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1. Introduction, Results 

The aim of this note is to prove two fixed point theorems for symplectic maps 
which are generated by timedependent globally Hamiltonian vectorfields, 
which however are not assumed to be close to the identity map. In the case 
that ~ is a symplectic diffeomorphism on the t o r u s  T2~t'~'~_2n/z 2n this requires 
that ff = q~l, where ~o t is the flow satisfying 

d 
dt q;(x) = J Vh(t, r q~O = id, 

the function he C2(~ • ~x 2n) being periodic in all the variables of period 1. The 

matrix J ~ ( I R  2") defined by J = (  ,~ l,~/, 1 being the unit skew-symmetric 
\ J. U / - -  

matrix on R", is the standard symplectic structure on IR 2". Clearly, a periodic 
solution on T 2" having period 1 of the Hamiltonian equation 

= J Vh(t, x), x ~ .  2n, (1) 

gives rise to a fixed point of ~k, and the problem is to find 1-periodic solutions 
of the Hamiltonian system, which is periodic in time of period 1. The first 
result is as follows. 

Theorem 1. The Hamiltonian vectorfield (1) on T 2", with the function 
h(t, x)~ C2(~ x ~2,)  being periodic of period 1 possesses at least 2n + 1 periodic 
solutions of  period 1. 

The periodic solutions found by the theorem are contractible loops o n  T 2n, i.e. 
are given as periodic functions on ~2, .  One expects more periodic solutions, if 
all the periodic solutions are known to be nondegenerate. Here we call a 1- 
periodic solution nondegenerate, if it has no Floquet-multiplier equal to 1. 
Recall that 2 e ~  is a Floquet-multiplier of a periodic solution x( t )=x( t+ 1), if 2 
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is an eigenvalue of dtpl(x(0)), where ~o' is the flow of the corresponding 
timedependent vectorfield. Indeed, the following statement holds true: 

Theorem 2. Assume that all the periodic solutions having period 1 of the system 
(1) are nondegenerate, then there are at least 22" of them. 

From these existence statements for periodic solutions one deduces im- 
mediately the following Corollary for the symplectic map ~b. We call a fixed 
point x-- ~p(x) nondegenerate if 1 is not an eigenvalue of dO(x ). 

Corollary 1. Every symplectic Cl-diffeomorphism ~k on the torus T2n=~2n/Z  2n, 
which is generated by a globally Hamiltonian vectorfield, possesses at least 2n + 1 
fixed points. If, moreover, all the fixed points of  ~b are nondegenerate, then there 
are at least 2 2n of  them. 

The symplectic diffeomorphism which meet the assumption of the Corollary 
can be characterized as follows. If (M, 09) is any compact, symplectic and 
smooth manifold, we denote by Diff~176 09) the topological group of symplec- 
tic C~ ~b, i.e. ff'09=09. Let Dif~(M,  09) be the identity com- 
ponent in Diff ' (M,  co), which can be shown to be the identity component by 
smooth arcs in Diff ' (M,  o9). It has been proved by A. Banyaga [4], that the 
commutator-subgroup of Dift~o(M,m ) consists precisely of those symplectic 
diffeomorphisms, which are generated by globally Hamiltonian vectorfields on 
M, and hence agrees with the subgroup of symplectic diffeomorphisms having 
vanishing so-called Calabi-invariant. 

As a special case we consider a measure preserving diffeomorphism of T 2, 
which is homologeous to the identity map o n  T 2 and hence is, on the covering 
space R2,  of the form 

~k: x~--~x+f(x), xe[I, 2, (2) 

with f being periodic. As observed by V.I. Arnold, see [2], this map 0 is 
generated by a globally Hamiltonian v ectorfield on T 2 if and only if the 
meanvalue of f over the torus vanishes, i.e. l ' f ]  = 0. This fact will be proved in 
the appendix. We therefore conclude from Theorem 1 the following result, 
which was conjectured by V.I. Arnold in [2] and [3]. 

Corollary 2. Every measure preserving Cl-diffeomorphism of T 2 which is of  the 
form (2) with l ' f ]  = 0 has at least 3 f ixed points. 

The condition I f ] = 0  is clearly necessary in order to guarantee a fixed 
point, as the translation map x~--~x+c shows, which has no fixed points o n  T 2, 
if c~Z 2. 

We point out  that it is not assumed that the symplectic maps considered 
are Cl-close to the identity map. Indeed under this additional assumption the 
above fixed points can easily been found as critical points of a so-called 
generating function, which is defined on the torus. The idea of relating fixed 
points of symplectic maps to critical points of a related function defined on the 
corresponding manifold goes back to H. Poincar6 [11]. It has been exploited 
by A. Banyaga 1-5], J. Moser [8] and A. Weinstein [12] in order to guarantee 
fixed points for symplectic maps, which are however assumed to be C~-close to 
the identity map. 
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The second result is related to the Birkhoff-Lewis fixed point theorem, for 
which we refer to J. Moser [9]. The problem can be reduced to an exact 
symplectic diffeomorphism on T" x D, D c R" being a disc, which is assumed to 
be close to an integrable map. Instead we would like to replace such a 
smallness condition by a condition at the boundary T"xOD only. To be 
precise we consider on the symplectic manifold T"x IR" the time-dependent 
globally Hamiltonian vectorfield given by 

h(t, x, y)~ C2(R x T" x R"), 

and periodic in t and x of period 1. We suppose that 

h(t, x, y):  �89 (y, by)  + (a, y)  (3) 

if lYl>C>0,  where br is a time-independent, symmetric and non- 
singular matrix, and where a~P-," are constants. Set 

T" x D = {(x, y)eT" x ~"] lyI<C}. 

Under these assumptions, the following statement holds true. 

Theorem 3. The Hamiltonian vectorfield on T" x ~"  admits at least n+ 1 periodic 
solutions, of period 1, which are contained in T" x D. 

Again the periodic solutions found are special: their projections onto T" 
are contractible loops on T". The symplectic diffeomorphism generated by the 
above time-dependent Hamiltonian vectorfield admits then at least n + 1 fixed 
points in T" • D. 

2. Idea of the Proof 

The proof of these theorems is based on a variational principle for which the 
periodic orbits are critical points. This variational problem differs from that 
customarily used in mechanics, which in the example of the geodesic flow on a 
manifold M is the length integral or the energy integral. In contrast, the 
variational principle used here is defined in the loop space over a symplectic 
space, in the above example, over T*M. In our problem of the torus T 2" 
=]R2n/z 2n we consider, on the covering space R 2", the action functional, 
defined on periodic functions x(0)=x(1): 

1 

f (x )  = S {�89 J x )  - h(t, x(t))} dt, 
0 

whose Euler-equations are indeed the Hamiltonian Eqs. (1). This functional is 
neither bounded from above nor from below. That it still can be used effec- 
tively for existence proofs was first shown by P. Rabinowitz and subsequently 
used by many authors. Since h is periodic, following the ideas of [1], it will be 
shown by a Lyapunov-Schmidt reduction that the required critical points of f 
are in one-to-one correspondence with the critical points of a function g, which 
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approximates f but is defined on the finite dimensional manifold M = T 2n • ~,jv 
x F, N for some large N. The critical points of g are then found as the rest 

points of the gradient flow Vg on M. From the fact, that h and its derivatives 
are uniformly bounded it follows, that the set of bounded solutions of this 
gradient flow is compact and contained in the compact set B: = T  2" •  x D, 
where D is a disc in ~N. Moreover B - : =  T2"x  OD • D is the exit set and B + 
- - T 2 " x  D x OD is the entrance set, so that B is an isolating block in the sense 
of [6]. The proof now follows from two general statements for flows, which are 
not necessarily gradient flows. First consider any continuous flow which admits 
the above very special isolating block B, with exit set B-  and entrance set B § 
Then the invariant set S of the flow contained in B carries cohomology which 
it obtains from the torus T z". In fact Theorem 4 states that 

l(S) > l(B) =/ (T  2") = 2n + 1, 

where l(X) denotes the cup long of a compact space X. The second statement 
concerns Morse-decompositions. If {M 1 . . . . .  Mk} is an ordered Morse-decom- 
position of a compact, isolated invariant set S of a continuous flow, then 

k 

[(S)~ ~ l(Mj) , 
j=l 

by Theorem 5. If, in addition, the flow on S is gradientlike with finitely many 
rest points then these rest points consititute a Morse-decomposition of S. In 
this case l (Mi)= 1 and we obtain the estimate 

k 

l(S)=< ~ 1 = @ {rest points}. 
j=a 

We conclude that the gradient flow Vg possesses at least 2 n + l  rest points and 
theorem 1 follows. Theorem 3 is proved similarly. Theorem 2 is a simple 
application of the Morse-theory as developed in [6] and [7] to the compact 
set S of all bounded solutions of Vg on M. 

3. The Variational Principle and the Reduction 

We shall look for special periodic solutions of the Hamiltonian system (i) on 
T 2 " = R 2 " / Z  2", namely for those whose orbits are contractible. In the covering 
space R 2 ,  of the torus these solutions are described by periodic functions 
t~--,x(t)eR z", x(0)=x(1). The required periodic solutions are the critical points 
of the functional 

1 

f (x) :  = S {�89 (x, dx> - h(t, x(t))} dt, (4) 
0 

defined on the space of periodic curves in R 2", i.e. x(0)=x(1). Indeed one 
verifies immediately that 

i f ( x ) =  - J ~ - Vh(t, x). (5) 
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To be precise we introduce the Hilbert space H=L2((0, 1); ~x2n). Define in 
H the linear operator A: dom(A)c H-* H by setting 

dom(A)={ueHl([O, 1]; Rz")lu(0)=u(1)} 

and A u =  - J r /  if uedom(A). The space H 1 is the Sobolev space of absolutely 
continuous functions whose first derivative is in L 2. The continuous operator 
F: H ~ H  is defined by F(u)(t):=gh(t,u(t)), ueH. Its potential ~(u) is given by 

1 
cP(u).. = ~ h(t, u(t)) dr, so that F(u) = 17ep(u). 

o 
S i n c e  j 2 =  _ 1 we can write the equation (1) in the form - J 2 =  Ph(t, x) and 

one sees that every solution uedom(A) of the equation 

Au=F(u)  (6) 

defines (by periodic continuation) a classical 1-periodic solution of (1). Con- 
versely, every 1-periodic solution on T 2" of (1), which is contractible o n  T 2n 

defines (by restriction) a solution u of the Eq.(6). With these notations the 
functional f defined by (4) becomes 

f(u) =�89 (Au, u} - ~(u), (7) 

for uedom(A). We look for critical points of f. 
Since h is periodic, there is a constant e > 0 such that 

Ih"(t, x)[ =< cr (8) 

for all (t, x)~R • R 2", where ' stands for the derivative in the x-variable. We 
shall use this estimate in order to reduce the problem of finding critical points 
of the functional f on dom(A) to the problem of finding critical points of a 
related functional, which is defined on a finite dimensional subspace of the 
Hilbert space H. 

First observe that the operator A is selfadjoint, A*=A. It has closed range 
and a compact resolvent. The spectrum of A, tr(A), is a pure point spectrum 
and tr(A)=2nZ Every eigenvalue 2ca(A) has multiplicity 2n and the eigen- 
space E(2) ,=ker (2 -A)  is spanned by the orthogonal basis given by the 
loops: 

t~--, e t z s  ek =_ (COS ,~, t) e k -}- (sin 2 t) J ek,  

k=  1, 2 . . . . .  2n, where {ek[ 1 <-k<2n} is the standard basis in R2,. In particular 
ke r (A)=R 2", the kernel of A consist precisely of the constant loops in R 2". 
Denoting by {E~I2eP,.} the spectral resolution of A we define the orthogonal 
projection Pe~(H) by 

# 

P= ~ dE~, with fl>2~, (~ as in (8)), 

where flr Let P I = I - P  and set Z=P(H) and Y=P• Then H = Z • Y  
and dim Z < 0o. With these notations the equation A u - F ( u ) = 0 ,  for u~dom(A) 
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is equivalent to the pair of equations 

A P u -  PF(u) = 0 (9) 

APIu-PZF(u)=O. 

Now writing u = P u + P •  we shall solve, for fixed z~Z, the 
second equation of (9) which becomes A y -  P• F(z + y) = 0. With A0." =A[ Y this 
equation is equivalent to 

y = Ao 1 P• F(z + y). (10) 

Observe that IAoXl<f1-1 and IP• Also, from (8) we conclude that IF(u) 
-F(v) l<~lu-v l  for all u,v~H. Consequently, in view of fl>2~, the right hand 
side of (10) is a contraction operator in H having contraction constant 1/2. We 
conclude, for fixed zEZ, that the equation (10) has a unique solution y =  v(z)~ Y 

t 

Since (A o 1 y) (t) = ~ Jy(s) ds, we have A o 1 (y) ~ H 1 and therefore v(z)~dom(A). 
O 

Moreover, the map z~-~v(z) from Z into Y is Lipschitz-continuous. In fact we 
have 

IV(Zl) -'v(z~)l-<_ �89 - z21 + Iv ( zd -  v(z~)l}. 
Setting 

u(z) = z + v(z)  

we now have to solve the first equation of (9), namely Az-PF(u(z))=O, which 
in view of (10) is equivalent to the equation Au(z)-F(u(z))=O. One verifies 
readily that 

Vg(z)=Az-PF(u(z)) with g(z):=f(u(z)). (11) 

It remains to find critical points of the function g, which is defined on the finite 
dimensional space Z. 

The following observation is crucial. Since h is periodic we conclude by 
uniqueness that v(z+j)=v(z) for every j ~ Z  2n and for every z~Z. Therefore 
u(z +j) = u(z) +j and consequently 

Vg(z+j)= Vg(z), j~Z  2", (12) 

for all zeZ. If zEZ, we set z = x + ~ ,  with x = [ z ]  being the mean value of z. 
Hence x~Ker(A) and ~EKer(A) ~ n Z .  Writing z=(x,  ~) we conclude from (12) 
that Vg(z)= 17g(x, 4) is a vectorfield on (x, ~)ET 2n • TM, where T2n=~x2n/7~. 2n. 
Summarizing we have proved 

Lemma 1. The rest points of the Lipschitz-continuous vectorfield Vg(z)= Vg(x, ~) 
on T 2~ x R T M  are in one-to-one correspondence with those periodic solutions 
having period 1 of the Hamiltonian Eq. (1) on T 2" which are contractible. 

d 
In order to find the rest points of Vg we study the gradient flow dss z = 17g(z) 

on (x, r • R TM, which, explicitely, is given by 
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d 
- - x =  -QoF(u(z))  (13) 
ds 

d 
~s r = A ~ - Q  F(u(z)), 

where Qo is the orthogonal projection onto the constants, i.e. onto the kernel 
of the operator A, and where Q is the orthogonal projection onto the comple- 
ment of ker(A) in Z. We denote the splitting ~=(r ~_)~R~ • R M of QAQ into 
the positive and negative part by: 

(14) 

(A+ ~+, ~+) >2re I~+12 

<A_ ~_, ~_) < - 2rt I~_12. 

Since h is uniformly bounded, there is a constant K > 0  such that [F(u(z))l < K 
for every z~Z, and we conclude from (13) and (14), that with e = ( 2 n - 1 ) K  2 >0  
one has 

d ~1~+12>__~ if I~+l>g (15) 

d 

In fact, 

d l l ~  2 
d-s} +1 = ( ~ + , A + ~ + - Q + F ( u ( z ) ) ) = ( ~ + , A + ~ + ) - ( ~ +  O+F(u(z))) 

>2rcl~§ 

Similarly, 
d l  

21r162 12+t~_I.K< -~ ,  
ds = - = 

and (15) follows. Clearly all the rest points of Vg are contained in the compact 
set B = T Z " x D ~  x Dz, where D~ and D 2 are the discs of radius K, D 1 
={~+~RM[ I~+I<K} and D 2 = { ~ _ E ~ . M [  I~_I<K}. Moreover B-:=T2nxc3D1 
x D z is the exit set of B and B + = T 2" x Da x OD 2 is the entrance set, so that B 

is an isolating block in the sense of [6]. 

T 2n x 

[ 
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Summarising we have proved: 

Lemma 2. The compact set B =  T2"x D~ x D 2 is an isolating block for  the f low 
o f  Vg with ex i t  set B - = T 2 " x t 3 D  I •  2 and with entrance set B + = T 2 " x D  1 
X t~D 2 . 

We shall prove that every continuous flow which admits the above very 
special isolating block ( B , B - , B  +) contains at least 2 n + l  rest points in B, 
provided the flow on the invariant set in B is gradient like. 

4. Two Statements for Flows 

We consider, more generally, on M = T m x R U ~ x R  N: with coordinates 
(x, Yl, Yz) a continuous flow, which is defined in an open neighborhood of the 
compact set B = T  mxD l x D z ,  where D1 and D a are discs, DI 
= { y l e R Z ~ ' l l y l l < K 1 }  and D2={Y2e~N2[ Iy2[<K2} .  If 7 e M  and if ~ot(?) is the 
orbit of the flow through 7=~0~ we shall write ~0~(7)=7 �9 c For  an interval 
J c R  we set Y" J = { 7 "  r i t e  J}.  The invariant set contained in B is defined to be 

S = { 7 ~ B t ? . R c B } .  
Recall the 

Definition. Let H*(X) be the Alexander cohomology of a compact topological 
space X with real coefficients. Then the cup long of X is defined as 

I(X)= 1 + sup{keINl3cq, ..., ~keH*(X)\ l  with 

and l ( X ) =  1 if no such class exists. 

Theorem 4. Assume a continuous f low on T m x  RNIX~N2 admits the isolating 
block B =  T r~ x D 1 x D 2 with exi t  set  B -  :z_ T m x ~ D 1 x D 2 and with entrance set 
B+ := Tm x D 1 x OD 2. Le t  S be the invariant set in B, then: 

l(S) >= l(B) = l( T m) = m + 1. 

We need a Lemma and define by means of the flow the compact sets 

A +-'= {TeBly. R + = B} (16) 

A - : = { T e B [ 7 . R - = B  }. 

It then follows, that 

Lemma 3 (Wazewski's Principle). Assume B is an isolating block with exi t  set B -  
and entrance set B +. Then B + is a strong deformation retract o f  B \ A -  and B -  
is a strong deformation retract o f  B \ A  +. 

Proof. The proof follows immediately from the definition of an isolating block. 
In fact, in order to prove that B -  is a strong deformation retract of B \ A  + 
define the continuous function ~+: B \ A  + ~ R  by setting z + (x)= sup{tlx. [0, t] 
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cB}. Then ,+ (x )=0  if and only if xeB- .  The deformation retraction F: 
(B\A +) • [0, 1]---, B \ A  + is simply given by F(x, s)= x. {s ~+ (x)}. The other part of 
the lemma is proved similarly. [] 

Proof of Theorem 4. Note that H*(B)=H*(T"),  since B = T  m x Dt x D 2. Let 
:~ . . . . .  2,, be the classes in H*(B) which correspond to the de Rham classes dx~ 
on T rn. Then off: =,~1 k..))~2 k..).., k.,).Xm:~0 in H*(B) since dx 1 A ... Adx m is a volume 
form on Tm. We shall show that ~f maps nontrivially to ~*(S) under the 
inclusion induced map i*:/I*(B)--*H*(S). The statement l(S)>m+l then fol- 
lows. 

To see this consider the following two diagrams, in which H* and H .  
denote the singular cohomology and homology respectively with real coef- 
ficients. Observe that ~B=B + u B - ,  and 

( B \ A - ) ~ ( B \ A + ) = B \ ( A  - c~A+)=B\S. 

Observe also, that the compact set S is contained in the interior of B. 

H*(B,B +) | H*(B,B-) ~ , H*(B,~B) ~- H,(B, OB) b ,  I4*(B) 

H*(B,B\A-)  | H*(B,B\A +) ~ , H*(B,B\S) ~- H, (B,B\S)  > ffI*(S). 

The vertical maps are inclusion induced. The maps i* and i* are isomor- 
phisms, by Lemma 3. The isomorphism /5 is the Alexander duality map: 
D: Hi(B, OB)-*I~a-J(B), with d = m + N  t + N  2. 

We shall find cohomology in H*(S) by means of the following argument. 
Let ~eH*(B,B +) and fl~H*(B,B-) such that ~wfl~=O in H*(B,~B). Then 
=il*(~t*) for some ~*eH*(B,B\A-)  and fl=i~(fl*) for some fl* in H*(B,B\A+), 
since i~' and i* are isomorphisms. Hence ~wfl=j*(~*ufl*). If now 
~wfleHJ(B, 8B) then, going to the dual spaces (in the sense of vector spaces), 

, there is a #EH~(B, OB) such that j . (# )= :#  4=0 in H~(B, B\S). Consequently, the 
J , , d j Alexander dual D~)~H - (B) is maped onto i (D(#))=D(p)4=0 in H - (S). If, 

in particular, j=NI+N2,  then d - j = m  and /)(#)~Hm(B)=_Hm(T ") which is 
generated by 9 " = ~ w . . .  u~m. Consequently i*(~)=i*(:~lw...U~Cm)+O in H"(S) 
and so l(S)>/(T")= m+ 1 as claimed in the theorem. 

In order to carry out this argument concretely we first recall that 

H*(B, B +) ~- H*(T")| OD2)| and 

H*(B, B- )~- H*( Tm)| H*(D z)| H*(D~ , O D ,), 
also 

H*(B, t~B)~ H*(Tm)| OD2)| t~D1) 

'~-H*(Tm)| x D2, (D 1 x t~D2)u(t~D 1 x D2) ). 

We choose now a to be the image ~ in H*(B,B +) of the generator ~ of 
HNI(D2,~D2)_~HNI(SN~,,), and we choose fl to be the image t7 in H*(B,B-) of 
the generator t/ of HN2(DI,~DO~HN2(S N2, *). Then t u f f  is equal to the image 



42 C.C. Conley and E. Zehnder 

~" in H*(B, ~B) of the generator ( of Hm+N2((D1,3D1)x (D2, ~D2) ), and so ~ u 
4=0 in Hm+N2(B, OB), so the theorem follows, by the above argument. [] 

Definition. Let S be a compact invariant set of a continuous flow. A Morse 
decomposition of S is a finite collection {Mp}pee of disjoint, compact and 
invariant subsets of S, which can be ordered, say (M 1, M 2, ...,Mk), k=lPI, so 
that the following property holds true. If 

yes\ [) Mp, 
peP 

then there is a pair of indices i <j  such that the positive ( t~  + oo) and negative 
( t ~  - oo) limit sets 6o(7) and co*(y) of y satisfy: 

co(y)cMi and co*(y)cM~. 

Theorem 5. Let S be any compact invariant set of a continuous flow, with 
Morse-decomposition {Mp}pe e. Then 

l(S) < ~ l(Mp). 
peP 

In particular, if IPI < I(S), then some Mp has non-trivial Alexander cohomology 
(so contains a continuum of points). 

Postponing the proof of this theorem we first derive the corollary: 

Corollary. Let S be a compact invariant set of a continuous flow. Assume, in 
addition, that S is gradient like (i.e. there exists a continuous real valued 
function on S which is strictly decreasing on non-constant orbits). Then S 
contains at least l(S) rest points. 

In fact, assume there are only finitely many rest points in S. Then they form 
a Morse-decomposition of S, since S is assumed to be gradient like. As none of 
the sets of this decomposition has nontrivial cohomology, hence l(Mp)= 1, 
there must be at least l(S) sets in the decomposition, hence l(S) rest points, 
proving the corollary. It remains to prove Theorem 5. 

Proof of Theorem 5. First observe that any decomposition of S can be ob- 
tained by first decomposing it into two sets, then decomposing one of these 
and continuing until the decomposition is reached. Therefore one needs only 
prove the theorem for decompositions into two sets. Thus let (M t, M2) be an 
ordered Morse-decomposition of S. From the definition we conclude that there 
is a compact neighborhood S t of M 1 in S and a compact neighborhood S 2 of 
M 2 in S with S t u S 2 = S  and such that 

M t = N  oS l ' t  and M2=t>o ~ S2"(-t)" 

Consequently, by the continuity property of the Alexander cohomology, 
~*(S t )=~*(Mt )  and /~*($2)=/~*(M2), and it is therefore sufficient to prove 
that l(S1)+ l(S2)> l(S)for S~ w S 2 = S. This will follow from the following gener- 
al observation: 



The Birkhoff-Lewis Fixed Point Theorem and a Conjecture of V.I. Arnold 43 

Lemma 4. Let S~uS2~S  be three compact sets. Denote by i~:St--~S, 
i2: S2-'~S and i: S IuS2 -*S  the inclusion maps. Let o~,fl~I~*(S). Then i*~=0  
and i~fl=O imply i*(ctw fl)=O. 

Proof. Consider the following diagram 

~q*(s, s o  | I~*(s, sz) ~ , ~*(s , s ,  us2) 

~q*(s) | _O*(s) ~ , ~q*(s) 

~*(s~) | /~*(s~) ~  ~*(s ius~) .  

The vertical sequences are exact. If ee/4*(S) satisfies i~(e)=0 then there is an 
asH (S, S1) with j*(a)=e.  Similarly, if i*(fl)=0, then j~(/~)=~ for some 
~eH*(S, S2). Since j*(au~)=j*(~)uj*(fl)=~wfl we conclude, by exactness, 
i*(c~ufl)=i*oj*(~ufl)=O, as advertized. []  

Going back to the proof of Theorem 5 we let e l ,  ez . . . . .  e~ be in H*(S) such 
that cqwc%u. . .ucq#:0 .  Let the c~'s be ordered so that e~u . . .uc~  r is the 
longest product not in the kernel of i*. Therefore l(Sa)>r+l and 
i * ( e ~ u . . . w e r u e , + l ) = 0 .  Since S = S I u S  2 it follows from Lemma 4, that 
i * ( a ~ + 2 u . . . u e z ) , 0  and therefore l ( S 2 ) > l - ( r + l ) + l = l - r .  Hence l(S1) 
+l(S2)>l+l. We have shown that if S admits a nontrivial product with l 
factors, i.e. if l(S)>l+l, then l(S1)+l(S2)>l+l, so the statement of the theo- 
rem follows. [] 

5. Proof of Theorem 1 

By Lemma 1 the 1-periodic solutions, which are contractible on  T 2n, are in 
one-to-one correspondence with the rest points of the gradient flow of Vg on 
T 2" x R2n.  If S is the invariant set of this flow in the block B of Lemma 2 we 
conclude, by the Corollary of Theorem 5, together with Theorem 4, that S 
contains at least 2 n + l  rest points. [] 

6. Proof of Theorem 3 

The proof proceeds along the same lines as that of Theorem 1 and we sketch 
the essential points. On the manifold M = Tn• ~n the Hamiltonian vectorfield 
is given by the Hamiltonian function h(t, x, y), on the covering space Rn•  R n. 

T h e  function h is periodic of period 1 in t and in the x-variables. We look 
again for special periodic solutions which are, on Rn •  R~, given by (x(t), y(t)), 
where both x(t) and y(t) are periodic of period 1. Hence, on T ~, the loop 
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t~+x(t) is contractible. These periodic solutions are the critical points of f as 
defined in (4), with x replaced this time by (x, y). We write 

h(t, x, y)=�89 by )  + {h(t, x, y ) - � 8 9  by )}  

=hl(y)+ho(t ,  x, y). 

It follows from the assumption of Theorem 3 that [Vhol < K. We proceed now 
as in the proof of Theorem 1. The Eq. (6) looks as follows: 

A u = Fl (u) + Fo(u) = V(u), 

where Fx(u ) (t)= lThl(U(t)) and Fo(u) (t) = 17ho(t, u(t)). Moreover [Fo(U)[ < K for all 
uEH. The operator F~(u) is a bounded linear operator of the Hilbertspace H: 

�9 tp . ~  Since lh ( t ,x ,y ) l=a  for some ~>0,  the sought periodic solutions are again 
found as the critical points of a function g defined on a finite dimensional 
space Z. We find 

Vg(z) = A z - B z -- P Fo(u(z)). 

Here we have used, that B commutes with the projection P of the Hilbert 
space H onto Z. The vectorfield lTg(z) is this time a vectorfield on T " x  IR" 
x R TM. More specifically we can use as coordinates in Z the Fourier coef- 

ficients up to order N = [ f l ] ,  with fl as in the proof of Theorem 1. If z(t) 
=(x(t), y(t)) we thus have 

N 

x(0=Xo+ Y. (~,~o,(t)+/~,~,(t)) 
n = l  

N 

y(0 = yo + Y, (a.~o.~t) + b.q,.(O), 
n = l  

where q~,(t)=sin(21tnt) and qJ,(t)=cos(2rcnt). The meanvalue Xo=[X(t)] is the 
d 

variable on the torus T". In these coordinates, the gradient equation ~s z 

= Vg(z) becomes, if we omit the nonlinear term PFo(U(Z)), which is uniformly 
bounded: 

d 
dsXO = 0  

d 
~ssYo = - b Y o  

a = 2 .J 8 .  . 

\ b . /  o - b/.  \ b . /  
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1 <n < N. Since, by assumption, det b 4:0, we see from this representation, that 
the vectorfield transversal to the torus is hyperbolic, if we omit the nonlinear 
terms. Since the omitted terms are uniformly bounded, we can construct 
therefore, as in Lemma 2, a special isolating block B for the gradient flow 17g(z) 
which is of the form: T" times hyperbolic i.e. B =  T"x  D~ x D 2 with exit set B-  
= T" x 8D 1 x D 2 and entrance set B 1 = T" x D~ x 63D 2. Application of the Corol- 
lary to Theorem 5 together with Theorem 4 yields ( n + l )  critical points of g, 
which give rise to (n+ 1) periodic solutions. We claim that the periodic so- 
lutions found are contained in the region T"x  D c T" x  IRn, where D is as in the 
assumption of Theorem 3. In fact, on T " x  (IR"\D) the Hamiltonian system is 
integrable; 

2=~y h(t,x, y )=by+a 

0 
~= - ~ x  h(t, x, y)=O. 

Hence the tori T" x {y} are invariant under the flow, and the restriction of the 
flow onto a torus T"x{y}  is in fact linear: ~0t: (x,y)w-~(x+t(by+a),y). In 
particular, the periodic solutions are not described by periodic functions on 11" 
x ( R " \ D )  and hence do not count. Therefore the periodic solutions found 
above must lie in T" x D. The proof of Theorem 3 is finished. [] 

7. Proof of Theorem 2 

We shall make use of the Morse-theory for flows as represented in [7]. In 
order to briefly outline the result we need, we consider a continuous flow on a 
locally compact and metric space X. A compact and invariant subset S c X  is 
called isolated, if it admits a compact neighborhood N such that S is the 
maximal invariant subset which is contained in N. With an isolated invariant 
set S a pair (N1, N2) of compact spaces can be associated, where N 2 c N  1 is 
roughly the "exit set" of N 1 and where Sc in t (Nl \N2)  is the invariant set 
contained in N 1. The homotopy type of the pointed space (N1/N 2, *) then does 
not depend on the particular choice of the "index-pair" (N~, N2) for S, and is 
called the index of S. It is denoted by h(S)=[(N~/N 2,*)]. The algebraic in- 
variants of h(S) are defined to be 

p(t, h(S)).'= ~ t s dim HS(N1, N2), 
j ~ o  

where (N1, N2) is any index-pair for S. Let now {M 1 . . . . .  Mk} be an ordered 
Morse-decomposition of S. Then the relation between the algebraic invariants 
of h(Mk) and those of h(S) is described by the following Morse-inequalities (see 
[7], Theorem 3.3): 

k 

p(t, h(Mj))=p(t, h(S)) + (1 + t) Q(t), (17) 
.i=1 

where Q is a formal power series with non-negative integer coefficients. 
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We shall apply this equation to the flow of Vg o n  T2n•  A / v •  ~,/v, with S 
being the set of bounded solutions. Then S is compact, since by (13), IVg(z)>e 
for all z=(x,~)eT 2 " x R  2N with ]~[>K. In particular S is contained in the 
interior of the compact set B:=T2"xD1 x D2, if we choose the radii of the 
discs sufficiently big. Moreover, by Lemma 2, the compact pair (B,B-), with 
the exit set B - : =  T 2" x ODI x D2, is an index pair for S in the sense of ([7], 
Definition 3.4). Therefore h(S)= [(B/B-, *)] and the algebraic invariants of h(S) 
are easily computed. Namely 

~*(h(S)) ~-.~(B/B-, *)~-H*(B, B-)~-/~*(T 2" x D1, T 2" x OD1) 

which, by the Kiinneth-formula, is isomorphic to It*(TE")| As 
I71*(DI,0D~)~-Iq*(SN,*), S N being a sphere of dimension N, we conclude 
I4J(h(S))~-HJ-N(T2"). Consequently, the algebraic invariants of h(S) are given 
by 

p(t,h(S))=j2~=o.= (2n)j t N+r, (18) 

since dim ~r(T2")= (2?).  Recall Lemma 1 and assume that all the periodic 

solutions having period 1 are nondegenerate. In this case it can be shown ([7], 
Lemma 2.6) that the function g is a Morse-function, hence has only non- 
degenerate critical points. Their number is finite, since the critical points are 
contained in the compact set B. Therefore the critical points {zi} = M  r can be 
labeled so that they form an ordered Morse-decomposition of S. It is easily 
seen ([7], Sect. 3.6), that h([zj})--[(S aJ, .)], where d r is the Morse-index of the 
critical point z r. Consequently p(t,h({zj})=t dj. Hence, by (18), the Morse- 
inequalities look as follows: 

k 2n 

J tr+.U+(l+t)  Q(t). (19) 

Since the polynomial Q has nonnegative integer coefficients we conclude in 

particular that indeed k_> ~ = 2  2", as we wanted to prove. [] 
- j = o  j i 

8. Appendix 

We prove the following statement which we found in V.I. Arnold's book [2], Appendix 9, without 
proof however. The idea of the proof was suggested to us by J. Mather. 

Theorem 6. I f  ~ is a symplectic C~-diffeomorphism of T 2 = R 2 / Z  2 then the following statements are 
equivalent. 

(i) ~b is, on R 2, of the form x~-~x +f(x) with f being periodic and [ f ] = 0 .  
(ii) ~ is generated by a globally Hamiltonian vectorfield on T 2. 

(iii) qt belongs to the commutator subgroup of Diff~o (T 2, oJ), the identity component of the group 
Diff~176 2, o~) of symplectic diffeomorphisms of T 2. 
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The statement (ii)<=.(iii) is a special case of a result due to A. Banyaga [4]. In order to prove 
(i)<:-(ii) we begin with a Lemma,  which is due to J. Moser. 

Let M be a compact  symplectic manifold. Fixing a symplectic form too on M we consider the 
set f2= {symplectic form to on M[~to=~to o for all 2-cycles c on M}. 

c c 

L e m m a  5. Let s~-~to~eO, s t [ 0 ,  1] be a closed curve which is contractible to too in I2, i.e. there exist 
%ttf2,  s, t t [0 ,  1] with COso=too, to,1 =to~ for s t [0 ,  1], and toot=toxt=too for te[0,  1]. Then there 
exists a closed curve s~-*q~tDiff~(M) satisfying 

qa*tos=to o and tpo=q~l=id. 

Remark. For dim M = 2  every closed curve % meets the assumption of the Lemma.  In fact, since f2 
is convex we can set % t = t t o , + ( 1 - t ) t o o t O .  For d i m M > 2  the assumption is met, if the com- 
ponent of t2 containing co o is simply connected. When this is the case is not known to us. 

Proof. We follow [10]. By the Hodge decomposit ion theorem with respect to a given metric on M 
d 

we have the representation ~ to~t =d%t + h, r  The 2-form h~t is harmonic. We shall require that %, 

= 6fl, t so that the choice of ct,t is unique. Since by assumption the periods of to~t are independent 
d 

of t, those o f ~ %  t are zero and so h~,=0. Thus 

d 
to~t = d~t ,  (20) 

where, by the above normalization, %t is unique. As tolt=~Oot=too we therefore have % t = c q , = 0 .  
Let V~t be the unique vectorfield satisfying 

co~,(v~,, .)= - ~ , ,  (21) 

and let q~t be the flow 

d 
r = V~,o r cp~ o = id. (22) 

Since dto , t=0 one finds with (20) and (21) 

d �9 . f d  ) 
toe,)= to , + 

, d 
=qO st {~t tost-dots,} =O. 

Hence q~*~to, t=to~o=too . Also, from Vow= Vlt=0, we conclude q)t,=~Oo,=id. Therefore q~=q~l  is 
the desired loop of diffeomorphisms. []  

Consider now M = T  2n and let to o be the s tandard symplectic form on T 2n. Define the 
subgroups A, A1, A z of Di f f ' (M)  as follows 

A = {~ktDiff~(M)l~ homotopic to id} 

A1 = {~btA]~* too=too} 

A 2 = {r * COo=to o and, on R 2n, ~ (x )=x+p(x)  

with [p] =0}.  

Then  clearly A ~ A 1 D A 2. 
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Lemma 6. I f  M =  T 2, then A 1 and also A 2 are connected by smooth arcs. 

Proof. It is a nontrivial fact, that, since dim T 2 =2 ,  the group of diffeomorphisms of T 2 which are 
homotopic to the identity is equal to the one component  of Diff~(TZ), which is connected by 
smooth arcs, see C.J. Earle and J. Eells 1-13]. If ~keA 1 we take a smooth arc x,eA with Xo=id and 
X1=r  and set og,=X*ogoef2 so that o9,=o9o for s=0 ,  1. By Lemma5 there is tp~ with q~*ogs=ogo 
and tpo=<Pl =id. Therefore ~ks=~o~ox~eA 1 and ~bo=id, ~bl= ~. 

If, moreover ~kEA2, then ~s: x~--~x+a~+p~(x), a~eR 2 and ao=a 1 =0,  [p~] =0.  We set L: x~-+x 
- a , ,  then ~=z~o@,eA 2 and ffo=id,  ffl =@1 =~b. [ ]  

In view of this lemma, the statement (i)r is an immediate consequence of the following 
simple 

Lemma 7. A smooth arc ~k~eA t with ~bo=id is the flow of  a globally Hamiltonian vectorfield on T 2~ 
if and only if ~t~A2. 

Proof. Let ~kt~A 2, then ~k~: x~--~x+p~(x) with [pt ]=0.  Since ~*o9o=o9o we conclude that the 
1 x d 

vectorfield [~lp~)o@~ -1 is of the form: 

d 1 

Vh(t,x) is periodic in x, so that  h(t, x ) =  (x,  c(t))+hi( t ,  x), with h 1 periodic in x. But I/J,] =0,  hence 
[/jr o if-1] = [/j,] = 0 and consequently c(t)= 0, so that indeed h = h I is periodic in x. Conversely, if if, 
is the flow of the globally Hamiltonian vectorfield J Ph on T 2", then ~b* o90 =o90 and ~PteA2 . [] 

We would like to thank A. Dold, M. Herman, J. Mather,  and J. Moser for suggestions and 
helpful discussions. We thank the Forschungsinstitut fiir Mathematik  ETH ZiJrich for its hospi- 
tality. For the second author the visit in Ziirich was made possible by a grant (Akademie- 
Stipendium) of the Stiftung Volkswagenwerk. 

Note Added in Proof 

We point out that M. Chaperon used the method introduced above to estimate the number  of 
intersection points of Lagrangian submanifolds. He 'proved,  for example, the following statement 
for an n-dimensional torus M = T " .  I f j : I •  is an exact Lagrangian isotopy such that 
jo(M) is the zero section • of T * M  ~ M, then -rc~jl (M) contains at least n + 1 points. 
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