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Introduction 

The q-invariant of a self-adjoint elliptic differential operator on a compact  mani- 
fold X was introduced by Atiyah, Patodi and Singer [A-P-S], in connection 
with the index theorem for manifolds with boundary. It is a spectral invariant 
which measures the asymmetry of the spectrum Spec(A) of such an operator  
A. To define it, one starts by setting, for Re(s)~>0, 

s+l  
(0.1) q(s,A)= ~ sgn2-Tr(A(AZ) 2 ). 

~Spec(A)-(O~ 121 s 

This is a holomorphic function which can be meromorphically continued to 
IE. Indeed, from the identity 

1 ~ s-1 
(0.2) q(s ,A)= ~ t 2 Tr(Ae-ta2)dt 

0 

and the asymptotic behaviour of the heat operator at t = 0 ,  it follows that ~/(s, A) 
admits a meromorphic  extension to the whole s-plane, with at most simple 

dim X - k 
poles at s =  , (k=0,  I, 2 . . . .  ) and locally computable residues. The 

ord A 
remarkable, and considerably more difficult to establish, fact is that s = 0  is 
not a pole, and this makes it possible to define the r/-invariant of A by setting 

(0.3) r/(A) = q(0, A). 

In particular one can attach an q-invariant to any operator  of Dirac type 
on a compact  Riemannian manifold of odd dimension. (On even dimensional 
manifolds, Dirac operators have symmetric spectrum and, therefore, trivial q- 
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invariants.) An important case of such an operator is the (even part of the) 
tangential signature operator, B, acting on the even forms of M; its q-invariant 

(o.4) qx = ~ (B) 

is called the t/-invariant of X. 
Besides the essential role played in the index theorem for manifolds with 

boundary, where they contribute the non-local boundary correction terms, tl- 
invariants of Dirac operators are closely related to several important invariants 
from differential topology (see [A-P-S], [D2], [K-S]). They have also been 
related to global anomalies in gauge theories (see [Wi], [B-F]). 

For X a compact oriented (4n-1)-dimensional Riemannian manifold of 
constant negative curvature, Millson [M] has proved a remarkable formula 
relating tt x to the closed geodesics on X. Specifically, Millson defines a Selberg 
type zeta function by the formula 

(0.5) logZ(s)= ~ Trr+--Trr~-  e-S'(Y) 
~,1., I d ~ 0 - Z F ~ / 2  m(~,) ' 

where [7] runs over the nontrivial conjugacy classes in F = n l ( X  ), l(7) is the 
length of the (unique) closed geodesic c~ in the free homotopy class corresponding 
to [7], m(7) is the multiplicit~r of c~, Ph(7) is the restriction of the linear Poincar6 
map P(7)=d4~l at (c~, d~)eTX to the directions normal to the geodesic flow 
4~ and ~ is the parallel translation around c~ on A~ + = + i  eigenspace of an(O~), 
with a~ denoting the principal symbol of B. He then proves that 

(0.6) Z (s) admits a meromorphic continuation to the entire complex plane; 

(0.7) log Z(0) = n i qx; 

and 

(0.8) Z(s) satisfies the functional equation Z(s) Z ( -  s) = e 2 ~ i.x. 

The appropriate class of Riemannian manifolds for which a result of this 
type can be expected is that of non-positively curved locally symmetric mani- 
folds, while the class of self-adjoint operators whose eta invariants are interesting 
to compute is that of Dirac-type operators, eventually with additional coefficients 
in locally flat bundles. It is the purpose of this paper to formulate and prove 
such an extension of Millson's formula. 

We shall now present our main results. Let X denote a compact oriented 
odd-dimensional locally symmetric manifold, whose simply connected cover 
is a symmetric space of noncompact type. Let D denote a generalized Dirac 
operator associated to a locally homogeneous Clifford bundle over X. The fixed 
point set of the geodesic flow, acting on the unit sphere bundle T 1X, is a 
disjoint union of submanifolds Xr, parametrized by the nontrivial conjugacy 
classes [;~] ~ 1 in F =  nl (X). Each X~ is itself a (possibly fiat) locally symmetric 
manifold of nonpositive sectional curvature. We denote by g1(F) the set of 
those conjugacy classes [7] for which X~ has the properly that the Euclidean 
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de Rham factor of )7~ is 1-dimensional. Thus, for [ J~g~(F) ,  ) ~ R .  x )~'~ and 
the lines R x {x'}, x'e)7'~, are the axes of 7. Projected down to X~, they become 
closed geodesics, c~, which foliate X~. The space of leaves )(~ turns out to 
be an orbifold. The eigenvalues of absolute value 1 of the linear Poincar6 
map P(7) determine a bundle C )~  over )~; (the "center" bundle), and the parallel 
translation around the leaves cy gives rise to an orthogonal transformation 
{~ of C)~ .  C )~  contains the tangent bundle T)(~ and we let N)fy denote the 
orthogonal complement of T)(~ in CX'~. Since T)(~, corresponds to the eigenvalue 
1 of fy, N ) ~  decomposes as 

N)~=N)(~( -1 )O ~ NX~(0), 
0<0<~ 

according to the other eigenvalues - 1 ,  e•176 < 0 < n). 
The restriction to X~. of the vector bundle E, can be pushed down to a 

vector bundle 1~, over X./, which splits into subbundles IE + corresponding to 
the eigenvalue _+ i of the symbol of D. One thus obtains a f<equivariant complex 
~ :  ]~+ ~ l~; over T)(y and, therefore, a class [ ~ ]  ~ K ~  the ~<equivariant 
K-theory group (with compact supports) of TX~. As in [A-S; w 3], we can then 
form the cohomology class ch~y(fj6He"(TX~; ~). By analogy with the Lef- 
schetz formula of Atiyah-Singer [-A-S; Thin. (3.9)], and using the stable charac- 
teristic classes ~ ,  ,f0 and Y- defined therein, we set: 

chO~(L~)~(NX~(- l)) H ,cY~163 
f _ _  O<O<y ^ ~ ]- T (0.9) L(7, D)=,~ X~] 

d e t ( l - - ~ [ N X j  ) " 

For [7] # 1, the closed geodesics c~ in the free homotopy class associated 
to [714:1 have the same length 17. If [71691(F), then q = k d i m N ) ( ~  is integer 
and independent of ~'. Also, for [?]6gl(F) ,  F~* =~c~C~,, where C~, is the con- 
nected center of G 7, is infinite cyclic; we let my= [F/*: Z~], where Z~ is the 
group generated by 7 in F. Again for [7] 6~1 (F), we denote by Ph(7) the hyperbol- 
ic part of the linear Poincar6 map P(7), i.e., the restriction of P(7) to the subbun- 
dle of TT ~ X[ TX~ determined by the eigenvalues of absolute value < 1 (stable) 
and > 1 (unstable); this notation is consistent with that employed in (0.5). 

Our main result establishes that a zeta function can be defined, initially 
for Re(s2)~0, by the formula 

(0.10) l~ ~ ]det(l--Ph(?))[ 1/2 m~, 
b ' ] ~  1 (F) 

and furthermore that: 

(0.11) Z (s, D) has a meromorphic extension to the entire complex plane; 

(0.12) ~/(D) = 1 .  log Z (0, D); 
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and, 

(0.13) Z(s, D) satisfies the functional equation, Z (s, O) Z ( -  s, D) = e 2"i~m. 

Besides the intricate way the geometric dependence of r/(D) is encoded in 
the Lefschetz-type coefficients, the new and surprising feature of formula (0.12) 
is the appearance of only rank one geodesics. An immediate consequence is 
the vanishing of all the eta invariants when G has no factors locally isomorphic 
to SO(p, q), pq odd, or SL(3, ~). As mentioned before, the result can be extended 
to ~/-invariants with coefficients in flat bundles. In particular, we obtain zeta 
function formulae for the diffeomorphism (as opposed to metric) invariants 
defined by taking the signature with coefficients in a locally flat bundle of virtual 
dimension zero. 

A few comments on the proof are now in order. Like Millson's, it is based 
on the use of the Selberg trace formula. We shall, therefore, highlight only 
the way in which the difficulties, not merely technical, posed by the handling 
of the arbitrary split-rank case are overcome. One starts by expanding 
Tr(De -tD2) as a series of orbital integrals associated to the conjugacy classes 
[y] in F. Each such integral, over a necessarily semisimple orbit, can be in 
turn expressed in terms of the "noncommutative" Fourier transform of the 
odd heat kernel, along the tempered unitary dual of G, the group of isometries 
of the symmetric space )~. One of the key results in this paper is the explicit 
calculation of Try(D) for ~=~P,~,v a principal series representation induced 
off a parabolic P = M A N ,  which implies, in particular, that Trg(D)=0,  unless 
A is the split part of a fundamental Caftan subgroup and dim A = 1. This explains 
the occurence of only one type of conjugacy classes, namely 81(F), in (0.I0). 
More importantly, it makes it possible to bring the expression for Tr(De -a)2) 
to a manageable, albeit still group-theoretical, form. The transition to the geo- 
metric form, specifically the expression (0.9) of the "Lefschetz numbers" L(7, D) 
requires some additional work, analogous to computations in [H-P] and [-Sc]. 
Finally, the meromorphic continuation as well as the functional equation for 
the zeta function Z(s, D) are proved by identifying Z(s, D) as an infinite determi- 
nant (defined by the "high temperature" regularization) of the Cayley transform 
D--is  
D+is" 
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w 1. Dirac bundles 

To establish our notation, we recall in this section some standard material 
on Dirac bundles; for details we refer the reader to [L-M]. 
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Let X denote a compact  Riemannian manifold and let T(X) denote the 
tangent bundle of X and {El(X) the complexified Clifford bundle. Let lie be 
a complex vector bundle over X and suppose that there is a bundle map  from 
{El(X) to E n d E  that is an algebra homomorphism on each fiber and covers 
the identity 

(1.1) 

t12 I(X) , End E 

\ /  
X 

Given such a structure there always exists an inner product on each fiber IE x 
for which unit vectors in T(X)x~_{EI(X)x act by unitary transformations. A 
bundle 1E together with such a {El(X) action and smoothly varying inner product  
will be called a Clifford module bundle. 

Since X is Riemannian, there is a canonical connection on T(X) and hence 
on {El(X). We denote that connection by V R. A Clifford module bundle is called 
a Dirac bundle if it has a connection V satisfying the compatibility condition 

(1.2) Vz(v .s)= (Vza v) . s+  v .(Vzs ) 

where s is a local section of E,  v is a local section of {El(X), Z a vector field 
and �9 denotes the module multiplication. On a Dirac bundle one then has a 
Dirac operator  defined by 

Ds=~e,.(V~,s) 
i 

where {ei} is any local or thonormal  frame for X. 
Our concern, starting in w will be with bundles that satisfy one further 

condition, namely local homogeneity. To define this we let )~ be the simply 
connected cover of X and for any vector bundle N over X let 1~ denote the 
pull-back to )~. Let G be a group that acts on )7 by isometries. 

Definition. A vector bundle IE over X is G-locally homogeneous if there is 
a smooth action of G on ~ which is linear on the fibers and covers the action 
of G on -g. 

Notice that for any such G, T(X) is G-locally homogeneous in a natural 
way via the differential. Hence so is any bundle obtained from T(X) by tensor 
products. Since G acts by isometrics on X, it follows that there is a smooth 
action of G on {El(X); thus {El(X) is G-locally homogeneous. Likewise, other 
standard constructions from linear algebra applied to any G-locally homoge-  
neous IE will give in a natural way corresponding G-locally homogeneous vector 
bundles. In particular, End E-~]E*| is G-locally homogeneous whenever 1E 
is. 

When we work with G-locally homogeneous bundles we shall require all 
constructions to be G-equivariant. For  example, if 1E is a Clifford module bundle 
which is also G-locally homogeneous, then we shall require the natural action 
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on ~l(X') and End(]~) to be equivariant with the module action, that is, for 
each g in G we have the commutative diagram 

II~ l(.-~) , Em 

(1.3) 

~Eh)~) ,En, 

Similarly, if E is a Dirac bundle which is G-locally homogeneous we shall require 
G-equivariance for 17 the lift of V to ~. Thus the corresponding Dirac operator 
/) is then G-equivariant, i.e., D is G-locally homogeneous. 

When G is I+ ()~), the full connected group of orientation preserving isome- 
tries of )~, we shall refer to G-locally homogeneous bundles as locally homoge- 
neous. This agrees with the usual terminology when )~ is a homogeneous space 
G/K with G = I + ()~). 

Returning to the general situation, one knows that a Dirac operator is elliptic 
and is essentially self-adjoint. We denote its closure acting in the Hilbert space 
of square integrable sections of IF. also by D. 

w 2. The Cayley transform determinant 

To motivate our infinite determinant construction we consider first a self-adjoint 
operator on a finite dimensional Hilbert space. The Cayley transform of such 
an operator D is the unitary operator 

D - i  
C -  

D+i" 

More generally, for s ~ ,  consider the family of operators 

D - i s  
C ( s )  = 

D+is" 

This family is meromorphic, with poles at sEiSpec'(D)(Spec(D)-{O}), all of 
which are simple, and having residue 

res-i~ C(s)= 2i 2 Px, 

where Pa is projection onto the i2 eigenspace. For  2~Spec(D) let m(2) denote 
the multiplicity. One has 

det C(s)= ( -  1) m~~ det' C(s) 
where 

[2--is\"~ ~) 
det' C(s)= s ! ~ , w , l ~  ) �9 
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Set 2o = rain 121 and let log be the principal branch of the logarithm. If 
2~Spec' (D) 

s is in the plane cut from +i2o to + i ~ ,  one has 

~ 2 - i s \  
log det' C(s)= 2 m(2) l~ ~-+-/s ) 

2eSpec'<D) 

and 

d~l~ - 2 m(2) ~ + 2 ~ s s  = - 2 i  ~ 
2~Spec'tD) 2~Spec'tDt 

o r  

d D 
(2.1) sa'-- log det' C (s) = - 2 i Tr D2 + s ~ 

2 
m(2) 22 + s2 

Thus we obtain the following characterization: 

(2.2) det' C(s) is the unique meromorphic function whose logarithmic derivative 
satisfies (2.1) and normalized by det' C(0)= 1. 

Let now D be a Dirac operator as in w 1. As in the finite dimensional case, 
the family of operators 

D - i s  
C(s) = 

D+is  

is meromorphic with simple poles at sei Spec'(D). We shall show that there 
is a unique determinant function; det'C(s), as in (2.2). Since D(DZ+s2) -1 is 
not a trace class operator, first we shall describe the high temperature regulariza- 
tion of the trace. 

Theorem 2.1 

(a) 
\D +s  ] ~+o \D +s  

is a meromorphic .[unction with simple poles { __ i 212 ~ Spec' (D)} and residues 

o D 
resiz Tr ( ~ ) = 2 i ( m ( 2 ) - m ( - 2 ) ) .  

(b) For Re s 2 > - -  22 one has 

D = ~e  tS2Tr(De-tD2)dt. 
Yr~ D o 

(c) For any e > 0 one has 

D ~: Tr~176 
\ o  + s /  o 
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Proof We need estimates on Tr(De -t~ for t small and t large. The first is 
obtained from [ B -  F]: Tr(De -t~ = O(p/2), t~O. The other estimate is elementa- 
ry. Fix to > 0. Then for t > to 

ITr(De-'O2)l<Xr(IDle-'D~) = ~ m(v)ve -'~ 
vESpec'(ID]) 

= e  -'ag ~ m(v)ve -"~-a2~ 
veSpec'([ D[) 

<~e-t~ E m(v) ve-'~176 
veSpec'(l DI) 

= e-('-'o)~o ~ ~, m(v)ve -'~ 
v~Spec'(I DI) 

=ce-t).~. 

These two estimates allow us to conclude that the function 

CO 

(2.3) ~(s)= ~ e -'s~ Tr(De-'O~)dt 
0 

is analytic for Re $ 2 >  - - 2  2. Actually, from the estimates we can conclude more. 
Fix e > 0 and write 

(2.4) 7J(s)= ~ e - ' :  Tr((De-'O2)dt + ~ e -'~ Tr(De-'~ 
0 

It is obvious that the first integral is entire, and (using [B-F]) that it has limit 
zero as e+0, uniformly on compact subsets. For the second integral, if Re s2> 
-2o 2 we may use Fubini to get 

CO 

Se-tS~Tr(De-t~ dt=Tr S D e - t ( : + ~  e-~(~ 

Now (D2-F $2) - 1 is a meromorphic operator-valued function and for each e, > 0, 

T r ' - - [ ~  e- ' t~  is a meromorphic function with poles at 
~o +s / 

{ + i212 ~ Spec'(D)} and 

resiaTr(D2~s2e-'(o2+:))=J---~[m(2)-m(-2)]. 

Hence, for each ~ > 0, the right hand side of (2.4) defines a meromorphic continua- 

tion of ~U(s), which must be unique. Denote it by Tr~ Then this mero- 

morphic function has all the properties stated in the theorem. [] 
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We are now in the position to make the definition: 
, [ D - i s \ .  

(2.5) det ~ D ~ s ) i s  the unique meromorphic function whose logarithmic deriv- 

. 2 o / D \ 
ative is ~- Tr  ~ D ~ s 2 )  and whose value at s = 0  is 1. 

Recall now the definition of the q-invariant, (0.1)-(0.3). From (0.2) and the 
estimate in [B-F], Tr(De-'~ it follows that the integral converges 
and defines ~/(s) on Res > - 2 ;  in particular 

tl(D ) = t- 1/2 Tr(De-tO2) dt. 

D - i x  
Proposition 2.2. lim det' - e  -~i't(D). 

x~+o~ D+ix  

Proof. Since 

I dt ~ e-'~lTr(De-'D~)lds= ~ t-'/2tTr(De-'~ 
0 0 0 

one can use Fubini's theorem to obtain 

co oo ao  

S qJ(s)ds= ~ ds ~ e-'S2Tr(De-'O2)dt 
0 0 0 

o~ 

= f dt ~e-~S~Tr(De-'~ 
0 0 

= ~ S t-1/2 Tr(De-,O~)dt 
2 

0 

=~q(D) .  

Thus 

D-ix___2 ~ ~(s)ds=_1tirl(D). [] 
lira logdet '  D+ix  i o 

x ~ o o  

We note that since Tr e-'(o2 +s2) is invariant under s ~ - s ,  our determi- 

nant satisfies the functional identity 

(2.6) det' Dy + is_ det' s i ~ _ _ D  - 1. 
D - i s  D+is 
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Remark. Set e = 1Ix. If one replaces the metric g by g, = g/e, 2 then Proposition 2.2 
says that the adiabatic limit of the determinant of the Cayley transform of 
De is e -n i ' l (D)  

w 3. Dirae operators on locally symmetric spaces 

For the remainder of the paper we shall require X to be locally symmetric. 
We will then use harmonic analysis to study the kernel of the odd heat operator 
directly, rather than through its spectral decomposition as in w 2. More precisely 
we follow the familiar Selberg approach and evaluate the trace of the odd heat 
operator, De -`D2, by means of orbital integrals. The success, in this instance, 
of this approach ultimately rests on the computation of the Fourier transform 
of the Dirac operator in Proposition 3.6. 

Let )~ be a globally symmetric space of noncompact type and dimension 
2 n + 1, and let G denote the connected component of the group of orientation- 
preserving isometries of )7. Then G is a connected semisimple Lie group, and 
if K is a fixed maximal compact subgroup, then )~ is naturally isometric to 
O/K. 

Let p denote the tangent space to 3~ at eK and denote by Spin(p) the 
usual 7Z 2 cover of SO(p) contained in the Clifford algebra ~/(p). Since the dimen- 
sion of p is odd, e l ( p )  has exactly two distinct simple modules (c• L• these 
modules, however, when restricted to Spin(p) are equivalent. Passing to a cover- 
ing group if necessary, we may suppose K maps into Spin(p). Let (a, S) denote 
the representation of K obtained from either of these modules. We shall refer 
to (a, S) as the spin representation of K. 

Lemma 3.1. Let X be an odd dimensional homogeneous space G/K and fie a G- 
homogeneous Clifford module bundle over X. Then ~ is associated to a representa- 
tion of K of the form (a| S|  V). 

Proof Let E be the vector space ~ and let c(-) denote the action of CI(p) 
on E. Since 1~ is homogeneous, there is a representation (p, E) of K on ]~eK, 
with 1~ associated to (p, E). 

Now E is also a module for ~l(p),  with p odd dimensional, and so as 
�9 l(p) module 

E"-L+|174  

Here L•174 are the + 1 eigenspaces of e(wr ~r the complex volume 
element (r162 1+1 e l . . . e2 ,+l ,  n=l(2)). We shall show that each of L•174177 are 
of the form S |  V as K-modules. 

Restricting c( ')  to K, one gets 

(3.1) (c(')lK, E ) _ ~ ( a | 1 7 4  S| @ S |  

Using the G-equivariance (1.3), in particular K-equivariance, gives 

(3.2) p(k) c(v) p(k-  t )=  c(kvk-  '), 
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where K is viewed as a subgroup of Spin(p)_cllill(p). Since ~o r is central, from 
(3.2) it follows that p(k) acts on each of L+| and L _ |  From (3.1) 
we get c • (k v k-  1) = a |  (k) c • (v) a |  (k- 1), thus a |  (k- 1) p (k) intertwines the 
action of (El(p). Hence for each k~K  there are z+ tEnd(V+) with 

a |  1) p(k)lL~ | ~ l | 1 7 7  (k). 

If suffices to show z • is a homomorphism. 

~|177 (k~ k2) =a|  1 kz)- 1 p(kl k2) lL~:| i 

: a |  o. |  1 p(kO p(k2)IL, | 

= a| :~@~+ (kl) p(k2)IL~ |  

=~|174 [] 

We identify V(IE), the space of smooth sections of ~,  with [C ~ (G) |174  K, 
where K acts on C~(G) via the right regular representation R(G). On F(~)  
there is a natural connection V" F(l~)~ F(I~| T* (X)), given by 

Vf = Z ( R ( X , ) Q 1 ) f  |  

Here {X,} is a basis of p and IX*} the dual basis. Clearly V commutes with 
the natural action of G on F(E), but it also anti-commutes with the action 
of the Cartan involution 0 on sections. Indeed, if Xep ,  

o d o 
R ( X ) f  ( g )=d r  f (g exp tX)l,=o 

d 
= dt  f(O (g) e x p -  tX)I, = o 

= -(R(X)f )~ 

Lemma 3.2. Let ~ be a homogeneous vector bundle over X. Then there is a unique 
connection on F(~)  that is G-homogeneous and anti-commutes with the Caftan 
involution, O. 

Proof Let V be the natural connection and V' any other connection as in the 
Lemma. Then V ' - V  is of order zero, i.e., V'=V+Y,  L i |  where LieEnd(E) 
and such that L=~2L~@X* in Hom(E, E Q p * ) i s  K-equivariant. Since V' and 
V anti-commute with 0, so must L. But L is of order zero, so (L f ) ( x )=L( f ( x ) )  
and hence must commute with 0. [] 

Corollary 3.3. Let X be an odd dimensional symmetric space and I~, a G-homoge- 
neous Clifford module bundle over X.  Then on F(~) there exists an essentially 
unique Dirac operator which is G-homogeneous and anti-commutes with the Cartan 

involution. 
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Proof. Let V be the unique connection on F(ff~) given by Lemma 3.2. Let 
se  F(~) ~- [C ~~ (G) |174  V] ~ and ve F ( r  [C ~ (G)| Then 

v(v.  s)(g) = ~(R(X , ) |  s(g)) |  

= Z [R (X,) v(g)] ,  s(g)| 

+ Zv(g). R(Xi) s(g) |  

= (vv).  s(g) + (v. Vs)(g). 

Hence ]~ is a Dirac bundle and thus has a Dirac operator. It follows from 
the properties of V that this Dirac operator is G-homogeneous and anti-com- 
mutes with 0. On the other hand, suppose ]~ is a Dirac bundle with a homoge- 
neous Dirac operator. Since the module structure on ~ is G-homogeneous as 
is the Dirac operator,  it follows that the connection must be. Hence (Lemma 3.2) 
it is natural connection, and the Dirac operator is the one described previous- 
ly. [ ]  

Henceforth, we fix 1~, a G-homogeneous Clifford module bundle on X. We 
shall use the Dirac operator 

b = ~ R(Xi ) |  c(~r 
i 

here (Xi} is an oriented orthonormal basis of p and c( ')  denotes Clifford multi- 
plication on E. The twist with the volume element enables us to handle the 
general case when both simple modules L+ occur. When only one occurs, this 
operator is a scalar times the usual Dirac operator. This invariant operator 
/) is known to be elliptic and formally self-adjoint. More generally, if (n, H~) 
is any unitary representation of G with smooth vectors H~, define an operator 
on [ H ~ | 1 7 4  V] K by 

b .  = Y~ ~(x,)@c(x,) c(o~*). 
i 

For  computations, it is convenient to identify c(v) with 
c + ( v ) | 1 7 4  v~Cl(p), and c(x) with s(x) |  x~Spin(p). We shall use 
this identification freely in this section. 

Combining the computations in [B-W] p. 68 for the non-equirank case with- 
out coefficients, with those in [A-Sc] p. 54 for the equirank case but with coeffi- 
cients, one gets a formula for/~2 on [H~ | 1 7 4  V] K, 

D~ _ _ ~(~2)| I |  - I |174 I 

+ I|174 

Here Q is the Casimir operator  of G and g2 r the Casimir operator of K, con- 
structed using the Killing form of 9. When (z,, V) is irreducible, the formula 
simplifies to 

(3.3) /~2 = _ x (s174 I | I + (t] # + Pk ]] 2 _ f] P II x)I, 
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where I~,Pk and p are as in I-B-W]. 
We denote by e -tb~ the heat operator for the non-negative operator /~z, 

and summarize its main properties. 

(3.4) The Schwartz kernel of e -~b~ can be identified with a section, ~'t, in 
[ C ~ ( G ) | 1 7 4  V)] K• ~ that acts by convolution on [C ~ (G) |174 V] ~. 

Let 5fP(G) denote the Harish-Chandra p-integrable Schwartz space and set 
~ ( C ) =  (~ ~ (G) .  

p>O 

(3.5) For  each t > 0, ~'t is in [Se(G) |174 V)] ~ • ~ 

This is proved in [B-M] for even dimensional )7 but the argument is valid 
for odd dimensions as well using (3.3). 

(3.6) If (7t, H~) is an irreducible unitary representation of G and (z, V) is irreduc- 
ible, then on the finite dimensional space [ H ~ | 1 7 4  V] ~ we have 

7z(~e).=e-eb2,=et(lla + pll2- Ilu+ okll2) I 

where (2 acts on H~ by the scalar ]lA+p]l z -  [IPll 2 

(Again see [B-M]). 

(3.7) For each t>0 ,  the odd heat opera to r / ) e  -'t~2 has kernel 

k't e [5 P (G) | End (S | V)] K • K 

Indeed, this follows from (3.5) and the fact that 5e(G) is invariant under R. 
We shall need these constructs on locally symmetric spaces. So let F be 

a discrete, torsion free subgroup of G with X = F \ ) 7  compact. Since I~, is homoge- 
neous we may form E =  F\ll~,. Smooth sections of IE may be identified with 
[ C ~ ( F \ G ) | 1 7 4  K. We let D denote the differential operator induced on sec- 
tions of E by/~. Then D is elliptic, formally self-adjoint, with finite dimensional 
kernel. The corresponding heat operator e -e~ defines a trace class operator 
on [ L 2 ( F \ G ) | 1 7 4  ~ and has kernel he equal to a smooth End(S| 
function on F \ G  x F \ G  with T re  - '02= ~ trh,(2, 2)d#(2). The kernels he and 

FiG 
~t are related by 

(3.8) h, (p, q) = ~ h',(y- 17 x), 
r 

where p = F x  and q = Fy, x, y in G. 
To compute T r D e  -t~ it will be enough to evaluate the Fourier transform 

of the odd heat kernel on the tempered unitary dual. For  this we need a more 
explicit formula for /3~, where rt is a representation induced from a parabolic 
subgroup. 

Consider the Cartan decomposition 9 = t e p ,  and let a be a maximal abelian 
subalgebra of p. Extend a to a Cartan subalgebra br162162 and let A be 
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the roots of (gr ba:)- For the normalization of root vectors and similar facts, 
we refer to [He]. Set Ao= {sea  I~4:c~~ For each c~eA~ we choose root vectors 
E~ with the following properties: 

(i) E~= Y~+X~ with Y~e{~:, X ~ O ,  and OE,= --E_~. 

(ii) Denoting the Killing form by ( ,) ,  we have: 

(E~, E=)=0; (E=,OE.)=I; (X~, X~)=�89 

(x,, Yo)=o; (x=,xa)=o=(v,, va) ~,,-fl. 

(iii) Set A ,=  --[E~, OE,] =2[Y, ,  X,] in aa:. Then if H is in ar (H, A~) = c~(H), 
and (A,, Xa)=0=(A~,  Yo), for all fl~Ap. 

(iv) Define N~.o, o~, t5 in A~ by [E~, EB]=N~,r ~ if a+15~A and zero other- 
wise. Then N,.a= -No. , ,  and if ~, fl, y are in A with c~+15+7=0 we have N,.a 
= Na, y=Nr.,. Moreover, from (i) we get N~,a= --N_~ _~. 

For U, V in p we denote by UA V~End(p)the map UAV(X)=(U, X)V 
- (V ,X)U.  Also if ~, is in d~, by I~J we mean the positive root proportional 
to  Y. 

Lemma 3.4. Let ~ A ~  with E~= Y~ + X~, Y~ in ~, and X~ in p~. Then 

adlpr162189 ~ N~,aXaAX~+ a 

N~I3*O 

+�89 ~ N~,-aXaAXl~-al. 
#Ea;- 

Proof Let {Ai} be any orthonormal basis of a. Then {A,, X~, aEA~} is an 
orthogonal basis of pc. We shall show both sides agree on this basis. We shall 
use (i)-(iv) repeatedly. 

For Ai, adlpcY,(Ai)=--~(Ai)X,, while X,  AA~(A3=-c~(AI)X~ and 
X~^Xy(A3=O. For ~,~A~+\{~} with ~+y6A,  

=0. 

On the other hand, for such ?, X.  A A~(X.~)= 0, X a A X .  +a(Xv)=0 for otherwise 
7=f l  and hence ~z+7 is a root or ~=cz+15 and then 7-c(  is a root, and similarly 
X~ ^ XI~_al(X ~) =0. For X~ we have [Y~, X~] = �89 A~, X~ ̂  A~(X~) =(X~, X~)A~ 
=�89 and X~ ̂  X~+a(X~)=O = X~ ̂  Xi~_tq(X~). 

Hence it suffices to examine Xr where at least one of ~___y is a root. Now 
[Y~,Xj=�89189 and X~^A~(Xr)=O. The only terms in 
the sums that might be non-zero on Xr are: Xr ^ X~+ a, Xr ^ S i n _ e l  when f l=y;  
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Xr_~AX,~ when ? = e + f l ;  and whert ~=1~-31 either X~,_~^Xr or X~+~,AXr 
according to ? = c~-/~ or ? =/3' - ~. If ~ -  2~ > 0 we get 

} [N,,~Xr A X,+~+ N~, _,X,  ^ X~_~+N~,, _(,,_,~ X,_, A Xr 

Using (iv) and recalling that (X~, Xy)=�89 we find that this evaluated on X r 
gives �89 N~,~ X~. ~ + �89 N,, _ ~ X,_ ~. The remaining case 7 - a > 0 is done similar- 
ly, [ ]  

Let q be a standard cuspidal parabolic subalgebra which we may assume 
can be expressed as q=m~|174  with % c a ,  and m q = m . c ~ f |  Let 
Q be the normalizer of q in G; Q has Langlands decomposition Q=MoAoN o. 
Let ({. W 0 be an irreducible unitary representation of M e and e ~ a quasi-charac- 
ter of A e. Set nr = Ind~ {|174 acting by the left regular representation on 

Hr {f: G ~ W~t.f (gman)=e -(~+pQ) L~ ~ (m)- i f (g)}, 

with norm squared S If(k)I~v~ d k. Let us note that unitary induction corresponds 

to v imaginary valued. For technical reasons that will become clear later we 
take M to be a subgroup of M e such that exp(m c~ p)_M_~MQ. Let now (3, We) 
be an irreducible unitary representation of M, e v a quasi-character of AQ and 
form n~.~=Ind~aQNQ~|174 as before. 

To compute /3~.~ on [Hr174174 K, we first observe that [Hr174174 K 
is naturally isomorphic to [W~OS| r~'M via the map f~--~f (e) (see [B-M] 
p. 178 for a proof for minimal parabolics that extends easily to the case at 
hand), Let {At} (resp. {X j}) be any orthonormal basis of a, (resp, m,c~p) and 

X,  as before, for E, Enq,e. Then {&, Xj, V~x ,}  is an orthonormal basis of 
Pe. If 2 is any linear functional on aq,e we denote by Azeaq,e the vector with 
)~(H) =(An, H). 

Proposition 3.5, On [We|174 V] K~u, D~.~ is given by: 

(3.9) D,~,=I| ~ l|162174174 

--�89 Z N,,a I| c(X a) c(X,+a) c(o9 ~) + Z r174 c(~ 
a,fl 

Proof D,~.~ is a sum of terms involving A;, X~, Xs; we shall compute the contri- 
bution of each. For  any f in H~.~|174 (nr174 
+ pQ)(Ai)(I Qc(At) f (e). Similarly (rt~, ~(X j)| j) f (e)=(r (X j)| j) f (e). And 
writing X~ = E,- -  Y~, for such f we have 

(~r (X~)| c (X~) f (e) = - (~r (Y~)| c (X,) f (e). 
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Now assuming that f is in [Hr174174 K we get that 

(nr174 f (e) = (I | l |  Y~,)| l) f (e) 

+ (I| (X,). 1|174 

The second term is kept; for the first term we use Lemma 3.4 and s(Xa A Xr) 
= �89 c(X#) c(Xe) (fl 4: 7) getting on f(e) 

(I| I|174 = + �89 I| 2 c(A~,) 

_14 ~', N~,#I| 
II 

N ~ , O * O  

--�88 ~ N~,.-t~l| 

N~.  - ,n * o 

Summing over c~ ~ A (n~), the first term becomes - �89 ~ I | c (As) = - I | c (Ape), 

and the remaining terms may be combined pairwise to give 

-�89 y, X,,~I| 
r # 

N ~ , B * O  

Indeed the terms in these two sums are in bijective correspondence (a, fl)~--,(a 
+fl,  fl) and (y, 2)--*either ( 7 - 2 ,  2) or ( 2 - y ,  y) according to 17-21, also N~+a _a 
= N_,. _a = N~.a as is seen from (iv). Hence the n o contribution is 

--I|189 ~ ~ N~,,t~IQc(X~) c(Xt~ )c(X~+t~ ). 

N~,.a  * o  

For  the % contribution we get 

(v + pq)(Ai)I | = 1@c(A,) + I Qc(ApQ). 
i 

Combining the nq, % and m q n p  contributions and taking into account o9 r 
we get the result. []  

Fix a unit vector Y in %, and let pr  be the orthogonal  complement of 
m Y  in p. Since p is odd dimensional, the spinor representation (s, S) when 
restricted to Spin(pr)___ Spin(p) breaks up into two irreducible summands. We 
label these S• according to whether they are the + i  eigenspace of c(Y) c(c~r 
This is possible because c(Y) 2 = - 1, c(~or 2 = 1 and Spin(p r) centralizes Y within 
~/(p) .  We note that S• depend on Y but we shall disregard this in the notation. 
The group K ~ M  o centralizes % and is easily seen to map  into Spin(p r) by 
a; thus S• are also K n M Q  (hence Kc~M) invariant. 
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Proposition 3.6. Let Ye% be a unit vector and S +_ the irreducible spin representa- 
tions of Spin(pY). Then 

(3.10) Tr/)~.~ = v(Y) dim [ W~| (S + - S_) |  V] K~ M. 

Moreover, 

(3.11) Tr/3~. = 0  if dim%>_-2. 

Proof S+ are the _ i  eigenspaces of c(co~Y). Now any odd element in II;/(p) 
generated by pr anti-commutes with cozY, hence maps S• to S~-. From this 
it follows that all the terms in (3.9) but I| ~) have trace zero. We 
write A~ = v(Y)Y+ Z where Z e % n p r. Again we have Tr IQc(Z)c(co r = 0 for 
parity reasons, leaving formula (3.10) for Tr/5,~..  

To prove (3.11) let Zeaqnp r and non-zero. Then c(Z) 2 a scalar implies 
that c(Z) is invertible. But Z e %  together with (3.2) gives that c(Z) intertwines 
the K c~M action; while Z e p  Y, non-zero, implies that c(Z) interchanges S+. 
Hence S+ is equivalent to S_ as Kc~M module and thus (3.11) follows. 

Remark. Assume that V= V u is irreducible, then 

(3.12) dim[Wr174 - S _ ) |  if d i m % =  1 

and [IAr LI~* + pkII2 =~0. 

Indeed, recall (3.3) which says (/3~,o) 2 acts as a scalar on [Hr174174 ~, 
easily computed to be - 11Ar 2 + I1~ + Pk rl 2 where Acts the infinitesimal charac- 
ter of W~ and V=V, is irreducible. Hence D~o is an isomorphism: 
[W~|174 [Wr174174 K~M provided IIAr 2 -  I[//q-pk[12::t=0. Since, 
from (3.9), D,~.=I| c(cor we get (3.12). []  

w 4. The trace of the odd heat operator 

We are now in a position to compute orbital integrals of the odd heat kernel 
/)e -tb2. For  this purpose we shall follow closely the notation used in [H-CI ]  
and [H-CS]  and, for brevity, refer the reader to these papers for notation, 
normalization of measures, etc. not explained herein. 

A brief summary of choices of Haar measures is in order. The Killing form, 
via Bo, induces a Euclidean structure on fl and any subspaces. Normalize 
Lebesgue measure on any subspace so that the volume of the unit cube is 
one. Any Lie subgroup L of G has the Haar  measure, denoted dL, implemented 
by a differential form, near the identity, with pull-back via exp the chosen 
Lebesgue measure. On a compact subgroup L, denote by dl=vL(L)-ldL the 
Haar measure with total mass one. Any parabolic subgroup P with Langlands 
decomposition MAN fixes a "s tandard" Haar measure dm on M. Finally, mea- 
sures on quotient spaces are chosen so that the Fubini theorem holds. 
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Let b = a z ~ a R  be a standard Cartan subalgebra and A=AzA n the corre- 
sponding Cartan subgroup. Set m 1 =centralizer of an; m 1 = m O a n .  For  any 
choice of compatible orders on A,, and Ag define two functions on A by 

A + (a) = [ det (I - A d a -  t)Ig/,,, 11/z 

'At(a)= l-[ [1--~_~(a)]. 
a~ A.,+ 

Let A' denote the regular elements in A and let h=a, aR be in A'. Denote 
the projection G--* G/An by x~--~x*, and for f in C~ (G) set 

(4.1) 'F~(h)='A,(h)A+(h) S f(h:'*)dx* 
G/AR 

here hX*=xhx - 1 and dx* is normalized so that dx=dx* dA n. 
Let Gh= centralizer of h in G and G o the component of the identity in Gh. 

Then for the normalization of measures dx = d2 dG~ define the orbital integral 

Of(h)= ~ f(h~) d,2. 

Since h is regular, G o = At ~ An, and for the measures as chosen, one has 

Of(h)= ~ f(h*')dx *. 
G/An 

For  h regular, Harish-Chandra has shown that the distribution f~-,Of(h) 
extends to r163 in particular can be evaluated on the odd heat kernel (see 
(3.5)). 

Let ~ denote the partial order on the standard Cartan subgroups: A~-B 
if a certain finite group w(a~lbn)4=0. If A=AIA  R is any Cartan subgroup let 
A*, A~', A~ denote the set of irreducible unitary characters of A, At, An. In 
IS] Harish-Chandra stated that 'Ffl(h) is supported on those A* where A~-B, 
here fEc~2(G). While it is unclear whether Harish-Chandra stated Theorem 15 
only for equirank G, it is clear from Herb's work [Hb] (h~C~(G))  that the 
result is valid without the equirank condition. Since we need only symmetry 
and support features of orbital integrals but not the very detailed inversion 
formula of Herb, we shall follow the notation in [H-C]. With this caveat in 
mind, as a special case of his Theorem 15, we have 

Proposition 4.1. Let b~B' and f~c~Z(G). Assume 

f a = 0  if A>-B. 
T h e n  

(4.2) 'Ff(b)= I [W(G/B)]-' ~ e,(s)(s.b*,b) fB(b*)db*. 
B* seW(G/B) 

Definition. For B the fundamental Cartan subgroup, the functions with fA =0,  
A~.B, shall be called pseudo-cusp forms. 

We now take a closer look at (4.2). Let b*~(B*)', b*=(a} ~, v) with vEa~. 
The regular element a~* in A]' gives rise to a discrete series representation of 
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M in the following way. Let M ~ be the component of the identity in M and 
let C = k e r  AdtM; set M + = M ~  The unitary character a* gives a regular inte- 
gral element of a* together with a compatible character on C. Let (rr~(o~), H(a*)) 
be the discrete series representation of M + associated to the W(M +, At) orbit 
of a~'. Set lte(a~)=Ind~+%o(,~)and let H ( 0  be the Hilbert space for xe. The 
representation 0z~, H(O) is a discrete series representation of M; this construc- 
tion exhausts gz(M), the set of equivalence classes of discrete series representa- 
tions of M and two are equivalent if the M + parameters are in the same 
W(M, At) orbit. 

Form rtr174174 and let 0,~.~ denote the character. Then 
O~..( f)  = ei(s)fB(b*) where s in W(G/B) sends b* to the (~, v) data and et(s)= + 1. 
The functions fB are skew relative to W(G/B), i.e., fs(s.b*)=fB(s.a*,s.v) 
=r ). In particular if w is in W(M,A,), w.v=v so 
fB(w-b*)=j'a(w-a*, v)=e,(w)f,(A~', v). 

The distributional character of discrete series of M + and M arc given on 
A~ by locally summable functions 0o,(~) and O~(,i). Set '~o(al)='AM(al)O,o(a~) 
= ~ 8,(s)(s.a*, at), '4)r Here 'AM= [I [ 1 - - ~ _ j  and 

W ( M  + , a l )  a e A m  ~ 

'AM ='AM,/AM,, with c and n denoting the compact and non-compact roots. 
Since M is cuspidal, mc~p is even dimensional. Let a+ denote the spin 

representations of K c~ M ~ and )G ~ their characters. If B is fundamental, then 
B is connected and M + = M ~  and thus a+ are representations of K ~ M  +. 

A r It is known that (Zo+--Zo_)lat=~pM.. M,,, here ~0,~.. is defined on Al, being 
the highest weight of a +. Let W be any finite dimensional virtual representation 
of Kc~M + and suppose (a+--a_) divides IV,, denoted W~(a+-a_).  In this 
case ['AM,,]- ~ Zw is an analytic function on A,. 

Let b*~A'/ and log b* in a*. The character b* is said to be regular if 
I-I (log b* + PM, Ct) 4: O. The discrete series, g 2 (M +), are in one-to-one correspon- 

~EA. +, 
dence with W(M +, At) orbits of the regular characters. If b* is singular, Harish- 
Chandra has also constructed an invariant distribution also denoted Oh,. While 
this is not necessarily the character of an irreducible representation of M +, 
it is known from [H-S] that it is a virtual character with constituents irreducible 
representations induced off parabolic subgroups of M + associated to a non- 
fundamental Cartan subgroup of M +. For b* singular let W(b*)~ W,(M +, At) 
be the isotropy subgroup. One has Oh,= ~. ~(w)O~.b, with O~.b. the character 

W(b*) 

of the induced representation acting on a Hilbert space H(w.b*). Let ~ ( M  +) 
denote the W(M +, At) orbits of the singular characters. 

Lemma 4.2. Let B a fundamental Cartan subgroup. Let W be a finite dimensional 
virtual representation of K c~ M + and suppose that We(a+ -a_) .  7hen on A t 

(4.3) Zw'AM,c _ ~ dim [H(co)| W] K~M+ r-~,o 
'AM,n  oeg2(M § ) 

+ ~ ~ e(co)dim[H(w'C~174 
r + ) W(co) 
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Proof One knows that only finitely many terms on the right side of (4.3) have 
dim[H(og) |  K~M+ 4:0. From the Weyl character formula and the Harish- 
Chandra character formula it follows that both sides of (4.3) are finite sums 
of characters of At. Using Harish-Chandra's orthogonality relations, it suffices 
to evaluate the integrals (dat normalized Haar  measure) 

and 

r 

ZW'AM,~ ,qbo dal 
AI 'AM,  n 

S Xw'AM'c'A~t@",oda1" 
At tAM, n 

Notice that since W~(a+-~r_)  the left side of (4.3) is skew under the action 
of W(M +, At), and the right side of (4.3) involves a spanning set of skew Fourier 
series on A t. 

We evaluate the first integral; the second is done similarly. As the integrand 
is analytic, we need integrate only over A~. Hence 

--Zw'AM'~'~,odal= ~ Zw'AM'~'AMOo, da l 
a'x tAM, n Xl 'AM, n 

= ~ Zw@o,l'AM,~lZdal . 
a'r 

On the connected group M § the character O,o and the K-character %, agree 
on (Kc~M+) ' ([A-Sc] p. 16). Thus we get the integral is 

zw ~,o I'A.,,~I 2 dat--I W(M +, At)l dim [H(co): I7r K~M+ 
A i  

=[W(M+,ADIdim[H(og)| KnM+. [] 

Lemma 4.3. Let f ~c~z ( G) be a pseudo-cusp form and suppose that 

fn(a*, v)= ~(v) dim [H(~o(a*)| W] x~M+. 
Then 

'AM,c(ht) 
(4.4) 'Ffl(h,~ht~)=r-jM,,(h,) lW(G/B)l-1 ~ c]~(s'hR) ~w(s'ht) 

W(G/B) 

where ~ is the aR-Fourier transform of q~. 

Proof From (4.2) we have 

'F~(hthR)= I [W(G/B)]-' ~ et(sl(s.b*,b)fn(b*)db* 
B* s~W(G/B) 

=[W(G/B)]-' I I ~ e,(s)(s'a*,ht)s'v(hRlfn(a*,v)dv 
A* a*R sEW(G/B) 

= [W(G/B)]-' I Z 
A~/W(M+,AI) W(M+,Ax) 

�9 ~ ~ e1(s)(sw'aT, hi>s'v(hR)fB(w'a*,v) dv. 
a R  W(G/B) 
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We compute first the contribution of (A*)'. Identify (A*)/W(M +, AI) with 
g 2 ( M  +) and use f (w.  a*, v)=ei(eo)f(a*, v) to get 

~, Z el(W) E e~(s)(sw.a*,h,) I s.v(hg)fB(a*,v)dv 
0% (M + ) W (M +, AI )  W(G/B) a* R 

: E E e,(w) ~_, e,(s)(sw-a,,h,) 
g2(M + ) W ( M  + ,AD W(G/B) 

�9 (~(S  - 1  h R  ) dim [H(~o(a*)| W] K~M+ 

= E qS(s-'h,) ~, Z et(w)et(s)(~o~-pM(h,) 
W(G/B) g2(M + ) W ( M + , A r )  

�9 (w-a*, s-  1. hi) dim [H(cn(a~'))| W] K ~ M + 

= ~ ~,(s)(o(s-th,) ~" dim[Hffo(a*))| 
W(G/B) ~2(M + ) 

The contribution from the singular characters is done similarly except that one 
replaces ~, ~i(w)(w.a~,s-lhi) with ~ el(w)'AM(s-lhl)O'~.~(s-lhi). 

W ( M  § ,A~) W(~o) 

Then from Lemma 4.2 we obtain 

'F~(h, c~ hg) = [W(G/B)] - '  el(s) ~b(s -1 hR) ~.o~_o~(hl) 
W(G/B) 

'AM.~(S-1 ht ) 
~ W  ( S -  1 hi). t --1 AM,,(S hi) 

Write --'AM'~-- 'AM 
' 'A  2 '  AM,n "JM,n 

invariance of ['AM,, I 2 t o  get the expression 

and use Lemma 27.1 from [H-C, I] together with the 

, B '-M,-I,A th~ 1 
F; (h,h,)=],AM~.(h~)12 [W(G/B)I Z O( s-~ hR)Z w(s-~ h,). 

W(G/B) 

[] 

Let us point out that Lemma 4.3 applies to the odd heat kernel, ~, or rather 
its local trace tr ~, (defined after trivializing the bundle). First we observe that 
the odd heat kernel is a pseudo-cusp form. Indeed recall from (3.5) that it is 
in 5"(G). If we decompose Vinto irreducible K-modules, on each of them (/5,~.~) 2 
is a scalar operator, and consequently (Prop. 3.6) Tr(D~.ve-~.v)=O if dim % 

> 2. Thus we get the stronger statement. 

Lemma 4.4. I f  A is any standard Cartan subgroup with lR-rank A> 1, then 
(tr ~)2 = O. In particular tr ~'r is a pseudo-cusp form. 

Remark. Taking a brief look at the classification of simple non-compact Lie 
groups, one finds that the only ones with an N-rank one fundamental Cartan 
subgroup are, up to local isomorphism, SL(3, IR) and SOe(P, q), pq odd. 

From Proposition 3.6 we also get that if B is N-rank 1 and (a*, v)eB* 

(4.5) (tr~t)~ (a*, v)=ve-tV2 dim[H(o~(a*))| -S - ) |  K~t~ 
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with dim[H(o~(a*))| - S _ ) |  Vu]rnUb = 0  if IIAJt 2 -  I1~ + p~ll 2 , 0 .  
In the notation of Lemma 3.t0, (S+--S_)|  is W. The next result shows 

that We(a+ - a_). 

Lemma 4.5. Let V,, V t , V2 be even dimensional complex vector spaces and sup- 
pose ~'= VIO)V 2 orthogonal sum. Let S• be the Spin modules for Spin(-). 
Then as Spin(V1) virtual modules, 

s+ (~)-  s_ if')= Is+ (v,)- s_ (v,)] | is  + (v2)-s_ (vg]. 

Proof. CI(V)~-~I(V1)@r (graded tensor product  of algebras) and S(k') 
"~ S(V1)@S(V2) the graded tensor product of modules, hence we have 

S+ (~)~-S + (V,)| + (V2)r (V,)QS_ (V9 
S_ (~')-~S+ (V,)| S_ ( V g e S -  (V,)QS+ (V2) 

and 
s+(P)-s_(~)~-[s+(v,)-s_(v,)]Q[S+(Vg-S_(V2)]. [] 

Returning to the odd heat kernel, let us fix B ]R-rank 1, AptaR a unit vector, 
and MAR N the standard cuspidal parabolic associated to B. Then set ~'= POaR, 
V z = m c~ p and V = V 1 t~ 1/2, and recall that K n M ~ ___ Spin(V1). We get from Lem- 
ma 4.4, a+ - a _  =S+ (V1)-S_(V1) is a factor in S+ --S_ = S+ (~ ' ) -S _  (~'); hence 
(a+ - a_) divides W. 

Corollary 4.6. Let f-----trk'~ and B an ]R-rank 1 Cartan subgroup. Let hkh p 
=hk exp(rhAp) be in B'. Then 

, B - 2nrh e-r~,/4t 'dM,c(hk) ~w(hk) 
Ff (hkhp)=* (4nt)3/2 ~t .~(hk ) 

where W = ( S § 1 7 4  V. 

Proof. Given the preceding results, it suffices to see that 

1 
~p (s. r h Ap) Zw (s. hk) = ~P (rh Ap) ~w (hk). 

I W(G/B)I w(~m) 

But from [Hi] we have W(G/B)I,~ = W(aR)~-Z2 or trivial since B has ]R-rank l, 
and W(G/B) can be represented by elements of K. Since V is a representation 
of K, Zv(S" hk) = Zv(hk) follows. 

If s t  W(M, A~), then s.hp= hp. But S• are the _ / eigenspaces of c(Ap) c(ofi) 
and s is represented by conjugation by k~EK, thus from (3.2) k~: S• ~ S•  Hence 
~o (s- rh A~) = q~ (rh Ap) and X~v (s- hk) = Zw (hk)- 

If s t  W(G/B) represents the non-trivial element of W((~R), then s.A~ = -A p .  
Now in this case k ~ : S ~ S r  Hence Zw(S.hk)=--Zw(hk) and q~(S.rhA~)= 
--q~(rhA~). [] 

From the relationship between orbital integrals and F I we get. 

Corollary 4.7. Again let f = tr Fr and h ~ hk h~ tA'. Then 

rae -~/~ ~w(h~) 
(i) I f (  h~)dg=i2rc htB' ,  

~/og (4 rc t) ~/2 A + (h) I A ~,.  (hk) l 2' 

(ii) ~ f & ) =  O, htA'4:B'. 
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Next we evaluate orbital integrals of tr ~'t for singular h. That we need to 
consider only B fundamental and R-rank 1 will be especially helpful. 

Indeed as B is fundamental the roots are either imaginary or complex. If 
yEF is conjugate to heB, and for some complex root c~, ~ , (h)=l ,  then since 
B has l l - rank  one we must have h~A~. But then y is a torsion element of 
F (F is discrete) contrary to the hypotheses on F. Hence ~,~F is singular precisely 
when there is an imaginary root, thus c~eAu, with ~ (h )=  1. We fix y~F and 
suppose, without loss of generality, that 7 is in B. 

We shall follow Harish-Chandra [DS II, p. 32-37] with some minor notation- 
al differences. Let g~ be the centralizer of y in g~. Then b = at| is contained 
in .% and is fundamental. Order the roots compatibly on a~ and b. Let Pr be 
the positive roots of (0r, b) and pc the remaining positive roots. Set cbr = ]-I H, .  

Then for f~cg~(G) one has ~e~ 

N - l c o  1 

(4.6) I f(Yx) = ~/~ ~(~) I] [1-~(~)-~] ~Ffl(~), 
a e P ~  

here N is the order of the finite group GJZG ~ which in this case is Gr/G ~ 
or W(Gr, B)/W(G ~ B), and Co = c~ is computed by Harish-Chandra ([HC I] The- 
orem 37.1) to be (--1)q(2rt)q2v/2Chk(Pk)lW(G ~ B)[. Notice that if ~, is regular, 
then c~ = 1. 

Recall that we use 'Ffi and, since there are no real roots, Ffl = r Similar- 
ly ()~,+--Za_)IAr=~OM,'AM,n, and the Weyl group action ~w.a=~wa~wOM.-OM.o. 
Now W is divisible by a + - a _ ;  say W=(a+-a_) |  with 2i the 
(K c~ M ~ A~) highest weights and a~ integers. 

Corollary 4.8. Let f = tr ~', and B an N-rank one fundamental Cartan subgroup. 
Let ~=Yk ?'p=Tk exp/~Av be in B. Then 

1 I~ e -  l~/4t  

(4.7) ~ f ( 7 ~ ) d ~ = c ~ ( i 2 z )  ~/~ ~0(7) 1-I [1 - ~,(7- 1)] (47r t) 3/2 
~eP~ 

�9 y a, Z e(w)~,(W(2~+pM,c))~w.~,(Tk). 
W ( M ~  

Proof From Corollary 4.6 we have for regular h = hk exp rA~, 

re -'2/4t 'AM,c(hk) ]~w(hk ) ! B _ �9 
F~ (h) - (, 2 re) (4 7z t) 3/z 'A M,, (hk) 

r e -  r 2 / 4 t  - , , h , 

= (i 2 re) ~ ~oM .(hk) AM.c( k)~ ai Zwz(hk). 

Hence 
r e - r z / 4  t 

. ' - ~ h F~ (h) = (i 2 ~) ~ ~o,,, (hk) A M,~ (hk) ~, a~ Xwa ( k)" 

As ~ 
using the Weyl character formula) giving the result. 

involves only imaginary roots, the differentiation is easily done (after 
[] 
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We are finally in a position to compute Tr D e-~~ in group theoretical terms. 
Let 81(F) denote the set of F-conjugacy classes of non-trivial elements in F 
contained in a fundamental, ~,-rank one Cartan subgroup of G. It follows from 
[Ms] that there are infinitely many such F-conjugacy classes; also if G is of 
F,-rank one and non-equirank with K then ~1 (F) consists of all non-trivial 
F-conjugacy classes. 

Theorem 4.9. Let X be a compact locally symmetric manifold of odd dimension 
and 1E. a locally homogeneous Dirac bundle over X with Dirac operator D. Then 

(4.8) Tr(De -'~ = ~ [G~:G ~ vol(G~/F~)(2 rt i)c~ -~ 
[~]e,e~(t') 

l~ e-l~/4t 1 

(4nt) 3/z ~o(h~) I-I [1-~-~(hr)  
aeP~ 

. ~ a i ~ e(w)~,(w.2,)~w.a,(h,.k) 
W(MO.Ar) 

here h~eB is G-conjugate to Y. 

Proof It suffices to recall that 

Tr(De -'~ = ~  vol(Gr/F~) Otr kt(7) 

and the relationship between orbital integrals and 'F I (4.1). That tr~:~eSe(G) 
is admissible is well-known (e.g. [Mo], (4.4)). 

w 5. Cohomologieal interpretation 

The goal of this section is an expression for Tr(De -tD2) in geometric terms. 
A formula for the zeta function and one for the eta function will then follow 
from appropriate integral transforms and some additional analysis. 

We recall a few facts about the geometry of the geodesic flow on T j X. 
The conjugacy classes in F (the fundamental group of X) are in 1 - 1 correspon- 
dence with the set of free homotopy classes of closed curves in X. For each 
conjugacy class [7] �9 1 consider the periodic geodesics (of period one) in the 
corresponding free homotopy class. Take a horizontal lift of each of these geode- 
sics to T1X and call the resulting set of curves (in T 1X)Xr. Concerning Xr, 
one knows that it is a smooth connected manifold canonically diffeomorphic 
to F~,\G~,/U~, (U~, maximal compact in G~,) for any 7'e [7]; that distinct conjugacy 
classes give disjoint submanifolds of TIX;  and that the fixed point set of the 
geodesic flow (at t = 1) consists of the union of the Xr ([DKV] w 5). The locally 
symmetric spaces F~,\Gv,/U~, are also isometric; more generally, for any x in 
the G-conjugacy class of 7 the spaces F~\Gx/Ux (F~X=xF~x -1) and F~\G~/U~ 
are isometric. As F is co-compact, any 76F is a semisimple element in G; thus 
7 is G-conjugate to an element in standard position (relative to our choice 
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earlier of Cartan involution). Henceforth, we assume 7 is in standard position, 
then we write 7 = ~  exp Y. We endow Xr with the metric from F~\GJKr, and 
then identify X~ ~_ T1X with Fr\GJK ~. 

As Xr has non-positive sectional curvature, it has a foliation by the Euclidean 
local deRham factor. For  7~gl(F), this local factor is one dimensional and 
the foliation is easily described; viz., through each point in Xr there passes 
a unique closed geodesic-take these geodesics to be the leaves of the foliation. 
Let I~X 7 be the line bundle generated by the tangent to the closed geodesic 
and ~ the normal bundle; then TXr is the orthogonal sum of ~ and 
LX~. 

We shall now explicitly describe the parallel transport around a closed geo- 
desic associated to 7. 

Lemma 5.1. Let V= F~\Gr x rr V be a locally homogeneous vector bundle with 
invariant connection, over Xr, associated to a representation p of Kr on V.. Given 
p=FTgK~, let cp be the unique closed geodesic passing through p, which is the 
projection of an axis of 7. I f  z(cv): Vp--* Vp denotes the parallel transport map 
around c v then 

~(cp)[Sg, v]=[r~,g,p(7,)-'v], v~V. 

Proof. Let q=gK~eX~ and let cq be the axis passing through q, i.e., cq(t) 
= g exp t YK~. Consider now a section a of V = G~ x K~ V over cq which is parallel 
along cq. Then cr(xK~)=[x,f(x)] where f: G~---~V has the property f (xk)  
= p(k)-~f(x),  k e K~. The parallelism condition ~(t)a(cq(t))= 0 is equivalent to 
d d 

~ s  f ( g  exptYexpsY)t~=o=O; whence -d~- f (g  expt  Y)=0, for any telR, i.e., 

f ( g  exp t Y)= f(g). Therefore, 

f(3'g) = f ( g ? ) = f ( g  exp YT~) = p(y~)-lf(g exp Y) 

=p(y t ) - i f (g ) ,  i.e., 

a(Tg) = [yg, f (Tg)] = 7" [g, P(7I)- tf(g)]. 

This shows that the parallel transport zq, rq(7) from q to 7q along cq is given 
by 

"cq. ,~(7) [g, v] = 7 [g, P (~t)- ' v], 

which, when projected down to X r, proves the claim. []  

We denote by H(7) the compact, topologically cyclic group generated by 
the parallel transport z in F~\Gr x KrP around the geodesic cp. Recall that L X r  
is the line bundle generated by the vector field kp(0), peXr, and let L•  be 
its full orthocomplement,  i.e., 

L •  =Fr\G~XK~P r, p=~xYt~)p r. 

Notice that from Lemma 5.1 II(?) acts on lI,• and trivially on ~ viewed 
as a subbundle via the natural inclusion ~ ~ ~ n,• 
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Recall that X ~  T~X and that TX~,~_ Th~ the horizontal bundle over 
TX. At each u~X r consider the linear Poincar6 map P(7)u, i.e., the differential 
of the geodesic flow ( t=  1) at the fixed point u. In [DKV] w it is shown 
that for each generalized eigenvalue 2 of P(7), with 121= 1 there is an eigenspace 
in Th~174 Let C,,(TX) be the subspace of Th~ whose complexification 
consists of eigenvectors of P(3'). of modulus one, and let C(TX) be the resulting 
bundle over X r, the "center bundle". Notice that TXr is certainly contained 
in C(TX). We let N X  r denote the subbundle of C(TX) orthogonal to TX~. 
Then N X  r can be viewed as the bundle of" twis ts"  ([K]). The parallel transport 
group H(y) acts on N X  r and hence N X  r decomposes into eigenbundles 

NXr=NXr( - -1 )G  ~ NXr(O) 
O<0<n 

according to the eigenvalues - 1 ,  e+-~~ of z; that the eigenvalue 1 does 
not occur, follows from [DKV, Prop. 5.8]. As in ([A-S III], w 3) we attach to 
each eigenbundle the stable characteristic classes ~ ( - 1 )  and 6a(0). The hyper- 
bolic directions, i.e., the subspace of T~(TX) for the generalized eigenvalues 2, 
1214=1, are invariant by P(7)u; we denote by Ph(7) the restriction of P(y), to 
this space. 

In order to define our local Lefschetz number we must first associate an 
equivariant K-theory class to our Dirac operator. Recall that IE=F\G • r E 
is the original Clifford module bundle over X; let 1E = F~\G r • K~E be its restric- 
tion to X r. For  each p e X  r the involution c(~oc6p(0)) splits E~,p into the +__i 
eigenspaces E.~p. This determines a splitting of the bundle 1E. r as a direct sum 
of two subbundles 1E.~ = F r \ G  r x x E • If Z~p r, c(Z) anti-commutes with c(Y) 
and thus exchanges E § and E - .  Moreover, the Clifford multiplication gives 
a Kr module homomorphism 

pr ~ Hom(E +, E-).  

Indeed from (3.2) we have with p • = p IE 

(5.1) c(AdkZ)=p-(k)c(Z)p§ k~K r. 

Let Jr: L• Xr ~ Xr be the projection map and consider the pull-back bundles 

j * E ~  = ( r~ \6  r • ~ )  • ,~E • 

The Clifford multiplication induces a homomorphism of vector bundles (over 
L " X~) 

D .  " ,  + ~ " ,  - at" Jr let J~ let ,  

which is an isomorphism outside the zero-section. Moreover, in view of Lem- 
o commutes with the parallel transport around ma 5.1 and of identity (5.1) a t 

D defines a class in Kmr~(LIXr), the geodesic cp, p~X r. One concludes that a r 
the H(~)-equivariant K-theory with compact support of L • X~. 
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Recall ~ ~177 is the natural inclusion and set 

0 D 0 . ~  D 0 . a~ - ~ ar ~Kmr)( TX~), 

this is the local symbol of D. Since H(7) acts trivially on ~ 
Kn~)(~ TX~) ~- K( ~ TXr)| R (H(7)). One can, therefore, define, as in [A-S III ,w 3], 
the cohomotogy class 

c h ~ tr~ (z(7))6 HeV (~ ~). 

Finally we let ~ denote the Todd class of ~ Putting all this together, 
we arrive at the definition of the local Lefschetz number 

(5.2) 
ch ~ 1)) I1 5P(NX~(O)) ~  - 

L(~, D ) = ~  o<0<~ / ( [OTX ] 
t 

here 0 is the 1-form on X~ dual to the unit vector field dp(0). 
Recall from w that to any vector in p there is a splitting of the Spin 

module S into S+@S_. Take [7]egl(F), assumed to be in standard position, 
7=Ttexp lv Y with Y a unit vector in a and l~>0, and set S=S+GS_ relative 
to Y. Let (S+-S_)|174 be the decomposition as K n M  ~ 
modules, where V is as in Lemma 3.1. 

Proposition 5.2. 

(5.3) 
L(~, o)  = ( - 1) * " ,~  [6 ,  :G ~ - '  vol (6,/r~) c 7 ' 

�9 y a, ~ ~(w)o~,(w.,~i)~w~,(~,). 
W (M~ 

Remark. This Lefschetz number agrees with the one described in the introduc- 
tion, due to the normalization of [0]. 

Proof The proof is obtained through several Lemmas, technical in nature, which 
handle problems stemming from the disconnectedness of G~, and then lead by 
universality properties of characteristic classes together with fiber integration, 
to a computation done in [H-P]. We emphasize that we do not reduce our 
problem to the "global" situation in I-H-P] because in general we do not have 
a co-compact subgroup of an equirank group, but rather we reduce the computa- 
tion to the "local" situation in [H-P], and hence ultimately to the computation 
in [Sc]. 

i ~ 0 

First we want to replace X~ by its orientable cover X~_F~\G~/K~, here 
K ~ is the identity component of K s. Lifting everything to X~. has the effect 
of multiplying the expression by the order [K~:K ~ of the covering. The next 
step is the Thorn isomorphism. As explained in ( [ A - S I I I ]  w one can re- 
place the evaluation on [~ n [ ~ ,  via the Thorn isomorphism, by evalua- 
tion on [X~]n[0-]. For this one must replace eh~ by 



656 H. Moscovici and R.J. Stanton 

c h E + (z (7))-  c h E -  (z (7))\ . . . . . . . . .  
~  -)~t~\~aTj~n ~A7;r  ) where ~176  the re- 

striction of the Euler class of H*(BSO(~ via the representation Ad: K ~ 
~SO(~ We note that ~ since K ~ has no trivial weight space in ~ 
Thus we have 

(5.4) L(7, D ) -  
( -1 ) "~[KT;K ~ (chE+(z(7))o-ChE-(r(Y))](F~\Gr) 

I det (I - P(7)l~x~)l ~/2 e7 / 

�9 ~ ( N ) f T ( - -  1)) l-I 5~(NX~(O))([)~7] n [0]) 
0 < 0 < n  

where n~ = �89 dim 0Or. 
To evaluate these classes we shall separate the contributions from the split 

component A of G 7 and the remaining reductive factor G'rCT,. Here C~, is a 
torus, with C~ = Cr, A the connected center of G 7 and G'r a semisimple (frequently 
disconnected) group with finite center. 

Lemma 5.3. Let [7] e~l(F), 7 =71 exp 17 Y Then 
(i) Z(F~), the center of F~, is free abelian of rank 1. 

(ii) F~ n Ce is free abelian of rank 1. 

Proof (i) Since the dimension of the Euclidean local factor of F~\Gr/Ky is one, 
it is well known that Z(F~) then is free of rank one. 

(ii) F~ n C~ is finitely generated ([W]) and torsion free. Suppose 71--tt exp H 

and 72 = t 2  exp ct H are two generators, here t ~  CTz and H ~ a. If ct = P- is rational, 
q 

then 7f 72 q~ F~ n C7, hence is torsion. So suppose a is irrational. Using Dirichlet's 

theorem, for any n there are integers p,, q, with Iq, a - p , l <  ~-. Let teCr, be 
n 

a limit point of {t~"t?P"}; then t is a limit point of {Tq-Ti-P-}. But F~nC 7 is 
discrete and closed; hence there is a neighborhood of t, Nt, with N~nF~nCr 
containing at most t. Thus rank F~c~CT< 1. Now 7 is in the center of G 7 and 
the center of G'r is finite, so for some N > 1, 7 N e C~; hence rank F~ n C~ = 1. []  

We take a generator 7* for F~n Cr with 7 =(7*) "~, mr> 1. The integer m s 
is the algebraic multiplicity of the geodesics in X 7. We write 7*= 7* exp 117" II Y- 

Lemma 5.4. F~c~ CT\ Cy/C~, is isometric to S 1 via t~--*F~nCT(ex p t lly*II Y) C~I, 
t~[0, 1]. 

Proof The map is clearly surjective. Suppose that exp t 1t7" II Ye F~ n Cr. Cv,. Then 
exptllT*ll Y=(?*)"k=(7*)"kexpnll?*ll Y, thus t=n, so t = 0  or 1. []  

Lemma 5.5. Set F~' = G'rc~F~ C 7. Then F~' is a discrete, co-compact subgroup of 
G '  7 . 

Proof This result is a variation of Lemma 3.3 in [W]. To see that F~' is discrete, 
let 7 ~  1 in F~', with 7~=TicieF~CT. Then for any 7eFt, the commutators [7~, 6] 
=[7; ,  6] ~ 1 in F~. Since F~ is discrete, it follows that [7~, 6] = 1 for i>i(6). But 
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F~ is finitely generated, so Yi must  be in Z(l'y) for i large. Now F ~  G o is uniform 
in G o so by the Selberg density proper ty  yi (and hence 7'~) centralizes G ~ for 
i large. As [7]egl (F) ,  the fundamental  Car tan subgroup B is contained in G ~ 
But then 7'~ centralizes B, hence 7'~eB. Since 7'i must then be in the center of  
G o but  also {7'~} ~ 1 we have for large i, 7'~ = 1. The proof  that F~' is co-compact  
is the same as in I-W]. [ ]  

To  handle possible torsion in F~' we take ~ a normal  subgroup of  F~' with 
IF~':~ < ~  and torsion free. Since G is not  equirank we may assume that  
it is linear and then the existence of ~ follows from I-B]. We set ~ = F 7 c~ ~ C~. 

Lemma  5.6. ~ is normal in F~ and [F~: ~ < (~. 

Proof Let fleF~ and ~ ~  and write fl=fl'c~eF~'C~ (resp. ~=~'c~). Then 
fl~fl-i =fl~,fl-lc=fl,~,(fl,)-lc~ei,,C~c~F=oF~" Next  let ~EF~, ~=~ ' c ,  and let 
~), I<j<IF~':~ be representatives for F~'/~ '. Then for some j, ~'=ct]fl '  with 
fl'e~ ', and hence ~=~)fl'c. Since ~tje F~', there are ~jeF~ and cjeC~ with ~ =  ~t]c~. 
Then ~=~jfl'cc7 ~ and so ~j-~ .~e~ i.e., ~e~~ Thus IF~:~176 . [ ]  

Lemma  5.7. S ~ acts freely on ~ with quotient ~ 
Proof Assume on the contrary  that there is g~G~ and t with 
gexptlb,*llYe~ i.e., gexptlb,*llY=~'cgk. Writing g = g ' c * ,  we get 
g 'exp t 117"11 Y=~'cg'k=~'g'k'a where aeA. Now xeG~ is uniquely expressible 
in the form x'a, x'eG'~C~,, aeA. Hence g '=~(g 'k '  or g'-~'g'eK~c~G'~=K'7. 
Thus ~' e g' K'  g' - ~ c~ ~ and hence is torsion; so ~' = 1. But then c ~ F~ c~ C~ which 
is generated by y*=7*exp]lT*ll  Y. It follows that t = l  or 0 and the action is 
free. 

Now let ~z: G~/K~ ~ G'JK'v be the obvious projection: ~(g K~)=g'K~,, where 
g = g' c. Then  ~ induces a map  ~: ~ ~ ~ that is clearly surjective. 
It suffices to determine the fiber over a base point, ~ Now ~(~ 

O p ,  a '  l ( '  0 , , = .~ ~, ~ =  F~ K~ means that  g'e~ Write g'=(~c~l)k ', or g'ca =~t k'. Mul- 
tiplying by c we get gc~=~k'c, or writing cc~a=c~exptlb'*liY, ~-~g 
=expt[tT*[I Yc~k'. Thus ~176 YK~. [] 

Returning to the proof  of Proposi t ion 5.2, we set Xr=F~\G~/K ~ ~ 
- o o o , _ o  , , , o ~ ,  ~  ' ~  Then = ~ ~ F~kG~/K~, X.~- F~kGJK~ and . .~=  ~ - ~ v - - ~ "  

o2~ is a finite (IF~:~ cover of X~ and so it suffices to evaluate the classes 
on ~ Also ~ is an S<fibrat ion over ~ and the classes under  considerat ion 
are the pull-back to ~ of the corresponding classes on ~ The next result, 
fiber integration, reduces the problem to the evaluation on ~ (or the oriented 
cover  o~, )  of  these classes. 

Lemma 5.8. Let [co]eH*(~ ~), co a top degree form. Let o~: o x  ~ox- ,  ~ be 
the projection. Then 

<o~, [~], [ o x d  c~ [O~]> = vol(C/c~ ~ og) < [~o], [~ >. 

Proof One has 
<o~, [~], [o~?~] ~ [0~]> = ~ o~, [~o] ̂  % 

O~(v 

= 

o,% 
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where ~  is integration over the fiber. But since 0r is induced by the volume 
form of C/Cr c~ ~ we get ~ = vol(C/C s ~ ~ [] 

Lemma 5.9 

(i) ~  s. 

(ii) vol(C/Csc~~ Ih,*ll. 

Proof (i) o~ < Fv ' thus ~ ~ C s ~_ ~ ~ C~. But ~ = F~ ~ ~ U C~, thus ~ c~ C,e G ~ 
(ii) In Lemma 5.7 we saw that the fiber is given by ~ YK s, 

t~[0, 1] and Ya unit vector�9 Hence vol(C/Csc~~ II~*ll. [] 

We recall that ? is in standard position and [V]~ga(F), i.e., 7eB=AtA ,  the 
fundamental Cartan subgroup of G. Let P, as before, be the associated cuspidal 
parabolic subgroup, and, for an appropriate order, let P = M A N  be a Langlands 
decomposition. Then 7 = Yf exp Ir Y with ?,~ s M o an elliptic element. Notice that 

0 _ _  ~ 0 p Ms,-(Gs) Cs. ~ and Ms~=GsCs, (as follows from ([DKV] Lemma 4.1)). We let 
M M u" Ks, (resp. Ks~ ) denote the maximal compact subgroup of M ,  (resp. M~ ~ relative 

MO /KM ~ to the restriction to M of the Cartan involution. Then M~,/Ks M_.._~,,__~,, 
0 t M ~ 0  t �9 ~ 0 ] F~. I~ c~(Gy)1) of and Fv\M~,/K~,_ X s is a finite cover (of order o ,. o ., 

0 ~  f-~ 0 0 M ~ M s , \ M y / K s , .  Although there need not be a discrete, co-compact sub- 
group of M ~ nevertheless, because of ~ we are in the same "local" setting 
as in [H-P]. Recall that ( S § 1 7 4  ~ai(a+-a_)|  with Wa, modules 
for K M~ Then for each 2i we define the Lefschetz numbers L(Vt, 2i--PM,,) as 
in [H-P] 

(5.5) L(Tt, 2 i -  PM, n) 

ch i* a(Ex,-OM..)(f)~l(NS( - 1)) H 5~(U'(O))3-(XO- 
o<0<, } [TX~]. 

= {  det(I_flN~ ) 

The characteristic classes in L(?I, 2i-PM,,) are given by universality properties 
of the structure group K s and the tangent bundle; hence are the same as the 
classes in L(7, D) (5.2). The only difference is in Chern of the symbol class, 
but here ch ~ ~,ai ch i* a(Ez,_oM.,) (z(~)). Hence we evaluate L(7, D) 
using the calculation in [H-P], and ultimately the one in [Sc] upon which 
it depends. For convenience we state the formula for L(yt, 21- PM.,): 

(5.6) L(7, ,  2 , - -pM, . )  = ( - 1) ~+"~ [ K r , :  K ~  - '  IW~,l -~ I ~ . t - '  
]-I (at,,  ~) - '  v(~ ' n Mr~ ~ 

�9 aeOSl 2 ,~(W) (D(W" ~'i) ~w" Xi(}'I)" 

aeP\P~r 

Except for some obvious notational differences (and some unexplained notation 
for which we refer to [H-P]) this will give (5.3) once we reconcile the differences 
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in choice of Haar measure between [H-P] and us. Actually it is easier to relate 
ours to the one in [Sc] and then [Sc] and [H-P] ([H-P] p. 217); 

(5.7) I W~I -a [ I  (Pr,, ~ ) - '  v(~ c~ M , ~ 1 7 6  
aEP7I 

=(2n)-*v~,(__l).~ ,o , o o v ( F~ c~ M~,\M~,). 

Let us recall that %=(--1)q(2n)q2*/Z~k(Pk)[W(G~ and %-~Pk~" " = ~ 2 ~ J  
vG~(Ar)v~(K~) -1 ([H-C III], Lemma 37.4). Then we get the following relation- 
ships after an examination of the normalization of measures and the notation: 

o .IW(G o, --IW.I; q+ VG~(Kv)vol(GffF~)= [G~:G~ B)I 7k = 4~8; 2 -*/z 
IF~. F~[ v( F c~m~,\M~,). Finally the sign results in v~,(At) vol(CffC~c~F~) .o -1 , o , o o 

(-- 1) *e'.-. Thus we prove Proposition 5.2. [] 

We conclude this section with a reformulation in geometric terms of Theorem 
4.9 for Tr(D e-t~ 

Theorem 5.10 

II~*ll L(7, D) l~ e-z~/4t 
( 5 . 8 )  Tr(De-t~ ~ [det(i_Ph(7))l~/2 (4~tt)3/2 

[7]cgl(F) 

here 7 is conjugate to ~1expl~ Y~AtA,  and q=  #~PI,. is �89 the dimension of the 
space of leaves. 

w 6. The zeta function formula 

In this section we define a geometric zeta function of Selberg type (actually 
its logarithmic derivative) with the aid of Theorem 5.10. Our approach consists 
of the use of functional calculus and estimates on the heat kernel and the spectral 
analysis from w 2 bypassing the usual Paley-Wiener technique. 

Proposition 6.1. Let Re s z ~ O. 7hen 

L(y, D) 
~e-S2tTr(De-t~ ~ [detI-Ph(y)lt/2 l~ *e-~t~" 
0 [,~]eg~ (F) 

Proof. The result follows from the identity 

2 e-l~/4t e-StY 
(6.1) ~ sr o% 0], e -s~ ( ~  t~/2 d t = ~ l ,  

0 

together with (5.8) and an interchange of integrals. 
T 

To justify the interchange we fix T, 0 < T< oe and set Ir = ~ e -s2t Tr(D e-t~ dt 
0 

and Io~= ~ e-~tTr(De- t~  �9 From Theorem 2.1(c) we have Io~=Tr(D(D z 
T 

+s2)-~e-r(D2+s2)). We claim that this trace can be computed from the trace 
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formula applied to the Schwartz kernel of tr(/3(/3 z + s 2 ) - l e  -T(bz+s2)) and  also 
that the result is the absolutely convergent series 

L(7, D) 1 ~ . [ ~  v e_T(v2+S~elVl, dv ] 
(6.2) (--1)q(i/2) ~ idet i _  Ph(7)[l/2 v2 + s ~ 

[~'1~1 (r) 

Indeed, choose e, 0 < e <  T, and consider [/)(/)2"~-$2)-1 e -'(~+'~)] e -(T-~}{bz+s2l. 
The first of these factors is a smoothing operator (since/32 >0), while the second 
is in [5~(G)|174 K• The convolution of the kernels of these two 
operators remains in the Schwartz space and so the kernel is admissible. It 
follows that the series of orbital integrals is absolutely convergent. To evaluate 
the orbital integrals recall from w that the Schwartz kernel o f / 3 e  - ~  is a 
pseudo-cusp form hence,/32 +s  2 being a diagonal operator, that the Schwartz 
kernel of/3(/32 q_s2)-le-e(b2+s 2) is a pseudo-cusp form. The claim now follows 
from the observation that Proposition 3.6 applies. 

The finite time case, I T , is handled by the dominated convergence theorem. 
Recall that fi't is the heat kernel on )~. Define a: G ~ IR  by a (x) = ~r (exp X k) = II X ll. 
Then the left invariant distance on X=G/K is given by d(gK, hK)=a(g -j h). 
In [D] one finds uniform, finite time estimates for the scalar heat kernel on 
manifolds admitting a properly discontinuous group of isometries with compact 
quotient. In a standard way, as in see e.g., [R-S], these results extend to the 
vector valued case. Then one has the estimates: 0 < t < T 

(6.3) It~,(gK, hK)ll < C t -Texp  4t 

n ( a2(g-~h)) 
I[D~D~t(gK, hK)H<=Ct 2 i-Jexp - 4t ' 

here De, D h are first order differential operators. From these one gets an estimate 
on the odd heat kernel, kt(x, x), on X = F \ X  for 0 < t < T: 

n ( O . 2 ( X - I ~ X ) _ )  
(6.4) Itrkt(x'x)l<=Ct 2 l ~ e x p  4t  " 

Then we have 

(6.5) 

T 
IlrJ= ~Tr(De-tD:)e-~tdt 

0 

T 
<= I e-ReS2' I Zltr~t(x-'Txl[dY~dt 

0 F\G 7~F 

< I e-Re~2' I C 2  t - ~ -  exp - 
0 I'\G ~eF 

IITI<= ~ ~ C'(Res2)n/Zexp(-(Res2)l/2 a(x-lyx))p(s, tT(x-tTx)). 
F\G ~,eF 
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In the last line we use the generalization of (6.1) obtained by integration by 
parts 

(6.1)' ~ e_t e_,~/, dt e -~ t~ + ~ = C • polynomial . 
o a 

Now it is well known that e -~ is dominated by q~o(y) b, b > 0  where ~o o is 
the basic zonal spherical function. Hence e-"'tY)<q~o(y)b" (U>0) and so 
exp ( -- (Re s 2)x/2 a (y)) p (s, a (y)) is dominated by a positive power of q~o (y)tRe ~)~/~. 
For  Re s 2 ~ 0, one knows that q~o (y)~R, : : /~ is admissible, thus ~ ~P0 (x- ~ y x) tR~ ~)'/~ b 

r e F  

is absolutely uniformly convergent on compact subsets of G. Hence the integrand 
in (6.4) is continuous and, as F\G is compact, we get that the right-hand side 
of (6.4) is finite. Hence we can interchange the integrals in t, getting 

L{y, D) ~ e -t~/4r 
(6.6) Ir=(-1)q(i/2)H~elw) ~ idetl_Ph(y)l~/z I: o e-:'---dt.(4n 0 3/2 

Adding (6.6) to (6.2) and undoing the Fourier transform in (6.2) we obtain 
the Proposition. [] 

Remark. The number q has a geometric formulation. It is onehalf the dimension 
of the fiber of the center bundle C(TX) over X~. 

Definition. Let Res/>>0 and define log Z(s, D) by 

L(~:, D) e-~t" 
(6.7) l ogZ(s ,D)=  ~ ( - 1 )  q 

t~j~g~r) Idet I -  Ph(7)11/2 mr 

here my is the algebraic multiplicity defined in w 5. 
This series converges absolutely and uniformly on compact subsets of Re s 2 

>>0 as is seen by writing m~=l~/l:, noticing that {lrl[7legl(F) } is bounded 
from below, and dominating by the series in Proposition 6.1. One also has 
lim logZ(s, D)=0. Indeed the absolute convergence for a fixed So allows the 

application of the dominated convergence theorem. Summarizing, we have 

Proposition 6.2. The series 
L(y, D) e- ~ 

( -  1)q ]det l-Ph(~)] 1/z m r [r]~gl (/') 

defines a holomorphic function in Re sZ>>0, denoted by log Z(s,D). Moreover 
lira log Z(s, D)=0.  

s ~  -t- r 

, [ D - i s \  
On the other hand, in w we saw that logdet ~ ) i s  a meromorphic 

function and a comparison of Proposition 6.1 with (2.5) gives log Z(s,D) 
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. , [D-- is \  
= l o g  de t  + 

, /D - iS \de t , (D+i s ]  tinuation, and the identity det ~ )  \ ~ ) =  

equation 

(6.8) Z (s, D) Z ( -  s, D)= e 2~i"~ 

Hence we have 

Theorem 6.3. Set 

H. Moscovici and R.J. Stanton 

n i ffD for Re S 2 >~ 0. Thus log Z(s, D) has a meromorphic con- 

1 yields the functional 

L@, D) e -~t~ 
logZ(s ,O)= ~ (--1) q 

t~]~,(r) [det I -  Ph(7)lt/2 mr 

for Re s 2 ~0.  Then log Z(s,D) has a meromorphic continuation to ff~ given by 
the identity 

, /D-- i s \  
logZ(s,D)=logdet ~ +  nitlo. 

Moreover, Z (s, D) satisfies the functional equation 

Z (s, D) Z ( - s, D)= e z~i~'. 

w 7. Twisted eta invariants and applications 

In this final section we extend the zeta function approach to the computation 
of the reduced r/-invariants of Atiyah-Patodi-Singer [A-P-S]. 

Let ~o: F-o U(F) be a unitary representation of F on F. The associated Hermi- 
tian vector bundle IF = .~ • r F over X inherits a flat connection from the trivial 
connection on )~ • F. If L: C~(X, V) is a differential operator acting on the 
sections of the vector bundle V, then L extends canonically to a differential 
operator L~,: C~(X, V| C~(X, V| uniquely characterized by the prop- 
erty that L~, is locally isomorphic to LO. . .0 )L(d im F times). Explicitly, L~o can 
be obtained as follows. First, lift L to a F-periodic differential operator L: 
C~()~, ~ ')~ C~(_~, ~'), where ~" is the pull-back of V. Since 1~ is the trivial bundle 
)~ x F, C~(3~, ~'| ~') |  and thus LQIv defines a differential opera- 
tor. This operator is obviously F-periodic and, therefore, drop down to give 
a differential operator acting on C| V| which clearly satisfies the required 
property. 
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Consider now a locally homogeneous Dirac bundle E over X and the corre- 
sponding Dirac operator D: C~(X, IE)~ C ~ (X, tE). We recall that, via the identi- 
fication of C~ E) with (COO(F\G)| K, one has 

D = ~, Rr(Xi)| c(to r 
i 

where {Xi} is an orthonormal basis of p. 

Lemma 7.1. The space of LZ-sections L2(X, 1E| can be identified with 
(Le(F\G; q~)| K, where L2(F\G; (p) is the Hilbert space of the induced represen- 
tation Rr.~ =indr  G tp. Moreover, via this identification, the extension of D by q) 
becomes 

D~o = ~, Rr,~(Xi)| C ((z/C). 
i 

Proof. The first assertion follows from the fact that ]E= F \ G  • KE~--G • r~ rE 
(where F acts trivially on E), ~ : = G / K  •  x r• (where K acts trivially 
on F), and therefore, I E |  • r • KE| Thus, 

Coo(X, E |  ~- (Coo (G)| F |  E) r • " ~  (C ~ (G, F)r | E) ", 

which, by completion with respect to the appropriate L2-norm, gives 

L2(X, E|  qg| K. 

Now let D~=~_Rr,,(Xi)| Its lift D,p to C~()~,II~,| 
i 

_~(C~(G)@F|174174 is given by the formula 

b'~ = ~ R(Xi)| c(o9r174 
i 

which implies that D~ coincides with D~. [] 

Let us now recall the definition of the reduced q-invariants [A-P-S]. One 
starts with a self-adjoint elliptic operator L: Coo(X, V)~  C~ V) and a unitary 
representation q~: F--*U(F). One then forms the twisted operator L~: 
C~176 V |  Coo(X, V@~), which clearly remains elliptic and, since q~ is uni- 
tary, self-adjoint. One can, therefore, consider its v-function q(L~, s). The differ- 
ence 

(7.1) q(L, ~o, s)=7 (s, L~) -d im F.  q (s, L) 

is the reduced q-function of L with respect to the representation q~ and 

(7.2) q~(L) = q(L, rp, O) 

is the reduced q-invariant corresponding to L and q~. Its reduction modZ,  is 
a homotopy invariant of L, more precisely depends only of the stable homotopy 
class of the leading symbol [a(L)] ~ K t (TX) [A-P-S, Part III]. 
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We specialize now to the case of locally homogeneous Dirac operators. Let 
D: C~  IE)~ C ~ (X, liE) be such an operator and let (~0, F) be a unitary represen- 
tation of F. From Lemma 6.1 it follows that 

D r e- tog = Rr ' ~ (kt). 

Applying the trace formula corresponding to Rr, r, one obtains 

Tr(Dre-tD~)= ~ Trq~(y)vol(F~\Gr) ~ kt(x-1])x)d&. 
['/] * 1 Gy\ G 

It is now obvious that we can repeat the arguments of the preceding sections 
to construct a "twisted" zeta function Z(s, D~), meromorphic on ~,  given for 
Re(s2)~>0 by the formula 

L(7, D) e -~1~ 
logZ(s,  Dr)=(--1)q ~ Tr~o(J lde t i_Ph( j l l / 2  mr 

[~,]~#1 (F) 

and that one has 

q(D~) = 1 .  log Z(O, Dr). 

Passing to the reduced q-invariant, one obtains the following result. 

Theorem 7.2. With the above notation one has 

(7.3) ~/~ ( D ) = 1  log 2~o(0, D), 
7~I 

where Z r (s, D) is meromorphic on ff~, given on Re (S 2) >~ 0 by the formula 

(7.4) log2r(s ,D)=(- -1)~  ~ ( T r ~ o ( j - d i m F )  L(7, D) e -s~ 
Idet I -  Ph(7)[ 1/2 m r [~]~'1 (F) 

and satisfies, the functional equation 

(7.5) Zr(s, D) 2~,( - s, D) = e z"io~w). 

We close with a few applications of the theorem which help clarify its mean- 
ing. 

Consider an arbitrary Riemannian metric g on X. Let Bg: C~ A ev T g X)  
-~ C~  AeVT~ X) be the corresponding tangential signature operator, i.e., 

(7.7) B, [ C o ( X ,  A 2 p Tc ,  X )  = / ( d i m  X + 1)/2 ( _ 1)P + 1 (*gd  - -  d ' g ) .  
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It is well-known that Bg is a Dirac-type operator. More precisely, under the 
canonical isomorphism A~VT * X ~ Cliff~ g), one has 

(7.8) B, ~- ~ c(ei) c(co r lee,, 
i 

for any local orthonormal frame {e,} on X. When g is the canonical locally 
symmetric metric we drop the subscript g from the notation. 

Corollary 7.3. For any Riemannian metric g on X, one has 

( -1)q  ~ (Tr (p (?) - dim F) (7.9) q(~ ~i 
[~,legj (F) 

L(T, B) e-~l~ 
]detI-Ph(7)] 1/2 mN I~=o" 

Proof By [A-P-S, Part III, Thm. 2.4], 

~l~(B~)=q~(B) 

and thus (7.9) follows from (7.3). [] 

In view of this corollary we denote by q~.x the number qe(Bg) which is 
independent of the metric g. 

Corollary 7.4. Assume that Or, x 4:0 for some unitary representation ~o of nl(X). 
Then G contains factors locally isomorphic to SL(3, ~ )  or SO(p, q), pq odd. 

Proof This follows from the remark following Lemma 4.4. []  

In another direction we have the following result concerning log Z~(s, D). 

Corollary 7.5. Assume that X=t~Y, that ~ extends to a Clifford bundle on Y 
and that cp : xl (X ) ~ U ( F) extends to a representation of 7h ( Y ). Then Z~(O, D)= +_ 1. 

Proof Set ~'~ (D) -- �89 (q~0 (D) -  dim F dim ker D + dim ker D~). Then ~ (D) ~2~, as fol- 
lows from [A-P-S II] (Th. 3.3). Hence 

Z(O, D~) _ ( _  l)dimFdimkerD_dimkerD~o. 
29(0, D)= Z(0, D) dimF 

In particular Z~0(0, D)= 4- 1. []  
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