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Introduction 

Let F be a finite extension of Q endowed with a system of norms I']v such 
that the product formula l - [ la ]v=l  is valid for all aeF, and lq lp [v=p  -1 for 

v v /p  

a prime pe7Z. Let V be an algebraic variety defined over F and lI~ a metrized 
line bundle on V, i.e., a system (L, ]'],) consisting of a line bundle L and a 
family of Banach v-adic metrics on L | F,, for all v's satisfying well-known condi- 
tions (cf. [1], Chap. VI). Then we can define a height function hL: X ( F ) ~ I R  
by the formula h~(x)= ~ Is(x)[[ 1, where s is a local section of L non-vanishing 

at x. Our valuations are normed in such a way that hL remains invariant with 
respect to base changes F ' ~  F. 

Assume that L is ample and put 

N(V, IL, H)=  card {xe V(F)[hL(x)<H}. 

The asymptotic behavior of N(V, 1I., H) as H ~  is a crude but essential charac- 
teristics of arithmetical properties of V. It is therefore desirable to understand 
its connections with algebro-geometric properties of (V, L). 

Projective algebraic varieties V are divided into three large classes with 
respect to the behaviour of their canonical bundle co. 

(I)  General type varieties, i.e., varieties with ample co. A bold generalization 
of Mordell's conjecture states that the F-points on a general type variety lie 
on a proper Zariski-closed subset (cf. [1], p. 349, where this conjecture is deduced 
from a more precise Vojta's conjecture). Therefore, if V(F) is infinite, there should 
be a proper subvariety of V which contains all F-points and whose irreducible 
components are not of general type. Thus the investigation of V(F) may be 
subdivided into two steps. 
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a) Determine (irreducible components of) W= V(F) (Zariski closure). 
b) Investigate W(F). 
It is now known that the moduli space Mg of stable curves of genus g 

is of general type for g > 24 ([2]). A tantalizing problem arises to describe Mg(ff). i 
and its part corresponding to smooth curves. A similar problem can be posed 
about the moduli space of principally polarized abelian varieties A~. 

We are not aware of any conjectures about values of dim (Mg (@)), dim (Ag (•)), 
and asymptotics of N(M~, co, H) and N(Ag, ~o, H) (co carries a natural metric 
investigated by Faltings). 

(11) Intermediate type varieties, for which neither co, nor co- J is ample. Arithmet- 
ics of this class is virtually unexplored, with one very important exception, 
that of abelian varieties. From the Mordell-Weil theorem and a refined N6ron- 
Tare height theory one deduces that 

N (A, IL, H) ~ c(log H) ~/z, (o.1) 

where r=rk(A(F)) and c is a constant that can be expressed through 
card(A(F)tor~) and the volume of the ellipsoid /~L < 1 in IR|  A(F). The famous 
Birch-Swinnerton-Dyer conjecture connects (0.1) with the behaviour of the L- 
function of A at the center of the critical strip. 

( I I I )  Fano varieties, i.e., varieties with ample e)-~. The simplest Fano variety 
is lPp. Schanuel [3] proved that 

N ( ~ ,  0(1), H)~c' H "+ t. 

Since a)~;,l=O(n+l), it follows that N ( ~ , c o  -~, H)~cH.  Prompted by this 
observation and some numerical data about the distribution of rational points 
on xg+2xa+3x3+4x33=O (cf. Appendix) Yu.l. Martin conjectured that the 
following asymptotic behaviour 

N (V, ~of 1, H)~c  H (Iog H) t (0.2) 

should be typical for Fano manifolds V with dense V(F), excluding some degener- 
ate cases (cf. below). Including a power of logarithm is necessary since it already 
occurs for products of projective spaces. The available information is compatible 
with the further conjecture that t = r k(Pic V) -  1. 

This article is devoted to the proof of the following facts, giving some support 
to these conjectures. 

a) Asymptotic (0.2) with error term O(H(logH) t-l) is stable with respect 
to the direct product. 

b) Asymptotic (0.2) is consistent with the predictions of the Hardy-Little- 
wood method for complete intersections in IP". 

c) Asymptotic (0.2) is valid for generalized flag manifolds P\G where G 
is a semisimple algebraic group and P is a parabolic subgroup. 
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We prove a) and b) in w 1. The most technical part  c) is due to J. Franke 
who made the crucial remark that the Dirichlet series 

Z ( s )=  ~ h~,_~(x) -~ 
x~(P\G)(F) 

can be identified with one of the Langlands-Eisenstein series [4]. The use of 
the heavy machinery of [-4] is perhaps reminiscent of shooting sparrows with 
cannons. However, it allows one to borrow heavily from Langlands work, who 
established most of the analytical properties of Z(s) needed to deduce (0.2) 
and in fact a considerably sharper result (cf. Sect. 2, Corollary to Theorem 5). 

We note finally that (0.2) cannot be true without some further non-degeneracy 
assumptions. For example, consider the case of a smooth cubic surface V=IP 3. 
If one of the 27 lines on it is F-rational, we have by Schanuel's theorem 

N(V, COv 1, H)>=N(P 1, (DV 1 IP',  H) > c H2 

since r lit, ~ O~,(1). 
Generalizing this counter-example consider the following situation. Let W c  V 

be Fano manifolds. Suppose that for some a >  1 we have (co v l lw)| Then 
(0.2) cannot be true for V and W simultaneously. 

Would it suffice to exclude such "pa tho logy"  in order to ensure (0.2) or 
is it necessary also to assume that deg~,-, V is sufficiently large? 

Unfortunately, we do not know answers even for cubic or more general 
del Pezzo surfaces. 

w 1. Products and complete intersections 

I. Products. Since co v • w = COy [] CJ)w and hL, [] r~ (x, y) = hc~ (x) hL2(Y), the stability 
of the asymptotic  behaviour (0.2) follows at once from the following elementary 
statement, which is probably well-known. We sketch a proof  for the sake of 
completeness. 

Let 2: 0<21~22~... and /~: 0<1~1~-~/2~... be two real increasing 
sequences. Put 2# = {2i #i, ordered increasingly}. Put Nx(H) = card {i12i < H} and 
similarly for Nz(H ), Nzu(H). 

2. Proposition. Assume that 

Nz(H) = c~H log~H + O(H log ~- 1H), 

Then 
N~ (H) = c~ H log" H + O (H log r -  1 H). 

N ~ ( H ) =  B(r + 1, s+  1) cz cuH log r+s+ 1 H +  O(H logr +~H), 

where B is the beta-function. 
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Proof. We have 

N.z(H/#I) N,~(H/ul) H 
N;.u(H)= i=1 ~" Nu(H/J'i)=c ,--~1"= ~ / 1 o g r ( ~ ) "  

+ 0 1  Z _ _ l o g r _  1 H 
\ i=1 ~i ~// " 

(1.1) 

Here the error term is of the same structure as the leading one with the logarithm 
power diminished by one. The same effect occurs repeatedly in the subsequent 
estimates. Therefore we shall write out explicitely only leading terms. Put 

Then 
a(j)=card{il),l-t-j<=)~i<)~l +j+ l}, N=[H/It l-)~I]+ I. 

N~n/U')H (21) N Hlog'(H/J) �9 
i__~l f l~ ~j~=la(J')j 

In order to calculate (1.2), we use the Abel summation trick and estimate 

M 
a( j )= Nz(M-1- ,~ 1-4.- 1) = c~M log~ M + O(M log ~-~ M). 

j=O 

In this way we obtain for the leading term of (1.1) the asymptotics 

c~cuH~,jlog" j ~ x-21og ~ dx. 
j= l  j 

Finally, using a mean value theorem we can replace the sum by the integral 

(1.2) 

where ~OHL(X ) is a measure on W(Av) which will be explicitely described below 
in certain cases and ~o belongs to a certain space of summable functions on 

N+I 
log' x (log H- -  log x) ~ d(log x) 

1 
B(r + 1, s + 1)(log H) r+~+ 1 + O ((log H)r +s). 

3. Hardy-Littlewood method. The adelic version of the classical Hardy-Litt lewood 
method is explained in a very clear and conceptual way in [9] following impor- 
tant previous work I-6-8]. We shall use here its barest rudiments, namely, a 
formal description of the "singular series" which in favorable cases can be proved 
to dominate a weighted sum of delta-functions supported by F-points of a Fano 
manifold V (or, rather, a cone over V). 

Denote by AF the ad61e ring of F. Let W be an affine variety over F. The 
general Hardy-Litt lewood formula is an identity 

(p(x)= ~ qo(x) ~OHL(X)+R(~o)=P(qo)+R(~o), (1.3) 
xE W (F) W (AF) 
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W(Ae).  The integral P((p) at the r.h.s, is the singular series, and getting good 
estimates of the error term R(q~) is a real job for a number-theorist. We have 
nothing new to say about it. 

Here is our small observation. Let W be a complete intersection in F", given 
by forms of degree 

d 1 . . . .  , d,,: f l  (Xl . . . . .  x.) . . . . .  fro(x1 . . . . .  x.) =0. 

This means, in particular, that Wo-- W~{0} is a pointed cone over the projective 
complete intersection Vc ~'~-1 defined by the same equations in homogeneous 
coordinates. We shall assume that V is a smooth projective manifold. 

4. Proposition. a) coy ~ = O ( n - ~  di). In particular, V is a Fano manifold if and 
only if. n > ~ dl. 

b) For a real z > 0  put f =(f~)~AF, where ~v=Tfl  F~:Q~]/tF:Q] i f  l) lO0 , "~v = 1 other- 
wise. Let  ~p be a function on W(AF) and q~(xt . . . . .  x , ) = q ~ ( f - l x i  . . . .  ,~ ix,). 
Assume that P(~PO makes sense for  all r. Then 

p((p~) = z,-~d, p((p~). (1.4) 

Proof. Part a) is well known. To prove b), note that 

Wo(AF) Wo(AF) 

Hence it suffices to check that 

But this follows from the following description of ~o,1" (cf. [9]). Consider f 
= ( f l  . . . . .  f,,) as a map f :  A"--*A m of affine spaces over F. Denote the standard 
volume forms by o , = d x  I A ... A d x . ,  com=dyl A ... Ady, , .  Define locally on W o 
a form (2uL by the following prescription: 

U),=O A f*(COm), ~2uI=OIw o �9 

Then ~ouL is a measure constructed in the standard way from ~2nL and the 
Tate-Tamagawa measure on A~,. (cf. [6, 8]). Now we have 

t o , ( f x ) = C  co,(x), f*(com)('~ x)=z~a'.l*(com)(x) 

since f * (o ) , , )=d  f l  A ... A d fro. This proves (1.4). 
Finally, we must explain in which sense (1.4) conforms with conjecture (0.2). 

Assume for simplicity that (Pt is the restriction to W(AF) of the characteristic 
function of the product of balls at infinite places and v-adic integers at finite 
places. Then ~ ~p~(x) calculates the number of F-points of W0 with integer 

x~Wo(F) 

coordinates whose conjugates lie in the expanded archimedean balls. For  F = Q 
this is clearly equivalent to calculating the number of F-points on V with O(1)- 
height <z,  with a correcting factor (1 +o(1))/2~(m) (since one really needs only 
points of Wo(Q) with co-prime coordinates). Hopefully, one can use the same 
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trick for general F. Then (1.4) will show that the number  of points with O(1)- 
he igh t<z  on V grows as cz "-~d~ if the singular series P(~o) is an asymptotic 
approximation to ~ ~o~(x). Finally, part  a) of the Proposition 4 allows one to 

X 

conclude that N(V, ~o v 1, H) grows linearly with H. 

w 2. Flag manifolds 

1. Notation. Let G be a semisimple linear algebraic group over an algebraic 
number  field F. We fix once and for all a minimal F-rational parabolic subgroup 
Po c G. Let P be a standard (i.e., containing Po) parabolic subgroup. We denote 
by V= P \ G  the generalized flag manifold and by ~: G ~ V the canonical projec- 
tion. 

By X* (resp. X , )  we shall denote the group of characters (resp. cocharacters) 
defined over F. Any element z~X*(P) defines a line bundle L x on V, whose 
sections on an open subset U c V are 

r(u, Lz)={fer(~-'(U), OG)lf(pg)=~(p)f(g)forallp~P,,g~G}. (2.1) 

The correspondence X ~ L x  defines an embedding (because of X * ( G ) = 0  and 
Rosenlicht 's theorem) of finite index (since Pic(G) is finite) X * ( P ) ~  Pic V, hence 
rk Pic V=rk X*(P). 

Let Av be the adele ring of F. We choose a maximal compact  subgroup 
K=I-IKvcG(Av)  in such a way that G(Av)=Po(Av)K. The bundles LzQFv 

V 

on V |  F~ then carry natural K,-invariant  v-adic metrics defined by the following 
rule. Let s be a section of L z on a neighbourhood of x~V(F~) corresponding 
to a function f a s  in (i). We choose kEKv with g ( k ) = x  and put 

Isl~,o=lf(k)l~. 

Then a height function on V(F) is defined by 

h z (x) = hL~ (x) = ~ [ S [2 ~, 
V 

where s is a section of L z in a neighbourhood of x which is F-rat ional  and 
non-vanishing at x. We see that a choice of K determines a metrization of 
L z �9 

We recall now how to describe the anticanonical bundle on V in group- 
theoretical terms. Let M _  M 0 be Levi factors of P and Po, and let A ~ Ao be 
their split components.  Then X* (M) -- X* (P) is a sublattice of finite index in 
X*(A). Let a = X , ( A ) |  i~=X*(A)QzR.  Denote by e the Lie algebra of 
the radical of P. Let p = pp be one half the sum of the roots of A in e counted 
with multiplicity equal to the dimension of their eigenspaces. Then L - z p  is 
the anticanonical bundle of V. 
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Our  main  tool will be the zeta-funct ion 

Z~(s)=  ~ hz(x) -~ (2.2) 
xeV(F)  

corresponding  to X = - 2 p .  In order  to establish its analytical  propert ies  we 
shall express it th rough  Eisenstein series [4]. 

2. Eisenstein series. For  every v, we define a function He, K~(g)ea of geG(Fv). 
Consider  the Iwasawa  decompos i t ion  g=pk ,  pePo(F~), keK~ and put for any 
; (eX*(P) :  

exp ((He, K. (g), Z)) = I Z (P) I~ �9 

The cor responding  global function is then defined by 

Hp(g)=~He.~,,(g~,), g =(go)eG(Ar) .  
o 

We note  tha t  the sum is finite. If confusions are impossible,  the subscript  K 
is omitted.  

We now put  for 2~fi| g e G ( A )  

E~(2, g ) =  ~ exp(<2 + pp, Hp(7 g))). 
"feP(FI\G(F) 

(2.3) 

By the remarks  following the p roof  of L e m m a  4.1 in [4], this series absolutely 
converges if Re 2 e Pe + 6 +, where 6 + is defined in the following way. 

Let  ao -- X .  (Ao) |  R ,  rio = X* (Ao) | N~. Restr ict ion of characters  defines a 
natural  embedding  6 ~ 6 o and  a na tura l  project ion ao--* a. Fur the rmore ,  since 
A c Ao, there is a canonical  embedding  a --* a o which is a section of the project ion 
defined above.  Hence  we get direct sum decompos i t ions  ao = a | a~, 6o = 6 | 6~. 
Let 4~ o be the set of  roots  of A o in G, and let Aoc4~ o be the set of  simple 
positive roots  in the cone defined by Po. It  is known  tha t  q~0 is a root  system. 
For  every a ~ b  o, we denote  by ~Eao the cor responding  coroot .  Put  6o ~ 
= {Xe6o] <x, ~ ) >  0 for every c~eAo}. Finally, let 

a + = interior of (6 c~ closure of 6o ~). 

By the results o f  Langlands,  the Eisenstein series (2.3) has a m e r o m o r p h i c  
cont inuat ion  whose propert ies  we shall recall, but  first we establish how (2.2) 
is related to (2.3). 

3. Proposition. The zeta-function (2.2) absolutely converges for ) ~ X *  (P)c~(-h  +) 
(corresponding to ample bundles) and - ( R e s ) z e f + + 2 p  and is equal to 
E~(--(s Z + PP), e), where e ~ G (At) is the identity element. 

Proof Let g e  G (F) c G (AF). Let us check tha t  

h x (n (g)) = exp (< He  (g), Z)). 
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In fact, if g=pk ,  p~Po(Av), kEK and f is a function as in (2.1) defining a F- 
rat ional  section of L z in a ne ighbourhood  of x =zr(g) with f(g):4=0 we have 

Is Iv.~,)= I f(k)[~ = I X(P)[v ~ If(g)  lv- 

Therefore,  using the produc t  formula,  we get 

hz(~(g)) = I-[ Is 12~(,)= [ I  exp( (He .  ~v(g), Z)) I f(g)[;-~ 
v v 

= exp((Hl,(g),  Z)) 

since f (g)e  F*. Compar ing  this with (2.3) we get our  result since ~: G --* V induces 
a surjection on F-ra t ional  points. 

4. Remarks. a) Applying this proposi t ion to the anticanonical  class L_2o, we 
get 

Z-2p(S)= E h-2o(x ) - '=E~( (2s -1 )Pe ,  e). 
xcV(F) 

b) We can change K by putt ing K ' = p K p  -1 for pePo(Av). Indicating by 
a prime the corresponding zeta-function we get 

Z'  z (s) = exp ( - s (Z, H p (p))) E~ ( - (s)~ + p), p). 

c) The constant  term of  E~ (which is comparat ively  easy to compute)  repre- 
sents a mean  value of a Z-funct ion over several choices of K. 

5. Theorem. The anticanonical zeta-function Z_ 20 (s) has the following properties: 
a) It admits a meromorphic continuation to the whole complex s-plane. 
b) It is holomorphic in the domain R e ( s ) > l ,  has a pole of order 

t = r  k(P)=r k(Pic V) at s= 1, and no other poles with Re(s )=  l. 
c) It has no singularities on the line Re(s )=  1/2. 

Corollary.  There is a polynomial p(x) of degree t such that 

N (V, L _ 2 o, H) = card {x e V(F) I h L 2 p (X) ~ H }  = H p (log H) + o (H). 

This follows directly from the theorem by a standard Tauberian argument. It 
is possible to obtain for the error-term an estimate of the type H 1-~. Comparing 
with the Schanuel theorem [3], one may expect that the best value of ~ is 
[F  : Q] - 1 dim V-  1. 

The leading coefficient of p can be computed  in terms of residua of scattering 
opera tors  (cf. (2.11) below). In the case of  Chevalley groups,  the result can be 
made  quite explicit (cf. (2.12)). 

6. Proof Par t  a) of the theorem follows from Proposi t ion 3 and the general 
theory  of Eisenstein series (cf. [4], Appendix  II). In our  situation, the mero- 
morphic  cont inuat ion  of  E~ is fairly easy since it is clear how to express E~ 
as a residue of E~o. The  first par t  of b) also follows from Proposi t ion  3. In 



Rational points of bounded height on Fano varieties 429 

order to prove the second part of b) we need some results of the theory of 
cuspidal Eisenstein series. 

Let we W, the Weyl group of q%. It has a F-rational representative w'~N~(Ao) 
(the normalizer of A o in G). We put 

c(w, 2)= ~ exp((  Hpo(w'- m n), 2 + peo)) dn, 
w '  N o ( A r ) w '  - 1 c~ N o ( A F ) \ N o ( A F  ) 

where No is the radical of Po. The Haar measures are normalized by 

d n = l  
N o ( F ) \ N o ( A F )  

and 

Then 

d n = l .  
N o ( F ) c ~ w ' N o ( F ) w ' -  l \ N o ( A v ) c ~ w ' N o ( A v ) w '  1 

Epo(2, n g ) d n =  ~, c(w, 2) exp((Hpo(g), w2+Peo)). 
N o ( F ) \ N o ( A F )  w e  W 

By results of Langlands ([4], w 6), the functions c(w, ") have meromorphic contin- 
uations. They satisfy functional equations 

c(w, 2) E~o(w 2) = E~o(2), 

c(wv, ;3=c(w, v 2) c(v, 2). 

If we consider the partial Eisenstein series 

E~o(2, g)= ~ exp((Hpo(Yg), ,~ q- rOpo)), 
~ , , e P o ( F ) \ P ( F )  

then 
I E~'o()~ ~ c(w,J')exp((Hpo(g)'w2+PPo)), 

N o ( F ) \ N o ( A v )  w e  W A 

where WA= {we W] w identically acts on a}. Furthermore, 

c(w, 2 + O)=c(w, 2) (2.5) 

if w ~ W A and 0 e ft. 
The following lemma seems to be well-known to the experts, but for the 

convenience of the reader we add a proof. 

7. Lemma. The singular hyperplanes of c(w, ')  containing Peo are precisely the 
hyperplanes 

(fi, 2 - Ppo) = 0, (2.6) 

where ~ is a simple positive root such that w ~ is a negative root. Their multiplicity 
is one. No other singular divisor intersects ppo + i ?t o. 

Proof of the lemma. First we consider the case w = s, (the reflection with respect 
to ~) with ~ A  o. By (2.5), (2.6) is the only possible singular hyperplane containing 
Peo. To prove that it is indeed singular, we may by (2.5) assume that 7 is the 
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only simple root, i.e., that the F-rank of G is one. Since the constant function 
is square integrable on G(F)\G(Av) and orthogonal to the space of cusp forms, 
the process of moving the contour of integration described in [4], w 7 proves 
that (2.6) must be singular. (In our situation, the difficult theory of [4, w 7] 
is superfluous and the process is quite similar to the well-known case G = SL2). 
The fact that the pole (2.6) must be simple has been proved in [5], Lemma 98. 
The fact that c(s~, 2) has no more poles on ppo+i~o has been proved in [4], 
p. 128, or [5], Theorem 7.1. 

In the general case, we fix a minimal representation 

W=S~, ... Sak , ~i~Ao. (2.7) 

We put wj=s,j+, ... s,k. Then 

c(w, ,~)= c(s~,, wl ;0 ... c(s~k, ;0. 

We need the following sublemma: 

8. Sublemma. Let v be the dimension of ep, the eigenspace of the root ft. If 
c~e 4~ o is a positive root with c~/2 q~ ~o, then 

(~, PPo) > v~ + 2 V2e (2.8) 

and the equality occurs if and only if ct e A o. 

Proof of the sublemma. We compare the expressions 

S~Ppo=" PPo -0~ ( ~' PPo) 
and 

s~Peo=pp o -  ~ v~fl, 

where ~ -  is the set of positive roots. The inequality (2.8) follows at once. The 
equality occurs if and only if e and 2ct are the only positive roots/3 with s~/3e 
-4~- ,  i.e., if the length of s, is one. In view of e/2r o, this is equivalent to 
eeA o. The proof  of the sublemma is complete. 

By the minimality of the expression (2.7), we have w/- a %e 4)g. The sublemma 
implies 

(at, w~p~o) > (at,  PPo), 

and equality occurs if and only if w i ~ t e A o  . From (2.5) and the convergence 
assertion in [4, Lemma 4.1] or [-5, Lemma 23] it follows that the factor c(s~j, wt2) 
is regular at ifio+PPo unless w~ -~ c~teAo, in which case it has a simple pole 
along (w7 ~ et, 2 - P P o ) = 0 ,  but no more singularities meeting ppo+ifio. Since 
the roots w~-~et are precisely the positive roots fl with fl/2r o and wfl<O, 
and each of them occurs only once, the Lemma 7 follows. 

9. The end of the proof Let AoP= {c~eAolct vanishes on a}. We put 

cp= lira ( 1-[ (~, "~--PPo)) C( wA' "~)' 
~'~PPo ~A~ 
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where w~ is the longest element of W a. By a lemma of Langlands ([-4, Lemma 3.6] 
or [-5, Theorem 4]), our previous remarks imply 

lim( I ]  (~, 2)) EPo(2+O+p~,o, g)=ce exp((Hp(g), O+2pe ) (2.9) 
2 ~ 0  a~A~ 
2~6oP 

for 0eft. In fact, we can use (2.4) and Lemma 7 to compare the constant terms 
of both sides along P0. 

Using (2.9) and the obvious relation 

?~P(F)\G(F) 

we get 
lim( l ]  <~,2))E~o(2+O+ppo, g)=ceE~(O+pe, g). (2.10) 
~.~0 ~teAoP 

Applying (2.10) once more with P replaced by G, we get 

lira( ]-I (~, O))E~(O+Pe, g)=ca/ce . 
,9~0 a ~ A o - A ~  

If we put 0 = 2 ( s -  1) pp, we get the final result of our computations: 

l i m ( s - l )  rk(P) Z_2p(s)=c~/(cP. I ]  (2(~, pe))). (2.11) 
s~  1 ~edo-  AoP 

(It should perhaps be mentioned that in computing the right side of (2.11), 
one has to view Pe as an element of So, for in general ~ does not belong to 
o.) 

By the well-known relation between the singularities of Ee~o and of the func- 
tions c(w, "), Lemma 7 and (2.10) imply that there are at most t=rk(P)  singular 
hyperplanes of Ee ~ containing PF and no other singular hyperplanes meeting 
peo+i~0. It follows that Z 2p(s) has a pole of order < t  at s = l ,  and that 
the t-th residue, given by (11), does not vanish. The proof of Theorem 5.b) 
is complete. Theorem 5.c) follows from [-4, Corollary to Lemma 7.6]. 

10. Remarks. a) Suppose that G is of adjoint type and splits over F. We choose 
a Chevalley basis {X,}~,o of the Lie algebra 9, where q'o is the root system 
of A o. In the case of a non-archimedean place v, choose K~ to be the stabilizer 
of the corresponding Chevalley lattice in ,q| If v is a real (resp. complex) 
place, we assume that the Cartan involution defining K,, is the unique 
automorphism (resp. anti-linear automorphism) of 9@FF~ which sends X~ to 
X_,.  The functions c(w, 2) are then given by 

c(~o, 2)= ]-] ~((~, 2)) (2.12) 
~ o  ~((~, ,~) + 1 )  

w~t < O 

The product is over all positive roots ~ with w ~ < 0, and ~ is given by 

(s) = D ~/2 (n- ~/2 F(s/2))~ ((2 n)-~ F(s)) ~ (v (s), 

where D is the discriminant of F and (v is Dedekind's zeta function. Formula 
(2.12) is standard (cf. for instance [4, p. 285]). With the help of the functional 
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equations for c(w, 2), it is reduced to the case G=PGL2, in which it is proved 
by a straightforward computation. Now, (2.12) implies a formula for the leading 
term of the asymptotics 

l i ra ( s -  1) rktp) Z_ap(s ) 

= H ~ ( ( ~ , p e ) + l )  ao[ l ,~r  PP) ' 

where 4~ v is the set of roots of Ao which occur in the radical of P. 
Furthermore, the functional equations of the Eisenstein series imply a func- 

tional equation relating Z 2v(s) and Z_zv(1-s) .  In the case V=IW(@), this 
functional equation coincides with the functional equation derived by expressing 
Z(s) as a quotient of the Epstein and the Riemann Zeta function. 

b) Suppose that for every place v we are given a K,,-finite function qo~ on 
(Pc~Kv)\Kv such that ~ov= 1 for almost every v, If one wants to investigate 
the series 

Ze(s)----- E h-2p(x)-SHq)v(X), 
x e g ( F )  v 

one can do so by means of Eisenstein series. For  every 2cfir and every v, 
tp~ defines an element of my.) Indptv~)(p~ ), where p~: P(Fv) -, �9 is the character defined 
by ,~. One has an Eisenstein series E~(~0, 2, g), 2~dr gEG(Av) which meromorphi- 
cally depends on 2, and which satisfies the equality 

Z~(s)= E~(q~, (2 s -  1) p, e). 

The role of the numbers c(w, 2) is now played by the intertwining operators 
C(w, 2). The singular hyperplanes of the operator C(w, 2) are given by (2.6) 
(the proof  is the same as above), however the residue of C(w, L) along one 
of these hyperplanes may annihilate a part of a(~} Indeta~)(pa). Parts a) and c) of 
5. remain true, in b) the result is that the order of Z(s) at s =  l is at most 
rk(P). 

Some remarks concerning the dependence of the higher residue 

r = lira (s - 1)'k (v) Z~, (s) (2.14) 

on ~o are perhaps in order. It is clear that r vanishes unless all hyperplanes 
(2.6) are indeed singular hyperplanes of C(w o, 2), where w 0 is the longest element 
of W. The operator C is a product of local intertwining operators 

C(wo, ;0 = H Cv(w0, 2) 
v 

over all places v. Let s be the finite set of places with tp~+l. For  yeS, 
C~ (w 0, 2)(~o,)= c~(Wo, 2)~o,, and C(Wo, 2) is the product of c~(wo, 2) over all places 
v. At 2 = PPo, each C~(w o, 2) is regular and different from zero. Lemma 7 implies 
that the singular hyperplanes of the product I-I c~(wo, 2) are given by (2.6), their 

yes 
multiplicity is one. For  each v, C~(wo, 2) is regular at 2=pe o. It follows that 
r vanishes if and only if C,(wo, pvo)(~0~)=0 for some yeS. 
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One can prove that this happens if and only if S q~,,(k)dk=O. If Po remains 
K~ 

minimal over F~, then our claim follows from the Langlands classification theo- 
rem. Cv(wo, ") is proportional to the intertwining operator used in the proof 
of Langlands' theorem (cf. [10, Corollary 4.6 in Chapter IV and Proposition 2.6 
in Chapter XI]), and the Langlands quotient of Ind~o~v~)(2 peo) is the trivial one- 
dimensional representation. It follows that the projection of ~ov to this quotient 
vanishes iff S q~,(k)dk=O. 

K v 

The same fact concerning the vanishing of C~(wo, ppo)(~o~) can be proved 
by a direct computation using the integration formula which played a crucial 
role in the proof of Langlands' theorem. This computation goes through in 
the general case, i.e., without the assumption that P0 is F~-minimal. 

Our remarks prove that (2.14) is proportional to S ~0(k)dk. 
K 

c) In a large number of cases, Lemma 7.2 in [4] can be used to prove that 
the poles of Zx(s) in the strip 1/2< Re(s)< 1 are real. A non-real pole of Z(s) 
in this strip gives rise to a singular hyperplane a of EeC'(') which meets 6+ + i 6  
but for which X(a), the point of smallest norm in a, is not real. For  cuspidal 
Eisenstein series (i.e., P=Po) this is impossible. In the general case one has 
to check that the image a' of a in ~ + P e o - P e ~ a o  belongs to the collection 
of hyperplanes constructed in [4, Theorem 7.7]. The main difficulty is to prove 
that a' does not fall victim to a cancellation effect which is possible when residua 
along a' several times occur in the process of moving the contour of integration. 
We don't know how to do this in general. 

Appendix 

Consider a primitive integer solution x--  (xi) of the equation 

X3o + Zx~ + 3 x32 +a x~=O 
3 

as a ~-point  on a minimal cubic surface V in IP 3. Put h(x)= ~ [xi[. It is a 
i=O 

height of x with respect to the obvious metrization of ~Ov 1. Denote by xoy 
the third intersection point of V with the line passing through x, ye  V(Q). Call 
x decomposable if for some z~_ V(Q) with h (z)< h(x) we have h (x o z)< h (x). 

In the following table the numbers 

N (H)= card {x c V(~) ] h(x) =< H}, 

N/(H) = card { x ~ V(Q) I h (x) < H, x is indecomposable} 

are given as a function of H. The table and the accompanying graph suggest 
the linear growth of both functions. 

A complete table of solutions with h(x)< 200 and their decompositions into 
solutions of lower height was first compiled by Yu.I. Manin. Similar lists for 
h(x)< 1100 were calculated by Don Zagier to whom we are thankful for his 
permission to publish excepts from them. 
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Height < Number of 
solutions 

Number of 
indecomposable 
solutions 

50 16 3 
100 32 4 
150 49 8 
200 63 10 
250 79 12 
300 94 14 
350 109 17 
400 127 19 
450 139 21 
500 159 2t 
550 181 24 
600 193 24 
650 207 25 
700 223 26 
750 238 28 
800 264 33 
850 277 34 
900 296 35 
950 320 36 

101313 340 39 
1050 363 40 
1100 379 42 

Applying a similar search of points to a smooth cubic curve we would 
find that N~(H) stabilizes for H sufficiently large. This is equivalent to the Mor- 
dell-Weil theorem. Since for our cubic surface N~(H) does not show tendency 
to stabilize we hardly can hope that this fact generalizes. However, there still 
remains a possibility that all points with sufficiently large height can be generated 
by drawing secants and tangents starting from a finite set. 
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Fig. 1 
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