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Summary. Considering that the study of plane cuves has an over 2000 year 
history and is the seed from which modern algebraic geometry grew, surpris- 
ingly little is known about the topology of affine algebraic plane curves. 
We topologically classify "regular" algebraic plane curves in complex affine 
2-space using "splice diagrams:" certain decorated trees that code Puiseux 
data at infinity. (The regularity c o n d i t i o n - t h a t  the curve be a "typical"  
fiber of its defining polynomial - can conjecturally be avoided.) We also show 
that the splice diagram determines such algebraic information as the minimal 
degree of the curve, even in the irregular case. Among other things, this 
enables algebraic classification of regular algebraic plane curves with given 
topology. 

Let V be a reduced algebraic curve in ii; 2. Then the intersection of V with 
any sufficiently large sphere S 3 about the origin in 112 2 is transverse, and gives 
a well-defined link (S 3, L), called the link at infinity of V c IE  2. The link at 
infinity is a useful tool for studying the topology of plane curves. In [N-R 1] 
this was illustrated by a quick uniform proof of the classification of polynomial 
injections of IE in t~ 2 due to Abhyankar  and Moh [A-M2] and Suzuki [S] 
in the smooth case and Zaidenberg and Lin [Z-L] in the non-smooth case. 
Here we develop the theory further. 

We first recall some terminology and results from [-N-R 1]. Let f:  112 2 ~ II; 
be a polynomial map. A fiber f - l ( c )  is called regular is nearby fibers " look 
like" f - l ( c )  in the sense that, for some neighborhood D of e~C, f l f - l ( D ) :  
f -  1 (D) ~ D is a locally trivial C ~ fibration. The fiber f -  1 (c) is regular at infinity 
if nearby fibers "look like it at infinity ;" that is, for some neighborhood D 
of c and some compact subset K of II~ 2, f t f  - 1 (D) -- K is a locally trivial fibration. 
"Regular"  is equivalent to "regular at infinity and non-singular". 

Only finitely many fibers of f are irregular at infinity, and the regular fibers 
all define the same link at infinity up to isotopy, which we call the regular 
link at infinity of f and denote by ~e(f, oe). If all fibers of f are regular at 
infinity we say f is good. This is so, for example, if any fiber of f is reduced 
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and has a knot  as its link at infni ty  (i.e., it is connected at infinity), cf. [N-R 1, 
Lemma 7.1]. If f is good it is easy to see that there is a "Milnor  fibration 
at infinity," so 5e(f, ~ )  is a fibered link. The converse is true but less obvious: 
if f is not good then c # ( f  ~ )  is not a fiberable link IN-R1 ,  Theorem 6.1]. 
One contribution of this paper is to provide a substitute for the Milnor fibration 
in this case. 

An algebraic curve V will be called regular if it is a regular fiber of its 
defining polynomial  f A main result is that the link at infinity La=(S  3, L) 
of a regular algebraic curve V c ~2 determines the topology of V = ~2 (as an 
embedded C ~ 2-manifold up to proper isotopy) ~. In addition, even if V is 
not regular, it determines the euler characteristic of V (corrected by the Milnor 
numbers of the singularities of V if V is singular; Theorem 4.3), and also the 
degree and number  of points at infinity of V in a sense that we now describe. 

The degree deg(V) of V is only well defined relative to a fixed linear structure 
on ~2;  changing the embedding V c C  2 by a non-linear au tomorphism 2 of 
~2 generally changes the degree (e.g. the curve x 2 + y 3 =  1 of degree 3 is taken 
by the algebraic automorphism (x,y)~+(x+y 2, y) of ~z  to the curve (x+y2)  2 
+ y 3 =  1 of degree 4). Differently expressed, deg(V) depends on a choice of com- 
pactification ~ 2 c  ~,2= [~2k. ) ~1: it is the algebraic intersection number  with ~71 
of the closure V-of V in ~2. The number  of points (as opposed to "places") 
at infinity no (V)= l  Vn~ ' l [  also depends on the compactification. We shall see 
that for a given V there are "min imal"  embeddings ~2 C2~2 (characterized geo- 
metrically by the condition that either n o ( V ) > l  or n o ( V ) = l  and the first 
"Puiseux pair (p, q) at infinity" has p, q >  1) which lead to finitely many  "mini- 
ma l"  choices for (deg, n o ) - t h e  choices with least deg(V) are among them. 
We shall see that  these minimal pairs (deg, no) are simple invariants of the 
link at infinity 3. We call the minimal value of deg and the maximal value 
of no for V the intrinsic degree and intrinsic number  o f  points  at inf ini ty  for 
V. 

These results imply that for any given link ~ = ( S  3, L) we can effectively 
decide if it is a link at infinity of some complex algebraic plane curve and, 
if so, write down the general polynomial that realizes it. But the calculation 
can be quite tedious already for simple examples. We thus do not yet have 
a complete "closed form" characterization of those links which can be realized 
as an ~ ( f ,  ~) ,  but we have strong results towards it. 

A corollary is a finiteness result (c.f. Corollary 8.2, which is sharper): there 
are only finitely many  regular V = ~2 up to smooth proper isotopy with given 
topology and with intrinsic number  of points at infinity not 2. The exclusion 
of 2 intrinsic points at infinity is necessary: for p, q > 0 and coprime, the curve 
x p yq= 1 is an annulus in ~2 whose link at infinity is a pair of parallel (p, - q )  

Conjecturally "regular" can be replaced by "nonsingular" here, see Sect. 9 
2 This does not change the link at infinity, cf. proof of Lemma 2.2 below 
3 For example, this least degree is p for the (p, q) torus knot with 1 <q<p. Surprisingly, the least 
degree in which a link can be realized as a link of a singularity is not as simple an invariant of 
the link: this torus knot is realizable as a singularity link in degree approximately l f ~  for p/q 
large; a degree 8 realization of the (29, 2) torus knot as a singularity link is x2+ 2 x y4+ x Ty + y8 = 0 
at (0, 0) 
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torus knots  with opposing orientat ions;  different pairs {p, q} thus give non-  
isotopic annuli in IE 2. 

Ano the r  applicat ion is to classifications of  algebraic curves in IE 2 of  low 
topological  genus up to algebraic au tomorph i sms  of C 2. For  example, we imme- 
diately recover the A b h y a n k a r - M o h  Suzuki result that  a smooth  contractible 
algebraic curve in tE 2 is equivalent to the s tandard  embedding of  C in IE z, 
but  we easily get more:  an algebraic embedding of  IE in IE 2 with one node 
is equivalent to the curve y 2 = x 3 +  x2; a smooth  algebraic once punctured real 
torus in tE 2 is equivalent to a curve y 2 =  x 3 + a x  + b; a smooth  algebraic once 
punctured genus 2 surface in tE 2 is equivalent to a curve y 2 = x S + a x 3 + b x 2  
+ c x + d ;  for genus 3 with one puncture  there are 3 basic types, of intrinsic 
degrees 4, 6, and 7; for genus 4, 4 types, of intrinsic degrees 5, 6, 9, 9, and 
so on. We can also describe all regular algebraic annuli in tE 2 up to algebraic 
au tomorphisms4:  for each copr ime positive integer pair  (p, q) there is a family 
containing the example x p yq = 1 of  the previous paragraph  (Proposi t ion 8.4). 

We now describe our  main  results in more  detail. 

Theorem 1. The topology of a regular algebraic plane curve V c I~ 2 (as an embed- 
ded smooth manifold) is determined by its link ~ = ( S  3, L) at infinity. In fact 
a minimal Seifert surface F for L in S 3 is unique up to isotopy 5 in S 3, and 
V can be recovered up to proper isotopy by attaching a collar out to infinity 
in C 2 to the boundary of such an F. 

A link at infinity is always a toral link, that  is, it can be built up by iterated 
cabling operat ions  from the unknot .  In [E -N]  such links are classified by splice 
diagrams. To describe our  next main  result we need a quick review of splice 
diagrams for toral  links; more  details are given in Sect. 3. 

We must  first fix terminology about  cabling. Given a componen t  K of  a 
link ~ = ( S  3, L), let N(K) denote  any closed solid torus ne ighborhood  of K 
which is disjoint from all other  components  of  L. An  (~, fl) cable on K is a 
simple closed curve K(c~, fl) which lies on some ON(K) and is homologous  in 
N(K) to  ~K and has linking number  fl with K (so ct and fl must  be coprime). 
Several (ct, fl) cables on K are parallel if they lie on some c o m m o n  8N(K) and 
are mutual ly  disjoint. An  (o~, fl) cabling operation on the component K of  ~L# 
is the opera t ion of either replacing K by, or adding, some number  d > 1 of  
parallel (c~, fl) cables on K, to obtain  a new link (our terminology differs f rom 
[E-N] ,  where this is called (do~, dfl) cabling). 

Splice diagrams are certain decora ted  trees used to represent toral links. 
The "decora t ions"  consist of  integer weights at the ends of  some edges. Also, 
some of  the vertices are drawn as ar rowheads;  they cor respond to componen ts  
of  the link. W h e n  construct ing a toral link by iterated cabling, we may start 
from the "n -componen t  H o p f  l ink" ~ = ( S  3, K1 u ... u Kn) consisting of n fibers 
of  the H o p f  fibration. We represent this link by the splice d iagram with n arrow- 
heads: 

4 Irregular algebraic annuli exist and are not yet classified - see Sect. 8 
5 A minimal Seifert surface F is a surface with maximal euler characteristic among all oriented 
embedded surfaces with no closed components in S 3 with OF=L. F may not be unique up to 
isotopy as a Siefert surface: the isotopy need not fix L 
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If  n =  1 or 2 this diagram may be abbreviated to ~ or , , respectively, but 
we will not always want to do this. 

If  ~ is a splice diagram for a link ~e and the indicated arrowhead corre- 
sponds to a component  K, then each of the diagrams 

and 

d d 

represents the result of doing an (~,/~) cabling operation to ~ ;  namely, either 
replacing component  K by, or adding, d parallel (~,/3) cables on K. One can 
thus construct a splice diagram for any toral link. In [E-N] it is shown that 
the splice diagram determines the link. The splice diagram itself is determined 
by the link only up to certain operations which we recall in Sect. 3; for instance, 
an edge with weight 1 at one end and a leaf 6 at its other end can be discarded; 
vertices of valency 2 can be ignored; also certain changes of sign of the weights 
in a splice diagram are allowed. 

If we have constructed a total link by iterated cabling from ~ ,  then we 
call the vertex of its splice diagram which comes from this o~ the root vertex 
of the splice diagram and speak of a rooted splice diagram. There may be many 
ways of picking a root vertex in a splice diagram for a toral link; they represent 
different ways of constructing the link by iterated cabling. For  example, the 
following rooted diagrams give 2 different constructions for one link; the root 
vertex is marked as a " e "  in each: 

1 1 3 7 1 1 

1 1 3 7 1 1 1 1  

- 1 ~ I 1 1 5 ~  = = 

In the first case we start f rom ovg3=(S3, KlwK2~AK3) and add a (7, 3) cable 
K3(7, 3) and then replace K 3 by its (5, 1) cable K3(5, 1). In the second case 
we start from ovf2, add the (5, 1) cable L=K2(5, 1), and then successively add 
L(3, 7) and L(1, 1) (note that L(I,  1) is drawn on the boundary  of a " th inner"  
solid torus than L(3, 7), since the solid torus must  be disjoint from the already 
existing L(3, 7)). 

6 A leaf is a non-arrowhead vertex of valency 1 -valency is number of incident edges at the vertex 
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In a rooted splice diagram we call a weight on an edge near or far according 
as it is on the end of the edge nearest to or farthest from the root vertex. 
At most  one near weight at any vertex is unequal to 1. (Splice diagrams which 
admit no root vertex satisfying this constraint also have meaning but are not 
important  here: they represent links in homology spheres which may not be 
S t )  

We shall say a cabling construction of a link 5~, starting from an n-compo- 
nent Hopf  link o~r satisfies reverse Puiseux inequalities if the following four 
conditions are satisfied: 

(i) the cabling coefficients (~,/~) always have e > 0; 

(ii) the first cabling done on each Ki h a s / ? - e < 0 ;  

(iii) any (e,/~) cabling on some component  following a (7, 6) cabling on the 
same component  has/~7--  e6 < 0; 

(iv) any (~,/~) cabling on a component  that was obtained by an (7, 6) cabling 
operation h a s / ~ -  7 6 e < 0. 

In terms of the rooted splice diagram these conditions can be more briefly 
stated: 

(i) all near weights are positive; 

(ii iv) for any edge with weights no and el on it and weights ~2, " ' ' ,  ~rn 
adjacent to but not on it, 

~ "~k"~ ~ % + ] "  ~ 

one has ~o cq-~2.--~m < 0, that is, the "edge determinant" is negative. 

(The Puiseux inequalities, which are necessary and sufficient conditions for a 
link to be a link of a plane curve singularity, are equivalent to requiring that 
the link have a construction satisfying (i) together with the reverse inequalities 
of (ii), (iii), (iv). In terms of a splice diagram this says simply that all weights 
and all edge determinants are positive.) 

A construction satisfying the reverse Puiseux inequalities will be called an 
RPI construction and the corresponding rooted splice diagram will be called 
an RPI splice diagram. Given such a construction for a link Y = ( S  3, L). we 
can redo the construction of L~ to create extra components (which are never 
themselves cabled on) as follows: start from ~+I=(S3,  K o u K 1 u . . . u K , )  
instead of ~ (so Ko is an extra component) and, whenever a cabling operation 
is performed, include an extra parallel cable (which is never cabled on later). 
The extra components  created this way will be called virtual components of 
the first kind for the construction. Any K which was replaced in some cabling 
operation during the construction is called a virtual component of the second 
kind. These virtual components can be associated in a natural  way with the 
non-arrowhead vertices in the splice diagram. In particular, Ko is the virtual 
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component for the root vertex. We shall denote the virtual component corre- 
sponding to a vertex v by Sv and denote by lv=link(Sv, L) the linking number 
of this virtual component with the link. A quick way of computing these linking 
numbers from the splice diagram is quoted in Lemma 3.2. 

An RPI splice diagram for which the above l~ are all non-negative will 
be called a regular splice diagram. A link which has a regular splice diagram 
will be called a regular toral link. It is sufficient for regularity that the conditions 
lo > 0 hold for each virtual component  of the first kind parallel to a link compo- 
nent (i.e. v is a node adjacent to an arrowhead), see Corollary 5.2. It also follows 
from Sect. 6 that if some RPI splice diagram for a link 5 ~ is regular then every 
RPI splice diagram for 5O is regular. 

Theorem 2. (i) A reduced algebraic curve V c l~ 2 together with a chosen embedding 
I~2 C ~ 2  determines an RPI splice diagram f2 for the link at infinity of  V. The 
number of points at infinity noo(V) is the valency n of the root vertex in (2 and 
deg(V) is the linking number Iroot of the virtual component for the root vertex 
with the link. I f  V is a regular curve then (2 is a regular splice diagram. 

(ii) A link is a sublink of some link at infinity (which can be chosen regular, 
or even good) if and only if it has an RPI splice diagram. 

An RPI construction for a link 5O may involve unnecessary cabling opera- 
tions which just replace a curve by an isotopic curve, but there are finitely 
many minimal RPI constructions, described by minimal RPI  splice diagrams, 
which involve no such cablings. An embedding ~ 2  C ]p2 is, by definition, minimal 
for V in the sense described earlier if and only if the corresponding RPI splice 
diagram is minimal. A regular toral knot has just one minimal RPI splice dia- 
gram. Explicit general bounds on the number of minimal RPI splice diagrams 
are given by Theorems 6.2 and 6.5, the essential point being that for a link 
of interest to us, minimal R P I  diagrams can differ only in the position of the 
root vertex. Using this, we show: 

Theorem 3. For a reduced algebraic curve V ~ l~ 2, every minimal RPI splice dia- 
gram for its link at infinity is realized by an embedding 1~2 ~ ~ 2 .  In particular, 
any pair (deg(V), n~(V)) for V which either minimizes deg(V) or has n~ > 1 equals 
the degree and number of points at infinity determined by some minimal RPI, 
splice diagram for its link at infinity. 

If V is connected at infinity, the above theorem is implicit, in quite different 
language, in the paper of Abhyankar and Singh [A-S]. 

Some of the topological ingredients in this paper have independent interest. 
One ingredient for Theorem 2 is a computation in terms of splice diagrams 
of the effect of Dehn surgery on a component  of a toral link. We describe 
this in Sect. 3 in the greater generality of "graph links" since it is of wider 
use and involves little extra work. 

Theorem 1 follows from the next two results. 

Theorem 4. (i) A regular plane curve V can be recovered up to proper isotopy 
from a suitable spanning surface F ~  S 3 for its link at infinity 5O--(S a, L) by 
attaching a collar out to infinity in l~ 2 to the boundary OF. 

(ii) F is the fiber of some fibered multilink with positive multiplicities. 
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A multilink, see below or [E-N],  is a link whose components have been 
assigned integer multiplicities; it is fibered if its e x t e r i o r - t h e  complement of 
an open tubular neighborhood of the l i n k - i s  fibered over the circle by a map 
whose degree on any curve is the linking number of the curve with the link, 
taking multiplicities into account. 

If the defining polynomial f:  [~2 ~ ~ for Vis good then, as already mentioned, 
5r ~ has a "Milnor  fibration," and in this case Theorem 1 is easy: F c S  3 is a 
fiber for the link, and the fact that a minimal Seifert surface for a fibered link 
is unique up to isotopy and isotopic to a fiber is proved in [E-N, Sect. 4]. 
In general, given Theorem 4, Theorem 1 is a special case of the following more 
general result about  fibered multilinks in homology spheres: 

Theorem 5. I f  a fibered multilink in a homology sphere X, has no component 
of multiplicity zero then the boundary of a fiber F for the multilink determines 
the multilink and its fibration up to isotopy. Moreover, any minimal Seifert surface 
for the link (~, OF) is isotopic to F (the isotopy may not f ix  •F) 7. 

Note that Theorem 5 implies that the multilink associated to a non-fiberable 
regular link at infinity is unique up to isotopy. The relationship of this multilink 
with the defining polynomial f can be quite subtle. The following example seems 
fairly typical. More  examples and discussion are in Sects. 8 and 9. 

Example s. Consider f (x ,  y)=xVyq+ y with gcd(p, q)=gcd(p, q -  1)= 1, p >  1, 
q > 1. The only irregular fiber is f -  1 (0). The regular fiber is a twice punctured 
surface of genus ( p -  1)/2. Its link at infinity has RPI  splice diagram 

0 p l l l -q  1�9 1 -PI q l  

In the RPI  construction of ~ ,  the curves x = 0  and y = 0  play the roles of 
K1 and K2 (the virtual component  Ko can be represented for example by x +  y 
= 0) and the two components  are a (p, 1 -  q) cable on K1 and a (q, - p )  cable 
on K2. The multilink corresponding to 2T has diagram 

p 1-q 1 1 
19 -" - (q) 
1 

where the q in parentheses indicates that the component  K 2 has multiplicity 
q. It is not hard to show that the underlying link L1 u K 2  of this multilink 
is not realizable as a link at infinity, however one orients its components,  if 

7 This is a special property of such a link: a general link may have many non-diffeomorphic minimal 
Seifert surfaces 
8 This example answers the question of [S, p. 250] negatively 
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q>2 .  Finally, the irregular fiber f - l ( 0 )  is the disjoint union of an annulus 
and a disk; its link at infinity has splice diagram 

p 1 - q  1 1 p q - 1  

The computat ion of such examples is not hard: compute the splice diagrams 
for the links of the singularities on p1 of Vw p1 ~ lp2 (this is the same as comput-  
ing the Newton-Puiseux pairs, for which there are standard techniques); the 
desired RPI  splice diagram then results by an easy manipulat ion described in 
Sect. 4. 
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N.S.F. for this work is gratefully acknowledged. The research for this paper was started while the 
author  was enjoying the hospitality of the Max-Planck-Insti tut  ffir Mathemat ik  in Bonn. 

1. Proof  of  Theorem 5: fiber boundaries of multilinks 

Recall (cf. I-E-N]) that a multilink in a homology 3-sphere X consists of an 
oriented link 50 = (27, L) (so L consists of a disjoint collection of smoothly embed- 
ded oriented circles in 27) together with an integer "multiplici ty" assigned to 
each component  Ki of L with the convention that  a component  Ki with multiplic- 
ity m~ is considered equivalent to - -Ki  (that is K~ with reversed orientation) 
with multiplicity -m~.  Such a multilink has a unique-up-to-homotopy map re: 
E(L) ~ S 1 of its exterior E(L ) = Z - int N(L) to S x (N(L) denotes a closed tubular 
neighborhood of L in 2;) whose degree on any closed curve in E(L) is the linking 
number  of the curve with L, taking multiplicities into account. Conversely, any 
homotopy  class of maps re: E(L)-~S 1 determines a multilink structure on 50. 
If  this homotopy  class contains a fibration, the multilink is said to be fiberable 
and 50 plus such a fibration is called a fibered multilink. In rE-N, Sect. 4] 
it is shown that the fibration of a fiberable multilink is unique up to isotopy. 
Since [E(L), S 1] = H  1 (E(L); 7/) canonically, the homotopy  class [g] determines 
an element of  HI(E(L);TZ,), which we call the multiplicity class for 50. It is 
dual to the homology class in Hz(E(L), 0E(L); Z) represented by any Seifert 
surface for the multilink. 

A fibered link is the special case of a fibered multilink with all multiplicities 
equal to + 1. We can choose the component  orientations so that the multiplicities 
are all + 1. In this case L is isotopic, as an oriented link, to the boundary  
OF of a fiber F of the fibration. However, if 5 ~ is a fibered multilink whose 
component  multiplicities are not all _ 1 then the boundary 0F  of a fiber will 
be some cabling of L. Theorem 5 says that 50 = (2;, L) can nevertheless be recov- 
ered, as a multilink, from the oriented link 50 '=  (27, OF), so long as no component  
of 50 has multiplicity zero. To prove this we must recognize whether a compo-  
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nent K 0 of OF which is a non-trivial cable arises in OF because Ko itself occurs 
(up to isotopy) as a component  of 50, or because the curve K that it is a 
cable on occurs as a (multiple) component  of 50. As we shall see, K is a compo- 
nent of 50 if and only if "K  o contributes to the non-fiberability of 50' =(S,  OF)." 

Proof of Theorem 5. Note first that a fibered multilink is irreducible (also called 
"non-split"), that is, the link exterior E(L) is irreducible: it contains no embedded 
2-spheres which do not bound balls. As described in I-E-N], the toral decomposi- 
tion theorem of Jaco-Shalen [J-S] and Johannson [J], applied to the irreducible 
link exterior E(L) of 50, gives the minimal splice decomposition for the multilink 
50. Namely, E(L) is written as the union of pieces Ej pasted together along 
torus boundary components,  these tori are incompressible and non-boundary-  
parallel in E(L), each Ej is either simple or Seifert fibered, and Seifert fibrations 
on adjacent Ej's can never be made to agree along their common torus (this 
latter condition gives the minimality of the decomposition). Each Ej is itself 
a multilink exterior: S - i n t  Ej is a disjoint union of homology solid tori and 
replacing each of them by a homologically equivalent genuine solid torus gives 
a homology sphere S j, the cores of these solid tori form a link L~ and S j, 
and the multilink structure is determined by the restriction g j = g l E j  of the 
map  g: E(L)-~S  I which gives the multilink structure of 50. In I-E-N, Theo- 
rem 4.2] it is shown that ~ is fiberable if and only if each of the splice components 

= (S j, L j) is fiberable, that is, each ~j is homotopic  to a fibration. 
Now let 50 = (X, L) be a fibered multilink with no component  of multiplicity 

zero. We shall choose orientations so that all multiplicities are positive. Let 
50 '=(S ,  0F). If 50 is a link, that is, all multiplicities are 1, then 50'---50, so 
in particular 50' is a fibered link. On the other hand, if 50 is not a link, that 
is, some multiplicity is > 1, then we shall see below that 50' is not a fibered 
link. Thus 50' detects whether 50 is a link, and in case 5 ~ is a link the Theorem 
is just reiterating the results already quoted, that the fibration of a fibered link 
is unique up to isotopy and any minimal Seifert surface is isotopic to a fiber. 
We will therefore assume from now on that some multiplicity is > 1. 

Suppose next that the underlying link without multiplicities is either the 
unknot in S 3 or the positive or negative Hopf  link (two unknotted circles in 
S 3 linking once with linking number  + 1 or - 1). For  the unknot with multiplici- 
ty p >  1 the fiber F is p disks and OF is the reducible link consisting of p 
unknotted unlinked circles. For  the positive or negative Hopf  link with multipli- 
cities p and q the fiber F consists of d =  GCD(p, q) annuli connecting pairs of 
parallel (p/d, +_ q/d) torus knots and OF consists of the (2p, _+ 2 q) torus link 
with d of its 2d components  reversed in orientation (in particular ~q' has just 
one splice component). In each of these cases it is easy to see that 50' is nonfiber- 
able (see [E-N, proof  of 11.2). The following Lemma shows that we can recognize 
from 50' whether we are in one of these cases. Theorem 5 is then easily verified 
for them. 

Assume now that 50 is not as above. We shall show: 

Lemma 1.1. (i) 5r is distinguished from the previous cases in that it is non-fiberable, 
irreducible, and has more than one splice component in its minimal splice decomposi- 
tion. 
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(ii) Each non-fiberable splice component in the minimal splice decomposition 
of 5O' has Seifert fibered exterior with a single multiple fiber. To recover 5( 
from 2'', replace the part K o of OF occurring in each such splice component 
by the corresponding multiple fiber K of the Seifert fibration and give K the 
orientation and multiplicity that makes it homologous to K o in a neighborhood 
of K (this is its multiplicity as a Seifert fiber). 

Proof. If K is a component of our fibered multilink 2" of multiplicity 1 then 
the corresponding portion of OF is just a parallel copy of K. On the other 
hand, if K is a component of multiplicity p >  1, then the corresponding part 
Ko of 0F is a d-fold (p/d, q/d)-cable on K for some q, where d=gcd(p, q) (cf. 
I-E-N, p. 29]). As described in [E-N, Proposition 1.1] (see also Sect. 3), such 
a cabling corresponds to adding a splice component  to 2". The exterior E for 
this splice component is E = N(K)- - in t  N(Ko), where N(K) and N(Ko) are suit- 
able tubular neighborhoods of K and K o with N ( K o ) c i n t  N(K). This E is 
Seifert fibered with typical fibers being parallel to the components of Ko and 
with K as the unique singular fiber. Let us call such a splice component of 
2' '=(Z,  ~F) a "new"  splice component. We splice decompose 5 ~ by taking 
a minimal splice decomposition of 5O and adding the new splice components. 
The splice components that come from 5~ we call "old" .  

Since F is a Seifert surface for 2 ' ' ,  it is dual to the multiplicity ctass for 
2' ' .  It is of course also dual to the multiplicity class for ~o. In particular, the 
old splice components of 5O' agree as multilinks with the corresponding splice 
components of ~L,r and are hence fiberable. On the other hand, F has intersection 
number 0 with the Seifert fibers in each new splice component exterior, so 
by I-E-N, Theorem 11.21, these are not fiberable multilinks. 

The above splice decomposition of 5O' is minimal. Indeed, suppose an old 
splice component  exterior adjacent to a new splice component exterior is also 
Seifert fibered; we must show that the Seifert fibrations do not agree up to 
homotopy along the common torus. But if they did, then F would have intersec- 
tion number 0 with the fibers of this old splice component,  contradicting the 
fiberability of ~ .  (This argument does not apply when the underlying link of 
5O is the unknot or a Hopf  l ink-exc luded  in the Lemma. These might be 
thought of as the cases where 2 '  has " n o "  splice components.) 

Since some multiplicity in 2" is > I, there is at least one new splice component 
in 2' ' .  Thus 2 ' '  is not fiberable, and its minimal splice decomposition has at 
least two splice components. The existence of a minimal splice decomposition 
implies the irreducibility of ~ ' .  Finally, part (ii) of the Lemma follows from 
our description of the new splice components. []  

The first sentence of Theorem 5 is proved. We must still show that, if f 
is as in the above Lemma, any minimal Seifert surface F' for 2 ' '  is isotopic 
to F. Any minimal Seifert surface for an irreducible multilink can be isotoped 
to intersect each splice component in a minimal Seifert surface for that splice 
component (cf. [E-N, Theorem 3.3]; isotopy is not claimed there, but the proof 
easily yields it); moreover, a minimal Seifert surface in a fibered multilink is 
isotopic modulo boundary to a fiber [E-N, Proposition 4.1]. Thus F' can be 
assumed to equal F outside the new splice components. Denote this part of 
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F and F' by Fo. The part F - i n t  Fo of F inside the new splice components 
is a union of annular collars on boundary components of F. The same must 
be true for F', since anything else would decrease the euler number and contra- 
dict minimality. Thus F' and F are both isotopic to F o and hence to each 
other. [] 

For  convenience we record here the following. 

Proposition 1.2. I f  a fibered multilink 5~ has at least one component of multiplicity 
+ +_ 1, then the link ~ '  given by a fiber boundary for 5~ is not fiberable. 

Proof If no component has multiplicity 0 this is a corollary of Theorem 5 (and 
an ingredient in its above proof). If a component does have multiplicity 0 then 
Y '  is reducible and hence not fiberable. [] 

2. Proof  of  Theorem 4: the multilink associated with a link at infinity 

We first describe why a regular complex algebraic curve V c ~2 can be recovered 
up to proper isotopy from a spanning surface F for the link at infinity 5(' = (S 3, L). 
Let f :  1~2___+ ~ be a defining polynomial for V. Let n be the degree of f By 
a linear change of coordinates (x, y)e~2 we can put f ( x ,  y) in the form 

f ( x ,  y )=x"+ f ,_~(y)x  "-1 + ... + fo(Y). 

Since f has only finitely many irregular fibers (this follows from the proof of 
the next lemma), their images will all be contained in the interior of some 
sufficiently large disk D2 (s) = {z ~ ~ I I zl < s} about the origin 0 e 112. Consider the 
polydisk D (q, r) = {(x, y) e C 2 ] ] x I < q, l Y] < r}. 

Lemma 2.1. For s as above sufficiently large, r sufficiently large with respect 
to s, and q sufficiently large with respect to r and s, the fibers f - l ( z ) f o r  zeOD2(s) 
intersect OD(q, r) only in the part [x I< q, [y I= r, and do so transversely-in fact, 
they intersect each line y = Yo with [yol= r transversely. 

Proof If, for given r and s, f - l (DZ(s))  intersected {]xl=q, ]Yl <r} non-trivially 
for arbitrarily large q, then y = 0 would be a point at infinity of the fibers f -  1 (z). 
This is not so, so for large q, f -  1 (D 2 (s)) only meets the other part {I x ] < q, I y t = r} 
of 8D(q, r). 

To see the transversality statement, consider f ( x ,  y ) - z  as a polynomial in 
x with coefficients in ~[y ,  z] and form its discriminant A elE[y, z]. (Recall that 
the discriminant of a degree n polynomial f E R [ x ]  over a ring R is A = I ~  (~i 

i<j 

-~ i )  2, where the ~i, i=  1 . . . .  , n, are the formal roots o f f = 0 ;  it is a polynomial 
in the coefficients of f and it vanishes if and only if f = 0 has multiple roots.) 
Then the fiber f -  l(zo) is transverse to the line y = Y0 if and only if A (Yo, Zo) + 0. 
In particular, the fiber f-~(Zo) is regular at infinity if A(y, z)4:0 for each z 
close to z o and each y of sufficiently large absolute value. But this fails if and 
only if z = Zo is tangent to A (y, z) at infinity. In homogeneous coordinates (y, z, w) 
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at infinity, this says that  z = w = 0 is a point  of  A = 0 and z = z o w is a tangent  
line to A = 0  at this point.  This can only happen  for finitely m a n y  z o, so we 
choose our  disk DZ(s) to  contain  these values in its interior. [ ]  

N o w  choose q, r, and s, as in the above  Lemma .  

Lemma 2.2. D = f -  1 (D2(s)) c~ D(q, r) is a 4-disk with piecewise-smooth boundary 
which decomposes as ~D = S u E with 

S = 0D (q, r) c ~ f -  1 (D 2 (S)), 

E = D (q, r) c~ c3 ( f  - a (D 2 (s))), 

and f restricts to a fibration of E over a circle and a typical fiber F= f - l ( z ) c~  E 
of f[  E satisfies: 

(i) f -  1 ( z ) - i n t  F is a collar out to infinity on OF; 

(ii) the pair (OD, OF) is equivalent to the link at infinity (after smoothing the 
corner along OS = ~E). 

Proof One can follow the s tandard  mode l  for such proofs,  Milnor ' s  p roo f  [ M ]  
that  the l ink of an isolated critical point  is fibered: by mir ror ing  his p roof  
one can const ruct  a suitable vector  field along which to isotop the one construc-  
t ion to the other. We give a modif ied a rgumen t  which shows that  any two 
reasonable  const ruct ions  of a " l ink  at infinity" give the same answer.  In par t icu-  
lar, a change of coordina tes  in tE 2 does not  change the link a t  infinity, a fact 
that  we have  been implicitely assuming but which requires proof.  

We  shall call a manifold pair  (s L) an abstract link at infinity for (~2, V) 
if (Z, L ) x  [0, ~ )  is d i f feomorphic  to a ne ighborhood  of infinity for the pair  
(C 2, V). We  first note  that  any  two abs t rac t  links at infinity for (~2, V) are 
diffeomorphic,  since they are h o m o t o p y  equivalent  as pairs, so one can apply  
Waldhausen  [W].  

T o  see that  (C 2 - i n t ( D ) , f - l ( z ) - i n t ( F ) )  is h o m e o m o r p h i c  (diffeomorphic 
after smooth ing  corners) to (0D, OF) x [0, oo) as desired, integrate  a long a suit- 
able sm oo th  vectorfield v on ~ 2 - - i n t ( D )  which is t ransversal  inward on 0D, 
is tangent  to  the fibers f l l ( z )  for l y l>r  and z~OD2(s), and whose v-derivative 
satisfies the following for some small e: v ( l y l 2 ) < - i  when l y [ > r - e  and 
I f(x,  y)[ < s + e, and  v(If(x,  y)[z) < _ 1 otherwise. Such a vectorfield is easily con- 
structed locally using the lemma,  and  a par t i t ion  of unity then does it global-  
ly. [ ]  

T o  complete  the p roof  of T h e o r e m  4 (and hence also T h e o r e m  1) we must  
show that  F is a fiber of  a mult i l ink with no zero multiplicities. I a m  grateful 
to Lee Rudo lph  for  the following very simple p roo f  of  this fact. It is also a 
consequence of T h e o r e m  2 and  its proof,  as we describe later ( R e m a r k  4.1 and 
Corol la ry  5.3). 

W e  wan t  to show that  S is a union of solid tori, to exhibit  F as a fiber 
of a mult i l ink s t ructure  on the link consist ing of the cores of  these solid tori. 
No te  that  for  [Yol--r the intersect ion S o =  {(x, Y)[Y=Yo} nf l~(D2(s))  is t rans-  
verse. Moreover ,  S o is equivalent  to the set { x ~ l  Hf(x, yo)n <s},  which is a 
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collection of disks, since it is bounded and its complement in tE can have no 
bounded components (such components would contradict the maximum modu- 
lus principle). It follows that S consists of solid tori as claimed, so we have 
constructed the desired multilink. 

The transversality of the intersection {(x, Y) IY = Yo} r~ f -  l (z) also shows that 
OF = S n f -  1 (z) intersects each So transversely, so every component of our multi- 
link has nonzero multiplicity. Theorem 1 now follows from Theorem 5. []  

Remark 2.3. The results of [N-R1]  quoted in the Introduction follow easily 
by the present approach. We sketch the proofs. 

I f  f is not good then 50 (f, oo) is not fiberable. Proof If f is not good then, 
with notation as above, f lS0 :  So---~D 2 has non-empty branch set (there is a 
branch point near any fiber which is irregular at infinity). Thus the multilink 
associated to 5 ~ (f, oo) has at least one component of multiplicity > 1, so 50 (f, Go) 
is not fiberable by Proposition 1.2. [] 

I f  V = f - l ( 0 )  is reduced and connected at infinity then f is good. Proof The 
link at infinity of V is homologous in S to the associated multilink, so the 
multilink has only one component 9. That is, it is a fibered knot with multiplici- 
ty. Call the multiplicity m. We must show m = 1. The general fiber of f has 
m components, so f can be factored as g ~ for some polynomials fo: ~2  __~ 

and g: 112~C, with g of degree m. Since f has a reduced and connected fiber, 
m = l .  [] 

3. Splice diagrams and Dehn surgery 

We first recall here, as briefly as possible, what we need of the language of 
splice diagrams. See [-E-N] for more details. 

Given links in homology spheres 50'= (Z', L') and 50"= (S", L") and compo- 
nents K ' c  E and K" c L", the splice 50 =(Z, L) of 50' and 2'" along K' and 
K" is constructed as follows. Z is obtained by pasting together complements 
of open tubular neighborhoods of K' and K": Z=(S ' -N(K' ) )w(Z"-N(K") ) ,  
matching meridian of K' to longitude of K" and vice versa. L is the union 
of the components of L' and L" other than K' and K". 

A graph link is a link obtained by splicing together Seifert links, that is 
links whose exteriors admit a Seifert fibration. The general Seifert link has the 
form (Z(al . . . .  , ~ , ) ,K lu . . .wKk)  where l<k<_n and sq . . . . .  c% are pairwise 
coprime integers; it can be described as follows. If the ei are all positive then 
Z(cq . . . . .  c~,) is the unique 3-dimensional Seifert fibered homology sphere having 
fibers K1 . . . . .  K ,  of degrees e l , - - . ,  e, and no other exceptional fibers (fibers 
of degree > 1). In particular, it only depends on the cq's which are > 1; it is 
the standard sphere if and only if at most two e~'s are not 1. It is oriented 
so that the linking number of any two fibers is positive (two general fibers 
then have linking number cq...~,). (Z(0, 1, ..., 1), K1 to...  w K,) is the link consist- 

9 In general, by the same argument,  the number  of components  at infinity of a reduced plane curve 
V is greater than or equal to the number  of components  of the associated multilink 
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ing of an unknot plus ( n - 1 )  meridians of it in the standard sphere S s. Finally, 
if some ~i's are negative then (27(~ 1 . . . .  , ct,), K1 •. . .  u Kk) is 
(2;(lell . . . . .  [e,I), K l w . . . W K k )  with some orientations changed: reversing the 
sign of an @ corresponds to simuttaniously reversing the ambient orientation 
and the orientation of the component K i. 

We symbolize the link (Z (~  I . . . .  , ~,), K1 w ... w Kk)  by the spl ice  d i a g r a m  

In particular, the link ~ , = ( S  3, K 1 w ... w K , )  consisting of n fibers of the Hopf  
fibration is symbolized by the splice diagram 

(if n = 1 or 2 the diagram may be abbreviated to 0-~ or ~ respectively). 
A diagram such as 

3 1 

symbolizes the result of splicing the two Seifert links represented by the splice 
diagrams 

I 1 13 
m ~ 

in the obvious way (this example represents the (2, 13)-cable on a (2, 3) torus 
knot or "trefoil"). More generally, splicing together any number of Seifert links 
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can be symbolized by analogously "splicing together" the corresponding splice 
diagrams. Thus any graph link (S, L) can be represented by a splice diagram 
F. 

As a special case of splicing, each of the diagrams 

and [ ~  

'---.c--' 
d d 

represents the result of doing an (a, fl) cabling operation to the link represented 
by the splice diagram [~---~. The precise operation is respectively replacing a 
component K by, or adding, d parallel (c~, ]~) cables on K. 

By attaching integer weights to the arrowhead vertices of a splice diagram 
to represent multiplicities, one can symbolize a graph multilink. This splice 
diagram is not unique: 

(i) One can change the signs of an even number of weights around any 
vertex if one simultaniously changes the signs of the multiplicity weights at 
all arrowheads separated from that vertex by the edges corresponding to the 
changed weights. 

(ii) An edge of the form 

is redundant in a splice diagram and may be omitted (with its right hand vertex). 
(iii) A vertex of valency 2 (that is, with just 2 adjoining edges) may be deleted, 

replacing the two adjoining edges by a single one. 

(iv) An edge of the form 

o 

s 

corresponds to a splitting of the link along embedded 2-spheres in Z; we can 
delete this edge and all directly neighboring edges to represent the link by 
a disconnected splice diagram. 
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(v) Finally, any edge with zero "determinant"  (see below) can be collapsed, 
coalescing the vertices at its two ends to one vertex (the signs of multiplicity 
weights at some arrowheads may also need to be changed). 

Using these moves, any splice diagram for a graph link can be reduced 
to a minimal splice diagram (i.e. least number of vertices), and this minimal 
diagram is unique up to the allowable changes of signs of its weights. The 
minimal diagram is connected if and only if the graph link is irreducible. 

We classify three types of vertex in a splice diagram F: arrowheads (corre- 
sponding to link components), leaves (non-arrowhead vertices of valency 1) and 
nodes (vertices of valency > 1). For  an edge E connecting two nodes of F as 
follows, 

~ 0 ~  0 OL 1 ~ ~  

~ O~k+ 1 ~ 

we define the determinant of the edge to be d(E)= ~o o~1 --0~2"" "O~m" Corresponding 
to the edge there is a torus in the ambient sphere S along which two Seifert 
splice components were pasted; d(E) is the intersection number in this torus 
of typical fibers of the Seifert fibrations on each side of it. In particular, if 
d (E)=0  then the Seifert fibered structures can be isotoped to match up along 
this torus, so the splice decomposition was not minimal. 

The following proposition will be used later. 

Proposition 3.1 [E-N, Sect. 9]. A link ~ = ( S  3, L) is the link of some complex 
plane curve singularity if and only if it has a connected splice diagram with all 
weights and all edge determinants positive. It  then has a minimal splice diagram 
with these properties. [] 

For each node of a splice diagram we pick a typical fiber of the Seifert 
fibered structure of the corresponding Seifert link splice component and for 
each leaf we choose the corresponding exceptional fiber; we call these curves 
virtual components for the link; this agrees with the definition in the Introduc- 
tion. 

Lemma 3.2 [E-N, Sect. 10]. The linking number in X of any two components 
(virtual or genuine) for the link is the product of all weights adjacent to, but 
not on, the simple path in the splice diagram connecting the corresponding ver- 
tices. [] 

For example, for the (2, 13) cable on the trefoil whose splice diagram was 
pictured above, the knot  itself has linking number 2.3.2 = 12 with a typical fiber 
of the trefoil splice component.  

An easy induction on the number of nodes in a splice diagram proves the 
following lemma. 
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Lemma 3.3. The weights in a splice diagram are determined by all linking numbers 
of pairs of components (virtual or genuine) for the represented link. [] 

We are now prepared to describe the effect of Dehn surgery on graph links. 
Let 

F = K  

be a splice diagram for a link 5r =(X, L), where K is some component  of L. 
If we perform (1/k)-Dehn surgery on the component  K then X is replaced by 
a new homology sphere X' and the core of the Dehn surgery together with 
the remaining components  of L thus give us a new link ~ ' = ( X ' ,  E). We wish 
to describe a splice diagram F' for 5q'. 

We shall call weights on edges of F far or near according as they are on 
the far or near end of an edge as viewed from the K vertex. We construct 
a splice diagram 

F' _ _ 

as follows. F'  has the same shape as F; all near weights are unchanged from 
F; the far weights are determined inductively by: 

(i) ff = 3-koq...c~,, 
(ii) all edge determinants in F'  are unchanged from F. 

Equivalently (as an easy computat ion shows) 

(iii) the far weight fly at each node v is replaced by 3v-k22c~v, where ~, 
is the product of the near weights at the vertex v and 2 v is the product of 
all weights adjacent to but not on the simple path from v to the K arrowhead, 
excluding the near weights at v. (Thus 2,~v is the linking number  with K of 
the virtual component  corresponding to v.) 

Proposition 3.4. The above splice diagram F' is a splice diagram for Y' .  

Proof The same tori that  divide the exterior of the link ~ into Seifert fibered 
pieces also divide the exterior of ~ '  into Seifert fibered pieces, giving a splice 
decomposition for Lf'. Thus the shape of F'  is correct. To see that the weights 
are correct it is sufficient, by Lemma 3.3, to see that they give correct linking 
numbers between components  (both real and virtual) of Lf'. But (l/k) Dehn 
surgery on K replaces the linking number  link(S1, $2) of any two curves disjoint 
from K by link(S1, $2)--k. l ink(Sl ,  K).link(S2, K) while the linking number with 
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K of a curve disjoint from K is unchanged. Using (iii) it is easy to see that 
the described change of weights to get F'  from F has the correct effect on 
linking numbers. [] 

Example. (l/k) Dehn surgery on an (p, q) torus knot  in S 3 gives a knot  in the 
homology sphere X(p, q, 1 -  kpq). The splice diagrams are: 

1-kpq P 
q" 

4. Proof of Theorem 2: RPI diagrams for links at infinity 

Recall that a rooted splice diagram is one with a chosen root vertex: 

(the root  vertex is marked  "e" ) .  (4.1) 

All weights at the root vertex equal I. The diagram may be non-minimal as 
a splice d i a g r a m - i t  certainly is if n=2 .  If  n =  1, the weight 1 at the root vertex 
should be disregarded when considering f2 as a splice diagram. The end of 
any edge which is furthest from the root vertex is called the far end and the 
other end the near end of the edge. Weights on edges are also correspondingly 
called near or far. Recall that f2 is an RPI splice diagram if 

(0) at most  one near weight at each vertex is not equal to 1 ; 

(i) all near weights are positive; 

(ii) all edge determinants are negative (we include the edges at the root  
vertex in this condition, even when n = 1). 

The first part  of Theorem 2 associates a specific RPI  splice diagram f2 to 
a reduced plane curve V C2~ 2 plus an embedding ~ z  c p z .  We must thus study 
the link at infinity of V = C - ( C c ~ l P 1 ) c P z - P l = ~  z, where C is a reduced 
projective curve. We can assume that ~'1 is not a component  of C, so C meets 
F ~ in finitely many  points I11 . . . .  , Y,, say. Choose an embedded disk D o in 
P 1 which contains C c~P 1 and let D be a thin 4-disk regular neighborhood 
of Do in p2 whose boundary S = OD meets C and P~ transversely (see Fig.). 
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Then (S, (IP 1 u C) n S) is a link 5~ which can be represented by a splice diagram 
F (non-minimal if n =  1) as follows: 

P = K0 ~' (4.2) 

Here K0 is the component ~ ' l n S  and each ~ is a splice diagram which 
represents the link of ~ '~u C at the point Y~. Since this latter is a singularity 
link, ~ may be assumed to be a minimal splice diagram with all weights 
and all edge determinants positive (Proposition 3.1). The link represented by 

is a toral link (i.e. obtained by iterated cabling operations) and K o is 
unknotted. This is equivalent to saying that at most one near weight at each 
vertex is not equal to 1, where "near"  is interpreted with reference to the K o 
vertex. 

Now let N~  '1 denote a thin closed tubular neighborhood of ~1 in ~,2, so 
S 3 - = ~ N ~  2 is a "sphere at infinity" in 1122, and 501=(S 3, S 3 n C)  is the link 
at infinity that we are interested in. Note that N~ '1 is obtained from D by 
adding a 2-handle along KocS=OD, so 501 is obtained from 50o by (+1)  
Dehn surgery on Ko. Thus, by Proposition 3.4, 501 has a (non-minimal) splice 
diagram 

F t = O 

where the F~' differ from the F~ only in that all far weights have been changed 
so as to keep all edge determinants the same as in F. Actually, this is still 
not quite the link we are interested in, since it is being viewed from "inside" 
112 2 , i.e. with the wrong ambient orientation. Reversal of ambient orientation 
is effected by reversing the signs of all far weights (which reverses the signs 
of all edge determinants). This gives a splice diagram of the form: 
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This is non-minimal and can be simplified to the (possibly still non-minimal) 
splice diagram 

With the leftmost vertex as " roo t  vertex," this has near weights still positive 
and all edge determinants negative, so it is an RPI splice diagram. 

That  n~(V) is the valency n of the root node is immediate from the construc- 
tion. The degree deg(V) equals the intersection number of V and a generic 
line in II; 2. We can compute this intersection number in any sufficiently large 
disk O 4 c t ~  2. But the intersection number of two relative 2-cycles in a disk 
D 4 is the linking number of their boundaries in #D 4. Moreover, the link at 
infinity of a generic line is a representative for the virtual component S,oot for 
the root vertex. Thus deg(V) =/root, the linking number of Sroot with L. 

The above proof applies without change to show that a sublink of a link 
at infinity has an RPI splice diagram (in fact, it is easy to see that a sublink 
of a link with an RPI splice diagram has an RPI splice diagram). We now 
show, conversely, that a link which has an RPI splice diagram is a sublink 
of some link at infinity. The above procedure to derive ~2 from F can be reversed 
to reconstruct F from the RPI diagram t2. We first consider the case of a 
link given by an RPI splice diagram 

~-----" r -~] ,  

as in (4.1) above with n = 1. Its corresponding diagram 

has positive near weights and positive determinants. By induction, starting at 
the left of the diagram, one deduces that the far weights of ~ are positive. 
Thus ~ is a splice diagram for a singularity link, and it can be realized 
as the link at a point Y a ~  1 c ~  '2 of a curve of the form Ca u ~  1. Now, given 
the more general diagrams t2 and F as in (4.1) and (4.2) above, we realize 
each ~ by the link of a curve of the form C i w F  1 at a point Y~elP 1, making 
sure that the points Y~ are distinct. Then, putting C = C I  u . . .  w C,, the link 
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represented by f2 is a sublink of the link at infinity of V=C~( IPZ- IPI )~ IP  2 
- I p  1 =1132. 

We must still show that our link is a sublink of some good link at infinity. 
Let f (x ,  y ) = 0  be the defining polynomial for V. By applying an automorphism 
of the form (x, y)~-*(x, y + x  N) for some large N, we can replace V by a V with 
just one point at infinity: C =  V intersects IW only in the point x = z = 0  in 
homogeneous coordinates (x, y, z) on ~D2= ~ 2  k.,)]pl. Let h(x, y, z)= 0 be the ho- 
mogenized equation for C, of degree d say. In affine coordinates near x = z = 0, 
C is given by h(x, 1, z)=0. Adding sufficiently high order terms eixP'z q' to this 
does not alter the link at this point, since an isolated singularity is finitely 
determined, h(x, y, z) is replaced by 

h,ew(X, y, z)=y,,-a h(x, y, z)+~, al x p' y"-P'-q' z q' 

with m=max{pi+qi},  and f (x ,  y) is replaced by f~ew(X, y)=h.ew(x, y, 1). This 
adds new points at infinity, but it is easy to see that, after a generic such replace- 
ment, the additional intersection points of the new curve Cnew with ~,1 are 
all distinct and transverse. Any other fiber of fnew(X, y) has homogeneous equa- 
tion hnew(X,y, z)+cz"=O. Away from x = 0  this intersects IP 1 transversely in 
the same points as Chew. If m is large then, by finite determination, it has an 
equivalent singularity to hnew(X, y, z )=0  at x = z = 0 .  It follows that J~w is good. 

To complete the proof of Theorem 2 we must show that if ~ is the whole 
link at infinity of a regular plane curve  V=C-(C(~]P1)cT-]P2-~I=I~, 2 then 
the resulting diagram f2 is regular. We use the notation of the beginning of 
this section: C meets IP 1 in points Y1 . . . .  , I1,; F is the corresponding splice 
diagram as in (4.2) and O is the resulting RPI splice diagram for ~ as in 
(4.1). For  each i let L,r 3, Li) denote the link with splice diagram o - - ~ ;  
that is, the local link of the curve C at the point Y~ (we call this a "singularity 
link" whether or not C happens to be singular at Y~). Let K i be the virtual 
component represented by the leftmost vertex. A nonsingular deformation C 
of C will be isotopic to Fo w F1 w. . .  w F,,,, where Fo is a Seifert surface for 
(isotopic to F) and F~ is a fiber of the singularity link 2p~ (see Fig.). 

~ ~ C  

F o ~ 

p1 

In particular, it has euler characteristic x(C)= ~ z(F,.). Now let Pi denote the 
i=0 

local intersection number of C with ~71 at Y~, so the total intersection number 
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of C with IP' is P =  ~ P~. Then (7 has degree P, so its euler characteristic 
i = l  

is x(C) = 3 P -  p2. Thus 

3 p - - p 2 =  ~ z(F0. (4.3) 
i = 0  

Note that P/can also be interpreted as the linking number link(Ki, Li) for the 
link s and P =l ink(K o, Lo), computed for the link L o. 

We need to introduce some notation to continue the calculation. The far 
weight at a vertex v in F will be denoted rio, so the far weight at v in s~ is 
fiv"=2~ctv--flv in the notation of Proposition 3.4. For two vertices v and w in 
a splice diagram, we denote by v.w the vertex closest to the root vertex on 
the simple path from v to w and by e(v, w) the product of all near weights 
adjacent to but not on this path. Thus c~(v, w)flv.~, is the linking number of 
the components (virtual or genuine) corresponding to v and w. Finally, F ~ 
and F ~ will denote the set of arrowheads resp. non-arrowheads in any splice 
diagram F, and the valency (number of incident edges) for any veF ~ will be 
denoted 6~. 

For each node or leaf v of O, recall that Sv denotes the corresponding virtual 
component and I, =link(S~, L). By Proposition 3.2, if v is in O i, 

/v=).~c~v(P--P~)+ ~ c~(v, w)fl'~.~,. (4.4) 
wEFt" 

Since Fo is a minimal Seifert surface for ~ ,  [E-N, Theorem 11.1] says 

Z(Fo)=(2--n)P+ ~ ~ (2-6~)11v1. (4.5) 
i= 1 veF~ 

Let Xo denote the result of removing the absolute value signs in (4.5). Then 
it is not hard to see that Zo>Z(Fo), with equality if and only if each lv is non- 
negative (a leaf v contributes the wrong way when removing the absolute values, 
but its contribution is overwhelmed by the contribution of the adjacent node). 
Thus to complete the proof of Theorem 2 we must show Z0=X(Fo). To do 
so we will verify that (4.3) is valid with Z(Fo) replaced by Zo. 

By [E-N, Theorem 11.1] again, 

z(F/)=P/+ ~, (2--6~) ~" ct(v,w)fl~.w, (4.6) 
v~Fi w ~ F ~  

so, since " _ 2 fl~.w + fl~.w-2~.w ~ . . . .  adding the Eqs. (4.6) to (4.5) with absolute values 
removed and using (4.4) gives 

Zo+ ~ z(Fi)=(3--n) P 
i = l  

+ ~ Z (2-6~)(2v%(P--PO+ ~ e(v,w)2~.wct,.w). (4.7) 
i = 1  veiF ~ w e f t  
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Let ~(o, v) be the linking number of Ko with the (virtual or genuine) component 
for v. Then 2~c%=c~(o, v) and e(v, 2 w)2v.we~.w=O~(o, v) c~(o, w), so (4.7) simplifies 
to 

Zo + ~ Z(V~) 
i = 1  

= ( 3 - - n ) P +  ~ ~ (2--c~,)~(o,v)((P--Pi)+ ~ a(o,w)) 
i=  1 v~F~ w~FF" 

= ( 3 - n ) P +  ~ ~ (2--6v)~(o,v)((P-Pi)+Pi) 
i = 1  v ~ F  ~ 

=(3--n)P+P ~ ~ (2-6gc~(o,v). (4.8) 
i=  1 v~r~ 

On the other hand, let F~* and Fp be the nodes and leaves respectively of 
F~ and let E~ denote a set of 6v -2  outgoing edges at v whose near weights 
are 1 (recall that at most one near weight at v is not 1; its value will be %). 
Then 

( 2 -  6v) c~ (o, v) = ~ ~ ( -  ~ (o, v)) + ~ c~ (o, v) 
v ~ F  ~ v~F~ e ~ E v  v e F ~  

= y 

v~F~ e ~ E v  v~ F~ u F;  + 

= I - P ~ ,  

where the last equality is a simple induction on the size of the diagram. Substitut- 
ing this into (4.8) gives 

Xo+ P Z 
i = 1  i = 1  

= 3 p - p  2, 

as was to be proved. [] 

Remark 4.1. We do not really need to know that F, or equivalently Fo, is a 
minimal Seifert surface for the above proof. In fact the proof implies it, for 
without assuming it we just have inequalities X(Fo)<(right side of (4.5))<)~o 
and the proof shows that both these inequalities are equalities. 

Definition 4.2. For a reduced plane curve V c [~2 plus an embedding ~ 2 c  IP 2, 
Theorem 2 gives a specific RPI diagram ~ which we call the associated RPI 
splice diagram. The corresponding diagram F as in (4.2) is a minimal splice 
diagram if n~ > 1 and it is minimal once the vertex next to the root has been 
suppressed if no = 1. We call this minimal version of F the splice diagram at 
infinity for ~2. ~ itself is not generally minimal (even as an RPI diagram), but 
Theorem 3 says that any minimal RPI diagram is the associated diagram for 
some embedding ~2 ~ lp2. 
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We close this section with a useful corollary of the above proof. Let V ~ 2  
be a nonsingular plane curve, regular or not, and let 50 be its link at infinity. 
Let ~2 be the RPI splice diagram for 50 associated to some embedding ~ 2 c  p2 
(e.g. any minimal RPI diagram for 50). It is not hard to see that (4.3) is valid 
with Z(Fo) replaced by z(V). On the other hand, the computation of the proof 
still applies to show that (4.3) is valid with Z(Fo) replaced by Zo defined as 
before (Eq. 4.5 with absolute values removed). Thus z(V)= Xo. Now if V is singu- 
lar but still reduced, then this formula must be adjusted using the euler character- 
istics Zp of the Milnor fibers of the singularities p of V. We thus get the following 
Theorem. 

Theorem 4.3. I f  V ~  C 2 is a reduced plane curve and t2 is a minimal RPI splice 
diagram for its link 50 at infinity then 

,~(V)= ~, (2--6~)l~+~pp, 
v ~  ~ p 

where the second sum is over the singularities p of V and I~p-- 1 - Zp is the Milnor 
number of the singularity at p. [] 

If V is nonsingular and lv is replaced by [l~[ this formula is just the formula 
of [E-N, Theorem 11.1] for the euler characteristic of a minimal Seifert surface 
of 50, so if 50 is an irregular toral link (some l~ is negative) then z(V) definitely 
exceeds the euler characteristic of a minimal Seifert surface for 5 ~ Conjecturally 
this is always the case if V is not a regular curve (see Sect. 9). 

5. Basic properties of RPI diagrams and regular toral links 

Let (2 be an RPI splice diagram for a link 50' =(S 3, L ) as in (4.1) above. Recall 
that for any node or leaf v we denote lv = link(Sv, L) where S~ is the corresponding 
virtual component, and t2 is called a regular splice diagram and 50 is called 
a regular toral link if these 1,, are all non-negative. 

If v is a leaf and w is the adjacent node, then l~=lw/~w (notation ~w as 
in the previous section), so the non-negativity of the Iv for leaves follows from 
the non-negativity for nodes. The following proposition will be used often. 

Proposition 5.1. Let e be an edge of (2 connecting two nodes and denote the 
nodes at its near and far end by v and w respectively. Let �9 be the weight at 
the near end of e (so ~ = 1 or ~). Then ~w l~ > ~ lw. 

Corollary 5.2. The condition for (2 to be a regular splice diagram- the l~ should 
be non-negative for all nodes and leaves v - n e e d  only be prescribed for the 
nodes v furthest from the root vertex; the l~ will then be positive for all other 
nodes. [] 

Proof of  Proposition. Let/~ be the product of the weights other than ~ at node 
v. Removing edge e splits f2 into two pieces; let L~ be the union of components 
of L corresponding to arrowheads in the piece containing node v and Lw the 
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union of components corresponding to arrowheads in the piece containing w. 
Then 

Iv = link(S~, Lv) + link (Sv, Lw) = link(Sv, L~) + ; v  link(Sw, L~), 

I w = link (Sw, Lv) + link (Sw, Lw) = - -  link (S~, L~) + link (Sw, Lw), 

where the second equality in each case is by Lemma 3.2. These two equations 
imply 

-d (e )  
~wlv--~lw- link(Sw,Lw), 

~w 

1 
where d(e)=c~flw-flc~ w is the determinant of the edge e. But flw link(Sw, Lw) 

is positive, since its computation by Lemma 3.2 only involves near weights, 
and -d(e)  is positive by the reverse Puiseux inequalities. []  

Corollary 5.3. A regular total link is the boundary of a fiber of a unique multilink 
with no zero multiplicities, and any minimal Seifert surface .for it is isotopic to 
a fiber of the multilink. 

Proof Once we have found the multilink, its uniqueness and the statement 
about minimal Seifert surfaces is by Theorem 5. Let v be a node with l~=0. 
We must show that this node has the form 

~v ~v ~v 1 

(~v~>2), or ... l l . .  " = (~v=l), 

with kv arrowheads, say. For  replacing each such node by an arrowhead with 
multiplicity kv c~v then gives the desired multilink. But by Corollary 5.2, the only 
other possible form for v is 

- - ~  (o~>~2), 

and by Lemma 3.2 this would imply lv=fl(mod~), in contradiction to the 
assumption that lv = O. [] 

We have also shown: 
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Proposition 5.4. The multilink associated to a regular toral link has a splice diagram 
satisfying the reverse Pulseux inequalities, with all multiplicities positive, and with 
the I v, positive for all nodes v. [] 

We close this section with a useful observation about RPI splice diagrams. 
It is immediate from the RPI condition. 

Lemma 5.5. I f  a far weight in an RPI diagram is negative, then so are all far 
weights which are beyond it from the point of view of the root node. [] 

6. Minimal RPI splice diagrams 

The basic result of this section is that for a link of interest to us, "minimal" 
RPI diagrams can differ only in the position of the root vertex. We first discuss 
the case of regular toral links and then describe the situation for links at infinity 
which are not necessarily regular. 

It is convenient to exclude the following small "exceptional" splice diagrams 
from the general discussion (in each case the root note is designated by a " e "  
symbol): 

= o r  -= d w i t h  d >  1. (6.1) 

Each of these diagrams represents a link consisting of d > 1 unlinked unknotted 
circles:- the link at infinity ~ ( x  d -  1, ~). 

Now let 5r be a regular toral link and let 

s2 = C (6.2) 

be a regular splice diagram for 5r not as in (6.1). If n =  1 then the far edge 
weight closest to the root vertex must be > 0  (it cannot be negative because 
of regularity and if it were zero then, by Proposition 5.1, (2 would be an excluded 
diagram (6.1)). 

Definition. We will call a regular splice diagram f~ a minimal RPI  diagram 
if it is one of the diagrams (6.1), or if it is as in (6.2) and each ~ is minimal 
and, if n =  1, the far edge weight closest to the root vertex is >1. That is, 

is not of the form: 
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~2= ~. with q>l. (6.3) 

If  ~2 does have this form then we shall see later that there is a smaller RPI  
diagram for the same link. 

If we forget which vertex of a minimal regular RPI  diagram f2 is root vertex 
then we get a minimal splice diagram except if n =2,  in which case we can 
suppress the root vertex, coalescing the two adjoining edges to one. Either way, 
we denote the resulting splice diagram by S2o. 

Lemma 6.1. I f  f2 is not one of  the following diagrams (6.4) or (6.4)' then ~2 o 
is a minimal splice diagram. 

p -q  - p  q 

d d 

d 

(p>q> l, d>l) (6.4) 

d (p>l, d>l). (6.4)' 

(The diagram (6.4)' is a reduced version of (6.4) in the case q =  I and d >  1. 
A minimal splice diagram for the link represented by (6.4) or (6.4)' is as follows; 
omitted edge weights are 1 : 

P -q  or ~ .) 

I I  ~ ' ' ~  

+ 1 . . . + 1  1 . . . - t  +1 . . . + 1  1 . . . .  1 

Proof of  Lemma. If ~2 o is not minimal then it has an edge which connects 
two nodes and has edge determinant 0. This edge arose by suppressing a root 
vertex of valency 2 in f~. Since f2 has negative edge determinants, it is easy 
to see that  both  weights on this edge must  be negative. Let v and w be the 
nodes at its ends. Lemma 3.2 implies that the linking numbers Iv and l+ (notation 
as in Sect. 5) are the negatives of each other. Since they are non-negative by 
assumption, they are both  0. Corollaries 5.2 and 5.3 now imply that ~2 must 
be one of the diagrams (6.4) or (6.4)'. [] 
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(2 can be recovered from ~2 0 by choosing an existing vertex as root vertex 
or introducing a root vertex on some edge. We shall call any splice diagram 
Do for our link 5 a rootable if it can be rooted: turned into a regular splice 
diagram in this way. 

We wish to bound the number  of ways of rooting ~2 o. To do this, we construct 
a subtree of f2 o which contains all the possible places for introducing a root 
vertex. Namely, we first delete any edge of g2 o which satisfies one of the following 
two conditions: 
- there is a non-positive weight adjacent to (but not on) the given edge; 
- there are two weights unequal to 1 adjacent to the given edge at one end 
of it. 
Then there is one component  of what is left, we call it root((2o), which contains 
all the possible places for a root vertex. Indeed, any potential root vertex outside 
this component  would either have a negative near weight or  would correspond 
to a knot ted virtual link component.  Each node of root(~2o) is either of valency 
2 with both weights greater than 1 or of valency > 2 with all weights positive 
and at most one weight greater than 1. If exactly one weight is greater than 
1, we call the node a contributing node. For  such a node v let 5v denote its 
valency in f2 o . 

Theorem 6.2. Let ~ be a regular toral link. Then either 5~ is given by one of 
the diagrams (6.1), (6.4), or (6.4)', and this diagram is the unique minimal RPI  
diagram for ~.~, or 5s has a unique rootable minimal splice diagram t? o and every 
minimal RPI splice diagram for ~ results from rooting ~2 o. The number of ways 
of doing this is 1 + ~ (c5 v -  2), sum over all contributing nodes of  root(f2o). 

Example. The following is a picture of a typical root (f2o). The dotted lines 
indicate edges not in root (f2o) and possible positions for a root  vertex are marked 
by a " e "  symbol. There are just two contributing nodes, each of valency 3. 

1 1 3 7 1 1 3 2 1 3 - 2  

- - i  ~ I c - ' l  ~ l :: 5 : 1 : ....... 

Lemma 6.3. I f  Y is a regular toral link then ~ has at most one minimal splice 
diagram (2 o which is rootable. 

Proof First some terminology. If  root(f2o) consists of a single edge then we 
call this edge the root edge. An edge with non-negative determinant or an edge 
with an arrowhead at one end and a non-positive weight at the other must 
be a root  edge. 

We must show that  if ~2 o is a rootable minimal splice diagram for f then 
it is no longer rootable if the signs of its weights are changed in any admissible 
way (i.e. without changing the represented link). Note  that a rootable diagram 
has at most  one non-positive weight at each vertex. Suppose there is an admissi- 
ble change of signs of weights of ~2o which results in a rootable diagram f2~. 
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Since an admissible change of weights changes an even number  of weights at 
any vertex, a vertex affected by the change has just one negative weight both 
before and after the change, and just these two weights are changed. Call the 
corresponding two edges at this vertex "changed edges." This change switches 
the signs of the edge determinants of these two edges. Since at most one edge 
determinant in each of (2o and (2~ is non-negative, it follows that the set of 
changed edges in (2o must form a path from a leaf to a leaf, or from a leaf 
to a root edge of (2o or (2~, or from root edge of (2o to root edge of (2~. 
In the first two cases, at least one of (2o and (2~ has a negative weight on 
an edge ending in a leaf, which is impossible, since the root vertex would have 
to be this leaf, and the weight closest to it cannot be negative. In the third 
case the situation is as follows (the Pi and qi are positive, unmarked edge weights 
are 1, each of vt and vs may be an arrowhead instead of a node, and the 
RPI  condition implies that at most one of v2 through v+_ 1 is of the "exceptional" 
type indicated in the middle): 

~z0= 

R ,s, . . . . . . . . . . . .  
I t Xx I \~ I \ / '~, / X / 

', / ~, , I ' ,  / ,. / ', / 

If there are arrowheads "be low"  nodes u 2 through %_ 1 then the corresponding 
link components  of 5 ~ have the wrong orientation after the change (one can 
change the orientation of all components without changing the l i n k : - t o r a l  
links are i nve r t i b l e -bu t  changing the orientation of only some of them does 
change the link, since it changes linking numbers). Thus there are no such 
arrowheads, so s = 3  and v2 is of the exceptional type. The non-negativity of 
lv2 in both (2 o and (2~ now shows Iv2=0, contradicting Corollary 5.2 (except 
in the case that vl and v3 are both arrowheads, in which case (2o is isomorphic 
to Q~). [] 

Proof of Theorem 6.2. We first show that a minimal RPI  diagram exists by 
induction on the size. Suppose therefore that 5O is given by an RPI  diagram 
as in (6.2) which is non-minimal. If an ~ ]  is non-minimal we can reduce 
it, keeping the RPI  property, thus reducing the size of (2. Thus we can assume 
f2 is as in (6.3). If k =  1 then we get a smaller RPI  diagram for 5O replacing 
q by 1 and collapsing the edge at the root vertex and then also deleting the 
portion ~ if it has the form ---o. If k > 1 then we obtain a splice diagram 
(2o for 5r by deleting the root  vertex and its adjacent edge; the following compu- 
tation then shows that this f2 o is rootable to get an RPI  diagram (in at least 
k different ways). 
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It remains to count the number of ways of rooting a given (20- We bisect 
each edge of root ((2o) and direct each resulting half-edge as follows: 
- at a node with all weights 1, direct the half-edges away from the node; 
-- at a node with one weight larger than the others, direct the half-edge with 

larger weight away from the node and the others toward the node; 
- at a leaf or arrowhead of the subtree direct the half-edge outward. 
This gives a flow on root((20) and the possible positions for a root vertex are 
precisely the sources of this flow. The desired formula is now an easy induction 
on the number  of contributing vertices. []  

Remark. Non-equivalent regular toral links which are equivalent as unoriented 
links would have to be related as in the proof  of 6.3. Let (2 and ~2' be the 
RPI  diagrams resulting from that proof. An easy calculation shows that lv2 
cannot be non-negative for both (2 and (2'. Thus: 

Proposition 6.4. Non-equivalent regular toral links can never be equivalent as unor- 
iented links. [] 

Irregular plane curves 

For  a link at infinity of  a reduced but not necessarily regular algebraic curve 
V one has similar results. Let (2 be its RPI  splice diagram as in (6.2) above, 
constructed as in Sect. 4. First note that if n =  1 then the far weight closest 
to the root vertex cannot be negative, and is zero only if (2 is as in (6.1) and 
V is a union of parallel lines. (This follows by observing that if the weight 
is non-positive then, in the notation of Sect. 4, the curve C =  g is transverse 
to pa  at its point at infinity, and since it meets p l  nowhere else, its multiplicity 
at that point must equal its degree, making it a union of lines through that 
point.) We can thus define (2 to be minimal as an RPI  diagram as before. 

Theorem 6.5. The analog of Theorem (6.2) still holds: I f  (20 is not minimal then 
there is just one minimal RPI splice diagram and if (20 is minimal, then it is 
the unique rootable minimal splice diagram for 5(' and the count of the number 
of ways of rooting it still applies. 

Proof The main difference is the analysis of the case that (20 has an edge with 
determinant 0 - t h e r e  are more cases than in Lemma 6.1 and one must show 
that there is still just one minimal RPI  splice diagram for the link in such 
a case. As before, the weights on the determinant 0 edge must be negative, 
so by Lemma 5.5 every far weight is negative. Let (21 be the result of collapsing 
this edge of (2o (suitable arrowheads of (21 must be given an orientation weight 
- 1  to represent the correct orientations of link components  of s Call the 
node that results from this collapse the root node. (2t is a minimal splice diagram 
with exactly one negative weight at each node. To recover (20 from (2t, we 
must be able to recognize the root node and also recognize how to parti t ion 
the edges at that node into two sets corresponding to the two vertices that 
collapsed into it; moreover,  we must even be able to do this after admissible 
sign changes in (21. The linking number  of two components  of s is positive 
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if and only if the path in ~2o connecting the corresponding arrowheads passes 
through the root  edge. Once the root node is known, this determines the partition 
of edges at it. But it also severely restricts the positions for the root node 
in ~1, and the RPI condition now easily pinpoints it precisely. 

We must also show that the analog of Lemma 6.3 still holds. The proof 
only used that ~2 is an RPI diagram, except for its appeal to the non-negativity 
of Iv2 for the final case. This case cannot occur for a link at infinity: by Proposi- 
tion 8.6, if the root node of (~ has valency 2 then the resulting edge of Q0 
has non-positive edge determinant; thus • and ~2' cannot both be RPI diagrams 
(except in the harmless case that vl and v3 are both arrowheads). []  

7. Proof of Theorem 3: minimal RPI diagrams for links at infinity 

Let V c ~  2 be a reduced algebraic curve and 5 ~ its link at infinity. We first 
show that there is a minimal embedding of ~2 in IP 2 for V, that is, one whose 
associated RPI for diagram for 50, as constructed as in Sect. 4, is minimal. 

Choose any embedding of ~2 in 11 ~ so ~ 2 =  ] p 2  ~1. Let ~2 be the associated 
RPI splice diagram for the link 50 and suppose that • is not a minimal RPI 
diagram. Then, by definition, *2 must have the form 

gZ=  = " " w i t h q > l .  (7.1) 

Lemma 7.1. After a linear change of coordinates, the defining polynomial f (x, y) 
for V has the form 

k 

f(x,Y) =xs ~I (xq--e~Y) r~+ Z cijxiy j, 
v = l  i,j>O 

qj+i<qr+s 

(7.2) 

where r = ~  r~ and the r~ are positive integers and the e~ are distinct nonzero 
constants. 

Given this lemma, the existence of a minimal embedding [~2c]p2 for V 
follows by induction on degree, since if f (x ,  y) is in the form (7.2), then the 

transformation (x, y)~-+ x , y + - - x  q takes f (x ,  y) to a polynomial of strictly 
el 

lower degree. 
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Proof of lemma. By a linear change of coordinates we may assume that the 
point at infinity of V occurs at x =0.  Then, after multiplying by a constant 
if necessary, the defining polynomial f ( x ,  y) has the form 

f (x, y) = x a + (lower order). 

Let the homogenization of f ( x ,  y) be h(x, y, z). Then the equation for C =  ~" 
in affine coordinates (x,z) about  the point at infinity is g (x , z )=0 ,  where 
g(x, z)=h(x,  1, z). g(x, z) has the form 

g(x, S) = xd + z go (x, z), 

where go (x, z) has degree < d -  1. 
The associated splice diagram at infinity for ~2 is 

If= ~ q-  " " 

That  is, this is the splice diagram for the link of the singularity at x = z = 0 
of zg(x,  z)=0,  with the leftmost arrowhead corresponding to the branch IP 1 
= (z = 0). The link of the singularity of g(x, z )=  0 at (0, 0) has splice diagram 

17'= 
q-1 . . 

O 

We now consider the Newton polygon for g(x, z), that is, the convex hull 
of the set of points (a, b)~lR z for which x"z  b occurs as a monomial  in g(x, z), 
together with the points (0% 0) and (0, oo). We claim that its boundary has 
the form" 

\ 
\ 

v 

where the segment S touching the a-axis at (a, b)=(d, 0) has slope - ( q - 1 ) / q .  
Indeed, this would be implied by the fact that the first Newton-Puiseux pair 
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is (q, q - 1 ) ,  except for the possibility of an unessential initial Newton-Puiseux 
pair (1, p) or (p, 1). An initial Newton-Puiseux pair (p, 1) with p >  1 would be 
essential in the diagram F, and would thus give the wrong diagrams F and 
f2, so it cannot occur. If the first pair were (1, p) with p > l ,  the subsequent 
Newton-Puiseux pair (s, t) would have to satisfy t/s > p. In particular, it could 
not be (q, q -  1), so it would also have to be inessential, namely (1, p') say with 
p ' >  p, and we can repeat ad absurdem. 

Consider the part  g0(x, z) of g(x, z) given by the monomials  whose exponents 
(a, b) are on the segment S, that is, they satisfy (q -1 )a+qb=(q-1 )d .  If one 
takes out the largest factor x ~ occurring in go(x, z), the result is homogeneous 
in x q and z ~"-~) and can thus be factored into factors of the form x q - - a z  ( q - l }  

Thus g(x, z) has the form 

g(x, z )=  x~ I~ (Xq -- ~ z(q-1))~ + ~ eao X" Zb , 
v 

where d = s + q ~ r v = s + q r  and the sum is over (a, b) with (q -  1)a+qb>(q-1)d 
v 

and a + b < d. Thus 

W e x a - d - a - b z  b h(x,Y,Z)=XS[I(xq-a~Yz~q-1))rv+ ~ ab Y 
v 

and 
f (x, y)= xS H (xq- av y)rv + ~ eab x" y a-a-b. 

v 

The exponents (i,j)=(a, d - a - b )  in the sum satisfy q j + i = q d - ( q -  1)a-qb<d,  
as desired. [] 

We have thus shown that some minimal RPI  diagram can be realized by 
an embedding C 2 c ~ 2 .  The proof  that any minimal RPI  diagram for ~ can 
be so realized is similar and we just sketch it. We assume that we have already 
chosen an embedding C 2 c ~  z that gives a minimal RPI  diagram f2 for ~ .  
Suppose that t2' is another minimal RPI diagram for L~' which differs from 
(2 in that the root node has been moved past a single "contributing node," 
in the terminology of Theorem 6.2. The analysis of Sect. 6 shows that we can 
get from any minimal RPI  diagram for ~ to any other by a sequence of such 
steps, so it suffices to show that (2' is realizable. 

The situation is as follows (omitted edge weights are 1): 

with 
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q 1 pl qj-1 Pi-1 1 1 qi+x P/+I Pl Pl 1 
, , . . . . . .  , 

gt 

where, if we label the shown vertices 1)1 . . . .  , Vl+l, then vj is the contributing 
node in question and V~+l is the root node for O' (it may not actually be a 
vertex of f2, since it may have valency 2). The splice diagram of the singularity 
of Vu p1 at the point at infinity corresponding to f21 is 

rl Pl ri-t Pi-I q - I  1 r#l Pj+I rt Pl 
,a--, ,a, a 

I 

(with r i = P i -  qi for i = 1 . . . .  , j -  1 and ri = q2  Pi - -  qi for i = j  + 1 . . . . .  l-- 1). 
We again make a linear change of coordinates to put the point at infinity 

that we are looking at x = 0  and then again the equation g(x,  z )=0  for ~" at 
this point at infinity can be analyzed by its Newton polygon, which will have 
the form 

\ 
\ 

\ 

where S is a segment of slope - ( q - 1 ) / q .  (The segments below S will have 
slopes - ri/Pl for i = 1 . . . .  , j -  1, while the segments above S have slopes depend- 
ing on what, if anything, is beyond the q-weighted edge out of the vertex vj.) 
It follows that g(x, z) has the form 

k k '  

g(x,  z)= 1-I (xq--av z(q- ,)),v 1-I ( x~" -buzP" )  p"+ ~ e , b  xazb, 
v = l  # = 1  

where the -flu/~u are the slopes of the segments other than S of the Newton 
polygon boundary (possibly with repetitions) and the sum involves only mono- 
mials whose exponents pairs are strictly inside the Newton polygon, k is the 
number of 1-weighted edges at the contributing node vj. The factors in the 
products are the one-Newton-Puiseux-pair approximations to the branches of 

at the point in question; the first product corresponds to the branches whose 
first Newton-Puiseux pair is the (q, 1) coming from the node vj. In particular, 
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we may assume that the r 1-fold factor (x q -  al z <+- 1)),, approximates the branches 
that correspond to the part  of ~21 to the right of the contributing node v~. 
In (x, y) coordinates this approximating curve is (x + -  al y). If  we make the change 

of coordinates (x, y)~+ x, Y + a ,  xq ' we obtain a new RPI splice diagram in 

which this first (q, 1) Newton-Puiseux pair at infinity for these particular 
branches has been cancelled, while the other factors (xq-a~y) still have the 
same form (with changed constant av). Thus the root node has been moved 
to the right of the contributing node v~. This new splice diagram may not 
be g2', since it may now have an initial inessential Newton-Puiseux pair (q', 1) 
(with q'<q), but the first part  of this proof can then be used to reduce to 
a minimal RPI  diagram again. This final diagram will be f~' since only the 
first Newton-Puiseux pair is affected by the above coordinate changes, so the 
root node cannot move past any other contributing vertex during the above 
process. [] 

8. Discussion and examples 

Our results give an effective computat ional  tool: it is a finite problem to compute 
the possible realizations of a given link as a link at infinity since the degree 
of the realizing polynomial is determined by the splice diagram, and if one 
prescribes the topology for an algebraic plane curve one generally gets a small 
set of possible splice diagrams. A general manifestation of this latter statement 
is the following finiteness result. 

Proposition 8.1. There are only finitely many regular toral links with a given 
number of components and with given genus ( :genus  of a minimal Seifert surface) 
if one excludes links having a regular splice diagram with root vertex of valency 
n = 2 and such that neither edge adjacent to the root has positive far weight. 

Proof By Corollary 5.3 it suffices to show that for any bound N there are, 
up to isotopy, only finitely many  multilinks L* ~ satisfying: 

(i) A '~ has a minimal multilink RPI  diagram (2 satisfying the condition of 
Proposition 5.4 (all l v are positive) and either with root vertex u of valency 
n + 2  or with a node u adjacent to the root vertex and having positive far 
weight; 

(ii) Iz(F) l__< N, where F is a fiber of the multilink. 

Theorem 11.1 of [E-N] says 

z(F)= ~ (2-6v)l~. (8.1) 
v ~ . Q  ~ 

If w is a leaf and v is the adjacent node then lv = av lw. In this case let l'v = (~v-  1) lw. 
If v has no adjacent leaf let l'~=l~. Let u be as above, and if n =  1 let u' be 
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the node next to u and otherwise u'=u. By rewriting Eq. (8.1) as a sum over 
nodes one sees 

I z (V)>l ' .+  Y~ 1;. (8.2) 
veO*-{u'} 

Thus Iz(F)l is at least the number  of nodes of O, so the number  of nodes 
is bounded. Moreover  l', is bounded, and it bounds the number  of arrowheads, 
so there are only finitely many possibilities for the shape of f2. Moreover,  l'u 
clearly bounds (c~ v -  1) for every node v, so the near weights are all bounded. 
Now fix a shape of O and fix the near weights. Then for any node v, l{, is 
positive and bounded, and this clearly implies upper and lower bounds on 
the far weight fly at v. Thus there are only finitely many  possibilities for O. []  

Corollary 8.2. I f  there are infinitely many regular plane curves V c 112 2 up to proper 
isotopy with given genus g and number m of components at infinity then m> 2 
and all but finitely many of them are given (up to an algebraic automorphism 
of 117 2) by equations of the form f (x, y ) = 0  where f (x, y)= xP yq + fo with p, q > 0  
and fo only involving monomials x" yb with a <= p, b <= q, (a, b):t= (p, q). 

Proof. The proof  is an easy Newton polygon computat ion;  we describe it in 
greater generality then we need now, since we need the same approach later. 
Let f2 be the splice diagram for a reduced curve V with exactly two points 
at infinity. By a linear transformation we may put these points at x = 0  and 
y = 0. Then the defining polynomial  for V may be taken to be 

f (x, y)= xP Yq + ~, Cab Xa y b. 
a + b < p + q  

Now let N1 be the convex hull in 11t 2 of the set of exponent pairs (a, b) occurring 
in f together with the "po in t "  ( 0 , - o c )  and the part  of the line a + b = p + q  
below the point (p, q). Denote the finite segments of its boundary by $1 . . . .  , Sk. 

s 

p+q",, 

(8.3) 

The defining polynomial  for g c F 2 = 1~2 k..) ] p 1  in a neighborhood of the point 
x = z = 0 at infinity is 

g(x, Z)=XP + ~ CabX"Z p+q-a-b. 
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Thus the Newton polygon N for g at this point is just the image of N 1 under 
the transformation (a, b)~-+(a, p + q - a - b ) .  We can therefore use the slopes of 
the finite segments of 0N1 instead of ON to compute the initial Newton-Puiseux 
pairs of the branches of V at the point x = z  =0,  and hence part of the splice 
diagram f2. The answer is that (an initial approximation to) • has the form: 

0~1 (32 Od2 ~k Odk 

N I k / ', 

, f i  o,- - - )  

(8.4) 

where, in the top row, - f lJcq is the slope of the segment St of 0N1, and the 
final vertex is a leaf or arrowhead according as segment Sk touches the b-axis 
or not (the data in the bottom row are computed similarly from the polygon 
N2 obtained by reversing the roles of a and b). This is only an initial approxima- 
tion to g2 in that it may not be a minimal splice diagram: the pair (ak, ilk) 
will be inessential if Sk touches the b-axis and ak = 1; similarly for (?~, 63. 

Now suppose there exists an exponent pair (a, b) with b > q. Then segment 
$1 would have negative slope and fll would be positive. Moreover, the slope 
of St is strictly between 0 and - 1 ,  so it cannot be an integer, so 0r > 1, so 
the pair (cq, fl0 is essential. Similarly if some (a, b) has a>p then 6t >0. The 
corollary thus follows from Proposition 8.1. []  

Before we give explicit examples, we mention a corollary of work of Abhyan- 
kar and Moh  which can simplify non-realizability computations. Let 

~= ql 1 qs 1 ~=--~ 
"~ ~ . . . . . .  

Pl Pl 

be an RPI splice diagram, all of whose arrowheads are in f2t, and put 

~2' = 
ql  I ql 1 

i P~ Pz 

Proposition 8.3. I f  s can be realized by a link at infinity then so can s 

Proof. A realization f (x ,  y ) = 0  of s will have degree P=Pl-. .Ptq for some q. 
We can assume it meets infinity at x = 0 ,  and f (x ,  y)=xP+(lower order). Let 
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g (x, z)= 0 be the defining equation in coordinates at the point x = z = 0 at infinity, 
obtained by homogenizing f and then putting y = 1. The main result of [A-M 1] 
says in our language that if go(x, z) is the approximate q-th root of g (in the 
sense that g - g ~  has degree less than pl...p~(q-1) in x), then the singularity 
at (x, z)= (0, 0) of go(x, z)= 0 realizes the splice diagram at infinity corresponding 
to ~2'. Let fo(x, y) be the corresponding polynomial in x, y coordinates. Since 
fo(x, y)= 0 has just the one point x = 0 at infinity, it realizes (2'. [] 

Low genus examples 

We describe reduced curves V a l e  2 of low genus whose links ~ at infinity 
are knots (this classification can also be done using Abhyankar's methods: [A] 
and [A-S]). As already mentioned, such a V is always regular at infinity, so 

will be a regular toral knot. A regular total knot is a knot 5e 
=(9{Pl, ql; P2, q2; ...; Pk, qk} obtained by iterated cabling from the unknot C, 
with cabling coefficients p~> 1, q i>0  satisfying gcd(p~, ql)= 1, 1 <q l  < P l ,  and 
q~<P~Pi-lqi-1 for i>1.  If this ~e is the link at infinity of V then (possibly 
after an algebraic automorphism of 1122), V is given by a polynomial of degree 
P=Pl...Pk and has genus (by Theorem 4.2): 

g(V)= �89  (qi(Pi-1)pi+x...Pk)--P+ 1). 

The table lists the regular toral knots up to genus 4. For each one, the most 
general polynomial (up to algebraic automorphisms of the domain (122 and affine 
transformations of the range I12) realizing ~ as a regular link at infinity is 
also listed if it exists. This list is easily continued, but the computations of 
the polynomials become tedious, as the example f3 (x, y) of the table suggests. 

~ '  P g f 

0 i 0 
0{3, 2} 3 1 
(_9 {5, 2} 5 2 
(9{3,2;2, t} 6 2 
(9 {4, 3} 4 3 
(9{3, 2; 2, 3} 6 3 
(9 {7, 2} 7 3 
(9{3, 2; 3, 1} 9 3 
C {5, 3} 5 4 
(9 {3, 2; 2, 5} 6 4 
(9 {9, 2} 9 4 
(9 {3, 2; 3, 2} 9 4 
(9{5, 2; 2, 1} 10 4 
0{3, 2; 4, 1} 12 4 
0{3, 2; 2, 1; 2, 1} 12 4 

x 
x3 + y2  + a x  

xS + y2 +ax3 +bx2 +cx  

x4  + y 3 + y(ax z +bx + c) + d x  2 +ex 
A (x, y) 
xT + yZ +axS +bx4 +cx3 +dxZ +ex 

xS + y3 + y(ax3 +bxZ +cx +d)+ex3 + fx2 +gx  
f2 (x, y) 
x 9 + yZ + a x 7  + b x 6  _}_ c x 5 + d x 4 + eX  3 + f x  2 + g x  

f3 (x, y) 
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where 

f l (x, y )=(x3  + yZ)2 -+-ax4-t- b x3 q- �88 aZ xZ -}-c x 

+ a x y 2 + b y 2 + d y ,  (d+O), 

f2(x ,  y) =(x  3 -t- y 2 )  2 n t- a x  4 + bx  3 -t- c x  2 + d x  

+ a x y 2  + b y 2  + e x y +  f y ,  (e=t=O), 

f3 (x, y ) = ( x  3 +y2)3 + 3 a x  v + b x  6 + 3 aZx 5 + 2 a b x g  + c x  3 

+a2bxZ  + d x  + 6 a x 4  ye + 2bx3yZ  + 3aex2yZ  + 2 a b x y  z 

+ ( c - a 3 ) y 2 - 6 a x y 4 + b y 4 ,  (d=l=aa-8ac). 

Thus, in each case the most general curve with the given link at infinity is 
given by f ( x ,  y )=h ,  where h is an additional constant. Note  that if any one 
of the parameters a, b . . . .  h is non-zero, then it can be made equal to 1 by 
a further linear transformation, so the true number  of parameters  in each case 
is one less than appears. 

The method of computat ion is as follows. We can assume that we have 
realized the minimal RPI  splice diagram, so our realization is in degree P 
=P~...Pk. We can also assume the point at infinity is at x = 0 .  As in the previous 
section, there are no initial inessential Newton-Puiseux pairs at infinity, so the 
defining polynomial has the form: 

f (x, y) = (x p' -- a yq,)p/m + ~' cij x i y1, 

sum over monomials  with i + j  =< P and ql i + PlJ < P ql.  A linear change of coor- 
dinates makes c~ = - 1 and a further change of coordinates of the form (x, y)~---, 
(x + c, y + t(x)) with deg(t)< P l/ql  will eliminate several monomials,  simplifying 
subsequent computation.  Now, working with the polynomial g(x, z) at infinity, 
compute the conditions on the coefficients cli implied by the values of the further 
Newton-Puiseux pairs, keeping in mind that there may be intervening inessential 
pairs. (The Newton-Puiseux pairs for the singularity at infinity are the pairs 
(Pi, ' 2 qi=pl . . . p2_ ip~-q~)  occurring in the splice diagram at infinity; between 
(Pl, q'~) and (Pi+ 1, q'i+ ~) there can be inessential pairs (1, kl), (1, k2) . . . . .  with Plq'i 
< k l < k2 < . . .  < qi+ 1/P~+1.) The computed conditions express some coefficients 
c~j in terms of "earlier" ones. By iteratively satisfying them, the general form 
for the polynomial f is eventually reached. 

Such results can also be used to classify singular curves. For  instance, an 
algebraic embedding V of I12 in C a with one node is connected at infinity, so 
its defining polynomial is good, and a nearby fiber will be a once punctured 
torus (it picks up an extra homology class: the vanishing cycle of the node). 
By the above table, the defining polynomial is f ( x , y ) = x a + y 2 + a x  and V is 
given by f ( x ,  y )=b ,  for some a and b. If a = 0  then the only singular fiber 
is f ( x ,  y)=0,  which has a cusp, not a node. Thus a + 0  and a linear change 
of coordinates puts f in the form f ( x ,  y)=Cl(X3--yZ-Jr-X2)'-I-C2, for some con- 
stants cl and c2. The only singular fiber is now at f = c 2 ,  so V is described 
by yZ = x 3 + x z. 
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Regular algebraic annuli 

Using the estimates in the proof  of Proposit ion 8.1 one sees that a minimal 
regular splice diagram f~ for a two component  link ~q~ of genus 0 must have 
root vertex of valency 2 and lv = 0 for every node v. By Corollary 5.2, every 
node is adjacent to the root vertex. I t  follows that  ~2 is one of the diagrams: 

p - q  - p  q 

P --1 
e ~ _ : (p>q=l), 

1 1 
= : .~ (p=q=l). 

We now apply the calculation in the proof of  Corollary 8.2. Assume f is as 
in that proof. By considering linking of the virtual component  Sroot with the 
two components  of &o one sees that  the p and q occurring in f agree with 
the p and q in the splice diagram (recall that  Sroot is the link at infinity of 
a generic line). Since the link at infinity has only one component  near x = 0  
and one near y = 0 ,  each of the polygons N1 and N2 has just one finite segment 
in its boundary,  connecting the point (p, q) to the b-axis or a-axis respectively. 
Inessential Newton-Puiseux pairs may  occur but by a change of coordinates 
(x, y)~--~(x-a, y - b )  we can eliminate any (1, 0) pair. The slope of the boundary  
segment $1 of N~ is then positive and bounded by q/p so it cannot  be integral 
(unless p = q =  1), so inessential Newton-Puiseux pairs can only occur at the 
y = 0 component.  Changing to coordinates (y, z) near the point y = z = 0 at infin- 
ity, one can now eliminate inessential pairs one by one by coordinate transforma- 
tions to see that the polynomial at infinity has the form (up to linear change 
of coordinates) 

g(y, z )=(y+a~- i  zZ + ... +aoz '+l)q--z  p+q 

with rq<p. We thus have: 

Proposition 8.4. Up to algebraic automorphisms, a regular curve V = ~  2 which 
is topologically an open annulus is given by an equation of the form f (x, y)= 1 
with 

f (x, y)= xP y q, or 

f ( x ,  y)=(yxr  +ar_ 1 xr-1 + ... +ao) qxp-~q 

withO<q<=p,O<rq>p,  ao~O, andpandqcopr ime.  [] 
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The fiber f - l ( 0 )  is the only irregular fiber for f. Its link at infinity has 
splice diagram 

(q) ~ -- - (p), cr 

--1 r 
(q) -- ~ ~ (p--rq) 

(q) 

respectively. The former diagram is also the diagram for the multilink associated 
with 5 ~ 

Irregular algebraic annuli 

These exist also. Let p, q, r be positive integers with p and r coprime and 
r >  1, p < ( q +  1)r. Consider f(x, y)=(xqy+ 1)r+x p. Then V = f -  I(0) is smooth, 
and the splice diagram (2 for its link s at infinity is 

r p - q r  - I  1 - p - q r  r 

Theorem 4.3 shows that the euler characteristic of V is 0, and since V has no 
closed components, it must be either an annulus or the disjoint union of a 
punctured sphere and a punctured torus. The latter possibility is ruled out 
because the two components have non-trivial linking number. Thus V is an 
annulus. This f has another irregular fiber, f - l ( 1 ) ,  whose link at infinity has 
splice diagram 

o ~ e r - 1 .  
1 

(q) 

The regular link at infinity for f has splice diagram 

1 

so Theorem 4.3 implies that a regular fiber o f f  has euler characteristic p ( l - - r )  
and hence topological genus ( p -  l ) ( r -  1)/2. 
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Two points at infinity 

We make two comments about the setup in the proof of 8.2 which are useful 
in computations. Firstly, let vi denote the i-th vertex in the top row of the 
RPI diagram (8.4). Then: 

Proposition 8.5. (6v,--2)lv~ equals the oriented area of the parallelogram spanned 
by the vectors from the origin to the beginning and end points of segment S i 
(see (8.3)). 

We will not use this proposition, so we just sketch a proof: the proposition 
is true by direct calculation for the simplest polynomial with the appropriate 
Newton polynomial N1 and deforming such a polynomial to any other polyno- 
mial with the same N~ does not change the relevant linking numbers. [] 

The second comment is that the edge determinant fl~ (~1--0~1 '~1 of the "root  
edge" that results by suppressing the root node in (8.4) is non-positive. Indeed, 
draw both N~ and N2 on the same diagram: 

X x 

N2 __ 

m -  _-_ ~ / f  ~ 

I N1 x\ 

Now - f l l /~ l  is the slope of the segment St of ON 1 and -y l /61 is the slope 
of the corresponding segment T1 of ONz and the non-positivity of/~1 6 1 - e l  71 
is equivalent to the fact that the angle from $1 to Ta is in the interval [0, ~). 
However, the RPI diagram (8.4) may not be minimal. We shall show that the 
non-positivity of this edge determinant persists when one eliminates inessential 
Newton-Puiseux pairs. This gives the following result, which was an ingredient 
in the proof of Theorem 6.5 (and hence also in Theorem 3 in the irregular case). 

Proposition 8.6. I f  a reduced curve has 2 points at infinity, (2 is the minimal 
RPI splice diagram for its link at infinity, and ~o is the splice diagram that 
results by suppressing the root vertex of •, then the root edge (and hence every 
edge) of (2 o has non-positive edge determinant. 

Proof We must show that eliminating inessential Newton-Puiseux pairs next 
to the root vertex cannot cause trouble. Note that an inessential pair (1, 0) 
can be eliminated by a linear transformation, so we may assume it doesn't 
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occur. If (~1, ill) is inessential (i.e. ~1 = 1) then segment $1 has integral slope 
-f l l  and touches the b-axis. Moreover, its slope is in the interval (0, q/p]. Similar- 
ly, if (~q, 61) is inessential then the integer - 6 1  is in the interval (0, p/q]. Thus 
if both are inessential then p = q  and f (x ,  y) only involves monomials of the 
form x'y i. The proposition is easily verified in this case. Thus we may assume 
that only one pair is inessential, say (71,61)=( 1 , 6). 

This inessential pair occurs at the point y = 0 at infinity, so we homogenize 
f and put x =  1 to get the equation g(y, z )=0  at infinity, g results from f by 
replacing each monomial xay b in f by ybzp+q-a-b, SO the Newton polygon 
N~ for g is the image of N 2 under the transformation (a, b)w+(b, p+q-a- -b) .  
Let N~ be the image of N1 under this transformation. All exponent pairs (a, b) 
occurring in f lie in the domain N1 c~ N2, so all exponent pairs (i, j) occurring 
in g lie in N' 1 c~ N~. We picture this below; S'~ is the image of S~ and T~' is 
the image of T1. 

( 6 + 1 ) q X ~ ,  N'2 

N; k '~, 

__ Ti ~ s; 

q 

The non-positivity of the relevant edge determinant is equivalent to the fact 
that the angle from S'1 to T[ is non-negative. 

Now g has the form, for some constant a, 

g (y, z) = (y + a ? + 1)q + y~ d,j y' z J, 

sum over monomials satisfying (6+l) i+j>(6+l)q .  Replace g(y, z) by gl(Y, z) 
=g(y_aza+ 1, z) to eliminate the inessential Newton-Puiseux pair. The mono- 
mials of gl all have exponent pairs on segments of slope - ( 6  + 1) above points 
(i,j) of N~ c~ N~, so S'1 is still in the boundary of a convex domain which contains 
these exponent pairs. Thus if T;' is the segment at (q, 0) of the boundary new 
Newton diagram N~', then the angle from S'~ to T~' is still non-negative. Since 
the slope of T," gives the next Newton-Puiseux pair at infinity, the new edge 
determinant is still non-positive. If this Newton-Puiseux pair is also inessential 
we can iterate the argument. Thus the proof is complete. []  
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9. Problems 

A main question is to determine to what extent the results of this paper can 
be extended to irregular curves V c ~  2. Note that the link at infinity 5O of 
such a V may be a multilink, since V may have multiple components. In this 
case the existence of nontrivial multiplicities in 5 ~ makes clear that V is irregular. 
Conjecturally, the fact that a curve V c [~2 is irregular at infinity can always 
be read off from its link at infinity: if V is reduced, the link at infinity should 
not be a regular toral link (we make a more specific conjecture below). Conjectur- 
ally also, the link at infinity determines the topology of V c C 2 to the extent 
possible--namely the topology of the least singular V with the given link. An 
optimal result would be that for any given multilink 5O, the set of all curves 
with 5O as link at infinity is a connected semi-algebraic set. In particular, s 
would determine the topology of the generic member V c ~z  of this set. 

Note that there are two different degrees of irregularity at infinity: 

(i) A fiber f -  1 (e) may be irregular at infinity because it has multiple compo- 
nents but nevertheless have all sufficiently large spheres around the origin trans- 
verse to all nearby fibers. This should maybe be considered to be still regular 
at infinity: the results of this paper can for the most part be generalized to 
cover this case by allowing multilinks in the discussion. 

(ii) A fiber f - l ( c )  is "truly irregular at infinity" if there is no e such that 
large spheres are transverse to all fibers f -  t (z) with [ z -  c] < e. 

The following specific conjecture would imply that the multilink at infinity 
of any plane curve V,, regular or not, determines the link at infinity 5oo of 
a regular fiber Vo of the defining polynomial for V,, and hence determines the 
topology of such a regular fiber. Recall that s is determined by and determines 
a certain multilink 5O' (Theorems 4 and 5). 

Conjecture. The link at infinity of a plane curve V (reduced or not) is truly irregular 
at infinity if and only if its RPI (multilink) splice diagram s is irregular-that 
is, some lv is negative (multiplicities should be taken into account in computing 
lv). Moreover, the multilink 5O' associated to the link at infinity of a regular 
fiber of the defining polynomial is determined as follows: for each node v with 
lv<0 such that all nodes w between v and the root vertex have lw>=O, delete 
the portion of (2 beyond v (viewed from the root vertex) and replace v by an 
arrowhead with the unique multiplicity that leaves lw unchanged for vertices w 
closer to the root vertex than v. 

The proof  of Proposition 8.3 implies a very weak form of part of this conjec- 
ture: if t2 is as in that proposition then the portion f2' of f2 agrees with the 
corresponding portion of the RP!  splice diagram for any other fiber of the 
defining polynomial f (x ,  y) for V, and hence also agrees with the corresponding 
portion of the diagram for the multilink. The reason is that fo(x, y) of the 
proof  of 8.3 is unchanged if one replaces f ( x ,  y) by f ( x ,  y ) -  c. 

Even for regular links at infinity many problems remain, the most obvious 
of which is to give a closed form characterization among regular toral links 
of those that can be realized as regular links at infinity. Another question that 



Complex algebraic plane curves 489 

arose during this study, but which is much less central, is whether the vanishing 
of the "enhancement to the Milnor number"  2 (5  ~ (see [R], [N-R 1]) character- 
izes regular toral links among fibered RPI toral links. It is immediate from 
the computation in [N-R2]  of 2(50) for fibered toral links 50 that 2 (~ )  vanishes 
if 50 is regular. 
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