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Introduction 

The remarkable success of the homological study of modules with finite free 
resolutions has over a number  of years largely determined the focus of attention 
in commutat ive algebra. It is the purpose of this paper  to show that some 
fundamental results on modules of finite projective dimension over a noetherian 
local ring R are in fact special cases of relations which are valid much more 
generally. The new invariants brought  into consideration are derived from the 
asymptotic behaviour of the ranks of the free modules in minimal free resolu- 
tions. 

Specifically, imitating Alperin and Evans [-AE], we say the finitely generated 
R-module M has complexity, cx RM, equal to d, if d -  1 is the smallest degree 
of a polynomial in n bounding the sequence of Betti numbers bn,(M). Further- 
more, we say M has virtual projective dimension, vpdRM, equal to v, if v is 
the smallest projective dimension which occurs when M is viewed as a Q-module 
and Q ranges over all deformations of R over regular bases (cf. (3.3) for the 
precise definition). The following statement provides a good illustration both 
of the way structural properties of modules are reflected in their homological 
invariants, and of the form well known relations may acquire when the assump- 
tion of finite projective dimension is relaxed. 

(3.5) Theorem. When M 4= 0 is a finitely generated R-module offinite virtual projec- 
tive dimension, there is equality: vpdR M = depth R - depth M + cxR M. 

In particular, this applies to all non-trivial M when R is a local complete 
intersection. In an earlier version of this paper, it was conjectured that the 
equality holds for all M 4= 0 over any ring, or in other words, that finite complex- 
ity implies finite virtual projective dimension. This is proved in [Av2] for rings 
of small embedding codepth, but fails in general, as recently demonstrated in 
[AGP].  

The technique used in this paper is of interest in its own right. Based on 
a construction of Gulliksen [Gu]  and Eisenbud [Ei], reworked in the first two 
sections, we proceed to associate in Sect. 3 an algebraic variety V(Q, x, M), 
depending on a given presentation R = Q/(• with x a Q-regular sequence. This 
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provides an extremely convenient cohomological portrait of those R-modules 
which have finite projective dimension over Q: the relations between various 
invariants of M, obtained in Sects. 3 and 4, often are numerical expressions 
of the structure of V(Q, x, M). In Sect. 4 we also extend Eisenbud's result [Ei] 
on the periodicity of modules with bounded Betti numbers over complete inter- 
sections to modules with bounded Betti numbers and finite virtual projective 
dimension over arbitrary rings. A similar approach can be used to study invar- 
iants of injective resolutions: this is done in Sect. 5. 

The idea to study a finite dimensional k-linear representation, M, of a finite 
group, G, by means of an associated cohomologically defined variety VG(M), 
was pioneered in the fundamental work of Quillen [Qu]. Various authors have 
contributed a number of deep results and perfected the technique. If one tries 
to mimic it for local rings, a serious obstacle arises: the k-algebra Ext*(k, k), 
which is the "obvious"  substitute for H* (G, k), is in general neither commutative 
nor noetherian. A way out is provided by the point of view of [Av~], which 
centers on the homotopy Lie algebra n*(R) canonically associated to R. The 
universal enveloping algebra of its 2-dimensional central elements provides a 
polynomial k-subalgebra ~ of Ext* (k, k). One now takes V* (M) to be the variety 
defined by the annihilator of Ext*(M, k) in ~ ,  for the action by Yoneda products. 
When also V(Q,x, M) is defined, there is a morphism V*(M)~V(Q,x,  M), 
which is finite onto if pdQM < ~ .  These structures are explored in Sect. 6. 

The next - and last - section deals with group cohomology: group algebras 
of finite abelian p-groups over a field k of characteristic p > 0 are artinian com- 
plete intersections of a very special kind, which occupy a privileged place in 
the theory due to the existence of Quillen stratifications [Qu],  [AS]. By specializ- 
ing some of the preceding propositions, we are able to obtain independent proofs 
and sometimes sharper formulations of several key properties. Thus, the results 
of this paper extend to relative complete intersections of arbitrary dimension 
theorems whose earlier proofs made use of the full panoply of special techniques, 
available to group cohomology. 

The efficiency of methods from (homological) local algebra in the study of 
group cohomology was initially demonstrated by Eisenbud in the important 
paper [Ei]. Along with the two papers [Ca2], [Ca3] of Carlson and that of 
Avrunin and Scott [-AS], it has been a major source of insight and problems. 
Finally, I should like to thank David Eisenbud for some useful conversations. 

1. Eisenbud's operators and their analogues for injective complexes 

(1.1) Notation. In this paper a graded R-module, &, is identified with the disjoint 
union of its homogeneous components, A, (and not, as is often done, with 
their direct sum). We write & = {A, [ne7/} and note that every non-zero element 
of & is unambiguously assigned a degree: [al=nc~a~A,. The same module 
is sometimes written with an upper grading: & = {A"[n~Z}, which always means 
A " = A _ , ;  when we need to emphasize the kind of grading used, we write & .  
or A* instead of ~.. A degree n homomorphism of graded modules f :  & - .  
is a collection {fi~Home(A~, B~+,)[i~7/}. The set of all such homomorphisms 
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is denoted Horn R(&, ~).:  this is an R-module, and ~-IomR(&, ~ ) .  
= {HOmR(&, ~). I ne7Z} is a graded R-module. 

A complex (or differential graded module) is an & .  as above equipped with 
an endomorphism 0 = 0 a  of degree - 1 ,  such that 0 / = 0 ;  note that when we 
write A in the form &*, 0 acquires degree + i. When & and ~ are DG R- 
modules, so is lHomR(&, ~), for the differential Of= O~f-(-1) l f[ fOa . Then the 
cycles Z.  ~ o m  R (&, ~) consist of the degree n maps of complexes & ~ ~, and 
two degree n homomorphisms f, g are homotopic, i.e. f - g  = On s + (-1)"s0A for 
some S~IOmR(&, lB).+~, if and only if they differ by a boundary. Thus, the 
elements of H.I-IOmR(&, E) can (and will) be identified with the homotopy 
classes of degree n maps of complexes & ~ lB. 

In this section we consider a ring R of the form Q/(x), where x=x~ . . . . .  x~ 
is a Q-regular sequence, and work with the exact sequence 

(1.1.1) 
r Gt g 

Q ---*Q--~R-~O, e(Yl . . . . .  y~)=xly~ + . . .  +x~y~. 

The fact that R is local and noetherian plays no role. 

(1.2). [Ei, Sect. i]. Let F .  be a complex of free R-modules. Choose a free graded 
Q-module ~ .  such that I F = R Q Q ~ .  Applying - |  to the exact sequence 
(i.1.1) one obtains an exact sequence of graded Q-modules 

c ~ ~t - - , ~ I F ~ 0 .  

Because of the projectivity of ~ there exists a degree - 1  endomorphism 
of ~, such that 0 ~ = ~ .  Since R | 1 7 4  the projectivity of ]~ 
provides a factorization ~2= ~ ,  for some degree - 2  homomorphism ~': ~ - ~  ~'~. 
Now set t'~=t~(Q, x,l~) to denote the composition (j'th projection: 1 ~ ] ~ ) o ~ ,  
and write t j=t~(Q,x ,F)  for R |  these are degree - 2  endomorphisms of 
the graded R-module IF. 

If ~ also is a lifting of 5 2, then Im(7"-~) is contained in Ker ~. By the 
exactness of the Koszul complex and the Q-freeness of ]~, this module coincides 
with the Q-submodule of ]~, generated by all elements of the form 
(0 . . . . .  O, xiy, 0 . . . . .  O, -x~y ,  0, ..., 0), where y e ~ ,  the first non-zero coordinate 
is in j ' th place, and the second one - in i'th place. Thus Im(R|  
- - R Q t ' ) c R |  so that t~ does not depend on the choice of the 
lifting t. 

(1.2)* Denote by EQ(--) the injective envelope of ( - )  over Q. If I is R-injective, 
then applying HomQ(R, - )  to the inclusion I-o EQ(I), one obtains an isomorph- 

ism I-~HomQ(R, EQ(I)). Indeed, the right-hand side is identified with 1' 

= {zeEQ(I)[(x)z=O}, hence contains I as a submodule. Being injective, I splits 
off: I' = I  ~)J  (over R, hence over Q as well). However, this occurs inside the 
injective hull of I, which forces J to be zero, as claimed. 
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Let ~* be a complex of injective R-modules. Consider the graded Q-module 
~[*, with T"=EQ(I"). Applying Home(-- ,  ~[) to the exact sequence (1.1.1) we 
obtain, in view of the preceding remarks, the exact sequence of graded modules: 

o--,lI-L~-~lI ~, #(z)=(x,~, . . . ,  x~z). 

Because of the injectivity of 1[ there exists a degree + I endomorphism ~ of 
I* (upper degrees!), such that ~ 0 = ~ .  Since ~ 2 ~ = ~ 2 = 0 ,  there is a natural 
homomorphism Coker )" ~ ]I, which by the injectivity of 1[ extends to a homo- 
morphism ti= tT(Q, x, iD: l[c--*/[, such that ~2 =tT~. Now set uj=uj(Q, x, 1I)= tTji': 
these are degree + 2 endomorphisms of the graded R-module 1I*. 

If ~' also is an extension of ~2, then ~ and tT' agree on Im ~1. By the exactness 
of the Koszul complex and the injectivity of ]i, this module consists of those 
(zt, ...,z~)e~[ ~, for which x lz j=xjz l  for all l < i , j < c .  On the other hand, the 
image of i'(~) under the j-th injection of 1[ in ~[~ consists of those 
(0, ..., 0, z, 0 . . . .  ,0) with x~z=O for l < i < c ,  so is contained in Imfl. Thus u~ 
does not depend on the choice of the extension tT. 

(1.3) Proposition. With the previous notation one has, for 1 <=j < c: 
(1) tj and uj are homomorphisms of complexes, i.e. ~ti = tjt?, and ~3 uj = uj ~; 
(2) if ~ .  (rest. J*)  is a complex of free (rest. injective) Q-modules, and f:  F .  

~ .  (resp. f :  ~*--3I*) is a homomorphism of complexes, then ftj(Q, x, IF) and 
tj(Q, x, G ) f  (rest. fui(Q, x, ~) and ui( Q, x, J )  f )  are homotopic ; in particular, tj 
and uj are uniquely determined up to homotopy; 

(3) for any i(1 <i<c) ,  titj is homotopic to titi, and uiuj is homotopic to u~ui; 
(4) consider a commutative diagram of homomorphisms of commutative rings: 

Q' ,Q 

,o' p 

R' , R = R ' |  Q 

t in which R '= Q'/(x') for some Q'-regular sequence x ' =  x 1 , '  ..., x c, ; write 

~b'(x~)= ai2x~, l < t _ c  and aiicQ, 
j = l  

and let IF' (rest. ~') be a complex of free (resp. injective) R'-modules; then the 
homomorphisms of  complexes 

c '  

tj(Q, x, R | IF') and ~, ao(R | ti(Q', x', F ) )  
i = 1  
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resp. 

c ) 
uj(O, x, nrlomR,(R, ~'))and ~ aijFIOmR,(R, ui(Q', x, ~')) 

i = l  

are homotopic. 
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The assertions concerning the tj's are copied from [Ei, Sect. 1]. The proofs 
essentially boil down to direct computations, and these "dualize" without prob- 
lem to produce the corresponding properties of the uj's. []  

(1.4) Proposition. Let e: IF, ~ M  be a free resolution of the R-module M, and 
let rl: N--* II* be an injective resolution of the R-module N. The following diagram 
is then commutative: 

E* 
H*II-IOmR(F, N) ~* ,H*FlomR(IF, H), H*IHomR(M, ]I) 

H*~om(tj(Q,x,~),N) IH*uj(Q,x,~-IomR(F,~)) H*rHom(M,uj(Q,x,~)) 
H* B-Iomg (IF, N) , H* ~-IOmR(IF , ~)~ H*B-IomR(M , ~) 

t/, ~* 

The proof proceeds along the lines of [-Ei, Proposition 1.6]: one constructs 
(Ii ~, ~) and (II, 5) as above, then chooses ~. and ~j for them, and finally checks 
that ~-Iom(~, ~)+ lHom(li ~, ~j) can be used as tTj(Q, x, lHomR(l~, ~[)) for the com- 
plex of injective modules ~IomR(~, l). [] 

(1.5) Conclusion. Let I F , - ~ M  be an R-free resolution of M and identify 
Ext* (M, N) with H* ~qom R (IF, N). Then by (1.3.1) Zj = H* ~-Iom(tj, N) is an endo- 
morphism of Ext*(M, N) of upper degree 2, which by (1.3.2) is independent 
of the choice of IF. If one chooses to identify Ext](M, N) with H*~IOmR(M, lI) 
for some injective resolution N ~ ~*, for the same reasons one obtains an endo- 
morphism Zj= H*IHom(M, u~), which does not depend on the choice of I. That 
both constructions of Zj agree is the claim of (1.4). Furthermore, XlXj=;~jZi 
for 1 < i , j < c  by (1.3.3). 

Thus, Ext*(M, N) has a well defined structure of graded module over the 
polynomial ring R [~1 . . . .  , ~c], whose grading is determined by the requirement 
I Zjl = 2 (upper degree) for 1 < j  < c. 

The functoriality of this structure results from (1.3.2) and (1.3.4) and may 
be described as follows. Let a commutative square of ring homomorphisms, 
satisfying the conditions of (1.3.4), be given. Let #: M ' ~ M  and v: N ~ N '  be 
homomorphisms of R-modules, and consider the canonical homomorphism 

tp= Ext~ (/~, v): Ext*(M, N ) ~  Ext*,(M', N'). 

It is well known to be R-linear for the structures, induced from scalar multiplica- 
tion on either of the module arguments. Furthermore, it has the property that 
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7"(qe)=~(q) 7"(e), for eeExt*(M,  N), qeR[ z 1  . . . . .  Z~], and q~ denoting the R- 
algebra homomorphism R [Zl . . . . .  Zc] ~ R [Z] . . . .  , Z'~.], defined by ~(Z~) 

c" 

= E aljz'i(l<-~J~c)" 
i = 1  

2. Gulliksen's finiteness theorem 

The title refers to the following statement, proved as the main result of [Gu].  
We use pdR (resp. idR) to denote projective (resp. injective) dimension over R. 

(2.1) Theorem. Let x = x 1 . . . . .  x~ be a regular sequence in the commutative noether- 
Jan ring Q, and set R -- Q/(x). Let M and N be finitely generated R-modules. 

I f  either pdQM< ~ or idQN< ~ ,  then Ext , (M,  N) is a fn i te ly  generated 
module over the graded ring R [~1 . . . . .  X~] defined in (1.5). 

(2.2) Remarks. Strictly speaking, Gulliksen uses in [Gu]  a different set of opera- 
tors, defined in a somewhat indirect way, and less suitable for our purposes 
later in this paper. It is reported by Eisenbud [Ei, p. 42] that Mehta has proved 
in his thesis (Berkeley, 1976) the coincidence of Gulliksen's operators with the 
;(j. Furthermore, Eisenbud remarks [Ei, p. 44] that the finiteness over 
R [Zl . . . . .  ZJ  can be proved by means of a specific construction of resolutions, 
due to Shamash [-Sh] and Eisenbud. Such an argument is given below, because 
its ingredients are used in the sequel. 

The Theorem is easily deduced from the following proposition, whose proof 
requires some preparation. 

(2.3) Proposition. Let x = xl  . . . . .  xc be a regular sequence in the commutative ring 
Q, and let q~ denote the canonical map R':=Q/(xl  . . . . .  x~_O-*Q/(x l ,  ..., x~)=:R. 
Let M and N be arbitrary R-modules. 

Then there exists an exact triangle of graded R [Z1 . . . . .  Z~]-modules: 

Ext*(M,N)  xo ,Ex t* (M,N)  

Ext*,(M, N) 

where the horizontal map is multiplication by Xo 7"=Ext , (M,  N), and 3 is a 
homomorphism of  upper degree - 1. 

Proof of  Theorem (2.1). Since each Ext , (M,  N) is finitely generated over R, there 
is nothing to prove when c = 0. Assume by induction that c > 1 and the statement 
holds for E'--Ext~,(M, N), considered as a module over R[Z'~ . . . . .  ~'c-1]. By 
(1.5) the homomorphism 7" is compatible with the R-algebra map 
�9 : R Dfx . . . . .  ;(~] ~ R [~'1 . . . .  , Z'c- 1] which sends Zi to ;t~ for 1 < i < c -  1 and ;(~ 
to zero, hence Im 7" is a submodule of the noetherian graded module E'. Take 
el, ..., e,, in E = E x t * ( M ,  N), such that 7"(el) . . . .  , 7"(era) generate Im 7' over 
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R [Z'I . . . . .  ;~'c-1]. Thus, if G denotes the R 1-~1 . . . . .  Zc]-submodule of E generated 

by the ei's, we have E=G+zcE.  Iterating, one obtains equalities E =  ~ (Zc)"G 
i = 0  

+(Zc)"+ ~ E for every n > 0, which implies E = (R [Zc])G, since ~ (g~)"E = 0 due 
n > 0  

to degree reasons. [] 

The proposition is proved by using a construction of Shamash [Sh, Sect. 3], 
which has subsequently been generalized to sequences with more than one ele- 
ment by Eisenbud [Ei, Sect. 7]. A streamlining of the remarkably straightforward 
original approach is presented below. 

(2.4) Construction [Sh]. Let x' be a non zero divisor in the commutative ring 
R', and set R=R'/(x'). Let (IF', 0') be an R'-free resolution of the R-module 
M. Then there exists a family of endomorphisms {s,},_>_ o of the graded R'-module 
IF' such that: 

(i) Is, l = 2 n -  1; 

(ii) So = O'; 

(iii) SoS1 + sl So =x ' ;  

(iv) ~ sls,_i=O for n>2.  
i = 0  

Indeed, (ii) fixes So. Since IF'-~IF' is a map of resolutions over the zero map 
x, 

M---~M, it is homotopic to zero; taking sl to be one such homotopy, (iii) holds 
by definition. Assume by inductions si's have been defined for i<  n(n > 2), such 

i - 1  

that (i) through (iv) hold. Setting b~ =x', bi= - ~' s~si_~ for i>2,  the last condi- 
j = l  

tion reads SoSl=bi-siso, which yields equalities SoSiS,_z=bis,_i-sib._i 
+s~s,_iSo for i=1  . . . . .  n - 1 .  Summing up one sees that sob.=b, so, which in 
view of (ii) means b, is a degree 2 n - 2  cycle in the complex IHomR,(IF', IF').. 
By the comparison theorem for resolutions, the augmentation e: IF' ~ M induces 
an isomorphism of its homology with that of ~-IomR,(IF', M). ,  and the latter 
complex is trivial in all positive degrees. Thus, b, is a boundary, i.e. there exists 
a s, which satisfies (i) and also the equality SoS,+S, So=b, (cf.(1.1)); this is 
nothing but (iv). 

Define now 1~ to be the graded R'-module ~IomR,(R'[x' ], IF')., where the 
polynomial ring R'[Z'] is graded by assigning to Z' lower degree - 2 ;  thus, 
by our conventions (1.i), ]~i=0 for i<0.  It has an endomorphism ~ of degree 

- 1 given by the formula 

(~'/')(y)= ~ s,f '(z"y), 
i > 0  

which makes sense since f '(z'iy)=O for every homogeneous y~R' [Z'], as soon 
as 2 i > l f ' l  +IYl. 
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(2.5) Proposition [Sh], [Ei]. Setting IF= R @ R,~' and a = R | R, ~, one obtains 
an R-free resolution of M. For it the map t= t(R', x', IF) defined in (1.2). is induced 
by the map "{= t"(R', x', ~), given by multiplication by Z' : ('{f')(Y)= f '  (z'Y). 

Proof. Applying ~-IOmR,(--,IF') to the exact sequence O-~R'[z']Z-~R'[x '] 
~ 

--~R'--~0, one obtains an exact sequence of graded Q-modules 0--,IF'--~]~'~ 

ff'---~0. After tensorization with R it yields the exact sequence of complexes 
(since 0 2 = 0  in view of conditions (2.4.ii) to (2.4.iv)): 

0---~ R | IF'--~IF-~t IF--~ 0- (2.5.i) 

Note that Hq(R| IF')=TorRq'(R, M)_~M for q=0 ,  1, and that this group is 
trivial otherwise. Taking homology one obtains a long exact sequence 

... ~ Hq (R | R, F') ~ Hq (F) ~ Hq_ 2 (IF) ~ Hq 1 (R | R, IF') - - *  

which immediately shows that H0(IF)=M, and Hq(IF)-----0 for q+0 .  [] 

Proof of Proposition (2.3). Apply ~ I o m n ( - ,  N) to the exact sequence (2.5.1), 
take homology, and note that by (1.5) multiplication by ;t' and by Z~ yield 
the same operator. [ ]  

In order to deduce numerical information from Theorem (2.1), it should 
be noted that Ext*(M,N)  is annihilated by the ideal Ann(M, N ) = A n n M  
+ A n n N ~ R ,  hence it is in fact a module over (R/Ann(M,  N))[Z1 . . . .  , Zc]- Sup- 
pose now the ring R/Ann(M,  N) is artinian. Then each Ext , (M,  N) has finite 
length over R, hence - by a classical result on finitely-generated modules over 
graded polynomial rings [Na],  [Se] - the theorem yields: 

(2.6) Corollary [Gu]. With R, M, and N as in (2.1), assume furthermore 
R /Ann(M,  N) is artinian. Then (1 - t2) c- ~ lengthR Ext , (M,  N) t" is a polynomial 
in t with integer coefficients. [] neo 

(2.7) Notation. Let R be local with residue field k. The integer b~(M) 
=dimkExt~(M, k) is called the n-th Betti number of M: it is equal to the rank 
of F. in a minimal free resolution F of M. The generating function pR(t) 
= ~, bR(M)t" is called the Poincar6 series of M (over R). 

n=>O 

The integer p~(M)= dimk Ext,(k,  M) is called the n-th Bass number of M: 
it is equal to the number of copies of the injective envelope Eg(k ) in a minimal 
injective resolution II of M. The generating function IRM(t) = ~ p"g(M) t ~ 
is called the Bass series of M (over R). "->- 0 

These formal power series can be used effectively to explore the action of 
X' on Ext* under specific assumptions. We illustrate this in a case which will 
find applications later on: 
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(2.8) Proposition. Let  M be a f initely generated module over the ring R =R'/(x ' ) ,  
where R' is local noetherian and x' is a non zero divisor, contained in its maximal 
ideal m'. In the notation of(2.3), we then have: 

(1) I f  x 'r  2, then Z'. Ext*(M, k)=0. 

(2) I f  x' em' .  Annn,(M), then Z' is a non zero divisor on Ext*(M, k). 

Proof  The preceding statements are essentially reformulations - via the exact 
sequence (2.3) - of results due respectively to Nagata and Shamash. 

For  (1), [Na (27.3)] readily yields the equality 

(2.8.1) P#' (t) = (1 + t) P~ (t) 

(cf. also [Sh, Sect. 2, Corollary 1]). In view of (2.3), this is possible if and only 
if multiplication by X' annihilates EXtR(M, k). 

For  (2), [Sh, Sect. 3, Corollary 1] asserts the equality of Poincar6 series 

(2.8.2) PR'(t) = (1 --t2) p~(t): 

this is a consequence of the more precise result, that in (2.4) one can take 
si with Im sl c (m') IlF' [Idem, Lemma 3], which shows the resolution constructed 
in (2.5) is minimal. Once again, the claim follows by interpreting this equality 
as a statement on the kernel of the multiplication by )(, using the exact triangle 
(2.3). [] 

3. Complexity and virtual projective dimension 

From now on we write (R, m, k) in order to denote a noetherian local ring 
R with maximal ideal m and residue field k = R / m .  The local ring (Q, n, k) is 
a (codimension c) deformation of R, if a surjective homomorphism p: Q ~ R is 
given, with Ker p generated by a Q-regular sequence (of length c). [It should 
be noted, that when Q is a k-algebra, this notion coincides with that of"deforma-  
tion with regular basis" in the deformation theory of commutative algebras. 
However, we shall use this terminology for arbitrary rings, and never will consid- 
er any other kind of deformation.] The deformation is called embedded if 
Ker p ~ tt 2. Given a deformation of R, we view every R-module as a Q-module 
via p, and (usually) suppress the homomorphism from the notation. 

(3.1) Definition. Let d be a non-negative integer. We say the finitely generated 
module M over (R, m, k) has complexity  d, and write cxR M =d, if there exists 
a positive real number 7, such that the inequality (cf. (2.7)) 

b~.(M) < 7 nd- '  

holds for all sufficiently large n, and d is the smallest non-negative integer with 
this property. If no such d exists, we say M has infinite complexity, and write 
C X R M =  oO. 
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(3.2) Remarks. (1) The notion of complexity was introduced in somewhat differ- 
ent terms by Alperin and Evans [AE], with M a finite-dimensional k-representa- 
tion of the finite group G, and R = k [G]. Both cases are covered by a general 
definition, which makes sense for any module over an arbitrary ring, and has 
some satisfactory formal properties: cf. [Av2]. 

(2) cxg M > 0 with equality if and only if pdR M < ~ .  

(3) If Q is a codimension c deformation of R, then 

cxQM <=cxRM ~cxQM +C. 

Indeed, it suffices to consider the case when c = 1: the left-hand side inequality 
is given by the exact sequence (2.3), while the right-hand side one follows from 
the specific form of the resolution constructed in (2.5). 

For  any local ring (R, m, k) we denote by /~ its m-adic completion. If k 
is infinite, we set /~=/~; if k is finite, we set R=(R[X] , ,mx l )  ~, where X is an 
indeterminate over/~. Thus,/~ is a faithfully flat extension of R, which is complete 
and has infinite residue field. We write M for the/~-module M |  and note 
that depth and Krull dimension do not change when passing from R or M 
to /~ or ~t respectively, and that b~,(M)=b~,(]gI) for all n. In particular, one 
has pdR M = pd~ M, and CXR M = cx~ h~t. 

(3.3) Definition. For  an R-module M the virtual projective dimension VpdR M 
is (the non-negative integer or ~ )  

VpdR M =min  {pdQ, M IQ' is a deformation of /~}. 

(3.4) Lemma. For a finitely generated R-module M, one has: 

(1) vpdRM--0 if and only if M is R-free. 

(2) I f  pdRM < oo, then v p d g M = p d R M .  

(3) I f  vpdg(M)=pdQ,(I~l), then edim Q '=ed im R; in particular: vpdR(M) 
= min {pd e, ]~t t Q' is an embedded deformation of R). 

(4) The following are equivalent: (i) R is a local complete intersection; (ii) 
vpd R (M) < ~ for all R-modules M; (iii) vpd R (k) < c~. 

Proof. (1) If p d a ~ t = 0  for a deformation Q of R, then ~t is Q-free, in particular 
AnnQ M = 0, hence Q =/~, hence M is R-free. 

(2) If Q/(x ~ . . . . .  xc) = R, then pdR M < oo implies pde M = pdR M + c > pdR M. 

(3) Let p be the deformation Q' --,/~. If Ker  p r n 2, there is a non-zero divisor 
z C n 2, z e Ker p, hence by (2.8.1) pdQ,/~z)M = p d Q , / ~ -  1, contradicting the assump- 
tion on Q'. 

(4) Recall R is called a complete intersection if for some (hence for any) 
Cohen presentation of/~ as a homomorphic image of a complete regular local 
ring Q, Ker(Q ~/~)  is generated by a Q-regular sequence. Thus, (4) is just a 
restatement of the Auslander-Buchsbaum I-AB] and Serre [Se] characterization 
of regular local rings. [] 

Complexity and virtual projective dimension are linked by: 
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(3.5) Theorem. When M 4:0 is a finitely generated R-module offinite virtual projec- 
tive dimension, there is equality 

vpd R M = depthR - depth M + cxR M. 

When M r : 0  is finitely generated and p d R M < ~ ,  one has the Auslander- 
Buchsbaum equality, cf. [-AB, Theorem 3.7] 

pdg M = depth R -- depth M. 

In view of (3.2.1) and (3.4.2), the Theorem represents an extension of this funda- 
mental formula. The proof  of the Theorem uses the Auslander-Buchsbaum 
equality, and yields in fact the more precise result stated below. Recall that 
edim R stands for the embedding dimension, dim k m/m z, of R. 

(3.6) Theorem. Let M be a fn i te ly  generated module of finite virtual projective 
dimension. I f  Q ~ R  is any deformation, such that p d Q M < ~ ,  then it can be 
factored as Q ~ P ~ R in such a way, that Q is a deformation of P, and P is 
a deformation of R for which pdRM=VpdpM,  depth P = d e p t h  R + c x R M ,  and 
edim P = edim R. 

We can now show that VpdR, like pdR, may not take arbitrary finite values. 

(3.7) Corollary. When VpdR M < ~ ,  one has the inequality: 

vpd R M < edim R 

Assume in addition R is not a complete intersection. The stronger inequality 

vpd R M __< edim R - 2, 

then holds, and it can further be improved to 

vpd R M < edim R -- 3 

when R is Gorenstein. 

It will be proved in (6.6) that over a complete intersection any possible 
value of vpdRM occurs. The proofs of (3.5), (3.6), and (3.7) are given at the 
end of this section. 

(3.8) Notation. We consider the following situation: (Q, n, k) is a noetherian 
local ring; x = x l  . . . . .  xc is a Q-regular sequence; R=Q/(x);  m=n/ (x ) ;  M is a 
finitely-generated R-module. 

Let Lx denote the c-dimensional k-vector space (x)/n(x). For an element 
y contained in the ideal (x) we write ~ to denote its image in L x. If y = y l ,  ..., y,, 
is a sequence of elements of (x), the vector subspace of Lx spanned by ~ . . . . .  ~,, 
is denoted Ly. 

The polynomials from ~ x = k [ z a  . . . . .  Zc] are viewed as functions on Lx by 
means of the condition Xi(xj)= 6ij (Kronecker delta). If x' is another  Q-regular 
sequence with (x ' )= (x), then (1.3.4) with ~b'= idQ and ~b = idR shows this condition 
is independent of the choice of the generating system x~ . . . .  , xc of (x) (note 
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the "variables" gl . . . . .  Zc are determined by this choice). Thus, ~x  can be 
described in invariant terms as being the symmetric algebra on the k-linear 
dual of L x. 

Since Extn (M, k) is a graded module, its annihilator is a homogeneous ideal 
of Rx. Fixing an algebraic closure K of/7, we denote by V(Q, x, M) the cone 
in K |  defined by this ideal. 

(3.9) Theorem. With the notation of  (3.8), let Y=Yl- . .  Ym be a set of  elements 
in (x), and let ~h . . . . .  qd be a basis for the linear space {ze~zlg(Ly)=0}.  

The following are equivalent: 

(i) y is a Q-regular sequence, and pdQ/ty) M < ~ ; 

(ii) y can be extended to a minimal system of generators of  (x), and pdQ/~y)M 
< ~ ;  

(iii) dim k Ly = m, (K | Ly) c~ V(Q, x, M) = {0}, and pdQ m < ~ ; 

(iv) d = e - m ,  and the k [~ 1 . . . . .  qd]-module Extn(M, k) is finitely generated. 

Two special cases deserve special mention: 

(3.10) Corollary. When R = Q/(x), pdQM < ~ is equivalent to the finite generation 
ofExtR (M, k) over ~x .  

Indeed, this is the equivalence of (i) and (iv) for y the empty set, i.e. (y)= 0. 
Thus, the Theorem contains both a generalization of, and a converse to Gullik- 
sen's Theorem (2.1). [] 

(3.11) Corollary. Assume pdQM < or, and let z be a non-zero divisor in (x). Then 
~ V(Q, x, M) if and only if pdQ/~z)m = ~ .  

This is the equivalence of (ii) and (iii) for y consisting of a single element. []  

Proof of Theorem (3.9). (i)~(ii) Assume (i) holds, but there exists a ze(y)c~ n(x), 
such that zCn(y). Note that pde/tz)Q/(y)< ~ and pdQ/~y)M< ~ imply pdQ/(z)M 
< ~ .  This, however, is impossible in view of (2.8.2), hence (ii) follows from 
(i) as claimed. The converse is clear, since any minimal system of generators 
of a complete intersection ideal forms a regular sequence. 

Next we make some adjustments in order to facilitate the exposition. Observe, 
that the first requirement in each of conditions (ii), (iii), and (iv) is that y form 
part of a minimal system of generators for the ideal (x). By the remarks made 
in (3.8), we can then assume y i=x l  for l < i < m ,  and q~=X~+m for l < j < c - - m .  
Thus, in order to finish the proof, we have to show the following conditions 
are equivalent: 

(ii)' pdq/~ . . . . . . . . .  ) M <  

(iii)' K (2~ . . . . .  ,Y,,) n V(Q, x, M ) =  {0} and pdQ m < ~ .  

(iv)' The k[zm+ 1 . . . . .  Z~]-module Extg(M, k) is finitely generated. 
That (ii)' implies (iv)' is seen directly from Gulliksen's Theorem (2.1). Next 

we set the stage for proving the converse, which is the core of the whole argu- 
ment. 
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With Q'=R'=Q/(x l  . . . . .  x,,), consider the commutative diagram of ring 
homomorphisms: 

i d  4~' 

O ,Q ,Q' 

R' ,R  ,R  

where ~b and qS' are the canonical projections. Applying (1.5) to it one obtains 
the commutative diagram 

~ |  k), O| 

Ext*,(M, k) , 
E x t , ( M , k )  

| Ext*(M, k), 
~ ' Q i d  

,~ ' |  Ext*(M, k) 

Ext*(M, k) , Ext*(M, k) 
i d  

where the vertical maps are given by the respective module structures, and 
the following notation has been used: 

~ = k [ z 1  . . . . .  Zc] with ~ induced by ti(Q, x, IF) for some R-free resolution 
IF of M; 

! ! t t ! ~ ' = k [ z ~ , + l ,  .. Z'c] with Zj induced by tj(R, x ,  IF), where x ' =  .~  X m +  l~  . .  , X c ,  

with x~ denoting the image of xj in R'; 

~ = k [ ~ l  . . . . .  Zm] with Zh induced by th(Q, y, M) for some R'-free resolution 
IF' of M; 

~b': ,~'--* ~ is the k-algebra homomorphism defined by 4'(Z~)= Zj for m + 1 
<j<c; 

4: ~ - ~  is the k-algebra homomorphism defined by ~(Zi)=O for m+ 1 < i  
=<c, ~(Zi)=)~i for 1 <i<_m. 

We are now ready to prove that (iv)' implies (ii)'. Let IF be as above, and 
choose an injective resolution ~ of k over R'. The standard filtration F p 
= { f~  ~IOmR (F, lHom R, (R, ~))lf  (F/) = 0 for i < p) yields the change-of-rings spec- 
tral sequence with second term: 

2 Ep'q= Ext,~ (M, Extq,(R, k))~ExtP+q(M, k). 

Equipping IF, with the operators ti = t i(Q, x, IF) we see they satisfy t i (F  p) c F p + 2, 
hence they induce an action of R[Z~ . . . . .  ;~] on the spectral sequence, with 
Zi(rEP'q)crEp+2"q for r>2 .  Note that for this action the term 2 E is simply 
ExtR(M, k) | EXtR,(R, k) viewed as an H-module via the left-hand factor. By 
our assumption, EXtR(M, k) is finitely generated as a ~'(~')-module.  Since 
EXtR,(R,k) is the exterior algebra over the d-dimensional vector space 
EXtXR,(R, k), it follows that 2E is a finitely generated 4Y(~')-module as well. But 
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now, because of the )t-linearity of the differentials rd of the spectral sequence, 
this property is seen to be inherited by the consecutive subquotients 
3 E, 4E . . . . . .  -m+l E. 

It is time to note that since 2EP'q=0 when q < 0  or q>c--m,  one has 
c-~+ 1E = o~E. Thus, the limit term ExtR,(M, k) has a finite filtration by finitely 
generated ~'(~')-modules. It follows that EXtR.(M, k) is itself finitely generated 
as a module over the subring ~ ' (~ ' )  of ~.  However, the left-hand square of 
the commutative diagram shows the variables Zj= q~'(Z~) annihilate Exta,(M, k) 
when m + 1 < j  < c, hence for this module finite generation is equivalent to finite 
dimension as a k-vector space, which in turn obtains if and only if pdR, M < ~ .  

Next we 'prove that (iv)' ~(iii)'. We have just shown (iv)' implies pdQ, M < ~ ,  
and since pdQQ' is finite, p d Q M < ~  follows. Furthermore, the fact that 
EXtR(M, k) is finitely generated as an ~-module, follows both from (iv)' (obvious) 
or from (iii)' (by (2.1)). Thus, in order to show the equivalence of (iii)' and 
(iv)', we assume Extn(M, k) is finitely generated over ~t, and have to establish 
that K(~I . . . . .  Xm) ~ V(Q, x, M) = {0} if and only if ExtR(M, k) is finitely generat- 
ed over k [Xm § 1 . . . . .  itc]- However, since the points in the intersection correspond 
bijectively to the maximal ideals in the support of K |  
(Xm+ 1, -.., Xc) ExtR(M, k)], this is just Nakayama's lemma. [] 

In terms of growth invariants, the theorem has the following interpretation: 

(3.12) Corollary. Let M ~-O be a finitely-generated R-module with v p d g M <  ~ ,  
say pdQ ~t < ~ for/~ = Q/(x). The following integers are then (defined and) equal: 

(i) the complexity cxR(M); 

(ii) the order of the pole of Pun(t) at t= 1; 

(iii) the Krull dimension of the ~x-module ExtR (M, k). 

(iv) the dimension of the algebraic set V(Q, x, Iv1). 

When the field k is infinite, they are moreover, equal to: 

(v) min{codim H IH is a k-rational subspace of K |  such that H n 
V(Q, x, M)=  {0}}; 

(vi) c - m a x  {ml there exist elements Y l . . . . .  y~, which form part of a minimal 
system of generators of(x) and satisfy pdQ/~y ...... y~) M < ~ }; 

(vii) min {dl Q' is a codimension d deformation of ~ such that pdQ,/~t < ~}.  

Proof By the remarks preceding (3.3), the first three conditions do not change 
when R and M are replaced by/~ and ]~t; we make this substitution. 

Let dj denote the integer defined by the j-th condition: the finiteness of 
dl (resp. dE) follows from (3.2.3) (resp. (2.6)). Since, according to Gulliksen's Theo- 
rem (2.1), Extk(M, k) is a finitely generated ~x-module, the equality of dl through 
d 5 follows by elementary commutative algebra and algebraic geometry. Remark- 
ing that every subspace H as in (v) has the form Ly | K for some sequence 
y ~ (x), whose elements extend to a minimal system of generators of (x), we 
conclude directly from the theorem that d5 = d 6 .  Finally, the definitions yield 
the inequality d 7 ~ d6, while d~ < d7 follows from (3.2.3); with the equality d~ = d 6 
already in hand, this completes the proof. [] 
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Proof of Theorems (3.5) and (3.6). In the notation of (3.6), assume /~ 
=Q/(xl . . . . .  xc), choose Yl . . . .  , y,, to satisfy (3.12. vi), and set P=Q/(Yl . . . . .  Y,,). 
We then have: 

vpdRM<pdQ/(y)M (by (3.3)) 

= depth Q/ (y ) -  depth M 

= depth R + (c - m ) -  depth M 

= depth R + cxR M - -  depth M (by (3.12)) 

On the other hand, choosing a deformation Q' with pdQ, M minimal, we can 
write: 

vpdR M = pdQ, M (by (3.3)) 

= depth Q' - depth M 

= depth R + (depth Q' - depth R ) -  depth M 

> d e p t h  R + c x R M - d e p t h  M (by (3.12)) 

It follows all the quantities considered in both chains are equal to each other. 
In particular, (3.5) holds. Furthermore,  we also have by the choice of P that 

cx R M = c - m = (depth Q - depth R)--  (depth Q - depth P) = depth P -  depth R, 

and we see from the first chain of equalities that VpdRM=pdv M. By (3.4.3) 
this implies edim P = edim R, which was the last thing left to prove. []  

Proof of Corollary (3.7). Choose P, by (3.6), to satisfy cx R M = depth P -  depth R, 
and edim P = e d i m  R. Applying (3.5) one obtains: 

vpdR M = depth P -  depth M 

= edim P - depth M -- (edim P -  depth P) 

< edim R - (edim P - depth P). 

The first inequality in Cor. 3.7 follows because edim P > depth P for any local 
ring P. The remaining two are immediate consequences of the fact, that if edim 
P -  depth P < 1 (resp.: P is Gorenstein and edim P -  depth P < 2), then P, hence 
also R, is a complete intersection. []  

4. Periodicity 

Before turning to Eisenbud's conjecture on modules with bounded Betti 
numbers, cf. (4.6), we show that the condition vpdRM < ~ allows for a very 
precise determination of the asymptotic  behaviour of the Betti sequence of M. 
In the formulation of the next result, we use the notation O(u(n)) to indicate 
a function v(n) such that Iv(n)l <ylu(n)[ for some v~l~ and all n>>0. 

(4.1) Theorem. Let M be a finitely generated R-module of finite virtual projective 
dimension. The following then holds: 
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-- cx R M = 0 / f  and only if the sequence {b R, (M)} is eventually zero; 

- CXRM= 1 i f  and only if  the sequence {b,R(M)} is eventually constant and non- 
zero; 

- c xRM=d>=2 if  and only i f  there exists a positive integer A such that 

A 
b, R (M) - 2d - t  (d -- 1)! n " - '  + O (n d - 2). 

Proof. By (2.6) the Poincar6 series P ~ ( t ) =  ~ b,(M)t"  can be written in irreduc- 
n>__O 

ible f o r m f ( t ) / ( 1 - t ) " ( 1  +t)  e wi th f ( t )  a polynomial  with integer coefficients. Fur-  
thermore,  by (3.12) u equals d, the complexi ty of M. Decompos ing  this rat ional  
fraction into prime fractions, we have:  

(4.1.1) P~(t)  ad al be ( l~t)  
- ( l _ t ) d  ~-... + ( ~ _ t )  + ~ + . . .  + +p(t)  

for a polynomial  p(t) and some rat ional  numbers  a I . . . .  , a,, bt,  . . . ,  be such that  
a, = a 4- O, be = b + O. The case d = e = 0 occurs precisely when pdg M is finite, 
so in the sequel we suppose one of  d or e is positive. Denot ing  by n 0 - 1  the 
degree of p(t), and writing out  the binomial  expansions, one obtains polynomials  

a 
g(X)  

(d-1)~ 

b 
h(X) 

( e -  1)! 

X d- 1 + lower order terms, 

X e-  1 ..[_ lower order terms, 

such that  for all n > no one has:  

. . . .  ( g ( n ) + h ( n )  
(4.1.2) o,tM ) = t~g (n) h (n) 

when n is even; 

when n is odd. 

If  d < e ,  one of  the series of the even or  odd Betti numbers  is eventually 
given by a polynomial  with negative leading term, hence takes on negative 
values for n > 0, which is absurd. 

Assume d = e + O .  For  the same reason as just stated, one sees that  a + b > O  
and a - b > O ,  hence a > 0 ;  together  with our  assumpt ion  that  a + 0  this means  
a > 0 .  Choose  now an integer j such that  a < ( 2 j + l ) l b l ,  and let n be an even 
integer such that  n - (  j +  1)>no.  Localizing at a minimal prime, p, of R, and 
using the exactness of  the sequence 

0 ~- G' (-- ( r ,_  j)p (--... ~ (F,), ~ . . .  (F, + i), ~ G" (-  0 

derived from a minimal free resolution F =  {F,} of  M, one can write down 
the equali ty:  

J 
( - 1)q lengthR, (F, _ q)p = ( -- 1)/(length G' + length G"). 

q = - j  
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i 

Dividing both sides by length R~, and setting Xi.,= ~ (-1)qb,_q(M), one 
obtains for even j the inequalities: q =-  i 
(4.1.3) gj,, >0 ;  and 

(4.1.4) Z j+ 1 , ,_  -<0- 

However, (4.1.2) shows Zi,, is given by a polynomial in n, whose leading term 
is 

(a+(2j+l)b)n a for i=j; and 
( -a+(2j+3)b)n  e for i = j +  1. 

Now if b < 0 this implies Z~,, is negative for all j when n >> 0, and this contradicts 
(4.1.3). If b>0 ,  it implies Zi+l,,  is positive for all j + l  when n>>0, and this 
is ruled out by (4.1.4). Consequently, b is equal to zero. 

Thus, we have shown d>e. However d (resp. e) is the order of the pole 
of pR(t) at t =  1 (resp. t =  -- 1), so that when pdRM= ~ one can write the Poin- 
car6 series in the form 

f(t) with d>e, f( t)~Z[t],  f ( 1 )>0 .  (4.1.5) P~(t)=(l_t)d(l +t)e 

It remains to see the inequality for f(1). Multiplying both sides by (1 - t) d, invok- 
ing (4.1.1), and passing to the limit as t ~ l ,  one obtains the expression 
O<a=f(1)/2 e. 

The theorem follows by setting A =f (1 ) -2  a -e-  ~. [] 

(4.2) Remark. Returning to the lbrmulas (4.1.2) one sees - taking (4.1.5) into 
account that each one of the polynomials, expressing (for big enough n) the 
even or the odd Betti numbers of M, has the same leading term. Thus, we 
obtain yet another interpretation for the complexity of M: it is equal to the 
Krull dimension of either Ext~ven(M, k) or Ext~dd(M, k), when viewed in the 
natural way as a module over ~x.  

In [Avx, p. 34] the question was raised whether the inequality bR(M) 
< bg+l(M) holds for all n >> 0 for any finitely generated module M over a local 
ring R. The answer is known (and is positive) in only two cases, both due 
to Lescot: when m3----0, or when R is a Golod ring. For  modules virtually 
of finite projective dimension, the question can now be reduced to a very concrete 
problem: 

(4.3) Proposition. Let M be a module of finite virtual projective dimension, and 
let its Poincar~ series be written in irreducible form f(t)/(1--t)d(l +t) ~ with 
f(t)~Z[t].  When d< l the Betti numbers of M are eventually constant. When 
d > e + l ,  the Betti numbers of M are eventually increasing. When d - l = e ,  they 
are eventually increasing/f f ( 1 ) >  i f ( - 1 ) .  

Proof We use the notation introduced in the proof of (4.1). The case d < l  
being clear from (4.1), we assume in the sequel that d>2 .  Using (4.1.1), the 
difference bg+ 1(M)--bR,(M) can be expressed in the form" 

[ n + d - l \  , lb[[n+e\  [n+e--l \~ 1),+ 1 
a~ d - 2  ) + ( - 1 ) " +  ~ e - 1 ) + ~  e - 1  ) )+r (n )+( -  s(n), 
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where r(n) (resp. s(n)) is a polynomial  of degree < d - 2  (resp. < e - 2 ) .  By (4.1.5) 
we know that d > e -  1 and that a = f (1 ) /2  e is positive, hence for n >> 0 this differ- 
ence is positive either when d > e -  1, or when d = e -  1 and a > 2 I bl. It remains 
to note that multiplying both sides of (4.1.5) by ( l + t )  e, passing to the limit 
as t ~ -  1, and looking at (4.1.1), one obtains the equality b = f ( - 1 ) / 2  d, so that 
the inequality involving a and b can be rewritten as f ( 1 ) >  I f ( -  1)1. [] 

A weaker question than the one addressed in (4.3) is due to Ramras:  is 
it true that either lim bR,(M)= ~ ,  or else the Betti numbers are eventually con- 

n ---~ o o  

slant? Theorem (4.1) answers it affirmatively for modules virtually of finite pro- 
jective dimension. 

To close this section, we inspect these modules for periodic behaviour. 
Recall that a complex of R-modules F .  is called periodic of period q, if 

there exist an integer r and an endomorphism of complexes t: F ~ F of degree 
- q ,  such that F~=0 for i<r, and t maps F~+q isomorphically onto F~ for i__>r. 
A resolution F is said to become periodic after r steps, if the truncated complex 
F . / ~ < ,  is periodic. A module is said to be eventually periodic (after r steps) 
if its minimal free resolution becomes periodic (after r steps). When one can 
take r = 0, the module is called periodic. 

An interesting class of exact periodic complexes of period 2 has been con- 
structed by Eisenbud [Ei, Sect. 5] on the basis of his notion of matrixfactoriza- 
lion, which refers to an ordered pair of maps of free P-modules q~': F ' ~  G' 
and ~k': G ' ~ F '  such that q~'~k'=x'id G, and ~k'~b'=x'ide, for some element x'EP. 
Denoting reduction modulo (x') by forgetting the "p r ime"  symbol, consider 
the periodic complex 

F (~ ' ,  0"): ... ~F--.G---~F----,G---~O----,O---~... 

in which the first 0 appears in degree - 1 .  It its easily verified [Ei, Proposition 
5.1], that when x' is a non zero divisor on P, this is a resolution of the P/(x')- 
module Coker  ~b = Coker  4)'. 

(4.4) Theorem. Let M be a finitely generated R-module of finite virtual projective 
dimension. 

(1) The following conditions are equivalent: 

(i) M has bounded Betti numbers; 
(ii) R R bn (M) = bn+ 1 (M) for all n > depth R - depth M + 1 ; 

(iii) M is eventually periodic of period 2 after at most depth R - d e p t h  M 
+ 1 steps. 

(2) I f  R = P/(x') for some non zero divisor x', and p d e M  < ~ ,  there is a matrix 
factorization (49', ~') of x', such that F(dp', ~b') is the minimal resolution of the 
(depth R -  depth M + 1)'st syzygy N of M. 

When k is infinite, R is complete, p d R M =  oo, and condition (1.i) holds, such 
a P always exists. 
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(4.5) Corollary. When VpdRM < ~ and M ~0,  the following conditions are equiva- 
lent: 

(i) M is periodic 

(ii) VpdRM= 1, and M has no non-trivial free direct summand; 

(iii) M has a minimal R-free resolution of the form F(~b', ~b'). 

(4.6) Remarks. A well known conjecture of Eisenbud [Ei, p. 37] asserts, that 
if M has bounded Betti numbers, it is eventually periodic of period 2 (cf. Note 
added in proof). In view of the theorem, if vpd M is finite, then the even stronger 
statement holds, that the minimal resolution of such a module is eventually 
given by a matrix factorization. 

As noted in (3.4.4), this will be the case when R is a complete intersection; 
indeed, then (4.4) and (4.5) specialize to some key results of [Ei], namely Theo- 
rems (4.1), (5.2), (6.1), and Proposition (5.3). Thus, they may be viewed as "rela- 
tive" versions of some assertions of [Ei], in which a hypothesis on the ring 
- i.e., one which is being imposed on all R-modules - is replaced by a hypothesis 
on the individual module under consideration. It should be noted that several 
proofs in [Ei] proceed by reduction to dimension zero and subsequent use 
of the self-injectivity of artinian complete intersections. This technique being 
no longer available in the present context, it is Theorem (3.9) which - in a 
rather discreet way - plays a pivotal role in our arguments. 

Proof of Theorem (4.4). Consider first the case of pdRM < ~ .  By the Auslander- 
Buchsbaum formula then b~(M) = rank F n = 0 for n > depth R--  depth M + 1, so 
that conditions (i), (ii), and (iii) of (1) all hold, in particular they are equivalent. 
The conclusion of (2) holds for the same reason. Thus, for the rest of the proof 
we shall assume pd R M = ~ .  

It has been noted before (3.3) that conditions (l.i) and (1.ii) are invariant 
under the passage from R and M to /~ and N. Denoting by N' the (depth R 
- d e p t h  M+3) ' rd  syzygy of M, condition (iii) means that N and N' are 
isomorphic as R-modules. However, by faithful flatness, this is equivalent to 
the isomorphism b ~ '  as /~-modules. Since N is the (depthR 
- d e p t h  M + l ) ' s t s y z y g y  of ~ ,  and N' is its (depth R - d e p t h  M+3) ' rd  
syzygy, one sees that condition (iii) also is invariant under the switch from 
R to /~. Thus - exactly as in [Ei] - we have reduced the proof of (1) to the 
case when R is complete with infinite residue field. We shall assume this to 
be the case. 

If (iii) holds, the Betti numbers with indices >dep th  R - d e p t h  M +  1 take 
on at most two values, both of which are non-zero, since p d R M = ~ .  Thus 
CXR M = 1, and we see from (4.1) that these two values coincide, which is precisely 
the claim of (ii). Since the implication (ii)=~(i) is trivial, and (iii) represents a 
weakening of the statement in (2), both parts of the Theorem will be proved 
once we establish (2). 

Since (1.i) implies that M has complexity 1, (3.5) and (3.6) provide a presenta- 
tion R=P/(x') with pde M = d e p t h  R - d e p t h  M +  i. Working our way up the 
resolution from M to N, we find p d p N =  1. To show the minimal resolution 
of N has the desired form, we use an argument due to Eisenbud [Ei, p. 53]. 
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Let 0--~ F ' ~  G'--~ N ~ 0 be P-free resolution of N. Since x' N = 0, multiplication 

of this resolution by x' is homotopic to zero, hence there exists a map 4': G' -~ F' 
such that ~b'~9'= x' idG, and 4'qY= x' idv,. Let m' denote the maximal ideal of 
P, and assume F(qY, 4') is not minimal, i.e. Im~9'r  This implies Imff' 
contains a non-trivial R'-free summand, hence Imr  contains a non-trivial R-free 
summand. However, the exactness of the complex F(~b',q/) shows 
Im ~ = Coker ~b _-N, which is not possible due to the following: 

(4.7) Lemma. I f (F ,  0) is a minimal free resolution of afinitely generated module 
M over an arbitrary local ring R, then the modules Ira01 contain no non-trivial 
free direct summand when i > q = max(depth R - depth M, 0). 

Proof. The statement is a slightly more precise version of [Ei, Lemma (0.l.ii)], 
and the proof given there can easily be adapted to fit the present formulation. 
For  diversity (and completeness) we offer an alternate argument. 

Let a be a maximal R-regular sequence, chosen in such a way that its initial 
segment of min(depth R, depth M) elements forms an M-regular sequence. If 
E is the Koszul complex on a, consider the homomorphisms of complexes 

F = R  | 1 7 4 1 7 4  

defined by the augmentation maps/~ = R/(a) ~ E and IF -+ M. Both homomorph-  
isms induce isomorphisms in homology. By the depth-sensitivity of the Koszul 
complex, H I ( E |  when i>cl. Since dep th /~=0 ,  for each i there exists 
a non-zero element r~ /~  which annihilates Im (/~ | ~), so that Im (/~ | c~) cannot 
contain a non-trivial /~-free direct summand. But then I m ~  contains no non- 
trivial R-free direct summand, as claimed. []  

Proof of Corollary (4.5) (i)~(ii). By assumption, M is isomorphic to its own 
syzygy which can be made to sit as far back in the resolution as one wishes 
it to. On the one hand, by the preceding lemma, this implies M has no free 
summands +0. On the other hand, it forces the equality depth M = d e p t h  R, 
and since nontrivial periodic modules obviously have complexity one, VpdRM 
= 1 follows from (3.5). 

(ii)~(iii). Let /~ = P/(x) be given by (3.6), with pdp/Q = vpdgM = 1, and with 
(x) generated by a regular sequence of length cxRM=d.  Since A~r is a torsion 
P-module of projective dimension 1, its annihilator in P has grade 1; since 
(x)~Q=0, it also has grade >d,  hence l = d = c x g M .  To see that the resolution 
of M has the desired form, one can now apply the first part of the argument 
used to prove (4.4.2). 

The remaining implication (iii)=~(i) being trivial, the proof of the corollary 
is complete. []  

5. Plexity and virtual injective dimension 

There is no reason not to subject to growth of the Bass numbers (of. (2.7)) 
to the same kind of analysis we have used on the Betti numbers. Since the 
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results can sometimes be reduced to the ones for free resolutions, and can usually 
be proved in a similar way, this short section mostly focuses on the specific 
features of the minimal injective resolutions. 

(5.1) Definition. The plexity of M, denoted pxnM is the smallest integer d such 
that r a-1 for some real y > 0 ,  and for all sufficiently large n; if no 
such d exists, we set px g M = oo, 

The virtual injective dimension, VidR M, is defined to be equal to min {idQ M I Q 
is a deformation of/~}. 

As before, pXRM=0 if and only if M is injective. If Q is a codimension 
c deformation of R, then pxQ M < px g M _-< pxQ M + c. When M is finitely generat- 
ed and idRM<oo,  then v idgM=idgM.  In this case, a well known result of 
Bass [Ba] states that i d R M = d e p t h  R. Now the analogue of Theorem (3.5), 
which extends Bass's equality to infinite injective dimension, is 

(5.2) Theorem. Assume M is a finitely generated R-module of finite virtual injective 
dimension. There is then equality 

v i d  R M = depth R + px R M. [] 

It should be noted, that in view of the "Bass conjecture", proved by Peskine 
and Szpiro, Hochster, and P. Roberts, if VidRM< ~ for some M4:0,  then R 
is Cohen-Macaulay. 

Let W(Q, x, M) denote the algebraic variety defined by the annihilator of 
Ext](k, M) in ~x.  The precise analogue of Theorem (3.9) obtains - with a similar 
proof  by exchanging projective with injective dimension. In particular (cf. 
Corollary (3.11)), a non zero divisor z~(x) has the property that ~ W(Q, x, M) 
if and only if ide/r ) M = ~ .  Since over a Gorenstein ring the conditions pd M < ov 
and id M < co are equivalent, one has: 

(5.3) Proposition. Let R be a Gorenstein local ring, and let M be a finitety generat- 
ed module with pdQ(M)< ~ .  Then the varieties V(Q, x, M) and W(Q, x, M) coin- 
cide. [] 

It seems relevant to ask here the question whether the finiteness of both 
vpdgM and vidgM for the same module M imply that R is Gorenstein: this 
is indeed known to be the case when the finiteness condition is placed on the 
actual - rather than the virtual - dimensions, cf. [Fo].  

6. The cohomological variety of a module 

In the preceding sections, the main tool has been the module structure of 
Extn(M, k) over the graded polynomial  algebra ~x  = k [-gl, -.-, )~]- The construc- 
tion in (1.5) of the Z~'s from Eisenbud's operators and their duals has the advan- 
tage of easy definition and useful interpretation at the cochain level. However, 
it has the major  drawback of presupposing that R has been given to us along 
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with its deformation Q. This section shows how to remedy such a situation. 
We only discuss projective invariants, since statements and arguments dualize 
without problem to yield results on injective resolutions. 

(6.1) The homotopy Lie algebra. Recall that Ext*(k, k) is in a natural way the 
universal enveloping algebra of a graded k-Lie algebra n*(R), called the homo- 
topy Lie algebra of R (for details cf. [Av~]). Furthermore, every homomorphism 
R ' ~  R of local rings, which induces the identity on their (common) residue 
field k, defines a map n*(R)~rt*(R') of graded Lie algebras. When p: Q--*R 
is a deformation, re* (p) is an isomorphism in degrees > 3, and defines the five- 
term exact sequence 

(6.1.1) 0---* ~zl (R) "'(P) ,rcl(Q)~HOmk(L,,k) "~P) ,/r2(R) n2(P) ,~2(Q)--*0 

where L x = (x)/n(x) as in (3.8); furthermore, Ker gz (p) is a subspace in the center 
(*(R) of g*(R), cf. [-Ja] or [Avl]. Thus, there are two natural actions of Nx 
= k [ x l ,  ..., gc] on ExtR(M, k) (or EXtR(k, M)): the one defined in Sect. 1, and 
the one coming from the k-algebra homomorphism Z(p): Nx~EXtR(k, k), 
Z(p)(xi)=~r(p)(xi), with subsequent application of the Yoneda pairing. It can 
be shown both actions yield the same product. 

Summing up, we obtain the following result, whose last statement is due 
to the Poincar6-Birkhoff-Witt theorem: 

(6.1.2) Lemma. The action on ExtR(M, k) or EXtR(k, M) of the k-algebra ~ 
obtained from a deformation Q ~ Q/(x) of R, factors canonically through an action 
of the subalgebra ~1 of Ext,(k, k), generated by the subspace (2(R) of central 
elements of degree 2 of rc*(R). Furthermore, ~ is a polynomial algebra. [] 

(6.1.3) Remark. The groups n*(R) which are of interest to us in this paper are 
rt 1 and it 2. One always has rcl(R)=HOmk(m/m 2, k). When R=Q/I  for a regular 
local ring (Q, n) and I c n 2, then r~ 2 (R)= HOmk(I/n I, k). 

In particular, when R is a complete intersection, then 1t2(R)=HOmk(Lx, k) 
in the notation of (3.8). Furthermore, in this case 7ti(R)=0 for i>3,  and this 
is known to characterize complete intersections. 

(6.2) The cohomological variety of a module. In the sequel we consider finitely- 
generated R-modules M only. Let K be a fixed algebraic closure of ~'. Writing 
(2(R) for HOmk((2(R), k), and viewing the elements of Y/ as functions on the 
affine space K| we set 

V* (M) = {z e K | (2 (R) l f  (z) = 0 for a l l fe  Ann~ ExtR (M, k)} 

and call this the cohomological variety of the R-module M. 
In the notation of (3.3), Ext~(~t, k')-----~QkEXtR(M, k) by an isomorphism 

compatible with the identification (2 (/~)= k'Qk (2 (R). Thus, V~* ()~t)= V* (m) can- 
onically, hence in studying the variety one often can assume R is complete 
with residue field infinite (or - for that matter - equal to K). 

Some illustrations are immediately at hand: 
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(6.2.0) VR* (0) = ~ .  

(6.2.1) If pdR M < ~ ,  and M ~ 0 then V*(M) = {0}. 

(6.2.2) V* (k)= K | (R), since ExtR(k, k) is a free ~-module  by Poincar6-Birk- 
hoff-Witt. 

In order to relate V*(M) to the variety V(Q, x, M) associated to a deforma- 
tion p: Q ~ R with kernel (x), consider the natural linear map a(p) ~ 

KQk~2(R)=HOmk(~2(R), K) Hom(a(p),K) ,HOmk(HOmk(L,, ' k), K)=K| 

defined by the homomorphism a(p) from (6.1.1). 

(6.2.3) Proposition. A deformation Q--, Q/(x)=/~ induces a morphism of varieties 
a(p)" V~(M)~V(Q, x, M), which is finite /f p d a M <  ~ .  When Q is of minimal 
codimension with this property, then a(p) is a Noether normalization of V* (M). 

In particular, when VpdR M < ~ ,  one has dim V* (M) = CXR M. 

Proof The k-algebra homomorphism Z(p) defines the morphism a(p)'. Assuming 
p d a M <  ~ ,  we know from (2.1) that ExtR(M, k) is finitely generated over ~ , ,  
hence also over ~.  It follows that ~/Ann~ExtR(M, k) is finitely generated over 
~x/Ann~, ExtR (M. k), so that a(p)" is surjective. Let Q be of minimal codimension 
cxRM, with p d a M < ~ .  By the preceding and (3.12), we see V(Q,x, M)=Lx, 
hence a(p)" is a Noether normalization. Finally, since minimal deformations 
exist by (3.6) for any M with vpd RM < ~ ,  we obtain the last claim. []  

The next statement contains the only non-trivial general result I am aware 
of, concerning the form cohomological varieties of modules can take. The con- 
struction is adapted from one due to J. Carlson for representations [Ca3, Lemma 
(2.3)]. The proof is - necessarily -comple te ly  different, since none of the standard 
tools of group cohomology is available to us. 

(6.3) Theorem. Let fbe  an arbitrary homogeneous element of the algebra ~t, defined 
in (6.1.2). Then there exists an R-module M (f)  such that V*(M (f)) is the hypersur- 
face in K | ~2 (R), defined by the equation f =  O. 

Proof Choose a minimal R-free resolution (IF, 0) of k. Then EXtR(k, k) 
= FIOmR(F, k) = ~omk(F/mF,  k): under these identifications, the polynomial 

f e  ~ 2 ,  c Ext 2~ (k, k) defines a k-linear homomorphism a: F 2 ,/m F 2~ ~ k. Writing 
N for Imt?2,=KerO2,_~, and noting that because of the minimality of 
F, k| k Q F 2 a ~ k Q N  is an isomorphism, we set ~b to be the composition 
of R-linear homomorphisms: 

N--~N/mN (k| , F2 a /m  F2 a , k. 

Now M ( f )  is defined from the exact sequence: 

(6.3.1) O - - , M ( f ) ~ N  , k ~ 0 .  
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Consider the long exact sequence 

O --* N ~ F2a_ I ---~" F 2 a -  2 --'~ . . . - - - ~ F o - - ~ k - - ~ O  

Breaking it down into short exact sequences and applying Ext*(, k) repeatedly, 
one ends up with a degree zero isomorphism of Ext*(k,k)-modules 
Ex t* (N ,k )_~s -2aEx t~2" (k , k ) ,  where shE is the graded module with (sbE), 
= E,-b. This explains the bottom row of the diagram 

0 , Ext,(k, k) Y , s -2aEx t* (k ,  k) , C ,0 

(6.3.2) Ext*(~b,k) id 

- -2a  - <  0 , Ext*(N, k) ,s-2~Ext*(k, k) ,s ExtR 2"(k, k) ,0 

whose top row is multiplication by f~ExtZna(k, k), followed by the projection 
onto C = C o k e r f .  The exactness of the bottom row has already been noted; 
that of the top row reflects the fact that f is a non-zero divisor in ExtR(k, k) 
(by Poincar&Birkhoff-Witt). The diagram is commutative: for the left-hand 
square this is due to the naturality of Yoneda pairings, and for the other one 
it holds by construction. Finally, all maps are degree zero homomorphisms 
of EXtR(k, k)-modules, because of the centrality o f f  

As a first input from (6.3.2), note the injectivity of Ext*(~b, k); applying this 
to the exact triangle of Ext*(k, k)-modules 

EXtR(k, k) ExtR(4a,k) , EXtR(N, k) 

ExtR(M(f), k) 

derived from the exact sequence (6.3.1), one sees that Coker Ext*(~b, k) is natural- 
ly isomorphic with Ext*(M(f),  k). Returning to (6.3.2), we now obtain from 
the snake lemma the exact sequence of ExtR(k, k)-modules: 

0 ~  Ext*(M(f),  k ) ~ s  -2a [ Ext*(k, k) ] < kf' Ext* (k, k)} ~ s -  2a Ext 2 a (k, k) ~ 0. 

Since Ext*(k, k) is free over ~ (Poincar6-Birkhoff-Witt again), the module in 
the brackets is free over ~ / ( f ) ,  on a homogeneous basis of the vector space 
k | k). It follows that 

Ann~ Ext* (M (f), k) = (f) 

= Ann~ (Ext* (k, k)/f Ext* (k, k)) ~ (Ann~ Ext* (M (f), k)) 2 a, 
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hence V * ( M ( f ) )  is the hypersurface f =  0. []  

For  further reference, we save the argument between (6.3.1) and (6.3.2) in 
the form of the following statement: 

(6.4) Lemma.  Assume there exists a long exact sequence 

O - - * M ' ~ F ,  1--+ ... ~ Fo ~ M " ~ 0  

with F i f ree  R-modules for  1 < i <  n. There is then equality V* (M ' )=  V* (M"). [] 

Even for complete intersections, we do not know whether every k-rational 
variety in K |  has the form V*(M)  (cf., however, (7.6) below). That  the 
simplest ones are of this form, is shown by the following argument, suggested 
to me by D. Eisenbud. 

(6.5) Proposition. Assume R is a complete intersection. I f  H c K  | is a 
k-rational linear subspace, then there is an R-module M of  finite length, such 
that V* (M) = H. 

Proof. Since the /~-modules of finite length have finite length as modules over 
R as well, we may assume R is complete, and take it in the form R = Q/(x 1 . . . . .  xc), 
with (Q, n, k) regular local, and xi~n 2. Let d = dim k H > 0. Changing coordinates 
if necessary, we may assume /-/ is spanned by 2~ . . . . .  ~d (cf. (3.8) for notation). 
Denote by Q' the complete intersection Q/(x~, . . . ,  Xd), and let M' be the n'th 
syzygy in the minimal resolution IF' of k over Q', with n chosen large enough. 
Then Xd+~ . . . . .  Xc is a regular sequence both on M' and on Q', so that 
~z>,/(Xd+ 1 . . . . .  Xc)F~=, is a minimal R-free resolution of M = M'/(Xd+ 1 . . . . .  x,) M'. 

, t In particular, Ext*(M, k) and Exte , (M,  k) are related by an isomorphism com- 
patible with the homomorphism of k-algebras EXtR(k, k) ~ Exta,(k, k), and with 
the module structures over these algebras, i.e. with the map  

c b = ~ : k [ z l ,  . . . , Z c ] ~ k [ z l  . . . .  , Zd ]= ~ ' ,  tb(Zi)=0 for i>d .  

Since Anne, ExtQ,(M', k)= 0 by (6.4) and (6.2.2), AnneEXtR(M, k)=  (Xd+I . . . . .  Zc), 
i.e. V* (M) = H, as claimed. []  

(6.6) Corollary. I f  R is a complete intersection, then all possible values of  CXR M, 
namely 

0 < CXR M < edim R -- depth R, 

and all possible values of vpd~ M, namely 

0 < VpdR M < edim R, 

are obtained.for suitable f ini tely generated R-modules M.  

Proof  In the proposition we have constructed modules of finite length, with 
complexity between 0 and edim R - depth R. By Theorem (3.5), they have virtual 
projective dimensions between depth R and edim R. Taking modules with finite 
projective dimensions varying between 0 and depth R, we get the same range 
of VpdR M by (3.4.2). Finally, (3.2.3) and (3.7) assert that we have now obtained 
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all possible values for the complexity and for the virtual projective dimen- 
sion. [] 

We finish this section by using (6.3) in order to answer a question of Eisenbud. 
Namely, in [Ei, Theorem 3.1] he proves that for Q regular, R=Q/(x)  for some 
regular sequence x, and infinite residue field k, there exists a linear combination 
of the form t=t l (Q,  x, M)+ y' aiti(Q, x, M) with aieQ, such that t :  f / + 2 - - - ~ f  / 

i>=2 

is surjective for sufficiently large i (• denotes the R-minimal resolution of M). 
Furthermore, he raises the problem [Ei, p. 44] of whether the restriction to 
the case of infinite k is necessary. That  it is, is shown by the next 

(6.7) Proposition. Let (Q, n, k) be a regular local ring, such that k contains q 
elements. Let I c n 2 be an ideal generated by a Q-regular sequence of length c. 

When c > 2, there exists an R-module M, such that for any regular sequence 
x generating I, no Q-linear combination, t, of the operators { t j (Q,x,M)l  
j = 1 . . . . .  c}, is eventually surjective. 

Proof. Let Xl, --., )~c be a k-basis of ~2, and set 

il Z2 "" Zc 1t q 

f = det 1 zq. Z~q. , M = M (f). 

\x~  ~ x f - '  )~~ 

It is a known and easily verified fact that f is equal to the product of all 
forms ; ~ = X l Z I + . . . + ~ : j - l X j - I + X j ,  where l < j < c ,  and xiek. By (6.3) V*(M) 
is the set of points in K c, for which f - 0 ,  i.e. the union of all hyperplanes 
in K c, which are defined over k. Thus, for each )~e~2, the multiplication 

Ext , (M,  k) x ,Exti+2(M, k) has a non-trivial kernel for infinitely many values 
of i. 

Let now t be an arbitrary Q-linear combination of the tj(Q, x, M). Then 
ff-Iom(t, k): if--Iota(F, k)~ff--Iom(F, k) induces, according to (6.2.3), maps 
Ext~ (M, k ) ~  Ext~ + 2 (M, k) given by multiplication with some Z e~2.  We already 
know it is not injective for infinitely many i's, hence (by Nakayama) t: F, + 2 ~ Fi 
is not surjective for infinitely many i's. [] 

7. Applications to modular representations 

In this section k denotes an algebraically closed field of characteristic p > 0, 
G is a finite group and M stands for a finite-dimensional representation of 
G over k. The case in which the preceding results are directly applicable is 
easily described: k [G] is a commutative local ring if and only if G is an abelian 
p-group A. 

The seeming isolation of these specific groups is misleading: due to results 
of Quillen, Alperin-Evans, and Avrunin-Scott, many problems for general G 
are reduced to studying precisely this situation. What  is important to us is 
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that k[A] is a complete intersection of a very special sort. Recall that  in [ A E ]  
the complexity cGM is defined to be the smallest integer d, such that  there 
exist a k[G]-projec t ive  resolution N of  M and a ~>0 ,  with d i m k P , < y n  d-~ for 
all n > l .  For  G=A as above, and R = k [ A ] ,  this clearly agrees with cxRM 
as defined in (3.1). 

(7.1) Theorem. Let M:t=O be a finite-dimensional representation of the abelian 
p-group A. Then ca(M) is equal to the least integer d', such that the group of 
normed units of k[A] contains a direct product B x C of subgroups with the follow- 
ing properties" 

(1) B is minimally generated by d' elements; 

(2) M is a free k[C]-module. 

(3) k [A] = k [B x C]. 

Proof For  B and C as above, the canonical  i somorphisms 
Tor ,  kLm (M, k) -- Tor ,  ktB~ (M | k, k), n > O, show that C A ( M )  = c , (M | k) < d'. 
Thus, in order  to prove the theorem, we have to show there exist B and C 
as above, with B minimally generated by d = CA(M ) elements. 

Decompose  A into a direct p roduc t  ( a a )  x ... x (a~) with a~ of order  p~' 
and 0 < e ~ < e 2 < . . . < e r  The map  X j ~ a j - - l ( l < j < c )  extends to a surjective 
ring h o m o m o r p h i s m  Q = k ~ X  1 . . . . .  X ~ k [ A ]  with kernel generated by Xl 
-=X~ p~, ..., - p~ x~-X~ . By (3.12), there exist m =  c - d  linearly independent over 

k elements 

/ ~ ' a'ijek, Yl  ~" a i j x j ,  
j = l  

such that  pd e, M < 0% for Q' = Q/(y'l, ..., Y'm). 
Next  we modify the basis of the k-vector space V spanned by the y'i's as 

follows�9 Let j~, . . . , jq be the integers for which ej < % + ~ ;  thus, setting f~=e~ 
for 1 < r < c, the monomia ls  which generate (x) are written as: 

x{1, yr yf2 xf , xy:, x ?  " ' ' ~  ~ j l  ~ ~ j l +  a ,  . . . ,  . . - ,  - . . ,  

Denote  b y  i~ the k-rank of  the matrix (ai~)~_<i_<~ �9 Pick i: linearly independent  
l <j<~jl 

rows of  this matrix, and call y~ . . . .  , Yi~ the y'~'s which have produced them. 
Subtract  suitable linear combina t ions  of  y~ . . . . .  y~, f rom the rest of  the yi's, 

�9 " .. . ,  y'~' of  V, in which Y'i' in order  to obtain a k-basis ya, .., Yi,, Yi~ + ~, are k-linear 
combinat ions  of Xf~+t . . . .  , X{, ,  for i +  1 < i < c .  Repeat ing the procedure  on 
the submatrix (aij)i, <~_<_m and iterating, we end up with a basis of Vof  the form 

j~ < j<c  

yi= ~ b~jx~, l <-i<m, 
j = l  

where the m x c matrix (b'ij) is block upper-tr iangular,  with diagonal  block B~ 
having size (is - is- 1) x (/'s - J s -  1), and rank Bss = i, -- i s_ t <=J~--Js- a for 1 < s =< q 
(we set io =Jo = 0). 
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h' (h IP ~j for Since k is algebraically closed, there exist bij~k such that ~ = , ~ j ,  

1 _ i-< m and 1 __<j__< c. Now, for i such that i~ 1 < i__< i~, set 

Yi = ~ bi~Xf tf ~- s~ 
j = l  

this is well defined for 1 _<i< m, since blj = 0 when j <j~_ a, andf j  >f~ whenj  >j~_ 1. 
The polynomials II1 . . . . .  Y,,ek~X~ . . . . .  X ~  have no constant term, and their 

linear parts are linearly independent over k. Consequently, one can find c - m  
among the X~'s, call them Y,,+I . . . . .  Y~, such that k~Y1, ..., Y,.~=k~X1 . . . . .  X~ .  
For  l < i < m ,  set g~=f~, when i~_l<i<i~; for m+l-<i<c ,  set g~=e,, when Yi 
= X , .  Finally, set R'=k[Y1 . . . . .  Y,,]/(Y~*', ..., Y ~ ) .  In this notation we have 

Q'=Q/(yl  . . . . .  y,,)=R'~Y,,+~ . . . . .  Yc~. 

The fact that M has finite projective dimension over Q' implies it has the 
same property over R'. Being finitely generated over the local artinian ring 
R', it is necessarily free over it. Next note that the projection Q ~ R  factors 
through 

p g m +  1 e t tr R'~Y,.+ 1, ..., Y~/(Y,,+~ . . . .  , Y~*c)= | R , 

where R" = k [Ym+ 1 . . . .  , y~]/(y,,+ ~v*m+', ..., yf*o). Since d imk(R' |  R")= [ ]  pg' 
i = 1  c 

= 1~ pe~ = dimk R, we have R'|  R " ~  R as k-algebras. Denote now by C(resp. B) 
i = 1  

the image in R of the multiplicative group H'(resp. H") generated in R'(resp. R") 
by the classes of 1 + Y~ for 1 < i_< m (resp. m + 1 __< i < c). Since R' = k [H']  and 
R"=k[H"] ,  the theorem is proved. []  

For  an abelian p-group A, and for a non-negative integer d, write o/ (A)= el 
+ . - . + e c - d  if A~--Cp~, x . . .  x Cp,c, where Ch is a cyclic group of order h, and 

0<e~__<e2__<...<__ec. If G is an arbitrary finite group, set e)~(G)=max{~o"(A)} 
when A ranges over all abelian p-subgroups of G. Finally, recall that the p-rank 
of G is the maximum n, for which G contains a subgroup E isomorphic to 
(Cp)". With this notation, we have: 

(7.2) Corollary. Let M be a representation of G with cG(M)= d. Then p,O~(~ divides 
dim k M, and ~o~ (G) > (p-rank G ) -  d > 0. 

Proof. Let A be a subgroup with c@(G)=e~ + ... +ec-d.  Since d' =CA(M)<=ca(M ) 
(straightforward from the definitions), then (7.1.3) provides a direct product 
decomposition A ~ B  x C, with C minimally generated by c - d '  elements by 
(7.1.1). The minimal order of such a C being pe,+...+ . . . .  '>pe,+...+ . . . .  , (7.1.2) 
shows that p,O~(G) divides dimk M. The first inequality of the corollary is obvious. 
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For the second one choose - by the Quillen-Alperin-Evans dimension theorem 
[-AE] - an elementary abelian subgroup E of rank n =p-rank G, and such that 
cE(M) = c~(M)= d, and finish by invoking e.g. (3.2.3). [ ]  

(7.3) Remarks. (1) In the special case when c6(M)= 1, Theorem (7.1) gives the 
central result Theorem 5.1 - of Carlson l-Ca~] ; the proof given there is different, 
and involves the analysis of a number of special cases. With the same assumption 
on M, Corollary (7.2) coincides with [Ca1, Corollary 5.6] and with [Ei, Theo- 
rem 9.1]. 

(2) Assume A = E is an elementary abelian group of rank c and M is arbi- 
trary. In this case one recovers all the main results of Kroll's paper [Kr]  as 
follows: Theorems 1.2 and 1.3 from (7.1), Theorem 1.5 from (7.2), and Proposi- 
tion 1.7 from the equality of (i) and (iii) in (3.12). The last Proposition has been 
sharpened in (4.2). 

(3) The result of (7.2) is "best possible", since M=k[A]/(ac_d+l-1,  ..., ac 
- 1) has dimension ~)n(A) and complexity d. 

(7.4) The cohomological varieties associated to a representation. Recall that 
H*(G, M), the cohomology of the group G with coefficients in M, is a graded 
module over the graded ring H*(G, k) in such a way, that the isomorphisms 
H*(G,-)~-Ext*t~l(k,--) transform these structures into Yoneda products. In 
compliance with the notation of [Qu], [-AS], etc., we write H*(G) to denote 
the commutative ring H*(G, k) when p=2 ,  and H ..... (G, k) when p is odd. 

The cohomological variety V6(M) of a p-group G is defined to be the maximal 
ideal spectrum of H*(G)/AnnH,(~)H*(G, M) with the Zariski topology: cf. [Qu],  
[-Ca2]. 

Next we fix an elementary abelian p-group E, minimally generated by 
al . . . .  , a c and denote by J the k-subspace of k[E] spanned by al - 1 ,  ..., ac--1. 

The rank variety V~(M) of a representation M + 0  of E consists of 0 and 
of thesefe  J, for which M is not a free k [-f]-module [Ca2] ; one also sets V~(0) = 0. 

It is not obvious from the description that V~(M) is an algebraic variety: 
this is proved by Carlson [Ca 2, Theorem (4.3)1. That these two varieties coincide 
was conjectured by him on the basis of evidence obtained in [Ca2], and was 
proved by Avrunin and Scott [-AS, Theorem (1.1)]. We shall now show this 
fact is contained in the results of Sect. 3. 

To fix notation, we identify k I-El with k ~X ~ . . . . .  Xc~/(X~ . . . . .  XP), by sending 
X i to a i - 1 .  The ring H* (E, k)= Extg(k, k) has a well known structure, described 
in terms of the c-dimensional vector spaces T =  HOmk(J, k), and U = HOmk(L X, k) 
(cf. (3.8)), situated in degrees 1 and 2 respectively. Namely: 

- when p is odd, H* (E, k)= A* T| S* U (A* = exterior algebra, S*= symmetric 
algebra); 

- when p = 2, H*(E, k)= S'T,  and the natural injection of U in H*(E, k), cf. 
(6.1.3), identifies it with {t2Lt~T}. 

In either case, the polynomial algebra ~ of (6.1.2) can be described as the 
subalgebra k [U] of H* (E). Since both algebras act on Ext*(M, k) via the embed- 
ding H*(E)~H*(E, k)= Extn(k, k), the inclusion ~I--.H*(E) defines a homo- 
morphism of rings ~: ~ / A n n  EXtR(M, k )~  H*(E)/Ann Extn(M, k). 
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On  the o ther  hand,  consider  the m a p  fl: J ~ L~, given by f--* ~P, where g 
is an element  of r t=(X~ . . . . .  X~) m a p p i n g  to f, and the bar  refers to the image 
in (x)/n (x), x = X~, . . . ,  X p. 

(7.5) Theorem.  The homomorphism ot and the map fl induce isomorphisms 

VE(M ) ~* > VR(M ) , P* V[(M) 

of algebraic varieties. 

Proof. To see that  c~* is an i somorph i sm it suffices to show that  c~ induces 

an i somorph i sm of  rings, ~ / [ / /Ann  EXtR(M, k)~H*(E)/l//-Ann ExtR(M, k). 
When  p is odd,  this is obvious  f rom the fact that  H* (E) = ~ @ (nilpotent elements). 
When p = 2, an inverse h o m o m o r p h i s m  is induced by the Frobenius  e n d o m o r p h -  
ism. 

By Corol la ry  (3.11), gP~VR(M) if and only if the projective d imension  of 
M over  R ' =  k ~X1 . . . . .  Xc~/(g v) is finite. We shall show this condi t ion is equiva- 
lent to the freeness of  M over  k[f] ,  i.e. to fq! V~(M): this will finish the proof,  
since fl is bijective because of the algebraic closedness of  k. 

Let F '  be a minimal  free resolut ion of M over  R'. Since 
R'~-k[f]| . . . . .  X'c-l~, this is also a free resolut ion of M over  k[f] .  
Thus  pdR, M <  oo implies P d k l i l M <  0% which is only possible if M is free over  
k I f ] .  Conversely,  if M is k I f  l-free, then the exact sequence ...--*Fs ~ F~ ~ M 
--*0 splits over  k[f] ,  hence lF'@ktflk is a k~X'l . . . .  , X'c_l~-free resolut ion of 
M/f  M, which is necessarily minimal .  By the regulari ty of  k~X'~, ..., X'c 1~ this 
implies F[/fF/,=O for n>c. Thus  one obtains  for n>c the equalities F/,=fF2 
=f2F/, . . . . .  fPF[=O, that  is, pdR, M < c - 1 .  [ ]  

(7.6) Remarks. Using the descript ion of V~(M), it is easily seen that  V[(M | 
= V[~(M)c~ V[(N) [Caz ,  T h e o r e m  3.5]. Combin ing  this with [Ca3, L e m m a  2.3] 
(cf. also (6.3) above), Car lson observes that  every subvar ie ty  of  V~(k)= k r occurs 
in the form V[(M) for some finite - d imensional  representa t ion M. Finally, 
s tandard  reduct ion techniques are used to show tha t  for any  finite G, every 
variety defined by a homogeneous  ideal of  H*(G) is of the form VG(M) for 
some fini te-dimensional  representa t ion  M. 

Thus,  in view of (7.5), we can conclude that  over  rings of the form R 
=k~X1, ..., X~/(X~ ~', ..., X~~ any subvar ie ty  of k ~ is of the form VR(M ) for 

some finitely genera ted R-modu le  M. 
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Note added in proof 
Examples are now known of rings which have periodic modules of arbitrary periods q >  1, and 
also of rings which have non-periodic modules with constant Betti numbers, c.f.: Gasharov, V.N., 
Peeva, I.N.: Boundedness versus periodicity over commutative local rings. Trans. Am. Math. Soc. 
(to appear) 


