periodic point theory and the theory of A- 
rings (cf. [8]). In particular, it suggests a geometric model ~3 (cf. 6.6) for the 
universal A-ring A over Z (whose additive group is given by multiplication in 
1 + tT/[[t]]). Although I was unable to settle a basic problem in this context (cf. 
text after 6.8) I can at least offer a simple combinatorial model PER for the 
universal A-ring, in the spirit of and related to Burnside rings (cf. 2.16 and 
6.10). 

As for the proofs, Theorem 1.1 has a simple combinatorial background (w 
to which it is essentially reduced (in w by a transversality argument 
(Prop. 5.7; cf. also [12]). The same tools and the Lefshetz-Hopf theorem are 
used to prove Theorem 1.8 in w The proof of Theorem 1.3 (in w uses only w 
and elementary fixed point theory; the proof of 1.9 (in w uses the Lefshetz- 
Hopf theorem. - The last w presents comnaents, examples, and problems. 

2. Self-maps ,f: Y-~ Y of discrete sets Y 

The fixed point index in this case is the cardinality of the fixed point set. We 
assume Fix(f") to be finite for all n, thus I(.f")=[Fix(f")l. We should also 
assume that Y is countable (to be ENR). In fact, for our purposes the map f 
matters only in the neighborhood of the fixed point sets; so we can (and shall) 
assume that 

(2.1) Y= ~) Fix(f"), i.e. every point is periodic. 
n = l  

Thus f is a permutation, Y decomposes into finite cycles, and for every n the 
number of n-cycles is finite. We call f a permutation of finite type. Let 

(2.2) Fix,(./) = {Y~YIf"(Y)=Y but f ' ( y )  + y for m < ,1} 

the set of points of period exactly n. Its cardinality satisfies 

(2.3) [Fix,(f)l= ~ ( -  1)l~lI(f":~)=I,(f), 
t cP(n) 

i.e. the M/Sbius number (1.2) coincides with the number of points of period 
exactly n, or 

1 
(2.4) - I , ( f ) =  number of n-cycles of f 

t2 

Theorem 1.1 therefore has a very simple (and well-known) explanation in this 
case. We give a short proof of (2.3) (compare [1], l.c.): Note first that 
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Fix(fa)c~Fix(fb)=Fix(f c) for all a, beN,  c=gcd(a,b). Now, given yeFix(f")  
let t~P(n) the largest set of primes for which f":'(y)=y. Then yeFix(f":~)r162 
=t. Therefore, y contributes to I(f":~) iff r c t .  Therefore, the contribution of y 
to I , ( f )  is 

(2.5) ~ ( -  1)'~t = ~ , ( -  1)i (Ill) 
r c t  i 

=(1-1)1 '1=0 if t4:0, and =1 if t=0.  

But t = 0  iffy~Fix,(f) .  [] 

Every n-periodic point has a unique least period m, and m divides n. 
Therefore Fix(f") is the disjoint union of the sets Fix,,(f) with m/n, hence (2.3) 
implies 

(2.6) l(f") = ~,I,,(f). 
m/n 

More generally, for every n-tupel s=(s(1),s(2),...,s(n)) of rational numbers 
M6bius inversion ([1], 1.c.) asserts 

(2.7) s(n) = E M~(m). 
m/n 

(2.8) Example. Let (,: Z , ~ Z ,  be a cyclic permutation of length n. Then I(((,)k) 
=n  if n/k, and = 0  otherwise. And lk(~,)=n if k=n,  and = 0  otherwise. The 
Lefshetz power series is 

L(~,; t) = 1 - t", 

t'" I (((.)~)v becauselog(1-t")=-ET 
(2.9) Definitions. One can "add" (isomorphism classes of) permutations of finite 
type by taking the disjoint union, f l+f2:  Y1uI(2-~YI~Y2; thus, f~+f21Yj=fj. 
The cycle decomposition of f~ +J2 is the disjoint union of the cycle decom- 
positions of fl  and f2. Every f :  Y-~Y is the (infinite) sum of its cycles, i.e. 
every f can be written in the form 

(2.10) f =  ~, i~(~ 
v = l  

where the i~>O are uniquely determined natural numbers. Under this addition 
the set of (isomorphism classes of) permutations of finite type becomes a 
commutative monoid which we denote by PER +. The decomposition (2.10) 
shows that 

~3 

(2.10') PER+ ~ l-I N, 
v = l  

a countable product of factors N =  {0, 1,2, ...}. 
We can adjoin negatives to this monoid (i.e. form the Grothendieck group) 

and obtain an abelian group which we denote by PER. Every q~EPER can be 
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written in the form r § 1 6 2  where r and ~0- are in PER + . And q can 
(uniquely) be written in the form 

oo 

(2.11) O= ~ j , , ~  with j,67l, 
V =  l 

~ J  

thus P E R ~  1-I7/.. 
v = l  

If we assign to each f ~ P E R  + its Lefshetz power series we obtain a map 

(2.12) L: P E R + ~ I + t Z [ [ t ] ] ,  f~-+L(f;t). 

It is easy to see that L(f~+f2;t)=L(f , ; t ) .L(f2;t) ,  i.e. L is homomorphic.  In 
fact (using 2.8, 2.10, and looking at finite segments of the power series), one 
sees that 

L "~ = (1 if)i,, 
v v ~  I 

Therefore L extends to PER, 

( (2.13) L: P E R ~ I + t Z [ [ t ] 3 ,  L \ ~ j , , r  = (1- t~)  J~. 
V =  I V =  I 

Since every power series q(t)e(l+tZ[[t]]) has a unique decomposition q(t) 

= f l  ( I - t " )  i~ with integral exponents .j~eZ we see that 
v =  | 

(2.14) Proposition. L is an ismnorphism oJ abelian groups, P E R ~  I + t ~ [ [ t ] ] .  []  

In fact, both sides have more structure: Both are 2-rings. For i + t 7 / [ [ t ] ]  
(=A)  the reader may consult [8], in particular 1.2; cf. also proof of 2.16. In 
PER + the multiplication is obvious: If f~: Y~Y~ are in PER + for i = 1 , 2  then 
J'~ • Yt • Y2~Y~ • Y2 is their product; this product is bilinear and therefore 
extends uniquely to PER. In order to define 2-operations in PER one defines 
symmetric powers s k first. This is obvious in PER + where skf: s~Y~sky has 
the usual meaning: sky= yk/S(k)=cartesian power divided by the action of the 
symmetric group; s~ a point. By the usual trick these operations {sk}~0 can 

be combined into a single homomorphic  operation st= ~ skt k (with inde- 
k = O  

terminate t), and therefore extended to PER. Finally, "exterior powers" 2"r 
can be defined for r  by the recursive equation 2~162 = I, 

(2.15) 2 " r  ~ ( - 1 ) i § 1 6 2 1 6 2  for n>0.  

(2.16) Theorem. L: P E R - , A =  1 + t Z [ [ t ] ]  is an isomorphism of 2-rings. 

Sketch of proof The ring-multiplication and the 2<resp. si-operations in A are 
so designed (cf. [83, 1.2) that the following identities (2.17) hold for characteris- 
tic polynomials ~ (~) = det (1 - t ~ ~ A of square integral matrices ~: 
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(2.17) 6(e)  O(fl) = q/(c~| fl), 2i0(o0=t)(2i:0, sJO(oO = r 

J 
where 2~c~ is the i-th exterior power of c(, and d~=@a/S ( j ) .  On the other hand, 
if f :  Y--+Y is a permutation of a f inite set then L ( f )  is just the characteristic 
polynomial of the corresponding permutation matrix n( f ) :  7ZY~7ZY, L ( f )  
=~p(rc(f)), where ZY has basis Y And rc(f l xf2)=(rtfO| , 7 t (d f )=d(n( f ) ) .  
This proves that L commutes with products and s J-operations (hence 2 ~- 
operations) as long as we stay with finite permutations. The general case 
(permutations of finite type) then follows by an easy passage to lim. [] 

3. Proof of Theorem 1.3, and a related result (3.8) 

If we don't care about Y being connected then the proof of 1.3 becomes very 

simple: Let iv=l-Ms(v). If i~>0 we take i v copies of ~ (cf. 2.8). If i~<0 we take 
V 

- i~ copies of ~ x (2), where (2): IR--*IR is multiplication by 2; note that (2) and 
all of its iterates have one fixed point, 0, and index - 1 .  It follows that I((~ v 

1 " x ( 2 ) y ) = -  ((~)) for all r, hence I~(~ x ( 2 ) ) = - I ~ ( ~ ) = - v  and Ik((v X (2))=0 
for k + v. Now let 

(3.1) f =  ~ i , ~ +  ~ (- i0(~vx(2)) ,  
i~>_-O G<O 

the disjoint union. Since I,, is additive we obtain 

I , , ( f )  = i,, Im((m ) = i m " m = M~(m) 

for all m. Therefore, I ( f " )=s(n)  by (2.6) and (2.7). Also, it is clear that f has 
exactly IIm(f)l=lMs(m)l points of period exactly m, each of them with index 
+ 1 depending on whether i,, > 0  or i m <0. This f therefore almost proves the 
theorem; its only defect is that it is defined on a disconnected space. 

In order to correct this defect we multiply the (~ with certain maps e of 
spheres sk=NkW{oC} ,  k = l  or 2, and connect the results in a wedge-like 
fashion. Define e: s k i s  k by 

2x for IrxJl<l 
(3.2) e(x)= 1-Ilxll z 

~s for [Ixll > 1. 

It has two fixed points, 0 and 0% and the same holds for all iterates e". The 
fixed point ~ (whose index is + 1) will not matter later on (we shall get rid of 
it). At 0 the derivative d" is 2"id, and the index equals the sign of det( id-d"),  
i.e. + l i f k = 2 a n d  - l i f k = l ,  thus 

(3.3) I(e"llRk)=(--1) k for all n>=l. 

Define Sk (v : Sk Zv--~,Sk Zv as follows: 

S k • Z v 
(3.4) SkZv-- {o~}xz~' s a ~  =e  x ~ = i n d u c e d  by e x ~,,. 
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Thus SkZ is a wedge of v k-spheres, joined at the wedge-point  oc. The m a p  
Sk~, permutes  the spheres cyclically and at the same t ime pushes away from 
the zeros to the wedge point  oo. The periodic points  of Sk~,lSkZv - {oO} are the 
same (at {0} xZ~) as for ~v; the indices are also the same if k = 2 ,  and they are 
all opposi te  if k = 1. 

Slightly more  general we can replace ~ by a mult iple i ~ ,  i eN.  We obtain  

S k x (iZv) 
(3.5) sk(i(~): Sk(iZv)~Sk(iZ,,), Sk(iZ~)= 

{oo1 x(iZ~)' 
Sk(i~v)=e x (i(~) = i n d u c e d  by e x (i(~). 

Thus  Sk(iZv) is a wedge of iv k-spheres, joined at the wedgepoint  0% and 
S~(iC~)lSk(iZ~) - {oo} has the same periodic points as i(  V, each with index + 1 if 
k = 2, with index - 1 if k = 1. 

1 
N o w  we prove Theo rem 1.3 as follows: We put  iv=vM~(v ) as above.  We let 

S(iv~)=S2(i~v) if iv>_0 , and S(iv~)=St(-i, .~v) if iv<0. We a t tach S(ivZ,) to 
the real line lR by identifying oosS(i,.Z~) with veil{. The  resulting space Y 
looks like a long "washing  line" N with v]i,l 2-spheres (if i v>0  ) resp. 1-spheres 
(if i V <0)  hanging at y e N ,  for v =  1,2 ... 

I1< 0 12 >0 ,3=0 I& �9 0 15 =0 ,6<0 ,7 >0 o e  @ �9 
S l l 2 g  2 ) 

IB=O 

(the picture isn't correct:  the number  of spheres a t tached at v should be 
divisible by v). 

It is a connected E N R  of dimension <2.  We have a self-map of Y which is 
the identity on IR and S(iv~v) on each S(ivZ~), but this has too many  fixed 
points. We therefore move  ~ to the right and pull a ne ighborhood  of IR in 
S(i~Z~) along. More  precisely we define f :  Y ~ Y  as follows. 

(x + D e N  

[ (S (i v ~v))(x) ~ S (i v Z~) 

if x~lR, 

if xeS(i~Zv) and rlxr[ > 1, 

if xeS(ivz~) and Itx]l ~ 1. 

In order  to unders tand the norm Itxll in the second case the reader  should 
r emember  that  each xeS(i~Zv) is in one of the spheres Sk=IRku{oo} ,  and Ilxll 
is the no rm of x in Nk. 
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This mapping f has periodic points only in {0} x i~Z~ (for v =  1,2 ...); and 
in the ne ighborhood I/xt[ < 1 of {0} x i~Z~ the map f coincides with S(i,.~). The 
latter has the same indices as i,, ~ if i~. > 0, and the negative indices of ( - i~) ~,. if 
i~ < 0. It follows (by additivity of the indices and 2.7) that 

(3.7) Ira(f) = i~ Im(~m ) = i m m = M~(m) 

for all m. Therefore,  I ( f " )=s (n )  by (2.6) and (2.7). Also it is clear that f has the 
required number  ]Ms(m)] of points of period exactly m (with multiplicity _+ 1) 
because this number  is the same as for _+i,,~,n. [ ]  

We already pointed out that Y cannot,  in general, be chosen compact in 
Theorem 1. However,  if we only prescribe finitely many of the values I(fV), or 
if almost all I , ( f ) = 0 ,  then we can make Y compact.  

(3.8) Theorem. I f  s=  {s(v)}~= J,2...u is an N-tuple of  integers (N~N)  such that 17 
divides Ms(n ) for every natural number n with 1 < n < N  then there is a compact 
connected simplicial complex K (essentially a wedge of circles and 2-spheres) 
and a continuous map g: K ~ K  such that I(gV)=s(v) flw all 1 <v<_N. 

1 
Proof  We put i , ,=vM~(v ) as before if l < v < N ,  and i, .=0 for v > N .  We 

construct  Y and f :  Y--*Y as before (3.6). Since i~=0 for v > N  nothing is 
at tached to points v~N with v > N .  Let e ~ ( N - Q )  an irrational number  and 

reduce m o d e  in ~ ,  i.e. identify points x 1, x2~lR if ( ~ f ~ ) e 7 / .  Let  K be the 

quot ient  of Y obtained by this reduction, and let g: K---,K be induced by f 
The reduct ion creates no new periodic points (because eCQ) and leaves the 
map unchanged in the ne ighborhood of the periodic point  set so that (3.7) and 
the rest of the above proof  applies again. [ ]  

4. Proofs of Theorems 1.8 and 1.9 

We first recall some linear algebra. If e is a square matr ix over a commutat ive  
ring R let 

(4.1) !tu(t) = ~(~;  t) = det(id - te) 

denote  its characteristic polynomial.  If 2~, 2 2 . . . .  , 2~ are the (non-zero) eigen- 
r 

values of e then 7J(t) = V[ (1 - t2i), hence 
i = 1  

r ) 
(4.2) 7~(t) - 1 - ~ t 2 , -  

i =  1 v =  0 \ i =  1 

= - ~ trace(c( + ~)t *, 
v = O  
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d 
where tP ' ( t )=d~ ~P(t). Similarly, if ~ = ( ~ + , e  ) is a pair of square matrices (a 2- 

graded matrix) then 

det(id - t:~+) _ tp(:% ; t) 
(4.3) ~(t) = YJ(~; t) = 

d e t ( i d - t ~  ) ~ (~_ ; t )  

is the characteristic rational fimetion of ~. Taking the logarithmic derivative of 
(4.3) we obtain by (4.2) that 

(4.4) T'(~; t) ~ A(~V + t)tv ' 
~(~; t )  ~=o 

where A ( C ) = t r a c e ( ~ + ) - t r a c e ( : ~ )  is the so-called Lefshetz trace of ~v 
=t~v ~v ~ Writing (4.4) as 

(4.4') 7J'(t) = - tP(t) ~ A(~ ~'+ l)tv 
v = O  

and comparing coefficients one obtains the Newton recursion formula relating 
the coefficients of t/,(~; t) to the traces A(~"). 

Proof of 1.9. If f :  Y ~ Y  is a self-map of a compact  E N R  with I( fV)=s(v) then 
by the Lefshetz-Hopf theorem ([4], VII.6) 

(4.5) l ( f  ~) = A(f+, f~)  = Lefshetz trace of (f+,jr_"). 

We use integral homology  rood torsion so that ~ = ( f + , f _ )  is a pair of square 
integral matrices. Compar ing  1.6' and (4.4) then shows that 

det (id - t f+) 
L( / ;  t) = ~(~; t ) -  

det (id - t f_ )  

as asserted in 1.9; in particular,  ~(t)= L( f ;  t) is an integral rational function. 
Conversely, if ~(t )~( l+tZ[[ t]])  is a rational function, hence ([10], p. 511) 

p ( t )  
~(t) = ~ t  ) with polynomials  p( t )=  1 +a~ t+ ... +a~t ~, q( t )=  1 +b~ t+ ... +b~t ~, and 

al, bj~TZ, then we choose integral r • r-resp. ( s+  l ) •  ( s+  1)-matrices ~, /3 such 
that det(id-t~.)=p(t) ,  d e t ( i d - t ) = ( 1 - t ) q ( t )  - for instance, :~(ei)=ei+l(i<r ), 

~(e~)= - ~, aie~_i+ 1 on the s tandard basis {el} of Z ~. - We can realise ~ (cf. 
i = 1  

[4], V, 6.16; Exerc. 1) by a self-map f~ of a wedge V~S z of r 2-spheres, so that 
f~ induces ~ on H2(WS2)~-TI ~. Similarly, we realise /3 by a self-map /3 of a 
wedge V ~+ ~ S 1 of s +  1 circles, so that f~ induces fl on H~(V ~+ ~ S 1 ) ~ Z  ~+ 1. Then 
f = f ,  vJ~ is a self-map of the wedge (V~SZ)v(V~+~S ~) with d e t ( i d - t J + ) =  

(1 - t) p(t), det (id - t f_ )=(1  - t) q(t), hence L(f ;  p(t) t) = q ~ =  ((t). Compar ing  ((t) with 
(1.6') then shows that  s(v)=I(f~).  [] 

Proof of 1.8. If s ( v ) = I ( f  ~) for some map then n divides m~(n)=I , ( f )  by 
Theorem 1.l (all v, n). Fo r  any fixed N~IN Theorem 3.8 gives a map  g: K-~K 
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such that K is a compact ENR and I(gV)=s(v)=I(ff)  for all l_<v_<N. If 
follows that L(f; t )=-L(g;t)modt  s, i.e. this two power series have the same 
coefficients up to t N. But L(g; t) has integral coefficients (cf. 1.9), hence also ~(t) 
= L(f ;  t). 

Conversely, if ~(t) has integral coefficients then approximating polynomials 
can be realised as L(g;t) of some g: K - , K  with compact ENR K (cf. 1.9 or, 
the 2 na half of its proof); thus, for any given N ~ N  we can find g with 
~( t ) -L(g; t )modt  u, hence s(v)=I(g v) up to N. Therefore, we know by 1.1 that n 
divides I.(g)=Ms(n ) for all n (up to N), hence Theorem 1.3 gives a map f :  
Y-, Y such that s(v)= I ( f f )  for all v. []  

5. P r o o f  o f  Theorem 1.1 

Since Y is an ENR there is an open subset Q of some IRk and maps Y- i ,Q 
r , y with r i= id .  Then f :  Y - , Y  has the same fixed point index as g = i f r :  

r - IV - , IR  k (cf. [4]; VII, 5.10). Furthermore g"=if"r, hence I(g")=I(f"). There- 
fore, it suffices to prove the theorem for g, i.e. we can (and shall) assume that Y 
=iRk, V=IR k open, f :  V-.IR k continuous, Fix(f")  compact. We may also 
assume that F is compact and f can be continuously extended to 17 (hence f f  
to V~) without v-periodic points on the "boundary" V~-V,,, for v/n. If this 
assumption is not automatically satisfied then we choose a compact neigh- 
borhood K of Fix(f") in V,, and replace f by f ] / (  (V by /(); this restriction 
does not affect any of the indices I ( f f )  with v/n. 

We consider the following auxiliary map f, :  V"-,(IRk)"=IR k" 

(5.1) X 1 X n X n X 1 X 2 X n - 1  f , (  . . . . .  ) = ( f (  ),f( ),f( ) , . . . , f (  )), 

where xJeV for j =  1,2 . . . . .  n. Its fixed points satisfy xJ+l=fJ(x  1) for j < n  and 
f " ( x l ) = x  1. Thus Fix(f,) is homeomorphic to Fix(f")  under the projection 
(x 1 . . . . .  x")w-~x 1. In particular, Fix(f,) is compact. The map f ,  is also defined on 
the boundary V " - V "  but has no fixed points there. Let t /denote the minimum 
of ]lz-f,(z)][ as z ranges over V"-V,  

(5.2) q = Min  { II z - f .  (z)[l[z e (17" - V")} > 0. 

We shall consider e-approximations g: V-,IR k of f ,  where e < ~ .  Then 

L ( X  1 , X"  ..., ) and g,(x l . . . .  ,x")=(g(x"),g(x 1) .... ,g(x"-l)) differ by less than 

l / h e  < q, 

(5.3) IEf(x)-g(x)lL < e for all xe17~  

[[f,(z)-g,(z)[[ <t/ for all ze17". 

Moreover, in this case, the map ( 1 - t ) f + t g  differs from f by less than e, for all 
te [0 ,1] ,  hence ( 1 - t ) f , + t g ,  differs from f ,  by less than r/. It follows that 
( 1 - t ) f , + t g ,  has no fixed points in 17"-V"; all of its fixed points are in V", and 
the total fixed point set 
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(5.4) {(z, t )e  V" x [0, 1]1(1 - t ) f , ( z ) + t g , ( z ) = z }  

is compact .  But this is h o m e o m o r p h i c  (as above) to 

(5.5) {(x, t)~ V x [0, 111((1 - t ) f + t g ) " ( x ) = x }  

which is therefore compact .  H o m o t o p y  invariance ([5], 2.9) of  the fixed point  
index then shows I (g" )=  I ( f") ,  and similarly l(g~)= l ( f  ~) for v/n. Altogether,  

(5.6) Nf(x) -g(x) l l<g.  for all x ~ V ~  

I (g~)=I(J  "v) for all v which divide n. 

For  instance, we can approx ima te  f by a smoo th  m a p  g without  changing 
the relevant  fixed point  indexes; i.e. we can assume f to be smooth. And in this 
case we shall prove  the following transversal i ty proper ty  (compare  [-7], 
p. 68/69). 

(5.7) Proposition. I f  f :  V - -*~  k as above is smooth then there is a polynomial map 
p: ]Rk--~'~. k with the Jollowing properties. 

(i) The components of  p are polynomials of  degree at most 2 n -  1 1 

(ii) Hp(x)]b <e for all x~V .  

(iii) The map g", where g = f  + p, has only regular ,fixed points, i.e. Fix(g") is 
finite and 

(5.8) det (id - D g" (a)) 4= 0 

for all a 6 F i x ( g ' ) ;  D denotes the derivative. 

Proof. We'll use the following wel l -known facts (A) and (B) f rom algebra  resp. 
analysis. 

(A) If a 1, a 2 . . . . .  a~'ffKI, k are distinct points, b 1, b 2 . . . .  , b~eN k are arb i t ra ry  
points, and q)x . . . . .  q%sSe(N k) are a rb i t ra ry  linear maps  N k ~ l R k  then there is a 
po lynomia l  m a p  p: IRk--*IR k of d e g r e e < 2 v  such that  p(ai)=b i and Dp(ai)=q)i 
for all i =  1, 2 . . . . .  

(B) If 7r: N ~ I R  is a po lynomia l  function, r~+0, then i t -  ~(0) is (contained in) a 
finite union of smooth  submanifolds  M c l R  t with d i m e n s i o n ( M ) <  I. In fact, 

(5.9) ~ - l ( 0 ) c  ~ {x~IRl lp (x )=O and (Djp)(x)#O} 
(o, J) 

where p ranges over  all part ial  derivatives of rt of order  (p) < degree (rt), and j 
= 1, 2 . . . .  ,1 (Di = part ial  derivative). 

Consider  the following smoo th  maps  (for v/n) 

(5.10) ~ = ~(~): V (~) x p ~ ( ~ k ) ~  X~(IRk)~ =lRk~ xS(IRk~, Rk) 

q,(z, p) = ( z - L ( z ) -  p~(z), DL(z) + 1) p~(z)), 

A little more effort in the proof would show that p can be chosen of degree < ~2 
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where 

(5.11) V(~)= {(x 1, x 2 . . . .  , x~)c V~bxi 4=x j for i4=j} = 

set of distinct v-tuples z = ( x  ~, ..., x ~) in V, P=vec to r  space of polynomial maps 
p: IRk-~IR k of degree (p) < 2 n, and~( lRk)=space  of linear maps IRk--qR k. The 
maps f~ are defined as in 5.1, 

fv(x 1 . . . . .  x~)=(f(x*), f ( x l ) ,  f ( x  2) . . . . .  f ( x  v- ')). 

We claim that (/5 is a submersion, i.e. of rank k v + k 2 v  at every point 
(z, p ) ~ V ( ~ x P .  In fact, already the partial derivative Dpq~ with respect to the 
variable p is surjective: As a function of p, q~ is affine, hence 

Dp~(z, P0): P - ' (~d )  ~ xSe(lRk) ~ 

is the linear map which takes p c P into 

( -  p~(z), D p , (z ) )~(  { -p(x~)}, { D p(x~)} ),= ~, 2 ....... 

and this map is surjective by (A). 
Consider then the polynomial function n:5~~ where 

(5.t2) rc((p I . . . .  , q~)=det  (id-(~ol o q)2 . . . . .  q)~)~). 

The set ~-1(0) is covered by finitely many manifolds Mc-~(Nk) ~ of codim- 
ension>0,  by (B). Since ~ is a submersion, q~-1({0} x M ) c  V(~)x P is a ma- 
nifold of codimension>kv,  i.e., dim(,/~-l({0} x M))<dim P. Therefore the pro- 
jection of ~b-t({0} x M) in P has measure zero (by the easy Sard theorem), and 
the finite union of all of these projections is still a set of measure zero, say N~ 
c P .  For p c ( P - N ~ )  we have ~(z,p)r  x~-~(0)  for all z c V  (~). By definition 
of ~b (~) and ~ this means: If z=f~(z)+p~(z) then rcD(f+p)~(z)4=O. But ( f + p L ( z )  
= z  means that z = ( x ~ , x  2 . . . . .  x ~) is of the form xJ=( f+p)J(x )  and x has period 
exactly v. And ~D(f+p)~(z)4:0  then means 

n 

det lid - (D ( ( f  + p)v) (x))~ 4: 0, or det [id - D ( ( f  + p)") (x)] 4= 0 

for all x c F i x ( ( f + p ) " )  with period exactly v. And if we take p c ( P - N )  where 
N = ~ N v  then d e t [ i d - D ( ( f + p ) " ) ( x ) ] 4 : 0  for all x c F i x ( f + p ) " .  But then all 

v/n 

fixed points of ( f+p)"  are regular, in particular isolated; hence F ix ( ( f+p) ' )  is 
discrete in V, for all p e ( P -  N). 

Since N has measure zero P - N  is dense in P. In particular, we can choose 
p c ( P - N )  arbitrarily close to 0, e,g. such that t[p(v)]l<~ for all v in the 

compact set V (where e < l @ a s  above).  Then (by 5.4, 5 . 5 ) g = f + p  has no n- 

periodic points in V-V,  and Fix(g")~ V is compact. Since it is also discrete it 
is finite. [ ]  
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We now come to the proof  of 1.1 proper. By 5.6 it suffices to show that n 
divides l ,(g) where g is as in Prop. 5.7. Let aeF ix(g" )  and v its precise period 
so that the g-orbit of a consists of v points {gi(a)}~=,, 2 ...... . The  set Fix(g") 
decomposes  into finitely many g-orbits. We can separate them by disjoint open 
neighborhoods,  and by additivity of the fixed point  index (cf. [4], VII, 5.6 or 
5.13) we can prove our assertion for each ne ighborhood separately. In other  
words, we can (and shall) assume that {gi(a)}i= 1,2 . . . . . .  are the only f i xed  points 
c f  g" hence 

(5.13) Fix(g q~) = Fix(g ~) = {a, g(a) . . . . .  g~ '(a)} 

for all q with qv/n.  Moreover ,  the fixed point  index/(gO" near gi(a)) is the same 
at all points gi(a), by commutat iv i ty  of the index (cf. [4], VII, 5.9 or 5.16) 
applied to the composi t ion gq~-iogi. More  precisely, it is +1  at each point  or 
-1 at each point because the fixed points are regular. It coincides with the 
sign of det( id-D(gq~)(a)) ,  i.e. it is ( - l )  ", where e is the number  of real 
eigenvalues ( = E V )  of D(gqV)(a) which are > 1 (compare [4], VII, 5.17 Exerc. 4 
and IV, 5.13 Exerc. 3). If we write D(gq")(a)=(D(g~)(a)) q this becomes 

(5.14) l(gV~ near a) = ( -  1) ", 

where ~=[{212 is EV of D(g~)(a) and 2q> 1}]. 

The non-real  EVs occur in conjugate pairs and therefore do not  contr ibute to 
this sign, hence 

(5.15) l(gq~ near a ) = l ( g  ~ near a) if q is odd. 

(5.16) l(gq~ near a ) = I ( g  2" near a) if q is even. 

Using this we can now calculate I,(g) essentially as we did in Sect. 2 for 
finite sets (namely for the finite set Fix(g")). We distinguish three cases (i)-(iii). 

(i) If n is odd then 
V 

0 if v<  n 
___I,(g)=I.(g[Fix(g"))= n if v = n .  

(ii) If 4 divides n then all exponents  n : r  which occur in the Definition (1.2) 

of l ,(g) are even multiples of v, hence all fixed point indexes which occur are 
those of gZV by (5.16), hence 

_ I , ( g ) = I , ( g [ F i x ( g " ) ) = 0 ,  as above (NB. 2v<n) .  

(iii) Suppose 2 divides j-~ but  4 doesn't. In the Definition (1.2) of I,(g) we 
V 

have I(g":*)=O unless , c P  (~ ) ;  we therefore sum over t h e s e , o n l y ,  and we 

distinguish 2 ~ ,  and 2 6 r. Thus 

(5.17) l.(g)= ~ ( - 1 )  M l(g":~)+ ~ (-1)l~tI(g":~). 
2E~ 25~ 
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The summands in each sum now essentially correspond to subsets of P (n) 

-{2} ,  but with opposite signs. The contribution of a (or gi(a)) to (5.17) is 
therefore (using 5.15 and 5.16) 

(5.18) ~(:)(--1)k+~I(gVneara)+~(:)(--1)kI(gZ~neara),  

where r =  P ( ~ ) l - l .  Bothsumsarezero(=+(1-1)r)ifr4=O,i.e.  i fv+2.  I f2v 

= n  we get l(g" near a)-I(g  "/z near a). Doing this for all gi(a) we obtain 

n 
(5.19) I , (g )=0  if v<~ ,  

I,(g) = I(g") - I (g n/2) = • I (g "/2) - I (g,/Z) 

n 
= 0  or +n  if v = - .  

2 

Thus, in all three cases (i)-(iii), I , (g )=0  or = _+n. [] 

6. Comments, examples, problems 

(6.1) The number of regular points of period exactly n 

If f :  Y ~ Y  is a self-map of a discrete space then this number coincides with 
l , ( f ) =  ~ ( -1)NI( f" :*) ,  by (2.3). This is in fact the combinatorial back- 

c P(n)  

ground of Theorem 1.1 and its proof. It is natural to ask what the geometric 
significance of 1,(f) is in the non-discrete case f :  V ~ Y  - at least when f is 
smooth and all fixed points of f "  are regular. Is it still true that I,(f)  is the 
number of points of period exactly n, each point counted with its multiplicity 
_+1? The answer is yes if n is odd, but no in general for n even. The 
explanation can be found in the proof of 1.1 (after the proof of 5.7): Each point 
of period exactly n contributes with its multiplicity +1 to I,(f), but in 

n 
addition some points of period exactly ~ contribute - 2 times their multiplicity. 

These points a e F i x ( f  "/2) - being regular for f "  - are characterized by I(f" 
near a)= - I ( f  "/2 near a); we call them inverting. Thus a e F i x ( f  "/2) is inverting 
iff the derivative (Df"/2)(a) has an odd number of real eigenvalues < - 1. 

(6.2) Proposition. I f  all fixed points of f"  are regular then I.(f) is the number 
of points of period exactly n minus twice the number of inverting points of 

period exactly 2' each point counted with its multiplicity +_ 1. 

The proof  is contained in the proof of 1.1 where the contribution to I . ( f)  
of each f-orbit  in Fix(f")  is explicitely calculated. []  



Fixed point indices of iterated maps  433 

(6.3) Example. The map f :  IRON, f ( x ) = - - X  3, has one fixed point, and I(f) 
=1. There are three points (0 resp. +1) of period two; their indices are + 1 
resp. - 1 ,  and i ( f 2 ) = _  1. Thus I2(f)=I(fZ)-l( f)=- 2=number  of points of 
period exactly two. The linear map g: N - d R ,  g ( x ) = - 2 x  has only one per- 
iodic point (0), and I ( g ) = - I ( g 2 ) = l .  Thus I2(g)=I(gZ)-I(g)=-2 although 
there are no points of period exactly n=2.  But there is an inverting point of 

n 
period ~ = 1 and index 1 ; it accounts for the - 2 in the sense of 6.2. 

The linear deformation of f into g, 

(6.4) ft: lR---,N, ft(x)=(t-1)x3-2tx; 0_< t< l  

has no periodic points outside [ - 1 ,  1] (because Ilx[I > 1 ~ ][f(x)H > HxEI), hence 
f=fo and g=fx  are equivalent in periodic point theory (in the sense of 6.7). 
The deformation shows how an inverting fixed point P can (in the course of 
the deformation) split into a fixed point (of opposite index) and a pair of 2- 
periodic points (of the same index as P). In fact, it is not hard to see that 

(6.5) (L)2(X)=X<zC'x=O o r  (1-t)xZ=l-2t 

so that {(x, t)[(ft)Z(x)----X} looks approximately as follows 

f 
-I 

(ft)2(x)=x 

-I 0 +I 

As t decreases and passes through �89 the fixed point 0 splits into three points in 
Fix(L:). 

(6.6) The homotop ring ~ of periodic point theory 

It is natural to ask for all possible periodic-point invariants, and for the 
relations among them. For  instance, ~he indices I(f ~) are periodic-point in- 
variants, and Theorem 1.1 describes all relations among them (by 1.3). Are 
there further invariants which are not functions of { l ( f ~ ) } ~ ?  The question 
can be made more precise and explicit by introducing the "periodic point ring" 
~3, as follows (analoguous to FIX B in [5]). 

(6.7) Definition. Consider continuous maps f :  V-~Y, where Y is an ENR, V 
~ Y  is open, and F ix (F )  is compact for all veiN. Two such maps fo,fl are 
said to be ~3-equivalent if there is a third such map F: W-*Z which lies over 
[0,1] (i.e. p: Z--*[0,1] is ENR[o, 1 ] in the sense of [5], and pF=pIW) and 
whose parts over 0 resp. 1 are homeomorphic to fo resp. fx- Let ~ denote the 
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set of equivalence classes I f ]  of such maps f. Geometric addition (topological 
sum) and multiplication (cartesian product) are compatible with ~3-equiv- 
alence; they define a commutative ring structure in ~,  with 0=[0J ,  1 
= [point--point],  - 1  = [IR Z-~lR]. The indices define additive homomorphisms 
~3-~71, [f]~--~I(fV). More generally, the Lefshetz power series defines a ring 
homomorphism 

(6.8) L: ~--,A =(1 +t~ZEEt]]), Ef]~---.L(f; t); 

cf. 1.5 resp. 1.8. The fundamental question (suggested by T. tomDieck) is 
whether (6.8) is an isomorphism. 

Considering discrete spaces Y and permutations f :  Y ~  Y of finite type as in 
(2.1) one obtains a ring homomorphism z: PER-~3 ,  z ( f ) = [ f ] ,  and we have 
seen in 2.14 resp. 2.16 that the composition 

(6.9) P E R ~  L>A=(l+t7Z[[t]] 

is isomorphic. In particular, L is epimorphic. What about the kernel(L) - is it 
zero? A simple candidate for a non-zero element is as follows: Let q: S ~ S  ~ 
denote squaring, q(z)=z 2. Then [q]- l(Lz)- lL[q] is in ker(L): is it zero? In 
other words, is q ~-equivalent (up to sign) to a discrete example? 

The ring ~ also admits symmetric powers (geometrically), hence exterior 
powers (cf. (2.15)), and L commutes with these operations (compare proof of 
2.16). I haven't verified whether ~ really is a )~-ring (i.e. whether 2) and 3) on 
p. 13 of [8] are satisfied.) - partly because I shunned the labor and partly 
because it would be superfluous if L were isomorphic. 

(6.10) Periodic point rings and Burnside rings 

One has a "multiplicative filtration" of ~ by ring epimorphisms ~,: ~--*~3,, 
where ~ ,  is defined by paying attention to n-periodic points only. Thus, 
elements of ~3, (with n ~ N  fixed) are represented by maps f :  V ~ Y  with 
F ix( f ' )  compact; and fo , f l  represent the same element of ~ ,  iff there is such a 
map F: W ~ Z  over [-0, 1] which connects fo, f l  (as in 6.7). Ignoring periodic 
points outside F ix( f ' )  defines ~,; thus ~ , [ f ] = [ f ] , .  The ring ~ ,  is in fact 
isomorphic to the Burnside ring A(7I./nZ) of the cyclic group Z/nZ.  Generators 
of A(7Z./nTZ.) are represented by permutations q~: X ~ X  of finite sets with ~0" 
= id, and the isomorphism A(Tl/n7Z.)~-~3, takes q) into [q~], ~ ~ , .  

If m divides n one has ~,,,,: ~ , - ~ , ,  by ignoring periodic points outside 
F ix ( f ' ) ;  thus ~ . , , , ( [ f - l , )=[f ] , , .  For Burnside rings this corresponds to 
q)w-,~0[Fix(q~m). The fundamental question (after 6.8) then amounts to the 
question whether the filtration {n,: v 1 3 ~ , } , ~  is Hausdorff, or ~ i m  ~ , .  

(6.11) Infinite-dimensional spaces 

The Zabreiko-Krasnosel'skii theorem deals with maps of ANRs, not just 
ENRs. It doesn't seem to be difficult to extend our Theorem 1.1 (by suitable 
finite-dimensional approximation) to (partially defined) self-maps of ANRs Y 
provided f is compact. Whether, or to what extent, it suffices to assume 
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iterates of f compact  is, of course, a difficult quest ion - to which I cannot  
contr ibute.  

(6.12) Parametrised periodic point theory 

One can formulate  the basic not ions  of this paper for fibre-preserving maps  (of 
ENR~-spaces;  cf. [5]) over a parameter  space B. Some of the quest ions which 
arise are as follows: What  are the relations between the indices 
I(f")~rt~ n = l , 2  . . . .  of fibre-preserving maps over B, in the sense of 
[5]? Can  one still define a Lefshetz power series with coefficients in 

0 q ~zs,(B| is it still true that ~,(B)~A(7l/n2g; B), in analogy to 6.107 What  
are the relations between the transfer- or trace-maps (cf. [6]) of the iterates f ' ,  
as n = 1, 2 . . . .  ? 

(6.13) (added after referee's report). The case of just orte smooth periodic point is 
treated in [2]. These authors  consider C l -maps  f :  IR"---,N" such that 0 ~ N "  is 
an isolated fixed point  of f "  for all m =  1,2 . . . . .  Roughly speaking they show 
(their Theorem 2.2) that i f  near  0], as an element of the periodic point  ring 
(cf. 6.7 above), is an integral l inear combina t ion  of v-cycles [ ~ ] ,  or of [~,.] 
- [ ~ 2 ~ ]  in certain cases, where v ranges over the min imal  periods of the 
derivative Of(O) (3 y ~IR" such that  Of(O)V(y)= y and Df(O)k(y),#y for 1 < k < v). 
This refines the finiteness result in [11]. A simple example in [11], namely 
z~--,2z z [fzll-~ in C = I R  2, shows that differentiability C t cannot  be replaced by 
mere cont inui ty  C o . 
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