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O. Main Results 

The main purpose of this paper is to point out some similarities between Ein- 
stein metrics and complex structures. The results may be regarded as general- 
izations of some facts which hold on 2-dimensional manifolds. First we consider 
an Einstein metric and a complex structure. Recall a classical result of New- 
lander and Nirenberg. 

0.1. Proposition. Any integrable almost complex structure (i.e., an almost com- 
plex structure whose Nijenhuis torsion tensor vanishes) defines a complex struc- 
ture. 

Of course, we cannot say that an Einstein metric is "holomorphic".  The 
following result is the best we can expect in general. 

0.2. Proposition ([12, Theorem 5.2]). Any C'-Einstein metric (r>2) is real anal- 
ytic with respect to some real analytic structure compatible with the original C'- 
differentiable structure. 

On a two or three dimensional manifold, this fact is obvious because in 
these cases Einstein metrics have constant sectional curvature. Moreover, we 
know the following 

0.3. Fact. Any (Einstein) metric on an orientable 2-dimensional manifold is 
Kiihlerian, that is, there exists a complex structure such that the metric becomes 
a compatible K~hler metric. 

And conversely, 

0.4. Fact. Any complex structure on a 2-dimensional manifold admits a com- 
patible K~hler-Einstein metric. 

* This research was done when the author was supported by the Sakkokai Foundation and 
invited to Ecole Polytechnique 



72 N. Koiso 

Fact 0.4 was generalized to higher dimensions for some compact manifolds 
by Calabi, Aubin and Yau. 

0.5. Proposition ([3], [4, Th6or6me4],  [31, p. 364 Theorem2]).  Let J be a 
complex structure with negative or vanishing first Chern class. I f  J admits a 
compatible K~hler metric, then it also admits a compatible K~hler-Einstein met- 
ric. 

This result suggests some strong relationship between Einstein metrics and 
complex structures. But it seems that Fact 0.3 is regarded as that which holds 
characteristically in the 2-dimensional case. In fact, on an odd dimensional 
manifold, we can expect nothing more than Proposition 0.2. However, Hitchin 
obtained the following 

0.6. Proposition ([18, Remark 2.2]). Any Einstein metric on the K3-surface is 
K~hlerian. 

Here, the K3-surface is a 4-dimensional C~-manifold which is defined by 
4 

the equation: ~ ( z l ) 4=0  in p3(C).  We will give a weak generalization of this 
result, i= 1 

0.7. Theorem (Theorem 10.5). Let (J, g) be a Kiihler-Einstein structure on a 
compact manifold M. Assume that the first Chern class is non-positive and that 
the local deformation space of the complex structure J coincides with an open set 
of the cohomology group Hi(M,  O) with coefficient in the sheaf 0 of germs of 
holomorphic vector fields. Then any Einstein metric gl on M sufficiently close to 
the metric g is Kiihlerian. 

It is an interesting problem: Are the assumptions for the local deformation 
space and that g~ is"close to g really necessary? We may say that Theorem 0.7 
is a kind of converse to Proposition 0.5. Next, we consider families of struc- 
tures. 

0.8. Proposition ([25]). The space of all complex structures on a manifold lo- 
cally forms a complex analytic set. 

For  the meaning of this proposition, see Definition 2.7 of the local pre- 
moduli space of Einstein metrics. We will give a corresponding result for 
families of Einstein metrics. 

0.9. Theorem (Theorem 3.1). The local pre-moduli space of Einstein metrics 
forms a real analytic set. 

As a corollary, we will get 

0.10. Theorem (Theorem 3.2). Let g be an Einstein metric. The three notions: to 
be non-deformable, to be formally non-deformable and to be rigid are equivalent. 

By analogy with the construction of complex analytic structure on the 
space of complex structures in Proposition 0.8, we can construct a canonical 
riemannian metric on a family of riemannian metrics. Combining Propositions 
0.5, 0.8 and Theorem 0.7, we have families of K~ihler-Einstein structures which 
has a complex structure and a riemannian metric. 
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0.11. Theorem (Theorem 12.3). Let (Jr, gt) be a normal and stable family (Def- 
in i t ion 12.1) of K~hler-Einstein structures. Then the canonical riemannian metric 
is a Kiihler metric compatible with the complex structure introduced in Proposi- 
tion 0.8. 

In  the 2-dimensional  case, the family is called the Teichmfiller space and  the 
canonical  r i emann ian  metric is known  as the Peterson-Weil metric. We will also 
see that the canonical  r i emann ian  metric  on a local pre-modul i  space of Ein- 
stein metrics is real analytic with respect to the real analyt ic  structure intro- 
duced in Theorem 0.9. So we can expect that  this r i emann ian  metric  satisfies 
some elliptic equation. Fo r  example, we may ask, "Is the canonical riemannian 
metric an Einstein metric?" This problem is rather difficult except on a family 
of flat r i emann ian  metrics. Even in the 2-dimensional  case, it remains  open. 

An impor tan t  difference between the theory of deformations of Einstein 
metrics and  that  of complex structures lies in the obs t ruct ion  for integrabil i ty 
of infinitesimal deformations.  

0.12. Proposit ion ([19, p. 452 Theorem]).  Let J be a complex structure on M. 
I f  HE(M, O ) = 0 ,  then for any infinitesimal deformation I of J, there exists an 
actual deformation of J whose infinitesimal deformation coincides with I. 

For  the theory of complex deformations,  we may say that the space 
H2(M, O) is the obstruction space. For  the theory of Einstein deformations,  we 
will give a similar bu t  negative result (Theorem 0.13). It seems to be impossible 
to say that  if some space defined solely in terms of a given Einstein metric g 
vanishes, then, for any infinitesimal deformat ion  h of g, there exists an Einstein 
deformat ion  of g whose infinitesimal deformat ion  coincides with h. 

0.13. Theorem (Proposi t ion 5.4). The obstruction space for the space E E I D  of 
all essential infinitesimal Einstein deformations is the space EEID itself. 
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1. Deformations and Infinitesimal Deformations of  an Einstein Metric 

First, we int roduce some fundamenta l  definitions and  facts due to [8]. 
Th roughou t  this paper ,  M denotes a compac t  connected n-dimensional  C ~ 
manifold  wi thout  boundary .  All objects are assumed to belong to the real Coo- 
category,  unless otherwise stated. By a family of geometric structures on M we 
mean  a family of structures which depends smoo th ly  on t, where t runs 
th rough  an open set of a Euclidean space R k or  m o r e  generally a manifold.  
This open set is called the parameter space. 

1.1. Definition. Let  g be an Einstein metr ic  on M with vo lume 1. A family gt 
of Einstein metrics on M with vo lume  1 such tha t  go = g is called an Einstein 
deformation of  g. 

N o t e  tha t  any family gt of Einstein metrics on M can be reduced to an 
Einstein de format ion  by mult iplying it by some funct ion of t. 

1.2. Definition. Let  gt be  an Einstein de format ion  of an Einstein metr ic  g on 
M. I f  there is a family ~t of  d i f feomorphisms of M such that  g t=7*g ,  then g, is 
said to be trivial. 

Let  gt be  an Einstein deformat ion  of g with pa rame te r  space P. Then  each 
g, satisfies the Einstein equation: 

(1.2.1) E(g,) =- r, - (S ut/n) g, = O, 
gt  

where  r, is the Ricci tensor, u t the scalar curvature and the operator ~ is defined 
by g 

(1.2.2) ~ f =  ~ fvg, 
g M 

vg being the volume element defined by g. If  we differentiate the Eq. (1.2.1) with 
respect  to t, then we get a second order l inear differential equat ion:  

(1.2.3) E'g(h) =-- (1/2) (z~ + 2 L -  2 6" 6 - Hess tr) h = 0 

for h = v [ g t ] ,  veToP, where the opera tors  are defined by 

(1.2.4) (z/~O)~ = -DrnDmt~ij, 

(1.2.5) (L~b)i J = Rikj m ~Ikrn, 

(1.2.6) (~5 ~k), = -D"~O,,, 

for bi l inear forms qJ (which need not  be symmetric) ,  and  

(1.2.7) (6" ~)ii = (1/2) (Di ~j + Dj ~i) 
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for 1-forms ~, D being the covariant derivative and the sign convention of the 
curvature tensor R is taken so that Rijlj<O for the standard sphere. 

1.3. Definition. Let g be an Einstein metric on M with volume 1. A symmetric 
bilinear form h is called an infinitesimal Einstein deformation of g if h satisfies 
the Eq. (1.2.3) and the following equation (to preserve the volume): 

(1.3.1) S t r h = 0 .  
g 

The space of all infinitesimal Einstein deformations of g is denoted by EID(g) 
or simply EID. 

Remark that the equation 

(1.3.2) Lxg = 26* X, 

where L x denotes the Lie derivative, holds under the canonical identification 
between 1-forms and vector fields given by the metric g. 

1.4. Definition. Let g be an Einstein metric on M with volume 1. An infinites- 
imal Einstein deformation of g of the form Lxg is said to be trivial. The space 
of all trivial infinitesimal Einstein deformations is denoted by ETID(g) or 
simply ETID. An infinitesimal Einstein deformation h of g is said to be essential 
if h is orthogonal to the space ETID with respect to the global inner product 
defined by g. The space of all essential infinitesimal Einstein deformations of g 
is denoted by EEID(g) or simply EEID. (See Definition 2.3.) 

The three equations in the following Lemma may be regarded as defining 
the space EEID. 

1.5. Lemma ([8, Lemma 7.1, (7.1)]). Let g be an Einstein metric on M with 
volume 1. A symmetric bilinear form h is an element of EEID(g) if and only if h 
satisfies the following equations. 

(1.5.1) (A+2L)  h=0 ,  

(1.5.2) 6h=0 ,  

(1.5.3) tr h =0. 

In particular, the space EEID is finite dimensional. 

1.6. Remark. By definition, the isometry group I(g) of g acts on the space 
EEID(g). This action induces an action of the space K(g) of all Killing vector 
fields. 

1.7. Example. Let (T n, g) be a flat torus. Then the equations in Lemma 1.5 
reduce to Dh=O and t r h = 0 .  Thus dim EEID(g)=n(n+l) /2-1 .  For any in- 
finitesimal Einstein deformation h, there is an Einstein deformation gt such that 
g~ = h. All Einstein deformations gt of g are families of flat metrics ([8, Addition 
8.1,1, [7, Proposition 3.2,1). 

1.8. Example. Let g be an Einstein metric on M whose sectional curvature 
ranges in (3n/(7n-4),l-I ((1/4,1-1 for n=4).  Then g has constant sectional 
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curvature ([6, Th6or6me 2], [15, Theorem 1]). It implies that if g has positive 
constant sectional curvature, then there is no non-trivial Einstein deformation 
of g. On the other hand, EEID(g)=0 ([8, Corollary 7.3, Lemma 7.4]). 

1.9. Example. Let (M, g) be a locally symmetric Einstein manifold of noncom- 
pact type without 2-dimensional factor. Then EEID(g)= 0 and there is no non- 
trivial Einstein deformation of g ([23, Corollary 3.5]). 

1.10. Example. Let (M, g) be a simply connected irreducible symmetric space 
of compact type. Then the space EEID(g) vanishes except for the following 
types: S g(k  + 1) (k >= 2; S U(k)/SO(k) (k > 2), S U(2k)/Sp(k) (k > 3), U(p + q)/U(p) 
x U(q) (p > q >= 2) and E6/F 4 ([24, Theorem 5.7]). 

2. Moduli Spaces of Einstein Metrics 

We recall Ebin's slice theorem. In this section we set N =  [n/2] + 1. Remark 
that by Sobolev's embedding theorem (c.f. [16]) H~-differentiability implies 
CS-N-differentiability for s>N. So, for s>N,  the space of all HS-riemannian 
metrics on M makes sense, which we denote by J/~. And the group of all 
H ~+ 1-diffeomorphisms of M also makes sense, which we denote by ~s+ i. They 
become Hilbert manifolds ([29]). For g~,goo, we denote by I(g) the isometry 
group of (M, g). 

2.1. Lemma ([13, Theorem 8.20]). Let g~r162 I f  s>=N + 2, then there exist a 
submanifold 6~ of ,r ~ and a local cross section X'+l: I(g)\@~+l - . N  s+l defined 
on an open neighbourhood ~+1  of the coset I(g) with the following properties. 
(2.1.1) I f  7eI(g), then y*(6e~)=6~g. 
(2.1.2) Let 7e@ ~+1. I f  y*(6e~)C~g~+~b, then 7eI(g). 
(2.1.3) The map F~: SPg~xq/~+l ~,r162 's defined by F~(gl,u)=z~+1(u)*gl is a ho- 
meomorphism onto an open neighbourhood ~ of g in Jg~. 

By the property (2.1.3), any g~e~/F~ is isometric with some g2S6~g s. And by 
the property (2.1.2), two H~-riemannian metrics g~ and g2 in 6~2 are H ~+1 
isometric if and only if they are isometric under an isometry 7~I(g). This 
means that the quotient space j//~/N~+I is locally identified with the quotient 
space ~ / I (g ) .  The following Lemma is the infinitesimal version of slice theo- 
rem. 

2.2. Lemma ([13, Proposition 8.8]). Let geJr ~. Then the following orthogonal 
decomposition holds. 

(2.2.1) Hs(S2 M) = tS*(H ~+ 1(S~ M))@ Ker 6g c~ H~(S2 M), 

where SVM denotes the symmetric p-tensor bundle over M. The spaces H~(SZM), 
~*(H~+I(S1M)) and KertSg are the tangent spaces at g respectively of J[s, 
(N~+l).g and 6ag ~. 

2.3. Definition. Let gE,ag ~. Let 0 be a symmetric bilinear form on M. We 
decompose 0 into fig* ~ + h; fish = 0. The symmetric bilinear form h (resp. 6" ~) is 
called the essential part (resp. the trivial part) of O. 
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Lemma 2.1 is adapted to the ILH-category (c.f. [28]). 

2.4. Lemma ([23, Theorem 2.2]). In Lemma 2.1, the spaces 5r S, ql ~+1, u,/-~ and 
the map Z ~+~ can be taken so that ~gS=~ON+2(-~s o//~+t =o//N+3n(i(g)\~,+l) ,  
3(/" s ,~ / 'N + 2 s s + l  N + 3  - s + l  > - = c~ Jg  and that X =;~ [ql for s _  N + 2. For any mtegers 
s > N + 2 and k > O, the mappings 

(2.4.1) F~ S+k = Fs+k: 5r S+k x o//~+k+ ~ ~ 3e-s 

(2.4.2) ps'+k X q~S+k--= (FS+k'-1 . ~  . r k ~ 5e~ X q/s+ 1 

are Ck-differentiable. 

This means that, if we treat only C~176 metrics, then the map F 
may be regarded as a Coo-diffeomorphism. 

In the following, we treat two C~176 on M. We denote by Coo the 
original C~176 on M and by C~ the C~-structure induced by Coo. If we 
denote by C~ another Coo-structure on M, then C', will denote the C'-structure 
induced by C~. 

2.5 Lemma. Let  s > N + 2  and ge~'oo. I f  gleSPg ~ is Coo-differentiable with re- 
spect to some C~176 C'~ on M such that C~v+I=CN+a, then gl is Coo- 
differentiable with respect to the original Coo-structure Coo , i.e., gl eS'v~ oo. 

Proo f  It is known by a theorem of Whitney (c.f. [17, p. 51 Theorem 2.9]) that 
if C~v+I=CN+t, then there exists a CN+Ldiffeomorphism ~ of M such that 
y * C ~ = C o o .  It means that ?*gle~oo.  On the other hand, v*g~ is an HS-rie - 
mannian metric with respect to ~* Coo. Let {x i} (resp. {ffi}) be a local Coo- 
coordinate with respect to Coo (resp. 7" Coo) and {Fiik} (resp. {lf~}) the Chris- 
toffel symbols of 7*g~ with respect to {x ~} (resp. {~i}). Then the functions ff~ are 
CS+~-differentiable and if~k are HS-differentiable. By the transformation rule 
for the Christoffel symbols: 

o2~k =Fro.. ~ k  -- o~l O~tn 

(2.5.1) OxiOx j '20x" - F ~ m  Ox i Ox ~' 

we see the following. If ~i are HUdifferentiable for N + I  <t<_s, then the right 
hand side is Ht-l-differentiable by the composition law ([29, Theorem 11.3]) 
and so ~i are Ht+l-differentiable. Thus, by induction, we see that ~i are H s+l- 
differentiable, which means that y e 9  S+ 1. 

Now we approximate ?e~s+a by a sequence {7i} of C~ 
Then the sequence {y[~*v*g~} of Coo-riemannian metrics converges to ga in 
J t  'S, which implies that there is a Coo-riemannian metric in ~ s  (defined in Lem- 
ma 2.1) which is HS+~-isometric with g~. Applying Lemma 2.4, we obtain a 
riemannian metric g2eSr oo which is also HS+~-isometric with gl. Denote by 
t/e~ ~+~ this isometry, i.e., r/*gz=g 1. Then the property (2.1.2) implies that 
qeI(g),  in particular q is in @oo and so g~eJgoo. Q.E.D. 

2.6. Lemma. Let  s > n + 2  and g e J l  ~. Then all H~-Einstein metrics in 5r s are 
in 5"~ oo. 
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Proof Let gle6Pg ~ be an H~-Einstein metric. By Sobolev's embedding theorem, 
gl is CS-N-differentiable. Then the result follows from Proposition 0.2 and 
Lemma 2.5. Q.E.D. 

2.7. Notation. Denote by ~ the space of all H'-riemannian metrics on M 
with volume 1. 

2.8. Definition. Let g s ~ ' ~  be an Einstein metric. The space of all Einstein 
metrics in 5PgOO c~j//~o is called the local pre-moduli space of Einstein metrics 
around g on M, and denoted by ELPM(g) or simply ELPM. 

2.9. Remark. By definition, the isometry group I(g) acts on the space 
ELPM(g). This action induces an action of the space K(g) on ELPM(g). See 
Remark 1.6. 

3. Real Analyticity of the Local Pre-Moduli Space of Einstein Metrics 

We know that "the local pre-moduli space of complex structures" forms a 
complex analytic set (Proposition 0.8). Concerning the moduli space of Einstein 
metrics, we have the following 

3.1. Theorem. Let g~J/l~ ~ be an Einstein metric. I f  s > n + 2 ,  then there is an 
open neighbourhood ql s of g in 5 ~ g s n ~  such that the space ELPM(g)c~q/s 
forms a real analytic set in a finite dimensional real analytic submanifold Z ~ of ~ll ~ 
whose tangent space T~Z ~ at g coincides with the space EEID(g). 

This theorem is proved by using the real analytic implicit function theorem 
in Banach space. See Appendix. As a corollary, we get the following 

3.2. Theorem. Let geJ/[~ be an Einstein metric. The following four conditions 
are equivalent. 

(3.2.1) The Einstein metric g is deformable, that is, there is a non-trivial Einstein 
deformation of g. 

(3.2.2) There is a continuous one-parameter family gt of Einstein metrics on M 
such that go =g  and that gt are not homothetic with g for all t oeO. 

(3.2.3) The Einstein metric g is not rigid, that is, for any open neighbourhood 
of g in J/~, there is an Einstein metric gx~oe" which is not homothetic with g. 

(3.2.4) The Einstein metric g is formally deformable, that is, there is a formal 
power series 

(3.2.5) g(t) = Z.==O h(i) ti' h(~ = g 

with coefficients in C~176 M) which satisfies the formal equation E(g(t))= 0 but is 
not in the formal orbit space (~s+ 1),g. 

Proof Assume that condition (3.2.1) holds. We may assume that the parameter 
space of gt is one-dimensional and that gx is not homothetic with g. [13, 
Theorem 8.10] says that the orbit space (~s+l) ,g  is closed in Jr Therefore 
there is a maximal real number 0<  t o < 1 such that g, are isometric with g for 
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all O < t < t  o. Let ~ s + l  be an isometry between gto and g, i.e., ~*gto=g. Since 
the metrics gto and g are C ~176 so is 7. Thus we obtain a new family gt=7*gt_to 
such that go=g  and that for all sufficiently small t > 0  gt is not isometric with 
g, i.e., condition (3.2.2) holds. Obviously, condition (3.2.2) implies condition 
(3.2.3). Assume that g is not rigid. By Lemmas 2.1 and 2.6, it means that the 
point g is not isolated in the space ELMP(g). Then by Theorem 3.1, there is a 
non-trivial real analytic curve in the local pre-moduli space, which implies that 
g is formally deformable. Finally, assume that g is formally deformable and let 
the formal power series (3.2.5) is a non-trivial formal deformation. Set 

l h(') t i. (3.2.6) g(k)t = i ! 
i=0  

Then each g(k)t is a C~ in J//~, so we obtain a curve g(k)t in the space 5~g s 
by Lemmas 2.1 and 2.4. Let h(1) be the i-th derivative of g(k)t a t  t=0 .  Then we �9 ~ ( k )  

see that 

(3.2.7) t,(~) _h(1) for i<_min{k,j}, "(k) - -  '~O) 

a n d  so the formal curve ~(t) defined by 

(3.2.8) ~(t)-- ~ ~ hl~ ~ t ~ 
i = 0  �9 

is a non-trivial curve in the space ELPM(g). But I-2, Theorem 1.2] says that 
any formal curve 

(3.2.9) c(t) = 
1 

i= O _~. c( ) t " 

in an analytic set can be approximated by convergent curves, that is, for any 
positive integer k, there exists a convergent curve 

oo 1 
(3.2.10) .- - V _ , (0  ti 

in the real analytic set such that ,.(0_ ~(0 "(k)--~ for i<k .  Therefore we obtain a non- 
trivial convergent curve in the space ELPM(g), i.e., g is deformable. Q.E.D. 

3.3. Remark. The fact that the formal deformability implies the deformability 
may be used to construct some new Einstein metrics. But up to now we have 
no application of this relation. 

3.4. Remark. In the category of deformations of complex structures, the ri- 
gidity does not imply the non-deformability. For  counter examples, see [27, 
pp. 23-26]. 

3.5. Corollary. Let  g e J [ ~  be an Einstein metric. I f  each essential infinitesimal 
Einstein deformation h of  g is integrable, that is, if there exists an Einstein 
deformation gt of  g such that g~=h, then the space ELPM(g) forms a subma- 
nifold o f  Jr around g whose tangent space T~(ELPM(g)) coincides with the 
space EEID(g). 
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Proof It is sufficient to prove that if f is a real analytic function defined on an 
open neighbourhood of the origin 0 in a Euclidean space R k such that f ( 0 ) = 0  
and that for any v~R k there exists a curve co(t ) in R k which satisfies cv(0)=0, 
c'v(0)=v and f(e~(t))=O, then f is identically zero. We prove it by induction. 
First, we have 

(3.5.1) 0 = (fo cv)~ = f ;  (c'v(0)) = f ;  (v). 

Therefore f(; = 0. Assume that fo")= 0 for i<  r. Then we see 

"d - - r + l  

0 

and so foe'+l)=0. Q.E.D. 

3.6. Example. If EEID(g)=0,  then ELPM(g) reduces to one point. See Exam- 
ples in Sect. 1. 

3.7. Example. Let g be the symmetric Einstein metric on P2"(C)x S 2. Then 
EEID(g) 4= 0 but ELPM(g) reduces to one point ([24, Theorem 5.7]). 

4. The Canonical Riemannian Metric on the Space ELPM(g)  

If the local pre-moduli space ELPM of Einstein metrics around an Einstein 
metric g forms a submanifold of ~,s, then it has the induced riemannian met- 
ric. But this metric may depend on the origin g (c.f. Lemma 4.7). So we define 
another riemannian metric. 

4.1. Definition. A family gt of riemannian metrics on M with parameter space 
P is said to be effectively parametrized if we have 

(4.1.1) v[g,] Cirri 6" gt 

for all teP and non-zero veTtP. A family St is said to be normal if the dimen- 
sion of the space K(gt) of all Killing vector fields is constant for t~P. 

Let St be a family of riemannian metrics on M with parameter space P. For  
each t~P and v~TtP, we have the decomposition (2.2.1): 

(4.1.2) v[g,] =h + Lxgt; 6**h=O. 

We set 

(4.1.3) v n = v - X,  

which is regarded as a vector field along the map: M ~ M x P. If we denote by 
[ vn, gt] the symmetric bilinear form v[gt]-Lxgt, then 

(4.1.4) h = Iv u, gt] ~Ker 6**. 

We define a positive semi-definite inner product ( , ) on T~P by setting 

(4.1.5) (v, w)= <[v n, g,], [w n, g,]),,, 
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where ( , ) denotes the global inner product. Note that if K(gt)+O then the 
vector field X which satisfies Eq. (4.1.2) is not unique, but [vn, gt] is well-de- 
fined and so inner product (4.1.5) is well-defined. 

4.2. Lemma. Let gt be an effectively parametrized normal family of riemannian 
metrics on M with parameter space P. Then the inner product (4.1.5) defines a 
riemannian metric on P. 

Proof Since inner product (4.1.5) is positive definite on each TtP by assump- 
tion, it is sufficient to show that the essential part h in decomposition (4.1.2) 
depends C~-ly on t and v. This follows directly from the next lemma. We will 
also see that the vector v n can be taken so that it depends C~-ly on t and 
v. Q.E.D. 

4.3. Lemma. Let ~o t be a family of volume elements on M, El, F t families of 
vector bundles over M with fiber metrics g~, gV t and Q,: C~(Et)--* C~(Ft) a family 
of differential operators of order k with injective symbol. Assume that e)t, El, Ft, 
g~, get and Qt depends C~-ly (resp. real analytically) on t. That is, there are 
bundle isomorphisms e t" Eo ~ E t and ft: Fo ~ Ft such that the coefficients of e*g~, 
ft*get and ( f - 1 ) , o  Qto (el) , depend C~-ly (resp. real analytically) on t. Then the 
dimension of the space Ker Qt is upper semicontinuous. I f  the dimension of the 
space Ker Qt is constant, then the decompositions 

(4.3.1) H s (El) = Q * (H ~ + k (Ft)) @ Ker Q t, 

(4.3.2) HS(Ft) = Q,(H ~ + k (E,))@ Ker Q* 

depend C~ (resp. real analytically) on t, where Q* is the formal adjoint oper- 
ator of Qt with respect to get, get and ~o t. Moreover the isomorphisms 

(4.3.3) Q* + 1 : Qt(H s+ 2k(E,))@Ker Q, --, HS(E,), 

(4.3.4) Q, + 1 : Q* (H ~ + z k(F~) ) �9 Ker Q* --* H ~(F0 

also depend C~~ (resp. real analytically) on t. 

Proof. We may assume that the vector bundles E t and F t do not depend on t. 
The decomposition (4.3.2) for each t is due to [13, Theorem 8.5]. If we remark 
that Q*Qt is an elliptic operator for each t, then the other isomorphisms for 
each t are easy to check. By Remark 13.8, the families of operators Qt etc. are 
C~176 real analytic) curves in the Banach spaces L(H~+k(E), HS(F)) etc. of 
all continuous linear operators for sufficiently large s. First we consider the 
map 

(4.3.5) projection o Qt: Q'd (Hs+k(F))G Ker Qo --* Qo(H~(F)) �9 

For  t=0 ,  the restriction of this map on Q*(H'+k(F)) is an isomorphism. Hence 
by the implicit function theorem, there is a unique homomorphism 
~kt: KerQo---,Q~(H~+k(F)) which depends C~-ly (resp. real analytically) on t 
such that 

(4.3.6) Qt(~,(z) + z)eKer  Q* for z~Ker  Qo. 
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Let x sKerQt  and decompose it as 

X=Ux+Zx; u~eImQ~, (4.3.7) 

Then we see that 

(4.3.8) 

z~eKer Qo. 
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O,(u x + z,) -- 0. 

Since such ~t is unique, we get ~t(zx)=u~. In particular, if zx=O, then x=0 .  
Thus we have an injection: KerQt-oKerQo,  from which the upper semicon- 
tinuity follows. Assume that the dimension of Ker Q, is constant. Then we see 
that for any zeKerQo,  there exists x~Ker Q, such that z=zx.  But then 

(4.3.9) Qt(~Ot(z) + z) = Qt(x) = O. 

Thus if we set at= 1 +~q, then a t gives an isomorphism: KerQ0-*Ker  Qr 
Next consider the map 

(4.3.10) Q* +a,: Hs(V)@KerQo=KerQ*@Qo(H~+k(E))q)KerQo 

-o H ~- k(E) = Q* (HS(F)) @ Ker Qt. 

For t=0 ,  the restriction of this map to Qo(H~+k(E))OKerQo is an isomor- 
phism. Therefore by the implicit function theorem there exists a homomor- 
phism 

(4.3.11) ~O t = ~b[ + ~tr: Ker Q* --* Qo(H~+k(E))q)Ker Qo 

which depends C~176 (resp. real analytically) on t such that 

(4.3.12) Q*(x+~p[(x))+attPtr(x)=O for x~Ker  Q*. 

But this implies that Q*(x + Ip[(x))=atq~tr(x)=O. Thus if we set b t = 1 + ~k[, this 
gives an isomorphism: Ker Q~ -o Ker Q*. 

Finally we consider the maps 

(4.3.13) Q.  + at: Qo(H, + 2 k(E))l~ Ker Qo -o H~(E), 

(4.3.14) Qt + bt: Q*( Hs+ 2k(f))~Ker Q'~ -o H~(F). 

They are isomorphisms for t = 0, so we have the inverse maps Ot and ~bt, i.e., 

(4.3.15) (Q* + at) ~t = idn,(E), 

(4.3.16) (Qt + bt) ~bt = idm(v), 

which depend C~176 (resp. real analytically) on t. Then the map Q*~t+  at~bt 
gives the decomposition (4.3.1) and the map Qtc~t+btdpt gives the decompo- 
sition (4.3.2). Then the spaces Qt(H'+k(E)) and Q*(H"+k(F)) depend C~-ly (resp. 
real analytically) on t, thus also depend isomorphisms (4.3.3) and 
(4.3.4). Q.E.D. 

4.4. Remark. This Lemma in the C~-category is essentially done in [22, 
Theorem 5]. In their proof they used potential theory. 
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4.5. Definition. Let gt be an effectively parametrized normal family with pa- 
rameter space P. The riemannian metric on P defined in Lemma 4.2 is called 
the canonical riemannian metric on P and denoted by ge. 

4.6. Definition. Let gt (resp. g,) be a family of riemannian metrics on M with 
parameter space P (resp./5). They are said to be equivalent if there are a diffeo- 
morphism ~,: P--./5 and a family 7t of diffeomorphisms of M with parameter 
space P such that 

(4.6.1) y*f,~o=g~. 

4.7. Lemma. Let gt be an effectively parametrized normal family of riemannian 
metrics on M with parameter space P and fit an equivalent family. Then the 
family f~ is also effectively parametrized and normal, and 0 becomes an isometry. 

Proof. Obviously, gt is normal. We may assume that the parameter space of gt 
is also P. Then if we differentiate Eq. (4.6.1), we get 

(4.7.1) Iv, gt] = y*[[v, ~t] o ;~,-1, gt] + y*[v, gt]. 

Therefore if h is the essential part of [v, gt] with respect to gt, then y,-l*h is the 
essential part of Iv, gt] with respect to y t - l*gt=f , .  This implies that ft is effec- 
tively parametrized, and we see that 

(4.7.2) (Vl, Vz) = @1, h2)g, 

= ( y 2 1 .  hl, y2 1. h2)~,cl,gt, 

where h i is the essential part of [vi, gt]- Q.E.D. 

4.8. Remark. This Lemma means that the canonical riemannian metric is a 
well-defined notion on a family of riemannian metrics as a fiber structure: M 
x P -~P  (c.f. [21, Definition 1.1]). 

If the space ELPM becomes a submanifold of ~s, it may be regarded as a 
family of riemannian metrics on M with parameter space ELPM. 

4.9. Definition. Let g e ~ l  ~176 be an Einstein metric. The space ELPM(g) is said 
to be normal (resp. effectively parametrized) if it forms a submanifold of ,tg s 
around g and if it is normal (resp. effectively parametrized) as a family of 
riemannian metrics. 

4.10. Lemma. Let go~J-/~ ~ be an Einstein metric. Assume that the space 
ELPM(go) becomes a submanifold of ~ around go. Then the following con- 
ditions are equivalent. 

(4.10.1) ELPM(go) is effectively parametrized. 

(4.10.2) ELPM(go) is normal. 

(4.10.3) K(g)=K(go) for g~ELPM(go). 
(4.10.4) K(go) acts trivially on ELPM(go). 

(4.10.5) K(go) acts trivially on Tgo(ELPM(go)), where K(g) denotes the space of 
all Killing vector fields on (M, g). 
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Proof We will show the implications: 1 ~ 3, 2 --* 3 ~ 4 and 5 ~ 4 ~ 1. Combin- 
ing the obvious implications: 3 ~ 2 and 4--* 5, we get the equivalence. 

1 ~ 3 :  Assume that the space ELPM is effectively parametrized. Let 
XeK(go). Then, since K(go) acts on ELPM, we have Lxg~ Tg(ELPM), therefore 
Lxg=O, i.e., X~K(g). But here by the property (2.1.2), I(g)cI(go) for g~6:~o. 
Thus K(g) = K(go). 

2 ~ 3 :  Assume that the space ELPM is normal. Then the inclusion 
I(g) c I(go) implies that K(g) = K(go). 

3 ~ 4 :  Assume that K(g)=K(go) for geELPM. Let X~K(go). Then Lxg=O, 
which implies that K(go) acts trivially on ELPM. 

5 ~ 4 :  Assume that K(go) acts trivially on Tgo(ELPM ). Let X~K(go) and 
y(t) the one-parameter group of diffeomorphisms generated by X. Then y(t) 
acts trivially on Tgo(ELPM ). But here, the manifold ELPM is an I(go)-invariant 
submanifold of Jr so the induced riemannian metric on ELPM is I(go)- 
invariant. Thus the triviality of the action of y(t) on Tgo(ELPM ) extends to that 
on the space ELPM, which implies that K(go) acts trivially on ELPM. 

4--* 1: Assume that K(go) acts trivially on the space ELPM. Let gEELPM 
and X a vector field on M such that LxgeTg(ELPM ). Denote by y(t) the one- 
parameter group of diffeomorphisms generated by X. Then in the situation of 
Lemmas 2.1 and 2.4, we have 

(4.10.6) y(t)* g = F:_ --1 (p~_ 1 (Y (t)* g), q~_l (7(t)* g)). 

Therefore, by the property (2.1.2) we see that 

(4.10.7) 

which implies that 

(4.10.8) 

xS(qS~_l (y(t)* g)) o y(t)-i e/(go), 

S / o  $ ! (x ) (q~_l)~(Lxg)-X~K(go). 

But here, since Lxg~ ~CO~o, we have 

(4.10.9) (q~ - 1 )'g(Lx g) = O. 

So X~K(go). Therefore, by assumption we see that Lxg=O. Q.E.D. 

4.11. Corollary. Let g be an Einstein metric on M with non-positive Ricci 
curvature and with volume 1. I f  (M, g) has no local flat factor and if the space 
ELPM(g) forms a submanifold of ,gs, then the canonical riemannian metric on 
the space ELPM(g) is well defined. 

Proof By a well-known theorem of Bochner, the assumption implies that K(g) 
vanishes. Q.E.D. 

4.12. Corollary. Let g be a flat riemannian metric on M with volume 1. Then 
the canonical riemannian metric on the space ELPM(g) is well defined. 

Proof Let h~EEID. Then h is parallel and so we can easily construct an Ein- 
stein deformation g, such that g~ =h. Therefore, by Corollary 3.5, the space 
ELPM becomes a submanifold of ~gs whose tangent space at g coincides with 
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EEID. Moreover, if X is a Killing vector field of (M, g), then X is parallel and 
so Lxh=0 .  Q.E.D. 

4.13. Theorem. Let g o ~ / ~  be an Einstein metric. I f  the space ELPM(go) is 
normal (or equivalently if ELPM(go) forms a manifold and if one of the con- 
ditions in Lemma4.10 holds), then the canonical riemannian metric on 
ELPM(go) is real analytic. 

Proof. It is sufficient to prove that the essential part h of ~k depends real 
analytically on g and OeTg(ELPM). This follows from Theorem 3.t and 
Lemma 4.3. Q.E.D. 

4.14. Example. Let (T n, go) be a fiat torus of volume 1. Let EPM be the set of 
all Tn-invariant riemannian metrics on T n with volume 1. Then the space 
ELPM(go) is an open neighbourhood of go in EPM. In this case, the canonical 
riemannian metric on ELPM(go) coincides with the induced metric from ,#/~. 
The space ELPM(go) is then isometric with an open set of the irreducible 
symmetric space SL(n, R)/SO(n, R) (= EPM). 

5. The Obstruction Space for the Space EEID 

In this section, we treat only deformations of riemannian metrics. But to 
understand what we do, it would be better to recall Proposition 0.12, which 
says that the space H2(M, O) is the "obstruction" for the integrability (see 
Corollary 3.5) of infinitesimal complex deformations (see Definition 6.2). Bour- 
guignon posed the following 

5.1. Question. Is there a space which plays the role of an obstruction space for 
the integrability of infinitesimal Einstein deformation? 

We will give a negative answer to this question. Consider an equation F(g) 
= 0 for riemannian metrics. (For example, Einstein's equation E(g)= 0.) Assume 
that there is a linear operator Bg such that the equation 

(5.1.1) Bg(F(g))=0 

becomes an identity. For example, if F--E,  we have such an operator, namely 
the Bianchi identity operator: 

(5.1.2) Bg(O) = 5g 0 + (1/2) dtrg O. 

Let gt be a 1-parameter family of riemannian metrics on M, and set h i 

(r = gt. Then we have the expression 
o 

(5.1.3) r h ' h F(gt)=P~o( ~ . . . . .  h , -1)+ Fgo( r). 

If we take the r-th derivative of identity (5.1.1), we get the identity 
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Now, we assume that 

(5.1.5) F(gt)=0 for O < i < r - 1 .  
0 
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Then equality 5.1.4 becomes 

(5.1.6) Bgo(Pgo(h 1 . . . .  , h,_ 1) + Fgo(hr)) = O. 

Remark that this equality holds for any h,. So we have, since B~o is linear, 

(5.1.7) B~o o F~o = 0, 

(5.1.8) Bgo(Pgo~(h,, ..., h,_l)) = 0. 

We want to solve the equation 

(5.1.9) Fgo(h,) = -Pg'o(h, . . . . .  hr_ 1) 

for h r. There is a solution h r if and only if Pgo(hl . . . .  , h,_ 1)~Im/~go" But here we 
have Eq. (5.1.8), so if KerBgocImF~o, then there exists a solution of (5.1.9). In 
general, by equality (5.1.7), we have 

(5.1.10) Ker B~o DIm F~o. 

5.2. Definition. Let g be a riemannian metric on M such that F(g)=0. The 
space Ker B,/Im F~ is called the obstruction space. If Im F~ is closed, then the 
space Ker Bgn(Im Fg') • also is called the obstruction space. 

In fact, we saw that if the obstruction space vanishes, then all infinitesimal 
deformations are formally integrable (see Corollary 3.5). In the case of 
Einstein's equation E(g)= 0, it implies the following 

5.3. Lemma. Let g be an Einstein metric on M with volume 1. I f  the obstruc- 
tion space KerB~n(Im E',) • vanishes, then the space ELPM forms a submanifold 
of M s whose tangent space Tg(ELPM) coincides with the space EEID. 

Proof By Corollary 3.5, it is sufficient to prove that for any h~EEID, there is 
an Einstein deformation g, of g such that g0 = h. But it is already shown in the 
above discussion that there exists a formal power series 

(5.3.1) g(t)= ~ l h i t i  
i=O 

which satisfies the formal equation E(g(t))=O such that ho=g and h 1 =h. Then 
the result follows by the same argument as in the proof of 
Theorem 3.2. Q.E.D. 

But unfortunately, we have the next proposition which says that we cannot 
apply this lemma. 

5.4. Proposition ([24, Proposition 3.2-]). Let g be an Einstein metric on M with 
volume 1. Then the obstruction space KerB,  n(ImE'g) "L coincides with the space 
EEID itself. 
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5.5. Remark. We see that the definition of the obstruction space depends on 
the choice of the identity. But it seems to the author that for Einstein's equa- 
tion, there is no other effective identity than the Bianchi identity. On the other 
hand, if an equation F(g)= 0 is sufficiently nice, for example if the space of all 
"essential infinitesimal deformations" is finite dimensional, Lemma 5.3 remains 
true for this equation. If a solution g of the equation has "an essential in- 
finitesimal deformation" and if "the obstruction space" vanishes, then we get a 
manifold as "the local pre-moduli space" for the equation. To analyse the real 
analytic set ELPM as a subset of such a manifold, we pose the following 

5.6. Problem. Find such an equation F(g)=0.  We claim also that Einstein met- 
rics g satisfy F(g)=0.  

6. Deformations and Infinitesimal Deformations of a Complex Structure 

We introduce the notion of complex deformations, which was developed by 
[21, 22]. We introduce it in an exactly similar way as in Sect. 1 to analyse 
deformations of K~hler-Einstein structures. 

6.1. Definition. Let d be a complex structure on M. A family Jt of complex 
structures on M such that Jo =J is called a complex deformation of d. A com- 
plex deformation Jt of J is said to be trivial if the complex structure ,It is 
isomorphic with J for each t. 

A tensor field J of type (1, 1) is a complex structure if and only if the 
following equations are satisfied. 

(6.1.1) j2 = _ idrM ' 

(6.1.2) N(J)=O, 

where N denotes the Nijenhuis torsion tensor, defined by 

(6.1.3) N(J)(X, Y)= IX, Y ] - [ J X ,  J Y ] + J [ J X ,  Y ]+J[X ,  JY].  

6.2. Definition. Let J be a complex structure on M. A tensor field I of type 
(1, 1) is called an infinitesimal complex deformation of d if the following linear 
equations are satisfied. 

(6.2.1) I J + J I = O ,  

(6.2.2) Nj(I) =0.  

The space of all infinitesimal complex deformations of J is denoted by CID(J) 
or simply by CID. 

6.3. Definition. Let J be a complex structure and g a riemannian metric on 
M. An infinitesimal complex deformation of the form LxJ is said to be trivial. 
The space of all trivial infinitesimal complex deformations of J is denoted by 
CTID(J) or simply by CTID. An infinitesimal complex deformation I of J is 
said to be essential with respect to g if I is orthogonal to the space CTID(J) 
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with respect to the global inner product defined by g. The space of all essential 
infinitesimal complex deformations of J with respect to g is denoted by 
CEID(J, g) or simply CEID(J), CEID. 

6.4. Lemma. Let J be a complex structure on M. A (real) tensor field I of 
type (1, 1) is an infinitesimal complex deformation of J if and only if I satisfies 
the following two equations 

(6.4.1) I'~ =0, 

(6.4.2) 0,1~ - 0 n I~  = 0. 

I f  g is a Ki~hler metric on M, then Eq. (6.4.2) becomes 

(6.4.3) D~ l~t~ - D~ I~  = 0, 

and an element I e C I D  is in the space CEID(J, g) if and only if I satisfies the 
equation 

(6.4.4) D~Ia~ = O. 

Proof Equations (6.4.1), (6.4.2) and (6.4.3) are given by a straightforward tensor 
computations. Equation (6.4.4) follows from the equation 

(6.4.5) (LxJ) (O~)=-2] /~- I (D~X~)~ for vector fields X. Q.E.D. 

6.5. Lemma. Let J be a complex structure and g a riemannian metric on M. 
Then the space CID(J) admits an orthogonal decomposition 

(6.5.1) CID(J) = CEID(J, g)•CTID(J) 

with respect to the global inner product defined by g. 

Proof It suffices to show that the space CTID is a closed subspace, which is a 
direct consequence of decomposition (4.3.2) (for t =0). Q.E.D. 

Also for the space CEID, a similar result as Lemma 1.5 holds. See Lemma 
8.1. We defined the space CEID in analogy with the space EEID. But we have 
another space of infinitesimal deformations of complex structures, defined in 
[20, Sect. 5]. This space is the cohomology group H 1 (M, O) with coefficients in 
the sheaf O of germs of holomorphic vector fields. 

6.6. Lemma. Let J be a complex structure and g a riemannian metric on M. 
Then the space CEID(J, g) and HI(M, O) are canonically isomorphic. 

Proof We use the ordinary notations for chain complexes and denote by X 
the sheaf of germs of smooth vector fields. First we construct a linear map: 
C I D ~ H I ( M ,  O). Let I~CID. By Eq. 6.4.2 and by Dolbeault's lemma, there is a 
local complex vector field t/ such that I~=Optl ~. Taking the real part ~ of the 
anti-holomorphic part of t/, we see that L r  by formula 6.4.5, i.e., there 
exists {r176 X) such that L g J = I .  If we define {q~,a}~Zl(M, X) by ~b,a 
=~ , -~B ,  then we see that {~b,p}eZl(M, 6~), and .so it defines an element in 
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HX(M,O). We easily see that this correspondence: CID~H~(M,O)  is well- 
defined, and its kernel coincides with the space CTID. So this map defines an 
injection: CEID~H~(M,O).  Next we show that this map is surjective. Let 
{~b~a} eZI(M,  O). Since Z~(M, O)~ZX(M, X)=B~(M, X), there exists 
{t/~}~ C~ X) such that ~b~a =t/~-t/a.  Then L,~,J defines an infinitesimal com- 
plex deformation. It is easy to see that I is mapped to {~b~a}eH~(M, O) by the 
above correspondence: CID--*H~(M, 0). Q.E.D. 

Let J be a complex structure on M. If I~CID, then by Lemma 2.4, we see 
that J I e C I D ,  i.e., the space CID becomes a complex vector space. If 
{(9~}~Z~(M,O), then {J(o~}eZ~(M,O). Using the operator J on Z~(M,O), 
the space Ha(M, O) also becomes a complex vector space. Moreover, if g is a 
compatible K~ihler metric on M, then by Eq.(6.4.3) and (6.4.4), the space 
CEID(J,  g) becomes a subspace of the complex vector space CID(J). We easily 
see the following 

6.7. Lemma. Let (J, g) be a Ki~hler structure on M. Then the isomorphism de- 
fined in Lemma 6.6 is an isomorphism of complex vector spaces. 

7. The Space EEID on a K~ihler-Einstein Manifold 

First, we prepare the following 

7.1. Lemma. Let (J, g) be a Kf~hler-Einstein structure on M. Then the following 
formulae hold. 

(7.1.1) DYO~ff/ ...... k~1...~ =D~D~ffG~ ..... ~l...~ +(k-l)e~G,...~klh...~,, 

(7.1.2) - D~(D~ ~bav - Da ~ )  = �89 + 2 L) ~ba~ + D~ D ~ ~ ,  

(7.1.3) -D~(D~ ~ -  Da ~ )  =�89 + 2 L +  2e) ~a~ + DpD~k~, 

(7.1.4) ( D ~ b a r - D a ~ r , D ~ - D I ~ b ~  ~ 

= ((A-+ 2L) ~bar, ~p~) - 2(D" ~k~r, D ~ ~k/~), 

(7.1.5) (D, ~ a ~ - O  a ~k~, O~ ~bDr-D~ ~k~,) 

where e is the constant Ricci curvature and ( , ) denotes the global inner pro- 
duct defined by g. I f  (9 is an anti-symmetric 2-tensor, then 

(7.1.6) Lq~a =0.  

Proof. Straightforward tensor calculation. C.f. [11, Sect. 6]. Q.E.D. 

Now let (J, g) be a K~ihler-Einstein structure on M with volume 1 and let 
heEEID. We decompose h into its hermitian part h n and its anti-hermitian 
part ha: 

(7.1.7) hn(JX , JY)=hn(X , Y), 

(7.1.8) hA(JX , JY)= - h a ( X  , Y). 
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Then from equation 1 .5 .1 : ( z ]+ 2 L)h = 0  and equality (7.1.4), h A satisfies Eq. 
(1.5.2): 6hA=O. Obviously h A satisfies Eqs. (1.5.1) and (1.5.3): trhA=0, therefore 
hAeEEID and so hneEEID. Q.E.D. 

7.2. Notation. Let (J, g) be a K~ihler-Einstein structure on M with volume 1. 
The space of all hermitian (resp. anti-hermitian) essential infinitesimal Einstein 
deformations is denoted by EEID n (resp. EEIDA). 

7.3. Proposition. Let (J, g) be a Kiihler-Einstein structure on M with volume 1. 
Then the decomposition: 

(7.3.1) EEID = EEIDn0) EEID A 

holds. An anti-hermitian symmetric 2-tensor field h is an element of EEID A /f 
and only if  the following equations are satisfied. 

(7.3.2) D~ hat - Dt~ h~ = 0, 

(7.3.3) D ~ h~a = 0. 

Moreover, if e<0,  then EEIDn=0 .  I f  e=0 ,  then a hermitian symmetric 2-tensor 
field h is an element of EEID n /f and only if the following equations are 
satisfied. 

(7.3.4) D~ hp~ - Da h~y = 0, 

(7.3.5) h ~ = 0 .  

Proof Let heEEID A. Then from equality (7.1.4) and Eq. (1.5.1): (zJ+2L)h=0,  
Eqs. (7.3.2) and (7.3.3) follow. Conversely, if an anti-hermitian symmetric 2- 
tensor field h satisfies Eqs. (7.3.2) and (7.3.3), then by equality (7.1.2), Eq. (1.5.1) 
holds. This implies that h~EEID. 

Assume that e < 0  and let heEEID, : .  Then, from equality (7.1.5) and Eqs. 
(1.5.1) and (1.5.2): 6 h = 0  it follows that, if e<0,  h = 0  and, if e=0 ,  h satisfies Eq. 
(7.3.4). Equation (7.3.5) is equivalent to Eq. (1.5.3): t r h = 0 .  Conversely, assume 
that e = 0  and that a hermitian symmetric 2-tensor field h satisfies Eqs. (7.3.4) 
and (7.3.5). Then 

(7.3.6) D ~ h~ = D ~ hr~ = D r h~ = 0, 

i.e., Eq. (1.5.2) holds. Then from equality (7.1.3) Eq. (1.5.1) follows, which im- 
plies that heEEID.  Q.E.D. 

7.4. Proposition. Let (J, g) be a Ki~hler-Einstein structure on M with e = 0  and 
with volume 1. Then 

(7.4.1) EEID n ~ H*' 1 (M, R)/R.  co, 

where ~o denotes the Kfihler form. 

Proof For h~EEID, ,  we define a real 2-form ~k by ~ = h J ,  i.e., 

(7.4.2) ~O,~- - lf-L-f h,B. 
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Then from Eq. (1.5.2), 6 0 = 0  follows, and from Eq. (7.3.4) it follows that d 0 = 0 .  
It is easy to see that this correspondence gives the isomorphism 
(7.4.1). Q.E.D. 

8. The Space CEID on a K~ihler-Einstein Manifold 

Let (J, g) be a K~ihler structure on M and let IeCEID.  A tensor of type (1, 1) is 
identified with a tensor of type (0, 2) via the usual correspondence defined by 
the metric tensor. Thus, by Eq. (6.4.1), the tensor field I is identified with an 
anti-hermitian 2-tensor field, which is denoted by I ~  or Ia~. 

8.1. Lemma. Let (J,g) be a Kiihler-Einstein structure on M. An anti-hermitian 
2-tensor field I is an element of CEID /f and only if it satisfies the following 
equation 

(8.1.1) (zl+2L) I = 0 .  

Proof If I6CEID,  then from Eq. (6.4.3) and (6.4.4): 

D~ I~  - Dp I~ = 0, D ~ Ia~ = 0, 

and formula (7.1.2), Eq. (8.1.1) follows. If Eq. (8.1.1) holds, then from formula 
(7.1.4), we see that Eqs. (6.4.3) and (6.4.4) follow. Q.E.D. 

Let I s (resp. /,1) be the symmetric part (resp. antisymmetric part) of 
I~CEID.  Then by Lemma 8.1, we see that I s and IA~CEID. Denote by CEID s 
(resp. CEIDa) the space of all symmetric (resp. antisymmetric) elements of 
CEID. 

8.2. Proposition. Let (J, g) be a K~hler-Einstein structure on M. Then the de- 
composition 

(8.2.1) CEID = CEIDsq~ CEID A 

holds. An antisymmetric anti-hermitian 2-tensor field I belongs to CEID a if and 
only if I is parallel, i.e., 

(8.2.2) DI=O. 

In particular, we have the isomorphism: 

(8.2.3) CEID A - n z' ~ C). 

Proof Let I be an antisymmetric anti-hermitian 2-tensor field. Then, by for- 
mula (7.1.6), Eq. (8.1.1) is equivalent to the equation zlI=0,  which is also 
equivalent to Eq. (8.2.2). The last isomorphism then follows from the equiva- 
lence between the properties of being parallel and being harmonic. Q.E.D. 

8.3. Proposition. Let (J, g) be a Kiihler-Einstein structure on M with e 4: O. Then 
CEIDa=O.  
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Proof If e4:0, then by formula (7.1.1), there is no non-zero parallel holomor- 
phic 2-tensor field. So using isomorphism (8.2.3), CEIDa=0 .  

9. K~ihler Relation Between the Space EID and CID 

Let (J, g) be a K~ihler structure on M and (Jt, gt) a one-parameter family of 
K~ihler structure such that (Jo, go)= (J, g). Then the following equations are sat- 
isfied. 

(9.1.1) (gt(X, ,It Y) + gt(Y, JtX)) ' =0, 

(9.1.2) dco't = 0  , 

where co t is the Kiihler form defined by cot(X, Y)=g,(X, Jt Y). Set g;=h, J6=I  
and co; = 4). Then we see that q~ is given by the following equations 

(9.1.3) 

(9.1.4) 

From Eq. (9.1.1), we see that 

~b~p = l/'-Z- 1 h~a + I~ ,  

c/)~11 = - I/-s h~11+ I~p. 

(9.1.5) 2 ~ h ~  + ( I~  + Ip~) = 0. 

Combining with Eq. (9.1.3), we get 

(9.1.6) ~b=p = (1/2) (I,p - I~=). 

Therefore the following relation always holds. 

(9.1.7) 2 (dqS)=or = O,(Ia~ - l~tj) + alternating terms 

= (D= I a r -  D r tp=) + alternating terms 

=0 ,  

where the last equality follows from Eq. (6.4.3): D=I~a-DaI~==O. From Eqs. 
(6.4.1): P p = 0  and (9.4.1), we see that 

(9.1.8) q~,p = - t /-Z 1 h,~. 

Combining with Eq. (9.1.6), we get 

(9.1.9) (dqS),~ = - l / - 1 D ,  h~+l/'-Z-1Dph,~+(1/2)D~(I,p-I~,). 

Thus we may set the following 

9.2. Definition. Let (J, g) be a K~ihler structure on M. A symmetric 2-tensor 
field h and an infinitesimal complex deformation I are said to be Kiihler re- 
lated if they satisfy the following equations 

(9.2.1) 2 ]f-L-l h~t~ + (I~p + Ip~)=O, 

(9.2.2) 2 F / -- 1 (D~ hp~ - D~ h,~) = D~(I,p- I~). 
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9.3. Lemma. Let (J, g) be a Kiihler-Einstein structure on M with volume 1. Then 
the space EEID,I and the space CEID s are isomorphic under a canonical cor- 
respondence: I ~, h defined by 

(9.3.1) h~ = ~ -  lI~z. 

Moreover, this isomorphism is equivalent with the Kiihler relation. 

Proof The first half is obvious by Lemma 6.4 and Proposition 7.3. Under the 
assumption that h is anti-hermitian and that I is symmetric, Eq. (9.2.2) always 
holds and Eq. (9.3.1) is equivalent with Eq. (9.2.1). Q.E.D. 

9.4. Corollary. Let (J, g) be a Kglhler-Einstein structure on M with volume 1. 
Then, 

(9.4.1) if e<0,  d i m E E I D = 2 d i m c H l ( M ,  6)), 

(9.4.2) if e=0,  d i m E E I D = ( d i m H l ' l ( M , R ) - l )  
+ 2 (dim c n t  (M, O) - dim c H 2' 0 (M, C)), 

(9.4.3) /f e>0,  dim E E I D > 2  dim c HI(M, 6)). 

Proof. Combination of Lemma 6.6, Propositions 7.3, 7.4, 8.2 and Lemma 
9.3. Q.E.D. 

9.5. Remark. Formula (9.4.2) on the K3-surface is obtained in [10, p. 174 
Theorem]. 

9.6. Remark. In general, we cannot replace the inequality sign in (9.4.3) by an 
equality sign. For example, on p I (C)x  P2m(C), HI(M, 6))=0 ([9, Theorem VII, 
Corollary]) but EEID 4= 0 (Example 3.17). 

9.7. Lemma. Let (J, g) be a KFthler-Einstein structure on M with volume 1. I f  
e>0 ,  then for any non-zero element heEEIDn,  there is no element I e C I D  
which is KFthler related with h. 

Proof. Assume that I is K~ihler related with h. Then by Eq. (9.2.1), I is anti- 
symmetric, and so from Eq. (9.2.2) it follows that 

(9.7.1) ] / ~ ( D ,  ha~ - Do h~) = D~ I,a. 

But on the other hand, by Eq. (1.5.2): 6h=O, we know that 

(9.7.2) D ~ D~ h~ = D~ D ~ ht~ ~ = 0. 

Therefore D ~ D~ I ~  =0, which implies that 

(9.7.3) D~ I~p = 0. 

Combining Eqs. (9.7.1), (1.5.1): ( A + 2 L ) h = 0 ,  (1.5.2): 6 h = 0  and (7.1.3), we see 
that e h = 0 .  Q.E.D. 

9.8. Lemma. Let (J, g) be a Khhler-Einstein structure on M with volume 1. The 
space of all infinitesimal complex deformations I e C I D  which are Kiihler related 
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with 0eEID coincides with the space CEID A. The space of all infinitesimal Ein- 
stein deformations h~EID which are K~hler related with 0eCID vanishes if 
e < O, coincides with the space EEID n if e = 0 and coincides with the space {Lxg; 
X is a holomorphic vector field} if e>0.  

Proof If IeCEIDA, then I is parallel by Proposition 8.2 and so I is K~ihler 
related with 0~EID. Conversely if I e C I D  is K~ihler related with 0~EID, then 1 
is antisymmetric and D~I,a=O, which implies that Eq. (6.4.4) holds. Therefore 
I~CEID a. 

If e = 0  and if h~EEIDH, then by Eq. (7.3.4), h is K~ihler related with 
0eCID. If e > 0  and if X is a holomorphic vector field on M, then it is easy to 
see that the infinitesimal Einstein deformation L x g is K/ihler related with L x J  
=0~CID.  Conversely, assume that heEID is K~ihler related with 0eCID. 
From decomposition (2.2.1), there exist an element 0eEEID and a vector field 
X on M such that h=O+Lxg .  Then 0 is K~ihler related with - L x J ~ C I D .  By 
Lemma 9.3, there is an element II~CEIDs which is K~ihler related with the 
anti-hermitian part 0A of 0, SO the hermitian part 0n of 0 is K~ihler related 
with -(11 + L x J  ). If e<0,  then 0 n = 0  by Proposition 7.3. If e>0,  then 0 n = 0  
by Lemma 9.7. If e=0,  then we have seen that On is K~ihler related with 
0eCID. Thus, in any case, 11 + L x J  is K~ihler related with 0eEID. But we have 
seen that then 11 +LxJeCEIDA,  which implies that LxJ=O and 11 =0  by de- 
compositions (6.5.1) and (7.3.1). Therefore 0A=0. If e<0,  then we have seen 
that 0 = 0 n = 0  and so h = 0  since there is no non-zero holomorphic vector 
field. If e=0,  then h = 0 e E E I D  n since all holomorphic vector fields are Killing 
vector fields. If e >0, then we have seen that 0 = On = 0 and so h = L x g where 
X is a holomorphic vector field. Q.E.D. 

9.9. Proposition. Let (J, g) be a Kfthler-Einstein structure on M with volume 1. 
Let hleEID and I leCID.  We decompose them by decompositions (2.2.1), (6.5.1), 
(7.3.1) and (8.2.1) as 

(9.9.1) h x = h + L x g ,  h=hA+hn; hA~EEID a, hHeEEID n, 

(9.9.2) 1 1 = l + L r J ,  I= l s+1a;  IseCEID s, IaeCEIDA. 

Then h 1 and 11 are Ki~hler related if and only if condition (9.9.3), or equivalently 
one of conditions (9.9.4), (9.9.5) and (9.9.6), holds. 

(9.9.3) X - Y  is a holomorphic vector field, h n is Kiihler related with 0~CID 
and h a is Kiihler related with I s. 

(9.9.4) e<0,  X = Y  and h~p=]f-~I~p. 

(9.9.5) e=0,  X - Y  is a Killing vector field and 2h, p =1 / / - l ( I , p  +la,) .  

(9.9.6) e>0,  X - Y  is a holomorphic vector field, h,p=0 and h,a=l/~- l I , t  J. 

Proof Assume condition (9.6.3). Then L x g and LyJ  are K~ihler related and h is 
K~ihler related with I s. If e4:0, then IA=O by Proposition 8.3. Even if e=0,  1A 
is K~ihler related with 0eEID by Lemma 9.8. Therefore h a is K~ihler related 
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with I1. Conversely, assume that h 1 and I~ are K~ihler related. Then since Lxg  
is Kiihler related with LxJ ,  h is K~ihler related with I+L(y_x)J .  By Lemma 
9.3, there is an element I z e C E I D  s which is Kiihler related with h a. Then h n is 
Kiihler related with I - I 2 + L ( y _ x ) J .  But here, if e < 0  then hu=O by Lemma 
7.3, if e = 0  then h n is K~ihler related with 0 sCID  by Lemma 9.8, and if e > 0  
then hn=O by Lemma 9.7. Thus in any case h n is K~ihler related with 0eCID 
and so I - I 2 + L t y _ x ) J  is K~ihler related with 0eEID.  Then by Lemma 9.8, I 
- I  z + L~r_x)J~CEID A. This implies that I - I 2 E C E I D  A and L(y_x)J=O , i.e., Y 
- X  is a holomorphic vector field and 12=1 s. But by definition of 12, 12 is 
Kiihler related with h A. 

To prove the equivalence between conditions (9.9.3) and (9.9.4), (9.9.5), 
(9.9.6), it is sufficient to see the following. If e<0 ,  then there is no non-zero 
holomorphic vector field. If e = 0, then all holomorphic vector fields are Killing 
vector fields. If e<0 ,  then h H is always K~ihler related with 0eCID by Lemmas 
7.3 and 9.8. If e>0 ,  then h u is K~ihler related with 0~CID only if hB=0 by 
Lemma 9.7. If e4:0, then I s = !  by Proposition 8.3. Combining these infor- 
mations with Lemma 9.3 gives the equivalence. Q.E.D. 

10. Einstein Metrics and Complex Structures 

We expect that in the situation of Proposition 0.5, if we deform the complex 
structure J, then the Einstein metric g depends C~-ly on J. The following 
result justifies this observation also valid for the case of positive Chern class. 

10.1. Proposition. Let (J, g) be a Kiihler-Einstein structure on M with volume 1. 
I f  the constant Ricci curvature e>O, then we assume that there is no non-zero 
holomorphic vector field. Let Jt be a one-parameter complex deformation of J. 
Then there exists an Einstein deformation gt (defined for small t)  of g such that 
each metric gt is a K~hler metric compatible with Jr. Moreover, if we have an 
infinitesimal Einstein deformation heEID which is Kf~hler related with I=J'o, 
then we can choose gt so that g'o = h. 

Proof Recall the formula 

(10.1.1) p = ~ - 1  8 8 log [gl 

for a Kiihler structure, where p is the Ricci form defined by plj=rlkJki, 8 and 
the ordinary differential operators defined by J and Igl = det(g,p) for a complex 
coordinate system. By [22, Theorem 15], there is a one-parameter family gt of 
riemannian metrics on M such that each ~, is a K~ihler metric compatible with 
J,. First we assume that e 4: 0. Set 

(10.1.2) g, = e-16,  

where ~ is the Ricci tensor of ~,. Then the function ft defined by 

(10.1.3) f =log(l~tl [~,[-1) 

is well-defined and, by formula (10.1.1), satisfies the equation 
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(10.1.4) p~- e ~ = l / - Z 1  0, ~, ft, 

where ~t is the K~ihler form of (.It, gt). We consider the equation 

(10.1.5) log (l&t + l/"-Z- 1 8, ~, r ~,1,-1) +f t  - e r = 0 

for a function ~. By formula (10.1.1), we can check that the K~ihler metric 
defined by the K~ihler form 

(10.1.6) oA=~t+ k/-18t~,O 

is an Einstein metric (c.f. [5, Eq.I, II-+]), Consider the map: R 
• H '  + z (M) ~ H'(M) (s ~ N + 2 = In/2] + 3) defined by 

(10.1.7) (t, ~)~---~log(l~, + l/~Z1 8, ~, ~lt Io3tl~ -1) +f t  - e  ft. 

Then the derivative of this map with respect to ~p at (0, 0) is given by 

(10.1.8) O'~--~ (1/2) A ~' - e ~', 

which is an isomorphism from H'+2(M) onto HS(M). In fact if 2e is an eigen- 
value of A with ~' as a corresponding eigenfunction, then Jdtp' becomes a 
holomorphic vector field ([26, pp. 134-136, 147]). Thus the implicit function theo- 
rem implies that a solution ~tEHS(M) of (10.1.5) exists and depends C~ on t. 
By changing constant factor if necessary, we obtain an Ha-Einstein deformation 
of g defined by Eq. (10.1.6). Then g~eEID is K~ihler related with I, so g ; - h  is 
K~ihler related with 0eCID. This implies that g; =h by Lemma 9.8. 

If e = 0, the proof is less simple. By assumption, g~0 and h are K~ihler related 
with the same I, so ~ b - h  is K~ihler related with 0eCID. Then from Eqs. (9.2.1) 
and (9.2.2), it follows that the tensor field f f = ( ~ ; - h ) d  is a closed hermitian 
form. [20, Theorem 4.2] says that the dimension of the space HIII(M,R) de- 
fined by (J,, gt) is constant for t. Hence, by Lemma 4.3, we obtain a one-param- 
eter family ~nt of 2-forms such that ~ u o = ~  and that each ~ut is in 
Hill(M, R). We set 

(10.1.9) g-t = ~ , +  t q~,, 

where ~b t is defined by q~t=~ntJt. Then we see that gt is a K~ihler metric com- 
patible with Jt and that ~'o-hJ is cohomologous to 0. Now we define a func- 
tion ft by 

(10.1.10) fit = ~ 1 (3 t ~t ft. 

Since fit is cohomologous to 0, such an ft exists and is unique up to constant 
for each t. Then, by Lemma 4.3, we see that such a function ft can be taken to 
depend C~-ly on t and so that fo = 0 (which is obvious when e 4: 0). We replace 
the map (10.1.7) by the map: R x Ker(~[H~+2(M))x R~H~(M) defined by 

g 

(10.1.11) (t,~,,c)~---,log(l~,+l/-Z-18,~,~,l,l~,li-~)+ft+c. 
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The derivative of this map with respect to ff and c at (0, 0, 0) is given by 

(10.1.12) (~', c')~---~ (1/2) A~' +c' ,  

which is an isomorphism from Ker ~ • R onto H~(M). Thus the implicit func- 
g 

tion theorem implies that the solution ~,~Ker~ exists, depends C~-ly on t and 
g 

gives an Einstein metric defined by Eq. (10.1.6). Moreover, ~ - o 5 ~  and ~ - h J  
are cohomologous to 0, and so is ~O'o-hJ. But, by Lemma 9.8, we see that go 
- h ~ E E I D  n and so OJo-hJ is harmonic (see Proposition 7.4). Thus g'o=h. By 
changing the constant factor if necessary, we obtain an H~-Einstein defor- 
mation of g. 

Finally, we show the smoothness. Since each gt is a C2-K~ihler-Einstein 
metric, g~ is C ~ by 1-12, Theorem 6.1] (c.f. Proposition 0.2). Since the solution 
gt is uniquely constructed in the above proof, we can repeat this proof, i.e., we 
can apply the implicit function theorem, for any r>s  at each t. This means 
that gt is a C~-curve in ~ / '  for all r > s. Q.E.D. 

10.2. Definition. A complex structure J on M is said to belong to a non- 
singular complete family of complex structures if there is a family Jt of complex 
structures on M with parameter space P such that Jo=J  and that the map: 
T O P ~ C I D  defined by 

(10.2.1) v~-~ [-v, Jr] 

is an isomorphism onto CEID. 

10.3. Remark. By Lemma 6.6, it is obvious that the above definition does not 
depend on the choice of the riemannian metric with respect to which the space 
CEID is defined. 

10.4. Remark. Recall Proposition 0.10. That is, if HZ(M, O) vanishes, then J 
belongs to a non-singular complete family of complex structures. 

10.5. Theorem. Let (J,g) be a Kgthler-Einstein structure on M with volume I. 
Assume that the complex structure J belongs to a non-singular complete family of 
complex structures. Moreover, if e>0 ,  we assume that EEIDH(J, g) vanishes and 
that there is no non-zero holomorphic vector field. Then any Einstein metric g~ 
on M sufficiently close to g is Kiihlerian, that is, there is a complex structure J1 
on M such that gl becomes a Kgthler metric compatible with J1. Moreover, such 
J~ can be taken to depend Coo-ly on g~. 

10.6. Remark. If the manifold M is of dimension 2 or the K3-surface, then the 
condition that gl is close to g is not necessary. See Proposition 0.3. Remark 
also that in these two cases the assumption for the original K~ihler-Einstein 
structure (J, g) is satisfied. 

Proof. In the following, we omit the suffix s which means H ~ since all objects 
are C ~ and the mappings p, q and )~ in Lemma 2.4 may be considered to be 
C ~~ By Proposition 10.1, we have a C~-map e: PxEEIDH--*J//1 such that 
each ( t , h ) ePx  EEID n corresponds to a K~ihler-Einstein metric compatible 
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with Jr. Moreover, by Proposition 7.3 and Lemma 6.8, the image of the differ- 
ential s~ at the origin coincides with the space EEID. We take the composition 
pos. Then the image of the differential (pos)~ at the origin coincides with the 
space EEID. Owing to Theorem 3.1, it means that the local pre-moduli space 
ELPM(g) locally becomes a submanifold of ~ whose tangent space at g coin- 
cides with EEID and that poe is a local submersion from P x EEID n onto 
ELPM defined on an open neighbourhood of the origin. Therefore there is a 
cross section qJ: E L P M ~ P  x EEID n. Now we may assume that the metric gl 
has volume 1. Since p (g0~ELPM,  we can define ~9p(gl) and the equation 
ps~p(gl )=p(gl )  holds. Therefore we see that 

(10.6.1) s qJ P(g0 = (~( q(s ~ P(gO))* P(gl). 

Here, s~bp(gl) is a K~ihler metric compatible with the complex structure ~bp(ga). 
Thus P(gO is a K~ihler metric compatible with the complex structure 
(zq(s~P(gx))) -l*(qjp(gl)) and so gl =(~(q(g0)* P(g0 is a K~ihler metric compat- 
ible with 

(zq(gl)),(zq(e~kp(gl)))-l,(~bp(g,)). Q.E.D. 

10.7. Corollary. Let (J,g) be a KhMer-Einstein structure on M with volume 1 
whose complex structure J is in a non-singular complete family of complex struc- 
tures. Assume that c 1 < 0  or that c 1 =0 and the second Betti number b z = 1. Then 
there is a local one-to-one correspondence between complex structures J~ on M 
and compatible KhMer-Einstein metrics g~. In particular, the space ELPM(g) 
may be regarded as a family of complex structures on M. Moreover the spaces 
EEIDn(J1, gl) and CEIDA(J1, gx) vanish for all pairs (J1, g0. 

Proof By Remark 10.4, we can apply Theorem 10.5. If E E I D u ( J ~ , g 0 = 0  and 
CEIDa(Jx, g 0 = 0 ,  then by Proposition 9.9, we see that the correspondence be- 
tween complex structures and Einstein metrics becomes a local diffeomorphism 
around J1. The vanishings of the spaces EEID n and CEID A follow from Prop- 
osition 7.4 and 8.2. Q.E.D. 

10.8. Example. As a particular case, we can apply Theorem 10.5 to complex 
hypersurfaces of a complex projective space. Let Vm, a be the set of all homo- 
geneous polynomials f on C m+2 such that f defines a non-singular irreducible 
hypersurface in Pm+I(C). The complex automorphism group SL(m+2, C) of 
P"+I(C) acts canonically on V,,,a. Let Hm, a be the quotient space V,,,,a/SL(m 
+ 2, C). The space Hm, a may be regarded as a set of complex hypersurfaces of 
P"+t(C).  Let (M,J)eH,,,a. If d>-m+2, m>2 and (m, d) =~ (2, 4), then the first 
Chern class c a of (M, J) is negative or vanishes. Therefore we can apply Prop- 
osition 0.5. Let MHr,,a be the set of all K~ihler-Einstein structures obtained by 
Proposition 0.5. [-21, Theorem 14.1] says that, under the same assumption for 
m and d, for any (M, J)eH,,,a the complex structure J is in a non-singular 
complete family of complex structures, and this family may be regarded as 
an open neighbourhood of J in H,,,a. Thus we can apply Theorem 10.5. 
Let (M, J, g)~MH,,,a. If g~ is an Einstein metric on M which is suffi- 
ciently close to g, then there exists a complex structure J1 on M such that 
(M, J1, gl) is isomorphic to certain (M, J2, g2)EMH,,,a as K/ihler manifolds. If 
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d > m + 2, then the first Chern class of J is negative. Hence we see, by Corollary 
9.4, that 

11. The Complex Structure on a Family of Complex Structures 

In this section, we recall some results obtained by Kodaira  and Spencer. The 
idea of our proofs is similar with that of [21] except for notations. 

11.1. Definition. A family Jt of complex structures on M with parameter  space 
P is said to be normal if the dimension of the space H~ O(Jt) ) is constant, 
and said to be stable if the linear map:  TtP-~ Hi(M, O(Jt) ) defined by 

(11.1.1) v~--, Ev, Jr] 

is an isomorphism onto a complex subspace of Hi(M, OUt)) for each t~P. 
Let (Jt, gt) be a family of Kiihler structures on M with parameter  space P. 

For  t~P and v~ T~P, we can define an e l e m e n t / s C E I D ( J t ,  gt) by 

(11.1.2) [v, Jr] = I +  [X, Jr] 

for some vector field X on M. We set 

(11.1.3) VH=v--X.  

If the family Jt is stable, then there is a unique vector w~TtP such that [w n, Jr] 
=Jt[vU, Jt]. We define a complex structure j e  on TtP by 

(11.1.4) [ (Je v) n, J,] =J~[vn, J,]. 

11.2. Proposition (c.f. [21, Proposition 11.1]). Let (Jr, gt) be a family of Kfhler 
structures on M. Assume that the family d t is normal and stable. Then the opera- 
tor Je depends Coo-ly on t eP and becomes a complex structure on P. 

Proof. Since the family Jt is normal, we can apply Lemma 4.3 and see that X 
can be taken to depend Coo-ly on t and veTtP. Therefore, if v is a vector field 
on P, then we may assume that v n is also a C~176 field, which implies that 
d e is a Coo-tensor field on P. Now, we show that this almost complex structure 
JP on P is integrable. For  v, weTtP, we set 

(11.2.1) A(v, w) = Iv n, w n] - Iv, w] n. 

It is a well-defined vector field on M for each pair v, we T~P. I.e., A(v, w) does 
not depend on the extension of v and w. Moreover  we set 

(11.2.2) NA(v, w)=A(v, w) -A(JPv,  Jew) --}-JtA(JPv, w) + JtA(v, Jew) 

and denote by N P the Nijenhuis torsion tensor of J~'. We see that  
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(11.2.3) [Ne(v, w)H, Jt] 

= [Iv, will, J3 - [[J"v, jewlii ,  J/1 + [ je[ j%,  will, J,] + [Je[v, j ew t " ,  J/1 

= [[vii, wH], "It] -- [A(v, w), Jr] - [[ devil, Jewii], dt] + [A( dev, Jew), "It] 

+ dt[[ dev H, wii], "It] -Jr[A(  Je v, w), Jt] + Jt[[ vH, Jewii], J t]-J t[  A ( v, Jew), Jr] 

= - [Na(v, w), Jr] 
+ [vii, [wii, J,]] - [wii, Iv H, dt]] - [ JPvH, [ dewH, Jt]] + [ JPwH, [ JevH, J,]] 

+ Jt[Je vii, [wii, Jt]] - Jt[ wH, [ Je vII, "It]] +Jt [  vH, [Je wii, J,]] - Jt[JP w II, Iv H, Jt]] 

= - [NA(v, w), Jr] + [ vH, [wii, J , ] ]  - [w H, [vii, Jt]] 

- [JP vii, J,] [wii, J,] - J ,  [ j e  vii, [w' ,  J,]] + [ j e  w' ,  J,] [vii, J,] + J,[J P w' ,  [vii, J,]] 
+ Jt[Je v H, [wii, "It]] - Jt[ wH, tit] [ vH, "It] + [ wtI , [ OH, J,]] 

+ J,[v', J,] [w', J,] - [v', [wii, J,]] - J ,  [ je  wii, [v', J,]] 

= - [UA(v, w), J,]. 

Since the family dt is stable, it means that Ne(v, w)=0. Q.E.D. 

We have seen also the following 

11.3. Corollary. In the situation of Proposition 11.2, Na(v, w) is a holomorphic 
vector field for ,It for each v, w~ TtP. 

Next, if H~ O(Jt))=O, then we can define an almost complex structure 
j r  on T = M x P b y  

(11.3.1) JTvft=(JPv)H for v~TP, 

(11.3.2) J r X = J t X  for X ~ T M ,  

since the vector field introduced in Eq. (11.1.2) is unique, and so the vector v H 
is well-defined for each veT~P. 

11.4. Proposition (c.f. [21, Proposition 18.3, Theorem 18.4]). Let (Jt, gt) be a 
family of KiJhler structures on M with parameter space P. I f  the family Jt is 
normal and stable and if  H~ O(Jo))=0, then the almost complex structure j r  
on T defined above is integrable. 

Proof. Denote by N r the Nijenhuis tensor of j r .  Then Nr(X,  Y)=0 for X, 
Y~TM.  For v e T P  and X e T M ,  we see 

( 1 1 . 4 . 1 )  

N r  (v ", X) = [v H, X]  - [Je vH, JtX] + Jt[Je v H, X]  + Jt[v H, JtX] 

= [V If, X]  -- [JPvii, Jr] X - J t [ JPv  H, X]  +Jt[JPv H, X ]  +Jr[vii, Jt] X - Iv H, X]  

~0.  

For v, w~ TP, we see 
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(11.4.2) N r  (v H, w n ) = Iv n, w n] - [ JP v H, JP wH] -b J T [ JP vH, w 1"I] + J T[ vH, JP wH] 

= A (v, w) + Iv, w] tI -- A (JP v, JP w) - [JP v, j e  W]H 

+ JtA (JP v, w) + JP[JP v, w]H w JtA(v, JPw) + JP[v, JPw] I"1 

= Na(v, w) + NP(v, w) H. 

But here Ne(v,w)=O by Proposition 11.2 and Na(v,w)=O by assumption 
and Corollary 11.3. Q.E.D. 

12. The Canonical Riemannian Metric on a Family 
of K~ihler-Einstein Structures 

Let (J, gr) be a family of K/ihler-Einstein structures on M. If the family Jt is 
normal and stable and if the family gt is normal and effectively parametrized, 
then the parameter space P can be endowed with the canonical complex struc- 
ture and the canonical riemannian metric. 

12.1. Definition. A family (J,, gt) of K~ihler-Einstein structures on M with vol- 
ume 1 is said to be normal if the family Jt is normal, and said to be stable if the 
family Jt is stable and if the spaces CEIDA(J . gt) and EEIDH(J . gt) vanish for 
all tEP. 

12.2. Lemma. I f  a family (J, g~) of K~hler-Einstein structures on M is normal 
and stable, then the family gt is normal and effectively parametrized. In particu- 
lar, the parameter space P can be endowed with the canonical riemannian metric. 

Proof Let (J, g) be a K~ihler-Einstein structure on M. We know that if e <0  
then Ker6*=0,  if e = 0  then K e r f * = H ~  and if e > 0  then Kerr* 
+ J(Ker6* )=H~ Therefore the normality of the family Jt implies the 
normality of the family gt. Let v~T~P and assume that [v,g,]EIm6~'. I.e., there 
is a vector field X on M such that I-v, gt] = IX, gt]. Then the assumption and 
Proposition 9.9 imply that IV, Jr] is decomposed into l s+[Y,  Jt], where 
Is~CEID(Jt, g,) is K~ihler related to 0~EEID(gt). But then Lemma 9.3 says that 
I s =0, which contradicts the stability of the family at. Q.E.D. 

12.3. Theorem. Let (Jt, gt) be a normal and stable family of Kiihler-Einstein 
structures on M. Then the canonical riemannian metric ge on the parameter space 
P is a Kiihler metric compatible with the complex structure JP on P. 

Proof For v~TtP, let v n be the vector field defined by Eq.(4.1.3). Since 
Iv n, J~]~CID(Jt) is K~ihler related with [vn, gt]~EEIDa(Jt,gt), we see, by Prop- 
osition 9.9, that Iv n, Jt]~CEIDs(J . g~). Therefore, the notation v n does not con- 
tradict that induced by Eq. 11.1.3. Moreover, by Lemma 9.3, 

( 12.3.1 ) [ vn, c~ = [ vn, g, Jt] = [ vH , gt] "It + gt [ vH, .,1,'] : O. 

and so 
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(12.3.2) 

Therefore, 

(12.3.3) 
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g~(v, w)= ~ (Iv ~, g,], [w ~, g,]) v,, 
M 

= I (g, [ vH, "It] J,, g, [ wH, J,] "It) vg, 
M 

= I ( [vH, J,], [wH, J,]) vg. 
M 

gP(SPv, JPw)= S ([ JPvH, Jt], [ JPWH, ,-It]) Vg, 
M 

= I (J,[ v~, J,], J,[ w~, J,]) vg, 
M 

= gP(v, w), 

i.e., ge is a hermitian metric. Now we calculate the exterior derivative dco e of 
the K~ihler form co P of gP. 

(12.3.4) coP(v, w) = gP(v, JPw) 
= S ([ vH, "It], [ JPwH, J,]) v~, 

M 
= S ([vH, g,], J,[wH, .It]) Vg. 

M 

Then assuming that [v, w] = [w, z] = [z, v] = 0, we see 

(12.3.5) (dco e) (v, w, z) 

Here, 

(12.3.6) 

and 

(12.3.7) 

= v S ([ w•, J,], J,[z", J,]) v,, 
M 

+ alternating terms. 

v{([w", J,], J,[z", J,]) v~,} 
= _ [o H, gt]iJ(gt)km [W H, Jt]ki(Jt [z H, fft])mjl)gt 

+ (g,)'J[v", gt]km [ wII, J,]ki(J,[zn, J,])"jv~, 
+ ([?', [w e, J,]], L[z  ~, ;,]) v,, 
+ ([ wH, ,It], [ vn, Jr] [ zn, J,]) v,, 
q- ([ wlI, Jt], Jtr vH, [ zH, Jt]]) v,, 
+([w H, Jr], J,[z H, J,]) (1/2) [v n, g,]mmV,,, 

(12.3.8) 

(12.3.9) 

(12.3.10) 

[V If, gt l i  i(gt)km l-W//, J t ]k i (J t [  z H , Jt l )ml 

= 2 Re { [v H, g,] ~'~ (g,),~ [w a , "It] ~(Jt)6, [ z~/, Jt]~t~ } = 0, 

(g,)'J[v", g,]~m [W", J.,]~M,[z", J,])"~ = 0, 

([w H, .It], Iv H, J,] [z H, J, ] )= 2 Re { [w H, J,]~P [v H, Jt]~ [z H, J,] ~}  = 0, 

[vu, g,]"m = 0. 
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Therefore, 

(12.3.11) (d~o ") iv, w, z) = S (Iv ' ,  [w' ,  S,]], J, [z ' ,  J,]) v,, 
M 

- I (Iv", [z",  J,]] ,  S,[w', J,]) v,t 
M 

+ alternating terms 

= I ([A(v,  w), J,], [ J ' z ' ,  J,]) v~, 
M 

+ alternating terms. 

But here [JezH, Jt]eCEID(Jt,  gt) and A(v, w) is a vector field on M. Thus 

(12.3.12) do)e=o. Q.E.D. 

12.4. Corollary. In the situation of Corollary 10.7, the space ELPM(g) regard- 
ed as a family (J, gt) of Kfihler-Einstein structures on M becomes a Kfihler 
manifold. Moreover, the complex structure is real analytic with respect to the real 
analytic structure of ELPM(g). 

Proof By Theorem4.13, the canonical riemannian metric, which is a K~ihler 
metric, is real analytic. Q.E.D. 

Assume that H~ In Proposition 11.4 we defined a complex 
structure j r  on T=M x P. Here we define a riemannian metric gr on T by 

(12.4.1) gr(vU, w')=ge(v,  w) for v, we TP, 

(12.4.2) gr(X, Y)=g,(X, Y) for X, YeTM,  

(12.4.3) gr(vn, X)=O for veTP, X e T M .  

Obviously, the metric gr is a hermitian metric. 

12.5. Proposition. Let (Jr, gt) be a normal and stable family of Kiihler-Einstein 
structures on M. Assume that H~ O(Jt) ) =0. Then the hermitian metric gr is a 
Kfihler metric if and only if A =0, where A is defined by Eq. (11.2.1). 

Proof Denote by co r the K~ihler form of gr. First we see that 

(12.5.1) (dcnr)(x,Y,Z)=O for X , Y , , Z e T M  

by definition. Next, for veTP, we extend X and Y e T M  so that [X, Y]=0,  
[v H, X] = 0 and Iv ' ,  Y] = 0. Then 

(12.5.2) (de) r) (v', X, Y) = vH(cor(X, Y)) + X(mr(Y, vn)) + Y(~or(v ", X)) 

= v'i~o,(x, Y)) = Iv' ,  co,] ix ,  Y) 

=0.  02.3.1) 

Moreover, for v, w, ze TP, 
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(12.5.3) 
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(&o T) (v H, w", z") = v%or  (w H, zR)) - J ( [ v  H, wH], z H) 

+ a l t e r n a t i n g  t e r m s  

= v ( J ( w ,  z ) ) -  o?'([v, w], z) 
+ a l t e rna t i ng  t e rms  

=(d~oP)(v, w, z ) = 0 .  (12.3.12) 

F ina l ly ,  

(12.5.4) (dco r) (v n, w n, X )  = Vn (mT (w n, X ) )  + w n  (cor (X ,  vn)) + X (coT (v n, wn))  

- J ( E v  ~, w~],  X) - J ( [ w  ~, X] ,  v H) - J ( [ X ,  vH3, w ~) 

= - c o t ( a ( v , w ) ,  X ) .  Q.E.D.  

I t  seems  to  t he  a u t h o r  tha t  the  c o n d i t i o n  A = 0  is r a the r  s t r o n g  a n d  p r o b -  

ab ly  does  n o t  o c c u r  excep t  on  the  one  d i m e n s i o n a l  c o m p l e x  torus .  

12.6. E x a m p l e .  In  the  s i t u a t i o n  o f  E x a m p l e  10.8, if  d > m + 2 ,  then  the  space  
M H m , d  is iden t i f ied  wi th  the  space  Hm, d. T h e y  c a n o n i c a l l y  b e c o m e  K~ihler 

man i fo lds .  

13. A p p e n d i x  - P r o o f  of  T h e o r e m  3.1 

To prove Theorem 3.1, we recall some basic definitions and facts in the theory of real analytic 
objects in Banach spaces, for which we refer to [14, Chap. IV]. This category is effectively used for 
the Plateau problem (c.f. [30]). 

13.1. Definition. Let V and W be Banach spaces and U an open set of E A mapping f: U ~ W  is 
said to be real analytic if for each point x ~ U f  can be represented by a convergent power series 
around x. 

13.2. Definition. Let V and W be complex Banach spaces and U an open set of V. A mapping f: 
U ~ W  is said to be holomorphic if f is of class C 1 and the derivative f] at each point x~U 
commutes with the almost complex structures. 

13.3 Lemma ([14, p. 134, Theorem 3.7]). Let V and W be complex Banach spaces and U an open set 
of V.. A holomorphic mapping f:  U --, W is real analytic. 

13.4 Lemma ([1, Theorem 5.7], c.f. [14, p. 144, Theorem 3.11]). Let V and W be Banach spaces 
and V c, W e their complexifications. Let U be an open set of V and f:  U---* W a real analytic map. 
Then there exists an open set U c of V c which contains U such that f can be extended to a holomor- 
phic map f c :  U c ~ W c. 

The most important fact is the following 

13.5. Lemma ([14, p. 145, Theorem 3.12]). In the real analytic category in Banach spaces, the 
implicit function theorem holds. 

So we see as a corollary the following 

13.6. Lemma. Let V and W be Hilbert spaces and f a real analytic mapping from V to W defined 
on an open neighbourhood of the origin 0eE Assume that f (0)=0 and that the image of  the differen- 
tial f~ at 0 is closed in W. Then there is an open neighbourhood U of O~V such that the set f - l (O)  
c~ U is a real analytic set in a real analytic submanifold Z of U whose tangent space ToZ coincides 
with KerfS. 
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Proof Let p: W--*Imf~ be a projection map  and set q = i d w -  p. Applying Lemma  13.5 to the map  
pof, we see that there is an open neighbourhood U of 0eV  such that the set (p o f ) -  l (0) n U forms 
a real analytic submanifold of U. If we set Z = ( p  of)-1(0)c~ U, then To Z = Kerf~ and f-1(0)c~ U 
=(qof]g)-l(O). Q.E.D. 

To work in this category, the following L emma  is basic. 

13.7. Lemma.  Let E and F be vector bundles over M and E c, F c their complexifications. Let f be a 
C~-cross section of  E and t~: E ~ F a fiber preserving C~-map defined on an open set of  E which 
contains the image of  f Assume that ~ has an extension to a fiber preserving map ~c: E C ~ F  c 
defined on an open set of E c such that the restriction ~b c to each fiber E c is holomorphic. Then the 
map ~: HS(E)~ HS(F) defined by 

(13.7.1) ~(u) = ~9 oU, 

defined on an open neighbourhood of f, is real analytic provided that s > In/2] + 1. 

Proof By L e m m a  13.3, it is sufficient to prove that the map  7so: Hs(Ec)--*HS(F c) defined by 

(13.7.2) 7SC(u) = ~b e o u, 

which is an  extension of k~, is holomorphic. But in fact 7 sc is C ~ ([29, Theorem I1.3]), and for 
each x e M  we have 

1 c (13.7.3) lim - { ~  ( u + z v ) ( x ) -  7tC(u)(x)} = (~c)',t~)(v(x)), 
z ~ 0  Z 

where z denotes complex number.  Thus  7 sc is holomorphic.  Q.E.D. 

13.8. Remark. This Lemma, together with the observation that the differentiation is linear, says 
that  ordinary tensor calculus operations on a compact  C~-manifold are real analytic with respect 
to some suitable HS-topology. 

Now we come hack to our space ~r 

13.9 Lemma.  Ebin's slice Oog~ is a real analytic submanifold of  ~Ir ~. 

Proof The definition of Ebin's slice 5~g ' reduces as follows. Let V be a finite dimensional vector 
space and S 2 V (resp. $2+ V) the space of all symmetric (resp. positive definite symmetric) bilinear 
forms on V. If we fix an inner product go~S 2 V, we can define a r iemannian metric on Sz+ V by 

(13.9.1) (~k, ~b)~ = Tr (g -  1 ~Og- z ~b) det(g o i g)a/2 

for geS2+ V and ~, 4~eS 2 V. This r iemannian metric depends on go, but  only up to constant  factor. 
Therefore the exponential map  exp does not depend on go. Coming back to the manifold M, we 
define an exponential map  Exp on ,g~ by 

(13.9.2) (Expgh)~-expg h~ for x e M ,  

where heH~(S2M). The slice 5gg S is defined as Expg(U), where U is an open neighbourhood of the 
origin in Ker6g. But by Le mma  3.12, the map Expg is real analytic, hence 5Pg ~ is a real analytic 
submanifold of ,g~. Q.E.D. 

Proof of Theorem 3.1. By L emma  2.6, we see that 

(13.9.3) EL PM (g) = (El 5Pg~ n .,r ~ (0), 

where E is defined by Eq. (1.2.1) and regarded as a real analytic map  from .,g~ into H'-2(S2M). By 
[24, Proposition 3.2], the image of the differential (EISgg'nJl~)'g at g is dosed  in Hs-2(S2M). 
Therefore the proof reduces to L e m m a  13.6. Q.E.D. 

13.10. Remark. In the proof of Theorem 3.1, we did not effectively use the fact that  any Einstein 
metric is real analytic (Proposition 0.2). 
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